Search tips
Search criteria

Results 1-25 (860829)

Clipboard (0)

Related Articles

1.  Chemical combinations elucidate pathway interactions and regulation relevant to Hepatitis C replication 
SREBP-2, oxidosqualene cyclase (OSC) or lanosterol demethylase were identified as novel sterol pathway-associated targets that, when probed with chemical agents, can inhibit hepatitis C virus (HCV) replication.Using a combination chemical genetics approach, combinations of chemicals targeting sterol pathway enzymes downstream of and including OSC or protein geranylgeranyl transferase I (PGGT) produce robust and selective synergistic inhibition of HCV replication. Inhibition of enzymes upstream of OSC elicit proviral responses that are dominant to the effects of inhibiting all downstream targets.Inhibition of the sterol pathway without inhibition of regulatory feedback mechanisms ultimately results in an increase in HCV replication because of a compensatory upregulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) expression. Increases in HMGCR expression without inhibition of HMGCR enzymatic activity ultimately stimulate HCV replication through increasing the cellular pool of geranylgeranyl pyrophosphate (GGPP).Chemical inhibitors that ultimately prevent SREBP-2 activation, inhibit PGGT or encourage the production of polar sterols have great potential as HCV therapeutics if associated toxicities can be reduced.
Chemical inhibition of enzymes in either the cholesterol or the fatty acid biosynthetic pathways has been shown to impact viral replication, both positively and negatively (Su et al, 2002; Ye et al, 2003; Kapadia and Chisari, 2005; Sagan et al, 2006; Amemiya et al, 2008). FBL2 has been identified as a 50 kDa geranylgeranylated host protein that is necessary for localization of the hepatitis C virus (HCV) replication complex to the membranous web through its close association with the HCV protein NS5A and is critical for HCV replication (Wang et al, 2005). Inhibition of the protein geranylgeranyl transferase I (PGGT), an enzyme that transfers geranylgeranyl pyrophosphate (GGPP) to cellular proteins such as FBL2 for the purpose of membrane anchoring, negatively impacts HCV replication (Ye et al, 2003). Conversely, chemical agents that increase intracellular GGPP concentrations promote viral replication (Kapadia and Chisari, 2005). Statin compounds that inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the rate-limiting enzyme in the sterol pathway (Goldstein and Brown, 1990), have been suggested to inhibit HCV replication through ultimately reducing the cellular pool of GGPP (Ye et al, 2003; Kapadia and Chisari, 2005; Ikeda et al, 2006). However, inhibition of the sterol pathway with statin drugs has not yielded consistent results in patients. The use of statins for the treatment of HCV is likely to be complicated by the reported compensatory increase in HMGCR expression in vitro and in vivo (Stone et al, 1989; Cohen et al, 1993) in response to treatment. Enzymes in the sterol pathway are regulated on a transcriptional level by sterol regulatory element-binding proteins (SREBPs), specifically SREBP-2 (Hua et al, 1993; Brown and Goldstein, 1997). When cholesterol stores in cells are depleted, SREBP-2 activates transcription of genes in the sterol pathway such as HMGCR, HMG-CoA synthase, farnesyl pyrophosphate (FPP) synthase, squalene synthase (SQLS) and the LDL receptor (Smith et al, 1988, 1990; Sakai et al, 1996; Brown and Goldstein, 1999; Horton et al, 2002). The requirement of additional downstream sterol pathway metabolites for HCV replication has not been completely elucidated.
To further understand the impact of the sterol pathway and its regulation on HCV replication, we conducted a high-throughput combination chemical genetic screen using 16 chemical probes that are known to modulate the activity of target enzymes relating to the sterol biosynthesis pathway (Figure 1). Using this approach, we identified several novel antiviral targets including SREBP-2 as well as targets downstream of HMGCR in the sterol pathway such as oxidosqualene cyclase (OSC) and lanosterol demethylase. Many of our chemical probes, specifically SR-12813, farnesol and squalestatin, strongly promoted replicon replication. The actions of both farnesol and squalestatin ultimately result in an increase in the cellular pool of GGPP, which is known to increase HCV replication (Ye et al, 2003; Kapadia and Chisari, 2005; Wang et al, 2005).
Chemical combinations targeting enzymes upstream of squalene epoxidase (SQLE) at the top of the sterol pathway (Figure 4A) elicited Bateson-type epistatic responses (Boone et al, 2007), where the upstream agent's response predominates over the effects of inhibiting all downstream targets. This was especially notable for combinations including simvastatin and either U18666A or squalestatin, and for squalestatin in combination with Ro48-8071. Treatment with squalestatin prevents the SQLS substrate, farnesyl pyrophosphate (FPP) from being further metabolized by the sterol pathway. As FPP concentrations increase, the metabolite can be shunted away from the sterol pathway toward farnesylation and GGPP synthetic pathways, resulting in an increase in host protein geranylgeranylation, including FBL2, and consequently replicon replication. This increase in replicon replication explains the source of the observed epistasis over Ro48-8071 treatment.
Combinations between probes targeting enzymes downstream of and including OSC produced robust synergies with each other or with a PGGT inhibitor. Figure 4B highlights examples of antiviral synergy resulting from treatment of cells with an OSC inhibitor in combination with an inhibitor of either an enzyme upstream or downstream of OSC. A combination of terconazole and U18666A is synergistic without similar combination effects in the host proliferation screen. Likewise, clomiphene was also synergistic when added to replicon cells in combination with U18666A. One of the greatest synergies observed downstream in the sterol pathway is a combination of amorolfine and AY 9944, suggesting that there is value in developing combinations of drugs that target enzymes in the sterol pathway, which are downstream of HMGCR.
