Search tips
Search criteria

Results 1-25 (1059599)

Clipboard (0)

Related Articles

1.  Proteasome-Independent Major Histocompatibility Complex Class I Cross-Presentation Mediated by Papaya Mosaic Virus-Like Particles Leads to Expansion of Specific Human T Cells▿  
Journal of Virology  2006;81(3):1319-1326.
The development of versatile vaccine platforms is a priority that is recognized by health authorities worldwide; such platforms should induce both arms of the immune system, the humoral and cytotoxic-T-lymphocyte responses. In this study, we have established that a vaccine platform based on the coat protein of papaya mosaic virus (PapMV CP), previously shown to induce a humoral response, can induce major histocompatibility complex (MHC) class I cross-presentation of HLA-A*0201 epitopes from gp100, a melanoma antigen, and from influenza virus M1 matrix protein. PapMV proteins were able to assemble into stable virus-like particles (VLPs) in a crystalline and repetitive structure. When we pulsed HLA-A*0201+ antigen-presenting cells (APCs) with the recombinant PapMV FLU or gp100, we noted that antigen-specific CD8+ T cells were highly reactive to these APCs, demonstrating that the epitope from the VLPs were processed and loaded on the MHC class I complex. APCs were preincubated with two different proteasome inhibitors, which did not affect the efficiency of peptide presentation on MHC class I. Classical presentation from an endogenous antigen was abolished in the same conditions. Clearly, antigen presentation mediated by the PapMV system was proteasome independent. Finally, PapMV-pulsed APCs had the capacity to expand highly avid antigen-specific T cells against the influenza virus M1 HLA-A*0201 epitope when cocultured with autologous peripheral blood mononuclear cells. This study demonstrates the potential of PapMV for MHC class I cross-presentation and for the expansion of human antigen-specific T cells. It makes VLPs from PapMV CP a very attractive platform to trigger cellular responses for vaccine development against chronic infectious diseases and cancers.
PMCID: PMC1797532  PMID: 17121795
2.  αvβ3-dependent cross-presentation of matrix metalloproteinase–2 by melanoma cells gives rise to a new tumor antigen 
A large array of antigens that are recognized by tumor-specific T cells has been identified and shown to be generated through various processes. We describe a new mechanism underlying T cell recognition of melanoma cells, which involves the generation of a major histocompatibility complex class I–restricted epitope after tumor-mediated uptake and processing of an extracellular protein—a process referred to as cross-presentation—which is believed to be restricted to immune cells. We show that melanoma cells cross-present, in an αvβ3-dependent manner, an antigen derived from secreted matrix metalloproteinase–2 (MMP-2) to human leukocyte antigen A*0201-restricted T cells. Because MMP-2 activity is critical for melanoma progression, the MMP-2 peptide should be cross-presented by most progressing melanomas and represents a unique antigen for vaccine therapy of these tumors.
PMCID: PMC2212908  PMID: 15998788
3.  Immunodominant fragments of myelin basic protein initiate T cell-dependent pain 
The myelin sheath provides electrical insulation of mechanosensory Aβ-afferent fibers. Myelin-degrading matrix metalloproteinases (MMPs) damage the myelin sheath. The resulting electrical instability of Aβ-fibers is believed to activate the nociceptive circuitry in Aβ-fibers and initiate pain from innocuous tactile stimulation (mechanical allodynia). The precise molecular mechanisms, responsible for the development of this neuropathic pain state after nerve injury (for example, chronic constriction injury, CCI), are not well understood.
Methods and results
Using mass spectrometry of the whole sciatic nerve proteome followed by bioinformatics analyses, we determined that the pathways, which are classified as the Infectious Disease and T-helper cell signaling, are readily activated in the nerves post-CCI. Inhibition of MMP-9/MMP-2 suppressed CCI-induced mechanical allodynia and concomitant TNF-α and IL-17A expression in nerves. MMP-9 proteolysis of myelin basic protein (MBP) generated the MBP84-104 and MBP68-86 digest peptides, which are prominent immunogenic epitopes. In agreement, the endogenous MBP69-86 epitope co-localized with MHCII and MMP-9 in Schwann cells and along the nodes of Ranvier. Administration of either the MBP84-104 or MBP68-86 peptides into the naïve nerve rapidly produced robust mechanical allodynia with a concomitant increase in T cells and MHCII-reactive cell populations at the injection site. As shown by the genome-wide expression profiling, a single intraneural MBP84-104 injection stimulated the inflammatory, immune cell trafficking, and antigen presentation pathways in the injected naïve nerves and the associated spinal cords. Both MBP84-104-induced mechanical allodynia and characteristic pathway activation were remarkably less prominent in the T cell-deficient athymic nude rats.
These data implicate MBP as a novel mediator of pain. Furthermore, the action of MMPs expressed within 1 day post-injury is critical to the generation of tactile allodynia, neuroinflammation, and the immunodominant MBP digest peptides in nerve. These MBP peptides initiate mechanical allodynia in both a T cell-dependent and -independent manner. In the course of Wallerian degeneration, the repeated exposure of the cryptic MBP epitopes, which are normally sheltered from immunosurveillance, may induce the MBP-specific T cell clones and a self-sustaining immune reaction, which may together contribute to the transition of acute pain into a chronic neuropathic pain state.
PMCID: PMC3416717  PMID: 22676642
4.  Efficient Identification of Novel Hla-A*0201–Presented Cytotoxic T Lymphocyte Epitopes in the Widely Expressed Tumor Antigen Prame by Proteasome-Mediated Digestion Analysis 
We report the efficient identification of four human histocompatibility leukocyte antigen (HLA)-A*0201–presented cytotoxic T lymphocyte (CTL) epitopes in the tumor-associated antigen PRAME using an improved “reverse immunology” strategy. Next to motif-based HLA-A*0201 binding prediction and actual binding and stability assays, analysis of in vitro proteasome-mediated digestions of polypeptides encompassing candidate epitopes was incorporated in the epitope prediction procedure. Proteasome cleavage pattern analysis, in particular determination of correct COOH-terminal cleavage of the putative epitope, allows a far more accurate and selective prediction of CTL epitopes. Only 4 of 19 high affinity HLA-A*0201 binding peptides (21%) were found to be efficiently generated by the proteasome in vitro. This approach avoids laborious CTL response inductions against high affinity binding peptides that are not processed and limits the number of peptides to be assayed for binding. CTL clones induced against the four identified epitopes (VLDGLDVLL, PRA100–108; SLYSFPEPEA, PRA142–151; ALYVDSLFFL, PRA300–309; and SLLQHLIGL, PRA425–433) lysed melanoma, renal cell carcinoma, lung carcinoma, and mammary carcinoma cell lines expressing PRAME and HLA-A*0201. This indicates that these epitopes are expressed on cancer cells of diverse histologic origin, making them attractive targets for immunotherapy of cancer.
PMCID: PMC2195886  PMID: 11136822
antigen presentation; antigen processing; cytotoxic T lymphocyte induction; human histocompatibility leukocyte antigen class I binding; tumor immunotherapy
5.  A novel minigene scaffold for therapeutic cancer vaccines 
Oncoimmunology  2014;3:e27529.