Interactions with the protein prenylation pathway also showed strong mechanistic patterns (Figure 4C). GGTI-286 is a peptidomimetic compound resembling the CAAX domain of a protein to be geranylgeranylated and is a competitive inhibitor of protein geranylgeranylation. Simvastatin impedes the antiviral effect of GGTI-286 at low concentrations but that antagonism is balanced by comparable synergy at higher concentrations. At the low simvastatin concentrations, a compensatory increase in HMGCR expression leads to increased cellular levels of GGPP, which are likely to result in an increase in PGGT enzymatic turnover and decreased GGTI-286 efficacy. The antiviral synergy observed at the higher inhibitor concentrations is likely nonspecific as synergy was also observed in a host viability assay. Further downstream, however, a competitive interaction was observed between GGTI-286 and squalestatin, where the opposing effect of one compound obscures the other compound's effect. This competitive relationship between GGTI and SQLE explains the epistatic response observed between those two agents. For inhibitors of targets downstream of OSC, such as amorolfine, there are strong antiviral synergies with GGTI-286. Notably, combinations with OSC inhibitors and GGTI-286 were selective, in that comparable synergy was not found in a host viability assay. This selectivity suggests that jointly targeting OSC and PGGT is a promising avenue for future HCV therapy development.
This study provides a comprehensive and unique perspective into the impact of sterol pathway regulation on HCV replication and provides compelling insight into the use of chemical combinations to maximize antiviral effects while minimizing proviral consequences. Our results suggest that HCV therapeutics developed against sterol pathway targets must consider the impact on underlying sterol pathway regulation. We found combinations of inhibitors of the lower part of the sterol pathway that are effective and synergistic with each other when tested in combination. Furthermore, the combination effects observed with simvastatin suggest that, though statins inhibit HMGCR activity, the resulting regulatory consequences of such inhibition ultimately lead to undesirable epistatic effects. Inhibitors that prevent SREBP-2 activation, inhibit PGGT or encourage the production of polar sterols have great potential as HCV therapeutics if associated toxicities can be reduced.
The search for effective Hepatitis C antiviral therapies has recently focused on host sterol metabolism and protein prenylation pathways that indirectly affect viral replication. However, inhibition of the sterol pathway with statin drugs has not yielded consistent results in patients. Here, we present a combination chemical genetic study to explore how the sterol and protein prenylation pathways work together to affect hepatitis C viral replication in a replicon assay. In addition to finding novel targets affecting viral replication, our data suggest that the viral replication is strongly affected by sterol pathway regulation. There is a marked transition from antagonistic to synergistic antiviral effects as the combination targets shift downstream along the sterol pathway. We also show how pathway regulation frustrates potential hepatitis C therapies based on the sterol pathway, and reveal novel synergies that selectively inhibit hepatitis C replication over host toxicity. In particular, combinations targeting the downstream sterol pathway enzymes produced robust and selective synergistic inhibition of hepatitis C replication. Our findings show how combination chemical genetics can reveal critical pathway connections relevant to viral replication, and can identify potential treatments with an increased therapeutic window.
PMCID: PMC2913396  PMID: 20531405
chemical genetics; combinations and synergy; hepatitis C; replicon; sterol biosynthesis
2.  Rab GTPase Prenylation Hierarchy and Its Potential Role in Choroideremia Disease 
PLoS ONE  2013;8(12):e81758.
Protein prenylation is a widespread post-translational modification in eukaryotes that plays a crucial role in membrane targeting and signal transduction. RabGTPases is the largest group of post-translationally C-terminally geranylgeranylated. All Rabs are processed by Rab geranylgeranyl-transferase and Rab escort protein (REP). Human genetic defects resulting in the loss one of two REP isoforms REP-1, lead to underprenylation of RabGTPases that manifests in retinal degradation and blindness known as choroideremia. In this study we used a combination of microinjections and chemo-enzymatic tagging to establish whether Rab GTPases are prenylated and delivered to their target cellular membranes with the same rate. We demonstrate that although all tested Rab GTPases display the same rate of membrane delivery, the extent of Rab prenylation in 5 hour time window vary by more than an order of magnitude. We found that Rab27a, Rab27b, Rab38 and Rab42 display the slowest prenylation in vivo and in the cell. Our work points to possible contribution of Rab38 to the emergence of choroideremia in addition to Rab27a and Rab27b.
PMCID: PMC3864799  PMID: 24358126
3.  Membrane Targeting of Rab GTPases Is Influenced by the Prenylation MotifD⃞ 
Molecular Biology of the Cell  2003;14(5):1882-1899.
Rab GTPases are regulators of membrane traffic. Rabs specifically associate with target membranes via the attachment of (usually) two geranylgeranyl groups in a reaction involving Rab escort protein and Rab geranylgeranyl transferase. In contrast, related GTPases are singly prenylated by CAAX prenyl transferases. We report that di-geranylgeranyl modification is important for targeting of Rab5a and Rab27a to endosomes and melanosomes, respectively. Transient expression of EGFP-Rab5 mutants containing two prenylatable cysteines (CGC, CC, CCQNI, and CCA) in HeLa cells did not affect endosomal targeting or function, whereas mono-cysteine mutants (CSLG, CVLL, or CVIM) were mistargeted to the endoplasmic reticulum (ER) and were nonfunctional. Similarly, Rab27aCVLL mutant is also mistargeted to the ER and transgenic expression on a Rab27a null background (Rab27aash) did not rescue the coat color phenotype, suggesting that Rab27aCVLL is not functional in vivo. CAAX prenyl transferase inhibition and temperature-shift experiments further suggest that Rabs, singly or doubly modified are recruited to membranes via a Rab escort protein/Rab geranylgeranyl transferase-dependent mechanism that is distinct from the insertion of CAAX-containing GTPases. Finally, we show that both singly and doubly modified Rabs are extracted from membranes by RabGDIα and propose that the mistargeting of Rabs to the ER results from loss of targeting information.