Genetic vaccines are emerging as a powerful modality to induce T-cell responses to target tumor associated antigens (TAA). Viral or plasmid DNA or RNA vectors harbor an expression cassette encoding the antigen of choice delivered in vivo by vaccination. In this context, immunizations with minigenes containing selected, highly antigenic, T-cell epitopes of TAAs may have several advantages relative to full-length proteins. The objective of this study was to identify an optimal scaffold for minigene construction. We generated a number of minigenes containing epitopes from the carcinoembryonic antigen (CEA) model TAA and utilized muscle DNA electro-gene-transfer (DNA-EGT) to vaccinate HLA-A*0201 (HHD) and CEA/HHD double transgenic mice. The components utilized to construct the minigenes included CD8+ T cell epitopes and (or) anchor modified analogs that were selected on the basis of their predicted binding to HLA-*A0201, their uniqueness in the human proteome, and the likelihood of cancer cell natural processing and presentation via MHC-I. Other candidate components comparatively tested included: helper CD4+ T-cell epitopes, flanking regions for optimal epitope processing (including both proteasome-dependent and furin-dependent polypeptide processing mechanisms), and immunoenhancing moieties. Through a series of comparative studies and iterations we have identified an optimal minigene scaffold comprising the following elements: human tissue plasminogen activator (TPA) signal peptide, T-cell epitopes connected by furin sensitive linkers, and the E. Coli enterotoxin B subunit. The selected epitope modified minigenes (EMM) delivered by DNA-EGT were able to break immune tolerance in CEA/HHD mice and induce a strong immune response against all epitopes tested, independently of their relative positions within the scaffold. Furthermore, the optimized EMMs delivered via DNA-EGT were more immunogenic and exerted more powerful antitumor effects in a B16-CEA/HHD metastatic melanoma model than a DNA vector encoding the full-length protein or a mixture of the same peptides injected subcutaneously. Our data may shed light on the optimal design of a universal vehicle for epitope-targeted, genetic cancer vaccines.
PMCID: PMC4002591  PMID: 24790791
cancer vaccine; epitope prediction; minigene
6.  Active synovial matrix metalloproteinase-2 is associated with radiographic erosions in patients with early synovitis 
Arthritis Research  2000;2(2):145-153.
Serum and synovial tissue expression of the matrix metalloproteinase (MMP)-2 and -9 and their molecular regulators, MMP-14 and TIMP-2 was examined in 28 patients with inflammatory early synovitis and 4 healthy volunteers and correlated with the presence of erosions in the patients. Immunohistological staining of MMP-2, MMP-14 and TIMP-2 localized to corresponding areas in the synovial lining layer and was almost absent in normal synovium. Patients with radiographic erosions had significantly higher levels of active MMP-2 than patients with no erosions, suggesting that activated MMP-2 levels in synovial tissue may be a marker for a more aggressive synovial lesion.
In cancer the gelatinases [matrix metalloproteinase (MMP)-2 and MMP-9] have been shown to be associated with tissue invasion and metastatic disease. In patients with inflammatory arthritis the gelatinases are expressed in the synovial membrane, and have been implicated in synovial tissue invasion into adjacent cartilage and bone. It is hypothesized that an imbalance between the activators and inhibitors of the gelatinases results in higher levels of activity, enhanced local proteolysis, and bone erosion.
To determine whether the expression and activity levels of MMP-2 and MMP-9, and their regulators MMP-14 and tissue inhibitor of metalloproteinase (TIMP), are associated with early erosion formation in patients with synovitis of recent onset.
Patients and method:
A subset of 66 patients was selected from a larger early synovitis cohort on the basis of tissue availability for the study of synovial tissue and serum gelatinase expression. Patients with peripheral joint synovitis of less than 1 years' duration were evaluated clinically and serologically on four visits over a period of 12 months. At the initial visit, patients underwent a synovial tissue biopsy of one swollen joint, and patients had radiographic evaluation of hands and feet initially and at 1year. Serum MMP-1, MMP-2, MMP-9, MMP-14, and TIMP-1 and TIMP-2 levels were determined, and synovial tissue was examined by immunohistology for the expression of MMP-2 and MMP-9, and their molecular regulators. Gelatinolytic activity for MMP-2 and MMP-9 was quantified using a sensitive, tissue-based gel zymography technique. Four healthy individuals underwent closed synovial biopsy and their synovial tissues were similarly analyzed.
Of the 66 patients studied, 45 fulfilled American College of Rheumatology criteria for rheumatoid arthritis (RA), with 32 (71%) being rheumatoid factor positive. Of the 21 non-RA patients, seven had a spondylarthropathy and 14 had undifferentiated arthritis. Radiographically, 12 of the RA patients had erosions at multiple sites by 1 year, whereas none of the non-RA patients had developed erosive disease of this extent. In the tissue, latent MMP-2 was widely expressed in the synovial lining layer and in areas of stromal proliferation in the sublining layer and stroma, whereas MMP-9 was expressed more sparsely and focally. MMP-14, TIMP-2, and MMP-2 were all detected in similar areas of the lining layer on consecutive histologic sections. Tissue expression of MMP-14, the activator for pro-MMP-2, was significantly higher in RA than in non-RA patients (8.4 ± 5 versus 3.7 ± 4 cells/high-power field; P = 0.009). In contrast, the expression of TIMP-2, an inhibitor of MMP-2, was lower in the RA than in the non-RA samples (25 ± 12 versus 39 ± 9 cells/high-power field; P = 0.01). Synovial tissue expressions of MMP-2, MMP-14, and TIMP-2 were virtually undetectable in normal synovial tissue samples. The synovial tissue samples of patients with erosive disease had significantly higher levels of active MMP-2 than did those of patients without erosions (Fig. 1). Tissue expression of MMP-2 and MMP-9, however, did not correlate with the serum levels of these enzymes.
With the exception of serum MMP-2, which was not elevated over normal, serum levels of all of the other MMPs and TIMPs were elevated to varying degrees, and were not predictive of erosive disease. Interestingly, MMP-1 and C-reactive protein, both of which were associated with the presence of erosions, were positively correlated with each other (r = 0.42; P < 0.001).
MMP-2 and MMP-9 are thought to play an important role in the evolution of joint erosions in patients with an inflammatory arthritis. Most studies have concentrated on the contribution of MMP-9 to the synovitis, because synovial fluid and serum MMP-9 levels are markedly increased in inflammatory arthropathies. Previously reported serum levels of MMP-9 have varied widely. In the present sample of patients with synovitis of recent onset, serum MMP-9 levels were elevated in only 21%. Moreover, these elevations were not specific for RA, the tissue expression of MMP-9 was focal, and the levels of MMP-9 activity were not well correlated with early erosions. Although serum MMP-2 levels were not of prognostic value, high synovial tissue levels of MMP-2 activity were significantly correlated with the presence of early erosions. This may reflect augmented activation of MMP-2 by the relatively high levels of MMP-14 and low levels of TIMP-2 seen in these tissues. We were able to localize the components of this trimolecular complex to the synovial lining layer in consecutive tissue sections, a finding that is consistent with their colocalization.
In conclusion, we have provided evidence that active MMP-2 complexes are detectable in the inflamed RA synovium and may be involved in the development of early bony erosions. These results suggest that strategies to inhibit the activation of MMP-2 may have the potential for retarding or preventing early erosions in patients with inflammatory arthritis.
PMCID: PMC17808  PMID: 11062605
early synovitis; erosion; metalloproteinase; matrix metalloproteinase-2; rheumatoid arthritis
7.  Matrix Metalloproteinase Proteolysis of the Myelin Basic Protein Isoforms Is a Source of Immunogenic Peptides in Autoimmune Multiple Sclerosis 
PLoS ONE  2009;4(3):e4952.
Matrix metalloproteinases (MMPs) play a significant role in the fragmentation of myelin basic protein (MBP) and demyelination leading to autoimmune multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). The classic MBP isoforms are predominantly expressed in the oligodendrocytes of the CNS. The splice variants of the single MBP gene (Golli-MBP BG21 and J37) are widely expressed in the neurons and also in the immune cells. The relative contribution of the individual MMPs to the MBP cleavage is not known.