PMCID: PMC165084  PMID: 12802062
4.  Molecular Basis for Rab Prenylation 
The Journal of Cell Biology  2000;150(1):89-104.
Rab escort proteins (REP) 1 and 2 are closely related mammalian proteins required for prenylation of newly synthesized Rab GTPases by the cytosolic heterodimeric Rab geranylgeranyl transferase II complex (RabGG transferase). REP1 in mammalian cells is the product of the choroideremia gene (CHM). CHM/REP1 deficiency in inherited disease leads to degeneration of retinal pigmented epithelium and loss of vision. We now show that amino acid residues required for Rab recognition are critical for function of the yeast REP homologue Mrs6p, an essential protein that shows 50% homology to mammalian REPs. Mutant Mrs6p unable to bind Rabs failed to complement growth of a mrs6Δ null strain and were found to be dominant inhibitors of growth in a wild-type MRS6 strain. Mutants were identified that did not affect Rab binding, yet prevented prenylation in vitro and failed to support growth of the mrs6Δ null strain. These results suggest that in the absence of Rab binding, REP interaction with RabGG transferase is maintained through Rab-independent binding sites, providing a molecular explanation for the kinetic properties of Rab prenylation in vitro. Analysis of the effects of thermoreversible temperature-sensitive (mrs6ts) mutants on vesicular traffic in vivo showed prenylation activity is only transiently required to maintain normal growth, a result promising for therapeutic approaches to disease.
PMCID: PMC2185574  PMID: 10893259
choroideremia; REP1; CHM; vesicle traffic; MRS6
5.  The Putative “Switch 2” Domain of the Ras-related GTPase, Rab1B, Plays an Essential Role in the Interaction with Rab Escort Protein 
Molecular Biology of the Cell  1998;9(1):223-235.
Posttranslational modification of Rab proteins by geranylgeranyltransferase type II requires that they first bind to Rab escort protein (REP). Following prenylation, REP is postulated to accompany the modified GTPase to its specific target membrane. REP binds preferentially to Rab proteins that are in the GDP state, but the specific structural domains involved in this interaction have not been defined. In p21 Ras, the α2 helix of the Switch 2 domain undergoes a major conformational change upon GTP hydrolysis. Therefore, we hypothesized that the corresponding region in Rab1B might play a key role in the interaction with REP. Introduction of amino acid substitutions (I73N, Y78D, and A81D) into the putative α2 helix of Myc-tagged Rab1B prevented prenylation of the recombinant protein in cell-free assays, whereas mutations in the α3 and α4 helices did not. Additionally, upon transient expression in transfected HEK-293 cells, the Myc-Rab1B α2 helix mutants were not efficiently prenylated as determined by incorporation of [3H]mevalonate. Metabolic labeling studies using [32P]orthophosphate indicated that the poor prenylation of the Rab1B α2 helix mutants was not directly correlated with major disruptions in guanine nucleotide binding or intrinsic GTPase activity. Finally, gel filtration analysis of cytosolic fractions from 293 cells that were coexpressing T7 epitope-tagged REP with various Myc-Rab1B constructs revealed that mutations in the α2 helix of Rab1B prevented the association of nascent (i.e., nonprenylated) Rab1B with REP. These data indicate that the Switch 2 domain of Rab1B is a key structural determinant for REP interaction and that nucleotide-dependent conformational changes in this region are largely responsible for the selective interaction of REP with the GDP-bound form of the Rab substrate.
PMCID: PMC25245  PMID: 9437002
6.  Use of Synthetic Isoprenoids to Target Protein Prenylation and Rho GTPases in Breast Cancer Invasion 
PLoS ONE  2014;9(2):e89892.
Dysregulation of Ras and Rho family small GTPases drives the invasion and metastasis of multiple cancers. For their biological functions, these GTPases require proper subcellular localization to cellular membranes, which is regulated by a series of post-translational modifications that result in either farnesylation or geranylgeranylation of the C-terminal CAAX motif. This concept provided the rationale for targeting farnesyltransferase (FTase) and geranylgeranyltransferases (GGTase) for cancer treatment. However, the resulting prenyl transferase inhibitors have not performed well in the clinic due to issues with alternative prenylation and toxicity. As an alternative, we have developed a unique class of potential anti-cancer therapeutics called Prenyl Function Inhibitors (PFIs), which are farnesol or geranyl-geraniol analogs that act as alternate substrates for FTase or GGTase. Here, we test the ability of our lead PFIs, anilinogeraniol (AGOH) and anilinofarnesol (AFOH), to block the invasion of breast cancer cells. We found that AGOH treatment effectively decreased invasion of MDA-MB-231 cells in a two-dimensional (2D) invasion assay at 100 µM while it blocked invasive growth in three-dimensional (3D) culture model at as little as 20 µM. Notably, the effect of AGOH on 3D invasive growth was phenocopied by electroporation of cells with C3 exotransferase. To determine if RhoA and RhoC were direct targets of AGOH, we performed Rho activity assays in MDA-MB-231 and MDA-MB-468 cells and found that AGOH blocked RhoA and RhoC activation in response to LPA and EGF stimulation. Notably, the geranylgeraniol analog AFOH was more potent than AGOH in inhibiting RhoA and RhoC activation and invasive growth. Interestingly, neither AGOH nor AFOH impacted 3D growth of MCF10A cells. Collectively, this study demonstrates that AGOH and AFOH dramatically inhibit breast cancer invasion, at least in part by blocking Rho function, thus, suggesting that targeting prenylation by using PFIs may offer a promising mechanism for treatment of invasive breast cancer.
PMCID: PMC3935959  PMID: 24587105
7.  Rab GDI: a solubilizing and recycling factor for rab9 protein. 
Molecular Biology of the Cell  1993;4(4):425-434.