Methodology/Principal Findings
To elucidate which MMP plays the primary role in cleaving MBP, we determined the efficiency of MMP-2, MMP-8, MMP-9, MMP-10, MMP-12, MT1-MMP, MT2-MMP, MT3-MMP, MT4-MMP, MT5-MMP and MT6-MMP in the cleavage of the MBP, BG21 and J37 isoforms in the in vitro cleavage reactions followed by mass-spectroscopy analysis of the cleavage fragments. As a result, we identified the MMP cleavage sites and the sequence of the resulting fragments. We determined that MBP, BG21 and J37 are highly sensitive to redundant MMP proteolysis. MT6-MMP (initially called leukolysin), however, was superior over all of the other MMPs in cleaving the MBP isoforms. Using the mixed lymphocyte culture assay, we demonstrated that MT6-MMP proteolysis of the MBP isoforms readily generated, with a near quantitative yield, the immunogenic N-terminal 1–15 MBP peptide. This peptide selectively stimulated the proliferation of the PGPR7.5 T cell clone isolated from mice with EAE and specific for the 1–15 MBP fragment presented in the MHC H-2U context.
In sum, our biochemical observations led us to hypothesize that MT6-MMP, which is activated by furin and associated with the lipid rafts, plays an important role in MS pathology and that MT6-MMP is a novel and promising drug target in MS especially when compared with other individual MMPs.
PMCID: PMC2654159  PMID: 19300513
8.  Differential spatio-temporal regulation of MMPs in the 5xFAD mouse model of Alzheimer’s disease: evidence for a pro-amyloidogenic role of MT1-MMP 
Matrix metalloproteinases (MMPs) are pleiotropic endopeptidases involved in a variety of neurodegenerative/neuroinflammatory processes through their interactions with a large number of substrates. Among those, the amyloid precursor protein (APP) and the beta amyloid peptide (Aβ) are largely associated with the development of Alzheimer’s disease (AD). However, the regulation and potential contribution of MMPs to AD remains unclear. In this study, we investigated the evolution of the expression of MMP-2, MMP-9, and membrane-type 1-MMP (MT1-MMP) in the hippocampus at different stages of the pathology (asymptomatic, prodromal-like and symptomatic) in the 5xFAD transgenic mouse AD model. In parallel we also followed the expression of functionally associated factors. Overall, the expression of MMP-2, MMP-9, and MT1-MMP was upregulated concomitantly with the tissue inhibitor of MMPs-1 (TIMP-1) and several markers of inflammatory/glial response. The three MMPs exhibited age- and cell-dependent upregulation of their expression, with MMP-2 and MMP-9 being primarily located to astrocytes, and MT1-MMP to neurons. MMP-9 and MT1-MMP were also prominently present in amyloid plaques. The levels of active MT1-MMP were highly upregulated in membrane-enriched fractions of hippocampus at 6 months of age (symptomatic phase), when the levels of APP, its metabolites APP C-terminal fragments (CTFs), and Aβ trimers were the highest. Overexpression of MT1-MMP in HEK cells carrying the human APP Swedish mutation (HEKswe) strongly increased β-secretase derived C-terminal APP fragment (C99) and Aβ levels, whereas MMP-2 overexpression nearly abolished Aβ production without affecting C99. Our data consolidate the emerging idea of a regulatory interplay between MMPs and the APP/Aβ system, and demonstrate for the first time the pro-amyloidogenic features of MT1-MMP. Further investigation will be justified to evaluate this MMP as a novel potential therapeutic target in AD.
PMCID: PMC4166961  PMID: 25278878
metalloproteinases; amyloid; MMP-2; MMP-9; ADAM; TIMP; neuroinflammation; cytokines
9.  Matrix metalloproteinases in human melanoma cell lines and xenografts: increased expression of activated matrix metalloproteinase-2 (MMP-2) correlates with melanoma progression 
British Journal of Cancer  1999;81(5):774-782.
Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are involved in tumour progression and metastasis. In this study, we investigated the in vitro and in vivo expression patterns of MMP-1, MMP-2, MMP-3, MMP-9, TIMP-1 and TIMP-2 mRNA and protein in a previously described human melanoma xenograft model. This model consists of eight human melanoma cell lines with different metastatic behaviour after subcutaneous (s.c.) injection into nude mice. MMP-1 mRNA was detectable in all cell lines by reverse transcription polymerase chain reaction (RT-PCR), but the expression was too low to be detected by Northern blot analysis. No MMP-1 protein could be found using Western blotting. MMP-2 mRNA and protein were present in all cell lines, with the highest expression of both latent and active MMP-2 in the highest metastatic cell lines MV3 and BLM. MMP-3 mRNA was expressed in MV3 and BLM, and in the non-metastatic cell line 530, whereas MMP-3 protein was detectable only in MV3 and BLM. None of the melanoma cell lines expressed MMP-9. TIMP-1 and TIMP-2 mRNA and protein, finally, were present in all cell lines. A correlation between TIMP expression level and metastatic capacity of cell lines, however, was lacking. MMP and TIMP mRNA and protein expression levels were also studied in s.c. xenograft lesions derived from a selection of these cell lines. RT-PCR analysis revealed that MMP-1 mRNA was present in MV3 and BLM xenografts, and to a lesser extent in 530. Positive staining for MMP-1 protein was found in xenograft lesions derived from both low and high metastatic cell lines, indicating an in vivo up-regulation of MMP-1. MMP-2 mRNA was detectable only in xenografts derived from the highly metastatic cell lines 1F6m, MV3 and BLM. In agreement with the in vitro results, the highest levels of both latent and activated MMP-2 protein were observed in MV3 and BLM xenografts. With the exception of MMP-9 mRNA expression in 530 xenografts, MMP-3, MMP-9, and TIMP-1 mRNA and protein were not detectable in any xenograft, indicating a down-regulated expression of MMP-3 and TIMP-1 in vivo. TIMP-2 mRNA and protein were present in all xenografts; interestingly, the strongest immunoreactivity of tumour cells was found at the border of necrotic areas. Our study demonstrates that of all tested components of the matrix metalloproteinase system, only expression of activated MMP-2 correlates with increased malignancy in our melanoma xenograft model, corroborating an important role of MMP-2 in human melanoma invasion and metastasis. © 1999 Cancer Research Campaign
PMCID: PMC2374291  PMID: 10555745
matrix metalloproteinase (MMP); tissue inhibitor of matrix metalloproteinases (TIMP); melanoma; xenograft; invasion; metastasis
10.  Evidence for the Presentation of Major Histocompatibility Complex Class I–restricted Epstein-Barr Virus Nuclear Antigen 1 Peptides to CD8+ T Lymphocytes 
The Epstein-Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) is expressed in all EBV-associated tumors, making it an important target for immunotherapy. However, evidence for major histocompatibility complex (MHC) class I–restricted EBNA1 peptides endogenously presented by EBV-transformed B and tumor cells remains elusive. Here we describe for the first time the identification of an endogenously processed human histocompatibility leukocyte antigen (HLA)-B8–restricted EBNA1 peptide that is recognized by CD8+ T cells. T cell recognition could be inhibited by the treatment of target cells with proteasome inhibitors that block the MHC class I antigen processing pathway, but not by an inhibitor (chloroquine) of MHC class II antigen processing. We also demonstrate that new protein synthesis is required for the generation of the HLA-B8 epitope for T cell recognition, suggesting that defective ribosomal products (DRiPs) are the major source of T cell epitopes. Experiments with protease inhibitors indicate that some serine proteases may participate in the degradation of EBNA1 DRiPs before they are further processed by proteasomes. These findings not only provide the first evidence of the presentation of an MHC class I–restricted EBNA1 epitope to CD8+ T cells, but also offer new insight into the molecular mechanisms involved in the processing and presentation of EBNA1.
PMCID: PMC2211826  PMID: 14769850
cancer vaccines; immunotherapy; MHC class I–restricted peptides; antigen presentation; CD8+ T cells
11.  Triple-Helical Transition State Analogs: A New Class of Selective Matrix Metalloproteinase Inhibitors 
Journal of the American Chemical Society  2007;129(34):10408-10417.
Alterations in activities of one family of proteases, the matrix metalloproteinases (MMPs), have been implicated in primary and metastatic tumor growth, angiogenesis, and pathological degradation of extracellular matrix (ECM) components, such as collagen and laminin. Since hydrolysis of the collagen triple-helix is one of the committed steps in ECM turnover, we envisioned modulation of collagenolytic activity as a strategy for creating selective MMP inhibitors. In the present study, a phosphinate transition state analog has been incorporated within a triple-helical peptide template. The template sequence was based on the α1(V)436-450 collagen region, which is hydrolyzed at the Gly439~Val440 bond selectively by MMP-2 and MMP-9. The phosphinate acts as a tetrahedral transition state analog, which mimics the water-bound peptide bond of a protein substrate during hydrolysis. The phosphinate replaced the amide bond between Gly-Val in the P1-P1′ subsites of the triple-helical peptide. Inhibition studies revealed Ki values in the low nanomolar range for MMP-2 and MMP-9 and low to middle micromolar range for MMP-8 and MMP-13. MMP-1, MMP-3, and MT1-MMP/MMP-14 were not inhibited effectively. Melting of the triple-helix resulted in a decrease in inhibitor affinity for MMP-2. The phosphinate triple-helical transition state analog has high affinity and selectivity for the gelatinases (MMP-2 and MMP-9), and represents a new class of protease inhibitors that maximizes potential selectivity via interactions with both prime and non-prime active site subsites as well as with secondary binding sites (exosites).
PMCID: PMC2531068  PMID: 17672455
12.  Rapid Antigen Processing and Presentation of a Protective and Immunodominant HLA-B*27-restricted Hepatitis C Virus-specific CD8+ T-cell Epitope 
PLoS Pathogens  2012;8(11):e1003042.
HLA-B*27 exerts protective effects in hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections. While the immunological and virological features of HLA-B*27-mediated protection are not fully understood, there is growing evidence that the presentation of specific immunodominant HLA-B*27-restricted CD8+ T-cell epitopes contributes to this phenomenon in both infections. Indeed, protection can be linked to single immunodominant CD8+ T-cell epitopes and functional constraints on escape mutations within these epitopes. To better define the immunological mechanisms underlying HLA-B*27-mediated protection in HCV infection, we analyzed the functional avidity, functional profile, antiviral efficacy and naïve precursor frequency of CD8+ T cells targeting the immunodominant HLA-B*27-restricted HCV-specific epitope as well as its antigen processing and presentation. For comparison, HLA-A*02-restricted HCV-specific epitopes were analyzed. The HLA-B*27-restricted CD8+ T-cell epitope was not superior to epitopes restricted by HLA-A*02 when considering the functional avidity, functional profile, antiviral efficacy or naïve precursor frequency. However, the peptide region containing the HLA-B*27-restricted epitope was degraded extremely fast by both the constitutive proteasome and the immunoproteasome. This efficient proteasomal processing that could be blocked by proteasome inhibitors was highly dependent on the hydrophobic regions flanking the epitope and led to rapid and abundant presentation of the epitope on the cell surface of antigen presenting cells. Our data suggest that rapid antigen processing may be a key immunological feature of this protective and immunodominant HLA-B*27-restricted HCV-specific epitope.
Author Summary
HLA-B*27 has a protective effect in hepatitis C virus (HCV) infection which could be linked to a single highly immunodominant HLA-B*27-restricted CD8+ T-cell epitope. However, the immunological mechanisms determining this protective effect are poorly understood. In this study, we analyzed multiple immunological determinants that may contribute to the protective role of the HLA-B*27-restricted HCV-specific epitope and its strong immunodominance and compared them with HLA-A*02-restricted HCV-specific epitopes. Our data indicate that the protective effect of the HLA-B*27-restricted epitope cannot be explained by a higher sensitivity for antigen stimulation, a higher proportion of effector-functions or a superior ability to inhibit viral replication of epitope-specific CD8+ T cells. We also did not find a higher naïve precursor frequency of HLA-B*27-restricted CD8+ T cells. However, we could show that the peptide region containing the HLA-B*27-restricted epitope is characterized by rapid antigen processing that was mostly due to the hydrophobic flanking regions of the epitope. This results in a faster presentation of the epitope at the cell surface of antigen presenting cells. Our results suggest that rapid antigen processing may be a key mechanism contributing to the protective effect of the immunodominant HLA-B*27-restricted epitope. These findings have clear implications for the design of antiviral vaccines.
PMCID: PMC3510254  PMID: 23209413
13.  The effects of 1α,25-dihydroxyvitamin D3 on matrix metalloproteinase and prostaglandin E2 production by cells of the rheumatoid lesion 
Arthritis Research  1999;1(1):63-70.
The biologically active metabolite of vitamin D3, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], acts through vitamin D receptors, which were found in rheumatoid tissues in the present study. IL-1β-activated rheumatoid synovial fibroblasts and human articular chondrocytes were shown to respond differently to exposure to 1α,25(OH)2D3, which has different effects on the regulatory pathways of specific matrix metalloproteinases and prostaglandin E2.
1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], the biologically active metabolite of vitamin D3, acts through an intracellular vitamin D receptor (VDR) and has several immunostimulatory effects. Animal studies have shown that production of some matrix metalloproteinases (MMPs) may be upregulated in rat chondrocytes by administration of 1α,25(OH)2D3; and cell cultures have suggested that 1α,25(OH)2D3 may affect chondrocytic function. Discoordinate regulation by vitamin D of MMP-1 and MMP-9 in human mononuclear phagocytes has also been reported. These data suggest that vitamin D may regulate MMP expression in tissues where VDRs are expressed. Production of 1α,25(OH)2D3 within synovial fluids of arthritic joints has been shown and VDRs have been found in rheumatoid synovial tissues and at sites of cartilage erosion. The physiological function of 1α,25(OH)2D3 at these sites remains obscure. MMPs play a major role in cartilage breakdown in the rheumatoid joint and are produced locally by several cell types under strict control by regulatory factors. As 1α,25(OH)2D3 modulates the production of specific MMPs and is produced within the rheumatoid joint, the present study investigates its effects on MMP and prostaglandin E2 (PGE2) production in two cell types known to express chondrolytic enzymes.
To investigate VDR expression in rheumatoid tissues and to examine the effects of 1α,25-dihydroxyvitamin D3 on cultured rheumatoid synovial fibroblasts (RSFs) and human articular chondrocytes (HACs) with respect to MMP and PGE2 production.
Rheumatoid synovial tissues were obtained from arthroplasty procedures on patients with late-stage rheumatoid arthritis; normal articular cartilage was obtained from lower limb amputations. Samples were embedded in paraffin, and examined for presence of VDRs by immunolocalisation using a biotinylated antibody and alkaline-phosphatase-conjugated avidin-biotin complex system. Cultured synovial fibroblasts and chondrocytes were treated with either 1α,25(OH)2D3, or interleukin (IL)-1β or both. Conditioned medium was assayed for MMP and PGE2 by enzyme-linked immunosorbent assay (ELISA), and the results were normalised relative to control values.
The rheumatoid synovial tissue specimens (n = 18) immunostained for VDRs showed positive staining but at variable distributions and in no observable pattern. VDR-positive cells were also observed in association with some cartilage-pannus junctions (the rheumatoid lesion). MMP production by RSFs in monolayer culture was not affected by treatment with 1α,25(OH)2D3 alone, but when added simultaneously with IL-1β the stimulation by IL-1β was reduced from expected levels by up to 50%. In contrast, 1α,25(OH)2D3 had a slight stimulatory effect on basal production of MMPs 1 and 3 by monolayer cultures of HACs, but stimulation of MMP-1 by IL-1β was not affected by the simultaneous addition of 1α,25(OH)2D3 whilst MMP-3 production was enhanced (Table 1). The production of PGE2 by RSFs was unaffected by 1α,25(OH)2D3 addition, but when added concomitantly with IL-1β the expected IL-1 β-stimulated increase was reduced to almost basal levels. In contrast, IL-1β stimulation of PGE2 in HACs was not affected by the simultaneous addition of 1α,25(OH)2D3 (Table 2). Pretreatment of RSFs with 1α,25(OH)2D3 for 1 h made no significant difference to IL-1β-induced stimulation of PGE2, but incubation for 16 h suppressed the expected increase in PGE2 to control values. This effect was also noted when 1α,25(OH)2D3 was removed after the 16h and the IL-1 added alone. Thus it appears that 1α,25(OH)2D3 does not interfere with the IL-1β receptor, but reduces the capacity of RSFs to elaborate PGE2 after IL-1β induction.