Rab proteins are thought to function in the processes by which transport vesicles identify and/or fuse with their respective target membranes. The bulk of these proteins are membrane associated, but a measurable fraction can be found in the cytosol. The cytosolic forms of rab3A, rab11, and Sec4 occur as equimolar complexes with a class of proteins termed "GDIs," or "GDP dissociation inhibitors." We show here that the cytosolic form of rab9, a protein required for transport between late endosomes and the trans Golgi network, also occurs as a complex with a GDI-like protein, with an apparent mass of approximately 80 kD. Complex formation could be reconstituted in vitro using recombinant rab9 protein, cytosol, ATP, and geranylgeranyl diphosphate, and was shown to require an intact rab9 carboxy terminus, as well as rab9 geranylgeranylation. Monoprenylation was sufficient for complex formation because a mutant rab9 protein bearing the carboxy terminal sequence, CLLL, was prenylated in vitro by geranylgeranyl transferase I and was efficiently incorporated into 80-kD complexes. Purified, prenylated rab9 could also assemble into 80-kD complexes by addition of purified, rab3A GDI. Finally, rab3A-GDI had the capacity to solubilize rab9GDP, but not rab9GTP, from cytoplasmic membranes. These findings support the proposal that GDI proteins serve to recycle rab proteins from their target membranes after completion of a rab protein-mediated, catalytic cycle. Thus GDI proteins have the potential to regulate the availability of specific intracellular transport factors.
PMCID: PMC300943  PMID: 8389620
8.  Properties of Rab5 N-terminal domain dictate prenylation of C-terminal cysteines. 
Molecular Biology of the Cell  1995;6(1):71-85.
Rab5 is a Ras-related GTP-binding protein that is post-translationally modified by prenylation. We report here that an N-terminal domain contained within the first 22 amino acids of Rab5 is critical for efficient geranylgeranylation of the protein's C-terminal cysteines. This domain is immediately upstream from the "phosphate binding loop" common to all GTP-binding proteins and contains a highly conserved sequence recognized among members of the Rab family, referred to here as the YXYLFK motif. A truncation mutant that lacks this domain (Rab5(23-215) fails to become prenylated. However, a chimeric peptide with the conserved motif replacing cognate Rab5 sequence (MAYDYLFKRab5(23-215) does become post-translationally modified, demonstrating that the presence of this simple six amino acid N-terminal element enables prenylation at Rab5's C-terminus. H-Ras/Rab5 chimeras that include the conserved YXYLFK motif at the N-terminus do not become prenylated, indicating that, while this element may be necessary for prenylation of Rab proteins, it alone is not sufficient to confer properties to a heterologous protein to enable substrate recognition by the Rab geranylgeranyl transferase. Deletion analysis and studies of point mutants further reveal that the lysine residue of the YXYLFK motif is an absolute requirement to enable geranylgeranylation of Rab proteins. Functional studies support the idea that this domain is not required for guanine nucleotide binding since prenylation-defective mutants still bind GDP and are protected from protease digestion in the presence of GTP gamma S. We conclude that the mechanism of Rab geranylgeranylation involves key elements of the protein's tertiary structure including a conserved N-terminal amino acid motif (YXYLFK) that incorporates a critical lysine residue.
PMCID: PMC275815  PMID: 7749197
9.  Towards Complete Sets of Farnesylated and Geranylgeranylated Proteins 
PLoS Computational Biology  2007;3(4):e66.
Three different prenyltransferases attach isoprenyl anchors to C-terminal motifs in substrate proteins. These lipid anchors serve for membrane attachment or protein–protein interactions in many pathways. Although well-tolerated selective prenyltransferase inhibitors are clinically available, their mode of action remains unclear since the known substrate sets of the various prenyltransferases are incomplete. The Prenylation Prediction Suite (PrePS) has been applied for large-scale predictions of prenylated proteins. To prioritize targets for experimental verification, we rank the predictions by their functional importance estimated by evolutionary conservation of the prenylation motifs within protein families. The ranked lists of predictions are accessible as PRENbase ( and can be queried for verification status, type of modifying enzymes (anchor type), and taxonomic distribution. Our results highlight a large group of plant metal-binding chaperones as well as several newly predicted proteins involved in ubiquitin-mediated protein degradation, enriching the known functional repertoire of prenylated proteins. Furthermore, we identify two possibly prenylated proteins in Mimivirus. The section HumanPRENbase provides complete lists of predicted prenylated human proteins—for example, the list of farnesyltransferase targets that cannot become substrates of geranylgeranyltransferase 1 and, therefore, are especially affected by farnesyltransferase inhibitors (FTIs) used in cancer and anti-parasite therapy. We report direct experimental evidence verifying the prediction of the human proteins Prickle1, Prickle2, the BRO1 domain–containing FLJ32421 (termed BROFTI), and Rab28 (short isoform) as exclusive farnesyltransferase targets. We introduce PRENbase, a database of large-scale predictions of protein prenylation substrates ranked by evolutionary conservation of the motif. Experimental evidence is presented for the selective farnesylation of targets with an evolutionary conserved modification site.
Author Summary
Various cellular functions require reversible membrane localization of proteins. This is often facilitated by attaching lipids to the respective proteins, thus anchoring them to the membrane. For example, addition of prenyl lipid anchors (prenylation) is directed by a motif in the protein sequence that can be predicted using a recently developed method. We describe the prediction of protein prenylation in all currently known proteins. The annotated results are available as an online database: PRENbase. A ranking of the predictions is introduced, assuming that existence of a prenylation sequence motif in related proteins from different species (evolutionary conservation) relates to functional importance of the lipid anchor. We present experimental evidence for high-ranked human proteins predicted to be affected by anticancer drugs inhibiting prenylation.