Cells within the rheumatoid lesion which expressed VDR were fibroblasts, macrophages, lymphocytes and endothelial cells. These cells are thought to be involved in the degradative processes associated with rheumatoid arthritis (RA), thus providing evidence of a functional role of 1α,25(OH)2D3 in RA. MMPs may play important roles in the chondrolytic processes of the rheumatoid lesion and are known to be produced by both fibroblasts and chondrocytes. The 1α,25(OH)2D3 had little effect on basal MMP production by RSFs, although more pronounced differences were noted when IL-1β-stimulated cells were treated with 1α,25(OH)2D3, with the RSF and HAC showing quite disparate responses. These opposite effects may be relevant to the processes of joint destruction, especially cartilage loss, as the ability of 1α,25(OH)2D3 to potentiate MMP-1 and MMP-3 expression by 'activated' chondrocytes might facilitate intrinsic cartilage chondrolysis in vivo. By contrast, the MMP-suppressive effects observed for 1α,25(OH)2D3 treatment of 'activated' synovial fibroblasts might reduce extrinsic chondrolysis and also matrix degradation within the synovial tissue. Prostaglandins have a role in the immune response and inflammatory processes associated with RA. The 1α,25(OH)2D3 had little effect on basal PGE2 production by RSF, but the enhanced PGE2 production observed following IL-1β stimulation of these cells was markedly suppressed by the concomitant addition of 1α,25(OH)2D3. As with MMP production, there are disparate effects of 1α,25(OH)2D3 on IL-1β stimulated PGE2 production by the two cell types; 1α,25(OH)2D3 added concomitantly with IL-1β had no effect on PGE2 production by HACs. In summary, the presence of VDRs in the rheumatoid lesion demonstrates that 1α,25(OH)2D3 may have a functional role in the joint disease process. 1α,25(OH)2D3 does not appear to directly affect MMP or PGE2 production but does modulate cytokine-induced production.
Comparative effects of 1 α,25-dihydroxyvitamin D3 (1 α,25D3) on interleukin (IL)-1-stimulated matrix metalloproteinase (MMP)-1 and MMP-3 production by rheumatoid synovial fibroblasts and human articular chondrocytes in vivo
Data given are normalized relative to control values and are expressed ± SEM for three cultures of each cell type.
Comparative effects of 1α,25-dihydroxyvitamin D3 (1α,25D3) on Interleukin (IL)-1-stimulated prostaglandin E2 production by rheumatoid synovial fibroblasts and human articular chondrocyte in vivo
Data given are normalized relative to control values and are expressed ± SEM for three cultures of each cell type.
PMCID: PMC17774  PMID: 11056661
1α,25-dihydroxyvitamin D3; matrix metalloproteinase; prostaglandin E2; rheumatoid arthritis
14.  TIMP-1 Induces an EMT-Like Phenotypic Conversion in MDCK Cells Independent of Its MMP-Inhibitory Domain 
PLoS ONE  2012;7(6):e38773.
Matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) regulate epithelial-mesenchymal transition (EMT) critical for the development of epithelial organs as well as cancer cell invasion. TIMP-1 is frequently overexpressed in several types of human cancers and serves as a prognostic marker. The present study investigates the roles of TIMP-1 on the EMT process and formation of the lumen-like structure in a 3D Matrigel culture of MDCK cells. We show that TIMP-1 overexpression effectively prevents cell polarization and acinar-like structure formation. TIMP-1 induces expression of the developmental EMT transcription factors such as SLUG, TWIST, ZEB1 and ZEB2, leading to downregulation of epithelial marker and upregulation of mesenchymal markers. Importantly, TIMP-1′s ability to induce the EMT-like process is independent of its MMP-inhibitory domain. To our surprise, TIMP-1 induces migratory and invasive properties in MDCK cells. Here, we present a novel finding that TIMP-1 signaling upregulates MT1-MMP and MMP-2 expression, and potentiates MT1-MMP activation of pro-MMP-2, contributing to tumor cell invasion. In spite of the fact that TIMP-1, as opposed to TIMP-2, does not interact with and inhibit MT1-MMP, TIMP-1 may act as a key regulator of MT1-MMP/MMP-2 axis. Collectively, our findings suggest a model in which TIMP-1 functions as a signaling molecule and also as an endogenous inhibitor of MMPs. This concept represents a paradigm shift in the current view of TIMP-1/MT1-MMP interactions and functions during cancer development/progression.
PMCID: PMC3372473  PMID: 22701711
15.  Identification of Hepsin and Protein Disulfide Isomerase A3 as Targets of Gelatinolytic Action in Rat Ovarian Granulosa Cells During the Periovulatory Period1  
Biology of Reproduction  2011;85(4):858-866.
The matrix metalloproteinase (MMP) family is believed to play a role in the ovulatory process because MMP inhibitors block oocyte release. However, little is known about the mechanisms by which the MMPs affect ovulation. The present study investigated the degradomic actions of the gelatinases, MMP2 and MMP9, by identifying gelatinolytic targets in periovulatory granulosa cells. Granulosa cells were collected from immature rats 48 h after equine chorionic gonadotropin treatment and were cultured with human chorionic gonadotropin (hCG) in the absence or presence of a specific MMP2/9 inhibitor ((2R)-2-[(4-biphenylylsulfonyl)amino]-3-phenylpropionic acid) for an additional 24 h. The conditioned media was analyzed for gelatinolytic activity, progesterone, and peptide profiles. Gelatinolytic activity and progesterone were induced in response to hCG; however, there was no difference in progesterone between cells treated with or without the inhibitor. Peptide fragments of proteins altered in the presence of the gelatinase inhibitor were identified by two-dimensional gel electrophoresis and mass spectrometry. Protein disulfide isomerase A3 (PDIA3), which plays a role in protein folding, was identified as a peptide that decreased in the presence of inhibitor while the serine protease hepsin, was found to increase with inhibitor treatment. Subsequent experiments established that PDIA3 and hepsin were targets of MMP2/9 action by cleavage with MMP2 and Western blot analysis, respectively. Additionally, hepsin was identified as a gelatinolytic target in ovarian cancer cells. In the present study, proteomics has identified proteins that may be involved in novel ways in the complex cascades that are mediated by gelatinolytic MMPs during the periovulatory period.
Gelatinases from rat granulosa cells degrade hepsin and protein disulfide isomerase A3.
PMCID: PMC3184295  PMID: 21734266
corpus luteum; hepsin; matrix metalloproteinase; ovulation; protein disulfide isomerase A3
16.  Specificity of T cells in synovial fluid: high frequencies of CD8+ T cells that are specific for certain viral epitopes 
Arthritis Research  2000;2(2):154-164.
CD8+ T cells dominate the lymphocyte population in synovial fluid in chronic inflammatory arthritis. It is known that these CD8+ T cells are often clonally or oligoclonally expanded, but their specificity and their relevance to the pathogenesis of joint disease has remained unclear. We found that as many as 15.5% of synovial CD8+ T cells may be specific for a single epitope from an Epstein-Barr virus lytic cycle protein. The virus-specific T cells within the joint showed increased expression of markers of activation and differentiation compared with those in the periphery, and retained their functional capacity to secrete proinflammatory cytokines on stimulation. These activated, virus-specific CD8+ T cells could therefore interact with synoviocytes, either by cell-cell contact or by a cytokine network, and play a 'bystander' role in the maintenance of inflammation in patients with arthritis.