PMCID: PMC1847700  PMID: 17411337
10.  Splice Variants of SmgGDS Control Small GTPase Prenylation and Membrane Localization* 
The Journal of Biological Chemistry  2010;285(46):35255-35266.
Ras and Rho small GTPases possessing a C-terminal polybasic region (PBR) are vital signaling proteins whose misregulation can lead to cancer. Signaling by these proteins depends on their ability to bind guanine nucleotides and their prenylation with a geranylgeranyl or farnesyl isoprenoid moiety and subsequent trafficking to cellular membranes. There is little previous evidence that cellular signals can restrain nonprenylated GTPases from entering the prenylation pathway, leading to the general belief that PBR-possessing GTPases are prenylated as soon as they are synthesized. Here, we present evidence that challenges this belief. We demonstrate that insertion of the dominant negative mutation to inhibit GDP/GTP exchange diminishes prenylation of Rap1A and RhoA, enhances prenylation of Rac1, and does not detectably alter prenylation of K-Ras. Our results indicate that the entrance and passage of these small GTPases through the prenylation pathway is regulated by two splice variants of SmgGDS, a protein that has been reported to promote GDP/GTP exchange by PBR-possessing GTPases and to be up-regulated in several forms of cancer. We show that the previously characterized 558-residue SmgGDS splice variant (SmgGDS-558) selectively associates with prenylated small GTPases and facilitates trafficking of Rap1A to the plasma membrane, whereas the less well characterized 607-residue SmgGDS splice variant (SmgGDS-607) associates with nonprenylated GTPases and regulates the entry of Rap1A, RhoA, and Rac1 into the prenylation pathway. These results indicate that guanine nucleotide exchange and interactions with SmgGDS splice variants can regulate the entrance and passage of PBR-possessing small GTPases through the prenylation pathway.
PMCID: PMC2975149  PMID: 20709748
Low Molecular Weight G Proteins; Protein Isoprenylation; Ras; Rho; Trafficking; Rac; Rap; Rap1GDS1; SmgGDS; Polybasic
11.  Zoledronic acid induces apoptosis and S-phase arrest in mesothelioma through inhibiting Rab family proteins and topoisomerase II actions 
Cell Death & Disease  2014;5(11):e1517-.
Zoledronic acid (ZOL), a nitrogen-containing bisphosphonate, produced anti-tumor effects through apoptosis induction or S-phase arrest depending on human mesothelioma cells tested. An addition of isoprenoid, geranylgeraniol but not farnesol, negated these ZOL-induced effects, indicating that the ZOL-mediated effects were attributable to depletion of geranylgeranyl pyrophosphates which were substrates for prenylation processes of small guanine-nucleotide-binding regulatory proteins (small G proteins). ZOL-treated cells decreased a ratio of membrane to cytoplasmic fractions in RhoA, Cdc42 and Rab6 but less significantly Rac1 proteins, indicating that these proteins were possible targets for ZOL-induced actions. We further analyzed which small G proteins were responsible for the three ZOL-induced effects, caspase-mediated apoptosis, S-phase arrest and morphological changes, using inhibitors for respective small G proteins and siRNA for Cdc42. ZOL-induced apoptosis is due to insufficient prenylation of Rab proteins because an inhibitor of geranlygeranyl transferase II that was specific for Rab family proteins prenylation, but not others inhibitors, activated the same apoptotic pathways that ZOL did. ZOL suppressed an endogenous topoisomerase II activity, which was associated with apoptosis and S-phase arrest in respective cells because we detected the same cell cycle changes in etoposide-treated cells. Inhibitors for geranlygeranyl transferase I and for RhoA produced morphological changes and disrupted actin fiber structures, both of which were similar to those by ZOL treatments. These data demonstrated that anti-tumor effects by ZOL were attributable to inhibited functions of respective small G proteins and topoisomerase II activity, and suggested that cellular factors were involved in the differential cell cycle changes.
PMCID: PMC4260733  PMID: 25393473
12.  Dual Prenylation Is Required for Rab Protein Localization and Function 
Molecular Biology of the Cell  2003;14(5):1852-1867.
The majority of Rab proteins are posttranslationally modified with two geranylgeranyl lipid moieties that enable their stable association with membranes. In this study, we present evidence to demonstrate that there is a specific lipid requirement for Rab protein localization and function. Substitution of different prenyl anchors on Rab GTPases does not lead to correct function. In the case of YPT1 and SEC4, two essential Rab genes in Saccharomyces cerevisiae, alternative lipid tails cannot support life when present as the sole source of YPT1 and SEC4. Furthermore, our data suggest that double geranyl-geranyl groups are required for Rab proteins to correctly localize to their characteristic organelle membrane. We have identified a factor, Yip1p that specifically binds the di-geranylgeranylated Rab and does not interact with mono-prenylated Rab proteins. This is the first demonstration that the double prenylation modification of Rab proteins is an important feature in the function of this small GTPase family and adds specific prenylation to the already known determinants of Rab localization.
PMCID: PMC165082  PMID: 12802060
13.  Impaired prenylation of Rab GTPases in the gunmetal mouse causes defects in bone cell function 
Small GTPases  2011;2(3):131-142.
Vesicular trafficking is crucial for bone resorption by osteoclasts, in particular for formation of the ruffled border membrane and for removal of the resultant bone degradation products by transcytosis. These processes are regulated by Rab family GTPases, whose activity is dependent on post-translational prenylation by Rab geranylgeranyl transferase (RGGT). Specific pharmacological inhibition of RGGT inhibits bone resorption in vitro and in vivo, illustrating the importance of Rab prenylation for osteoclast function. The gunmetal (gm/gm) mouse bears a mutation in the catalytic subunit of RGGT, causing a loss of 75% of the activity of this enzyme and hence hypoprenylation of several Rabs in melanocytes, platelets and cytotoxic T cells. We have now found that prenylation of several Rab proteins is also defective in gm/gm osteoclasts. Moreover, while osteoclast formation and cytoskeletal polarization occurs normally, gm/gm osteoclasts exhibit a substantial reduction in resorptive activity in vitro compared with osteoclasts from +/gm mice, which do not have a prenylation defect. Surprisingly, rather than the osteosclerosis that would be expected to result from defective osteoclast function in vivo, gm/gm mice exhibited a slightly lower bone mass than +/gm mice, indicating that defects in other cell types, such as osteoblasts, in which hypoprenylation of Rabs was also detected, may contribute to the phenotype. However, gm/gm mice were partially protected from ovariectomy-induced bone loss, suggesting that levels of Rab prenylation in gm/gm osteoclasts may be sufficient to maintain normal physiological levels of activity, but not pathological levels of bone resorption in vivo.
PMCID: PMC3136943  PMID: 21776414
osteoclast; bone resorption; bone; Rab; small GTPase; prenylation; gunmetal
14.  Statin Treatment Increases Lifespan and Improves Cardiac Health in Drosophila by Decreasing Specific Protein Prenylation 
PLoS ONE  2012;7(6):e39581.
Statins such as simvastatin are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors and standard therapy for the prevention and treatment of cardiovascular diseases in mammals. Here we show that simvastatin significantly increased the mean and maximum lifespan of Drosophila melanogaster (Drosophila) and enhanced cardiac function in aging flies by significantly reducing heart arrhythmias and increasing the contraction proportion of the contraction/relaxation cycle. These results appeared independent of internal changes in ubiquinone or juvenile hormone levels. Rather, they appeared to involve decreased protein prenylation. Simvastatin decreased the membrane association (prenylation) of specific small Ras GTPases in mice. Both farnesyl (L744832) and type 1 geranylgeranyl transferase (GGTI-298) inhibitors increased Drosophila lifespan. These data are the most direct evidence to date that decreased protein prenylation can increase cardiac health and lifespan in any metazoan species, and may explain the pleiotropic (non-cholesterol related) health effects of statins.
PMCID: PMC3380867  PMID: 22737247
15.  The effector domain of Rab6, plus a highly hydrophobic C terminus, is required for Golgi apparatus localization. 
Molecular and Cellular Biology  1994;14(1):744-758.
C-terminal lipid modifications are essential for the interaction of Ras-related proteins with membranes. While all Ras proteins are farnesylated and some palmitoylated, the majority of other Ras-related proteins are geranylgeranylated. One such protein, Rab6, is associated with the Golgi apparatus and has a C-terminal CXC motif that is geranylgeranylated on both cysteines. We show here that farnesylation alone cannot substitute for geranylgeranylation in targeting Rab6 to the Golgi apparatus and that whereas Ras proteins that are farnesylated and palmitoylated are targeted to the plasma membrane, mutant Rab proteins that are both farnesylated and palmitoylated associate with the Golgi apparatus. Using chimeric Ras-Rab proteins, we find that there are sequences in the N-terminal 71 amino acids of Rab6 which are required for Golgi complex localization and show that these sequences comprise or include the effector domain. The C-terminal hypervariable domain is not essential for the Golgi complex targeting of Rab6 but is required to prevent prenylated and palmitoylated Rab6 from localizing to the plasma membrane. Functional analysis of these mutant Rab6 proteins in Saccharomyces cerevisiae shows that wild-type Rab6 and C-terminal mutant Rab6 proteins which localize to the Golgi apparatus in mammalian cells can complement the temperature-sensitive phenotype of ypt6 null mutants. Interestingly, therefore, the C-terminal hypervariable domain of Rab6 is not required for this protein to function in S. cerevisiae.
PMCID: PMC358423  PMID: 8264642
16.  Rab27a Is Required for Regulated Secretion in Cytotoxic T Lymphocytes 
The Journal of Cell Biology  2001;152(4):825-834.
Rab27a activity is affected in several mouse models of human disease including Griscelli (ashen mice) and Hermansky-Pudlak (gunmetal mice) syndromes. A loss of function mutation occurs in the Rab27a gene in ashen (ash), whereas in gunmetal (gm) Rab27a dysfunction is secondary to a mutation in the α subunit of Rab geranylgeranyl transferase, an enzyme required for prenylation and activation of Rabs. We show here that Rab27a is normally expressed in cytotoxic T lymphocytes (CTLs), but absent in ashen homozygotes (ash/ash). Cytotoxicity and secretion assays show that ash/ash CTLs are unable to kill target cells or to secrete granzyme A and hexosaminidase. By immunofluorescence and electron microscopy, we show polarization but no membrane docking of ash/ash lytic granules at the immunological synapse. In gunmetal CTLs, we show underprenylation and redistribution of Rab27a to the cytosol, implying reduced activity. Gunmetal CTLs show a reduced ability to kill target cells but retain the ability to secrete hexosaminidase and granzyme A. However, only some of the granules polarize to the immunological synapse, and many remain dispersed around the periphery of the CTLs. These results demonstrate that Rab27a is required in a final secretory step and that other Rab proteins also affected in gunmetal are likely to be involved in polarization of the granules to the immunological synapse.