Epstein-Barr virus (EBV) is transmitted orally, replicates in the oropharynx and establishes life-long latency in human B lymphocytes. T-cell responses to latent and lytic/replicative cycle proteins are readily detectable in peripheral blood from healthy EBV-seropositive individuals. EBV has also been detected within synovial tissue, and T-cell responses to EBV lytic proteins have been reported in synovial fluid from a patient with rheumatoid arthritis (RA). This raises the question regarding whether T cells specific for certain viruses might be present at high frequencies within synovial fluid and whether such T cells might be activated or able to secrete cytokines. If so, they might play a 'bystander' role in the pathogenesis of inflammatory joint disease.
To quantify and characterize T cells that are specific for epitopes from EBV, cytomegalovirus (CMV) and influenza in peripheral blood and synovial fluid from patients with arthritis.
Peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) were obtained from patients with inflammatory arthritis (including those with RA, osteoarthritis, psoriatic arthritis and reactive arthritis). Samples from human leucocyte antigen (HLA)-A2-positive donors were stained with fluorescent-labelled tetramers of HLA-A2 complexed with the GLCTLVAML peptide epitope from the EBV lytic cycle protein BMLF1, the GILGFVFTL peptide epitope from the influenza A matrix protein, or the NLVPMVATV epitope from the CMV pp65 protein. Samples from HLA-B8-positive donors were stained with fluorescent-labelled tetramers of HLA-B8 complexed with the RAKFKQLL peptide epitope from the EBV lytic protein BZLF1 or the FLRGRAYGL peptide epitope from the EBV latent protein EBNA3A. All samples were costained with an antibody specific for CD8. CD4+ T cells were not analyzed. Selected samples were costained with antibodies specific for cell-surface glycoproteins, in order to determine the phenotype of the T cells within the joint and the periphery. Functional assays to detect release of IFN-γ or tumour necrosis factor (TNF)-α were also performed on some samples.
The first group of 15 patients included 10 patients with RA, one patient with reactive arthritis, one patient with psoriatic arthritis and three patients with osteoarthritis. Of these, 11 were HLA-A2 positive and five were HLA-B8 positive. We used HLA-peptide tetrameric complexes to analyze the frequency of EBV-specific T cells in PBMCs and SFMCs (Figs 1 and 2). Clear enrichment of CD8+ T cells specific for epitopes from the EBV lytic cycle proteins was seen within synovial fluid from almost all donors studied, including patients with psoriatic arthritis and osteoarthritis and those with RA. In donor RhA6, 9.5% of CD8+ SFMCs were specific for the HLA-A2 restricted GLCTLVAML epitope, compared with 0.5% of CD8+ PBMCs. Likewise in a donor with osteoarthritis (NR4), 15.5% of CD8+ SFMCs were specific for the HLA-B8-restricted RAKFKQLL epitope, compared with 0.4% of CD8+ PBMCs. In contrast, we did not find enrichment of T cells specific for the HLA-B8-restricted FLRGRAYGL epitope (from the latent protein EBNA3A) within SFMCs compared with PBMCs in any donors. In selected individuals we performed ELISpot assays to detect IFN-γ secreted by SFMCs and PBMCs after a short incubation in vitro with peptide epitopes from EBV lytic proteins. These assays confirmed enrichment of T cells specific for epitopes from EBV lytic proteins within synovial fluid and showed that subpopulations of these cells were able to secrete proinflammatory cytokines after short-term stimulation.
We used a HLA-A2/GILGFVFTL tetramer to stain PBMCs and SFMCs from six HLA-A2-positive patients. The proportion of T cells specific for this influenza epitope was low (<0.2%) in all donors studied, and we did not find any enrichment within SFMCs.
We had access to SFMCs only from a second group of four HLA-A2-positive patients with RA. A tetramer of HLA-A2 complexed to the NLVPMVATV epitope from the CMV pp65 protein reacted with subpopulations of CD8+ SFMCs in all four donors, with frequencies of 0.2, 0.5, 2.3 and 13.9%. SFMCs from all four donors secreted TNF after short-term incubation with COS cells transfected with HLA-A2 and pp65 complementary DNA. We analyzed the phenotype of virus-specific cells within PBMCs and SFMCs in three donors. The SFMC virus-specific T cells were more highly activated than those in PBMCs, as evidenced by expression of high levels of CD69 and HLA-DR. A greater proportion of SFMCs were CD38+, CD62L low, CD45RO bright, CD45RA dim, CD57+ and CD28- when compared with PBMCs.
This work shows that T cells specific for certain epitopes from viral proteins are present at very high frequencies (up to 15.5% of CD8+ T cells) within SFMCs taken from patients with inflammatory joint disease. This enrichment does not reflect a generalized enrichment for the 'memory pool' of T cells; we did not find enrichment of T cells specific for the GILGFVFTL epitope from influenza A or for the FLRGRAYGL epitope from the EBV latent protein EBNA3A, whereas we found clear enrichment of T cells specific for the GLCTLVAML epitope from the EBV lytic protein BMLF1 and for the RAKFKQLL epitope from the EBV lytic protein BZLF1.
The enrichment might reflect preferential recruitment of subpopulations of virus-specific T cells, perhaps based on expression of selectins, chemokine receptors or integrins. Alternatively, T cells specific for certain viral epitopes may be stimulated to proliferate within the joint, by viral antigens themselves or by cross-reactive self-antigens. Finally, it is theoretically possible that subpopulations of T cells within the joint are preferentially protected from apoptotic cell death. Whatever the explanation, the virus-specific T cells are present at high frequency, are activated and are able to secrete proinflammatory cytokines. They could potentially interact with synoviocytes and contribute to the maintenance of inflammation within joints in many different forms of inflammatory arthritis.
PMCID: PMC17809  PMID: 11062606
CD8+ T cell; Epstein-Barr virus lytic cycle; human leucocyte antigen peptide tetrameric complex; rheumatoid arthritis; viral immunity
17.  Membrane-Type-3 Matrix Metalloproteinase (MT3-MMP) Functions as a Matrix Composition-Dependent Effector of Melanoma Cell Invasion 
PLoS ONE  2011;6(12):e28325.
In primary human melanoma, the membrane-type matrix metalloproteinase, MT3-MMP, is overexpressed in the most aggressive nodular-type tumors. Unlike MT1-MMP and MT2-MMP, which promote cell invasion through basement membranes and collagen type I-rich tissues, the function of MT3-MMP in tumor progression remains unclear. Here, we demonstrate that MT3-MMP inhibits MT1-MMP-driven melanoma cell invasion in three-dimensional collagen, while yielding an altered, yet MT1-MMP-dependent, form of expansive growth behavior that phenocopies the formation of nodular cell colonies. In melanoma cell lines originating from advanced primary or metastatic lesions, endogenous MT3-MMP expression was associated with limited collagen-invasive potential. In the cell lines with highest MT3-MMP expression relative to MT1-MMP, collagen-invasive activity was increased following stable MT3-MMP gene silencing. Consistently, MT3-MMP overexpression in cells derived from less advanced superficially spreading melanoma lesions, or in the MT3-MMP knockdown cells, reduced MT1-MMP-dependent collagen invasion. Rather than altering MT1-MMP transcription, MT3-MMP interacted with MT1-MMP in membrane complexes and reduced its cell surface expression. By contrast, as a potent fibrinolytic enzyme, MT3-MMP induced efficient invasion of the cells in fibrin, a provisional matrix component frequently found at tumor-host tissue interfaces and perivascular spaces of melanoma. Since MT3-MMP was significantly upregulated in biopsies of human melanoma metastases, these results identify MT3-MMP as a matrix-dependent modifier of the invasive tumor cell functions during melanoma progression.
PMCID: PMC3229567  PMID: 22164270
18.  Matrix metalloproteinase-2 conditions human dendritic cells to prime inflammatory TH2 cells via an IL-12- and OX40L-dependent pathway 
Cancer cell  2011;19(3):333-346.
Matrix metalloproteinase-2 (MMP-2) is a proteolytic enzyme degrading the extracellular matrix and over-expressed by many tumors. Here, we documented the presence of MMP-2-specific CD4+ T cells in tumor-infiltrating lymphocytes (TILs) from melanoma patients. Strikingly, MMP-2-specific CD4+ T cells displayed an inflammatory TH2 profile, i.e. mainly secreting TNFα, IL-4 and IL-13 and expressing GATA-3. Furthermore, MMP-2-conditioned dendritic cells (DCs) primed naïve CD4+ T cells to differentiate into an inflammatory TH2 phenotype through OX40L expression and inhibition of IL-12p70 production. MMP-2 degrades the type-I IFN receptor, thereby preventing STAT1 phosphorylation, which is necessary for IL-12p35 production. Active MMP-2, therefore, acts as an endogenous type-2 “conditioner” and may play a role in the observed prevalence of detrimental type-2 responses in melanoma.
Several melanoma-associated antigens have been targeted in immunization strategies to treat melanoma patients. However, the therapeutic efficacy of these approaches remains limited, indicating an urgent need for improvement. Because MMP-2 activity is critical for melanoma progression, it represents an interesting target for vaccine therapy. We show that MMP-2 is an immunogenic tumor antigen. However, MMP-2-specific CD4+ T lymphocytes display a suboptimal inflammatory TH2 profile. MMP-2-conditoned DCs prime TH2 responses against several melanoma-associated antigen (MAA), suggesting that MMP-2 can create a TH2 skewing microenvironment in a bystander fashion. Elucidation of the underlying mechanisms opens the way to improving immune responses towards a more effective TH1 response, and highlights the potential of MMP2 as a target antigen in melanoma.
PMCID: PMC3073826  PMID: 21397857
19.  Immunization with a Peptide Containing MHC Class I and II Epitopes Derived from the Tumor Antigen SIM2 Induces an Effective CD4 and CD8 T-Cell Response 
PLoS ONE  2014;9(4):e93231.
Here, we sought to determine whether peptide vaccines designed harbor both class I as well as class II restricted antigenic motifs could concurrently induce CD4 and CD8 T cell activation against autologous tumor antigens. Based on our prior genome-wide interrogation of human prostate cancer tissues to identify genes over-expressed in cancer and absent in the periphery, we targeted SIM2 as a prototype autologous tumor antigen for these studies. Using humanized transgenic mice we found that the 9aa HLA-A*0201 epitope, SIM2237–245, was effective at inducing an antigen specific response against SIM2-expressing prostate cancer cell line, PC3. Immunization with a multi-epitope peptide harboring both MHC-I and MHC-II restricted epitopes induced an IFN-γ response in CD8 T cells to the HLA-A*0201-restricted SIM2237–245 epitope, and an IL-2 response by CD4 T cells to the SIM2240–254 epitope. This peptide was also effective at inducing CD8+ T-cells that responded specifically to SIM2-expressing tumor cells. Collectively, the data presented in this study suggest that a single peptide containing multiple SIM2 epitopes can be used to induce both a CD4 and CD8 T cell response, providing a peptide-based vaccine formulation for potential use in immunotherapy of various cancers.
PMCID: PMC3972205  PMID: 24690990
20.  Matrix Metalloproteinase 9 Production by Monocytes is Enhanced by TNF and Participates in the Pathology of Human Cutaneous Leishmaniasis 
Cutaneous leishmaniasis (CL) due to L.braziliensis infection is characterized by a strong inflammatory response with high levels of TNF and ulcer development. Less attention has been given to the role of mononuclear phagocytes to this process. Monocytes constitute a heterogeneous population subdivided into classical, intermediate and non-classical, and are known to migrate to inflammatory sites and secrete inflammatory mediators. TNF participates in the induction of matrix metalloproteinases (MMPs). MMP-9 is an enzyme that degrades basal membrane and its activity is controlled by the tissue inhibitor of metalloproteinase.
Mononuclear cells were obtained from ex-vivo labeling sub-populations of monocytes and MMP-9, and the frequency was determined by flow cytometry. Culture was performed during 72 hours, stimulating the cells with SLA, levels of MMP-9 and TIMP-1 in the supernatants were determined by ELISA.
We observed that cells from CL lesions secrete high amounts of MMP-9 when compared to healthy subjects. Although MMP-9 was produced by monocytes, non-classical ones were the main source of this enzyme. We also observed that TNF produced in high level during CL contributes to MMP-9 production.
These observations emphasize the role of monocytes, TNF and MMP-9 in the pathogenesis of L. braziliensis infection.
Author Summary
To examine the participation of MMP-9 in the pathogenesis of L. braziliensis infection, we realized a cross-sectional study with CL patients in an early phase of the disease or with a classical ulcer, and healthy controls. We evaluated the frequency of MMP-9 in monocyte subsets and its mechanism of production. Our results showed that monocytes were the major cells producing MMP-9. The MMP-9 production by CL patients was presented in higher levels when compared with healthy subjects and early cutaneous leishmaniasis (ECL) patients, and the levels of MMP-9 inhibitor, TIMP-1, were lower in CL patients when compared to healthy subjects. The production of MMP-9 was enhanced by TNF, a cytokine associated with tissue damage in CL patients. Thus, therapeutic modulation of MMP-9 may be a useful approach for improving disease outcome in L. braziliensis patients.
PMCID: PMC4230914  PMID: 25393535
21.  Assessment of Potential Cross-Reactivity of Human Endogenous Matrix Metalloproteinases with Collagenase Clostridium histolyticum Antibodies in Human Sera Obtained from Patients with Dupuytren's Contracture 
Collagenase Clostridium histolyticum (CCH) contains a fixed ratio of class I (AUX-I) and class II (AUX-II) collagenases and is used as treatment for Dupuytren's contracture. These two Zn-dependent enzymes, produced by the Gram-positive bacterium Clostridium histolyticum, are related functionally to matrix metalloproteinases (MMPs) which, among other functions, degrade the extracellular matrix. Since AUX-I and AUX-II exhibit sequence similarities to human MMPs, we assessed MMP-1 (interstitial collagenase), MMP-2 (gelatinase A), MMP-3 (stromelysin 1), MMP-8 (collagenase 2), and MMP-13 (collagenase 3) for cross-reactivity with anti-AUX-I and anti-AUX-II antibodies in patient serum. Serum samples from 71 subjects enrolled in a long-term clinical study (58 males and 13 females; 63 ± 10 years old [mean ± standard error]) were evaluated for cross-reactivity with the five MMPs using the two validated enzyme-linked immunosorbent assays (ELISAs). Inhibition cutoff points for anti-AUX-I and anti-AUX-II antibodies were based on assay inhibition obtained with a nonspecific protein, bovine gamma globulin, which was tested for each clinical sample. No MMP cross-reactivity was found for any of the 71 clinical antibody-positive sera evaluated. Sequence identity assessments indicated minimal, nonmeaningful alignments of the MMPs and AUX-I/AUX-II. Furthermore, clinical adverse event assessments indicated no safety signals related to MMP inhibition. The bioanalytical results, sequence identity, and clinical assessments consistently did not demonstrate cross-reactivity between CCH antidrug antibodies and endogenous human matrix metalloproteinases. The results presented here suggest that treatment of Dupuytren's contracture patients with CCH does not lead to any clinical adverse events associated with MMP inhibition.
PMCID: PMC3318279  PMID: 22357647
22.  Biased epitope selection by recombinant vaccinia-virus (rVV)-infected mature or immature dendritic cells 
Gene therapy  2003;10(20):1754-1765.