PMCID: PMC2195783  PMID: 11266472
Rab27a; cytotoxic T lymphocyte; secretory lysosomes; immunological synapse; Arp2/3
17.  Statins Inhibit HIV-1 Infection by Down-regulating Rho Activity 
Human immunodeficiency virus (HIV)-1 infectivity requires actin-dependent clustering of host lipid raft–associated receptors, a process that might be linked to Rho guanosine triphosphatase (GTPase) activation. Rho GTPase activity can be negatively regulated by statins, a family of drugs used to treat hypercholesterolemia in man. Statins mediate inhibition of Rho GTPases by impeding prenylation of small G proteins through blockade of 3-hydroxy-3-methylglutaryl coenzyme A reductase. We show that statins decreased viral load and increased CD4+ cell counts in acute infection models and in chronically HIV-1–infected patients. Viral entry and exit was reduced in statin-treated cells, and inhibition was blocked by the addition of l-mevalonate or of geranylgeranylpyrophosphate, but not by cholesterol. Cell treatment with a geranylgeranyl transferase inhibitor, but not a farnesyl transferase inhibitor, specifically inhibited entry of HIV-1–pseudotyped viruses. Statins blocked Rho-A activation induced by HIV-1 binding to target cells, and expression of the dominant negative mutant RhoN19 inhibited HIV-1 envelope fusion with target cell membranes, reducing cell infection rates. We suggest that statins have direct anti–HIV-1 effects by targeting Rho.
PMCID: PMC2211926  PMID: 15314078
cholesterol; actin cytoskeleton; small GTPases; lipid rafts; prenylation
18.  How prenylation and S-acylation regulate subcellular targeting and function of ROP GTPases 
Plant Signaling & Behavior  2011;6(7):1026-1029.
Rho of Plants (ROP) small G proteins function at discrete domains of the plasma and possibly endo membranes. ROPs are synthesized as soluble proteins and their attachment to membranes and partitioning in membrane microdomains are facilitated by the posttranslational lipid modifications prenylation and/or S-acylation. Based on their amino acid sequences, ROPs can be classified into two major subgroups: type-I ROPs terminate with a canonical CaaX box motif and are prenylated primarily by geranyl-geranyltransferase-I (GGT-I) and to a lesser extent by farnesyltransferase (FT). Type-II ROPs terminate with a plant specific GC-CG box domain and are attached to the plasma membrane by stable S-acylation. In addition, type-I and possibly also type-II ROPs undergo activation dependent transient S-acylation in the G-domain and consequent partitioning into lipid rafts. Surprisingly, although geranylgeranylation is required for the membrane attachment of type-I ROPs and the γ subunits of heterotrimeric G proteins, Arabidopsis mutants lacking GGT-I function have a mild phenotype compared to wild type plants. The mild phenotype of the ggt-I mutants suggested that farnesylation by FT may compensate for the loss of GGT-I function and that possibly the prenylated type-I and S-acylated type-II ROPS have some overlapping functions. In a paper recently published in Plant Physiology1 we examined the role of the prenyl group type in type-I ROP function and membrane interaction dynamics and the functional redundancy between type-I and type-II ROPs. This study complements a second paper in which we examined the role of G-domain transient S-acylation in the membrane interaction dynamics and signaling by type-I ROPs.2 Together these two studies provide a framework for realizing the role of prenylation and S-acylation in subcellular targeting, membrane interaction dynamics and signaling by ROP GTPases.
PMCID: PMC3257786  PMID: 21694496
prenylation; S-acylation; ROP; FRAP; membrane targeting; lipid rafts
19.  Structural Insights into a Unique Legionella pneumophila Effector LidA Recognizing Both GDP and GTP Bound Rab1 in Their Active State 
PLoS Pathogens  2012;8(3):e1002528.
The intracellular pathogen Legionella pneumophila hijacks the endoplasmic reticulum (ER)-derived vesicles to create an organelle designated Legionella-containing vacuole (LCV) required for bacterial replication. Maturation of the LCV involved acquisition of Rab1, which is mediated by the bacterial effector protein SidM/DrrA. SidM/DrrA is a bifunctional enzyme having the activity of both Rab1-specific GDP dissociation inhibitor (GDI) displacement factor (GDF) and guanine nucleotide exchange factor (GEF). LidA, another Rab1-interacting bacterial effector protein, was reported to promote SidM/DrrA-mediated recruitment of Rab1 to the LCV as well. Here we report the crystal structures of LidA complexes with GDP- and GTP-bound Rab1 respectively. Structural comparison revealed that GDP-Rab1 bound by LidA exhibits an active and nearly identical conformation with that of GTP-Rab1, suggesting that LidA can disrupt the switch function of Rab1 and render it persistently active. As with GTP, LidA maintains GDP-Rab1 in the active conformation through interaction with its two conserved switch regions. Consistent with the structural observations, biochemical assays showed that LidA binds to GDP- and GTP-Rab1 equally well with an affinity approximately 7.5 nM. We propose that the tight interaction with Rab1 allows LidA to facilitate SidM/DrrA-catalyzed release of Rab1 from GDIs. Taken together, our results support a unique mechanism by which a bacterial effector protein regulates Rab1 recycling.
Author Summary
Legionella pneumophila delivers 275 validated substrates into the host cytosol by its Dot/Icm type IV secretion system. Several substrates including SidM/DrrA and LidA directly interact with the host Rab GTPases and interfere with the vesicle secretion pathway. SidM/DrrA is necessary for Rab1 recruitment, function as a Rab1 specific GDI displacement factor and guanine nucleotide exchange factor. LidA has the auxiliary activity for Rab1 recruitment, whereas it is more important for the formation of the replication vacuole compared with SidM/DrrA. LidA is predicted to be the first substrate secreted by the Dot/Icm system and is critical for maintaining the integrity of the bacterial cell. Moreover, it expresses throughout the intracellular growth phase, localizes to early secretory compartments, and interacts with several members of Rab family. Here we present the crystal structures of LidA coiled-coil domain in complex with two different states of Rab1, GDP- and GTP-bound. The GDP-bound Rab1 in the complex surprisingly has the same conformation with the GTP-bound Rab1, revealing that LidA can retain Rab1 persistently in its active state. Our structures add a new insight into the regulation of the host Rab1 membrane cycle by pathogen-secreted coiled-coil effector.
PMCID: PMC3295573  PMID: 22416225
20.  Rab-geranylgeranyl transferase regulates glucose-stimulated insulin secretion from pancreatic β cells 
Islets  2012;4(5):354-358.