Recombinant expression vectors represent a powerful way to deliver whole antigens (Ags) for immunization. Sustained Ag expression in vector-infected dendritic cells (DC) combines Ag-specific stimulation with powerful costimulation and, simultaneously, through ‘self-selection’ of ad hoc epitopes broadens the scope of immunization beyond restrictions posed by individual patients’ human leukocyte antigen (HLA) phenotype. In this study, therefore, we evaluated the efficiency of a recombinant vaccinia virus encoding the gp100/PMel17 melanoma Ag (rVV-gp100) to infect immature (iDC) or mature dendritic cells (mDC) derived from circulating mononuclear cells and the effect of infection on their status of maturation. In addition, we tested the ability of rVV-gp100-infected iDC and mDC to present the HLA-A*0201-associated gp100:209-217 epitope (g209). Irrespective of status of maturation, rVV-gp100 infection induced gp100 expression while only partially reversing the expression of some maturation markers. However, endogenous presentation of the wild-type g209 epitope was inefficient. The low efficiency was epitope-specific since infection of DC with rVV encoding a gp100 construct containing the modified gp100:209-217 (210M) (g209-2M) epitope characterized by high binding affinity for HLA-A*0201 restored efficient Ag presentation. Presentation of an HLA-class II-associated epitope and cytokine release by DC was not altered by rVV infection. Thus, Ag expression driven by rVV may be an efficient strategy for whole Ag delivery. However, since the effectiveness of Ag processing and presentation is subject to stringent HLA/epitope pairing, and for other yet undefined rules, the assumption that whole Ag delivery may circumvent HLA restriction is incorrect and recombinant expression vectors encoding well-characterized polyepitopic constructs may prove more effective.
PMCID: PMC2275329  PMID: 12939642
antigen; CTL; dendritic cells; epitopes; MHC; vaccinia virus
23.  Effect of Androgen Blockade on HER-2 and Matrix Metalloproteinase-2 Expression on Bone Marrow Micrometastasis and Stromal Cells in Men with Prostate Cancer 
The Scientific World Journal  2013;2013:281291.
Introduction. HER-2 has been associated with castrate resistant prostate cancer and matrix metalloproteinase-2 (MMP-2) in the dissemination and invasion of tumor cells as well as activating angiogenesis. We present an immunocytochemical study of the effect of androgen blockade on the expression of HER-2 and MMP-2 in bone marrow micrometastasis and the surrounding stromal cells in men with prostate cancer. Methods and Patients. A cross-sectional study of men with prostate cancer. Touch preps were obtained from bone marrow biopsies of men with prostate cancer, before and after radical prostatectomy and during androgen blockade. Micrometastasis detected with anti-PSA immunocytochemistry underwent processing with anti-HER-2 and anti-MMP-2 immunocytochemistry. Patients were defined as HER-2 positive or negative, MMP-2 negative or an MMP-2 pattern described as border or central and stromal MMP-2 defined as positive or negative. The expression of the biomarkers was compared before and after primary treatment and during androgen blockade in relation to the serum PSA at the time of sampling and duration of androgen blockade. Results. 191 men participated, 35 men before surgery and 43 after surgery; there were no significant differences in HER-2 expression between groups, there was no MMP-2 expression centrally or stromal expression of MMP-2. In men with androgen blockade, HER-2 expression was significantly higher; there was a trend for increasing HER-2 expression up to 5 years; central MMP-2 expression significantly increased after 3 years, while stromal MMP-2 significantly increased after 6 years. MMP-2 expression both in micrometastasis and stroma was significantly associated with HER-2 expression. Expression of MMP-2 at the border of the micrometastasis was not associated with HER-2 expression and occurred in the absence of androgen blockade. Conclusions. Androgen blockade decreases serum PSA by eliminating HER-2 negative prostate cancer cells. However, there is early selection of HER-2 positive cancer cells which leads to androgen independence and to increased expression of MMP-2 activity in the micrometastasis. The increased MMP-2 activity in the micrometastasis increases the expression of MMP-2 in the surrounding stromal cells and thus could promote angiogenesis and tumor growth resulting in macrometastatic androgen independent disease.
PMCID: PMC3666220  PMID: 23766685
24.  Processing of a Multiple Membrane Spanning Epstein-Barr Virus Protein for Cd8+T Cell Recognition Reveals a Proteasome-Dependent, Transporter Associated with Antigen Processing–Independent Pathway 
The Journal of Experimental Medicine  2001;194(8):1053-1068.
Epstein-Barr virus (EBV) latent membrane protein (LMP)2 is a multiple membrane spanning molecule which lacks ectodomains projecting into the lumen of the endoplasmic reticulum (ER). Human CD8+ cytotoxic T lymphocytes (CTL)s recognize a number of epitopes within LMP2. Assays with epitope-specific CTLs in two different cell backgrounds lacking the transporter associated with antigen processing (TAP) consistently show that some, but not all, LMP2 epitopes are presented in a TAP-independent manner. However, unlike published examples of TAP-independent processing from endogenously expressed antigens, presentation of TAP-independent LMP2 epitopes was abrogated by inhibition of proteasomal activity. We found a clear correlation between hydrophobicity of the LMP2 epitope sequence and TAP independence, and experiments with vaccinia minigene constructs expressing cytosolic epitope peptides confirmed that these more hydrophobic peptides were selectively able to access the HLA class I pathway in TAP-negative cells. Furthermore, the TAP-independent phenotype of particular epitope sequences did not require membrane location of the source antigen since (i) TAP-independent LMP2 epitopes inserted into an EBV nuclear antigen and (ii) hydrophobic epitope sequences native to EBV nuclear antigens were both presented in TAP-negative cells. We infer that there is a proteasome-dependent, TAP-independent pathway of antigen presentation which hydrophobic epitopes can selectively access.
PMCID: PMC2193515  PMID: 11602636
MHC class I presentation; CD8+ epitopes; hydrophobicity; Epstein-Barr virus; TAP independence
25.  Hybrids of Dendritic Cells and Tumor Cells Generated by Electrofusion Simultaneously Present Immunodominant Epitopes from Multiple Human Tumor-Associated Antigens in the Context of MHC Class I and Class II Molecules1 
Hybrid cells generated by fusing dendritic cells with tumor cells (DC-TC) are currently being evaluated as cancer vaccines in preclinical models and human immunization trials. In this study, we evaluated the production of human DC-TC hybrids using an electrofusion protocol previously defined for murine cells. Human DCs were electrically fused with allogeneic melanoma cells (888mel) and were subsequently analyzed for coexpression of unique DC and TC markers using FACS and fluorescence microscopy. Dually fluorescent cells were clearly observed using both techniques after staining with Abs against distinct surface molecules suggesting that true cell fusion had occurred. We also evaluated the ability of human DC-TC hybrids to present tumor-associated epitopes in the context of both MHC class I and class II molecules. Allogeneic DCs expressing HLA-A*0201, HLA-DRβ1*0401, and HLA-DRβ1*0701 were fused with 888mel cells that do not express any of these MHC molecules, but do express multiple melanoma-associated Ags. DC-888mel hybrids efficiently presented HLA-A*0201-restricted epitopes from the melanoma Ags MART-1, gp100, tyrosinase, and tyrosinase-related protein 2 as evaluated by specific cytokine secretion from six distinct CTL lines. In contrast, DCs could not cross-present MHC class I-restricted epitopes after exogenously loading with gp100 protein. DC-888mel hybrids also presented HLA-DRβ1*0401- and HLA-DRβ1*0701-restricted peptides from gp100 to CD4+ T cell populations. Therefore, fusions of DCs and tumor cells express both MHC class I- and class II-restricted tumor-associated epitopes and may be useful for the induction of tumor-reactive CD8+ and CD4+ T cells in vitro and in human vaccination trials.
PMCID: PMC2553207  PMID: 12734382

Results 1-25 (1059599)