A growing body of evidence implicates essential roles for small molecular weight G-proteins (e.g., Cdc42, Rac1, Arf6 and Rab3A and Rab27A) in islet β-cell function including glucose-stimulated insulin secretion (GSIS). One of the known mechanisms for optimal activation of small G-proteins involves post-translational prenylation, which is mediated by farnesyltransferase (FTase) and geranylgeranyl transferases (GGTases I and II). The FTase catalyzes incorporation of a 15-carbon farnesyl group while the GGTase mediates incorporation of a 20-carbon geranylgeranyl group into the C-terminal cysteines of G-proteins. The FTase, GGTase I and GGTase II prenylate Ras, Cdc42/Rac1, and Rab G-proteins, respectively. While considerable evidence exists on FTase/GGTase I-mediated regulation of GSIS, very little is known about GGTase II (also referred to as Rab GGTase; RGGT) and its regulatory proteins in the cascade of events leading to GSIS. Herein, we provide the first immunological evidence to suggest expression of α- and β-subunits of RGGT in clonal INS 832/13 β-cells, normal rat islets and human islets. Furthermore, Rab escort protein1 (REP1), which has been shown to be critical for prenylation of Rab G-proteins, is also expressed in these cells. Furthermore, evidence is presented to suggest that siRNA-mediated knockdown of α- or β-subunits of RGGT and REP1 markedly attenuates GSIS in INS 832/13 cells. These findings provide the first evidence in support of key roles for RGGT and its regulatory proteins in GSIS.
PMCID: PMC3524143  PMID: 23114750
Geranylgeranylation; Rab G-proteins; Rab escort proteins; insulin secretion; pancreatic β-cells
21.  Measurement of protein farnesylation and geranylgeranylation in vitro, in cultured cells and in biopsies, and the effects of prenyl transferase inhibitors 
Nature protocols  2011;6(11):1775-1791.
The importance of the post-translational lipid modifications farnesylation and geranylgeranylation in protein localization and function coupled with the critical role of prenylated proteins in malignant transformation has prompted interest in their biology and the development of farnesyl transferase and geranylgeranyl transferase inhibitors (FTIs and GGTIs) as chemical probes and anticancer agents. The ability to measure protein prenylation before and after FTI and GGTI treatment is important to understanding and interpreting the effects of these agents on signal transduction pathways and cellular phenotypes, as well as to the use of prenylation as a biomarker. Here we describe protocols to measure the degree of protein prenylation by farnesyl transferase or geranylgeranyl transferase in vitro, in cultured cells and in tumors from animals and humans. The assays use [3H]farnesyl diphosphate and [3H]geranylgeranyl diphosphate, electrophoretic mobility shift, membrane association using subcellular fractionation or immunofluorescence of intact cells, [3H]mevalonic acid labeling, followed by immunoprecipitation and SDS-PAGE, and in vitro transcription, translation and prenylation in reticulocyte lysates. These protocols require from 1 day (enzyme assays) to up to 3 months (autoradiography of [3H]-labeled proteins).
PMCID: PMC4035200  PMID: 22036881
22.  Driven to Death: Inhibition of Farnesylation Increases Ras Activity in Osteosarcoma and Promotes Growth Arrest and Cell Death 
Molecular cancer therapeutics  2010;9(5):1111-1119.
To improve cancer outcomes, investigators are turning increasingly to small molecule medicines that disrupt vital signaling cascades, inhibiting malignant growth or inducing apoptosis. One vital signaling molecule is Ras, and a key step in Ras activation is membrane anchoring of Ras through prenylation, the C-terminal addition of a lipid anchor. Small molecule inhibitors of farnesyl transferase (FTI), the enzyme most often responsible for prenylating Ras, showed cinical promise, but development of FTI such as tipifarnib has been stalled by uncertainty about their mechanism of action, since Ras appeared unimpeded in tipifarnib-treated samples. Interpretation was further complicated by the numerous proteins that may be farnesylated, as well as availability of an alternate prenylation pathway, geranylgeranylation. Initial observations of varied response by osteosarcoma cell lines to tipifarnib led us to evaluate the role of FTI in Ras signal alteration using osteosarcoma models.
We describe our novel, counter-intuitive finding that endogenous Ras activity increases in osteosarcoma when farnesyl transferase is inhibited either by tipifarnib or shRNA. In response to tipifarnib, variable growth arrest and/or cell death correlated with levels of activated ERK and p38 MAPK. Sensitivity to tipifarnib treatment was shown by growth inhibition and by an increase in subdiploid cell numbers; cells with such sensitivity had increased activation of ERK and p38 MAPK. Since Ras must be prenylated to be active, our findings suggest that geranylgeranylated N-Ras or K-Ras B interact differently with downstream effector proteins in sensitive osteosarcoma cells responding to tipifarnib, switching the balance from cell proliferation to growth inhibition.
PMCID: PMC2868119  PMID: 20406948
Osteosarcoma; Ras; farnesylation; Growth arrest
23.  Rho2 Palmitoylation Is Required for Plasma Membrane Localization and Proper Signaling to the Fission Yeast Cell Integrity Mitogen-Activated Protein Kinase Pathway 
Molecular and Cellular Biology  2014;34(14):2745-2759.
The fission yeast small GTPase Rho2 regulates morphogenesis and is an upstream activator of the cell integrity pathway, whose key element, mitogen-activated protein kinase (MAPK) Pmk1, becomes activated by multiple environmental stimuli and controls several cellular functions. Here we demonstrate that farnesylated Rho2 becomes palmitoylated in vivo at cysteine-196 within its carboxyl end and that this modification allows its specific targeting to the plasma membrane. Unlike that of other palmitoylated and prenylated GTPases, the Rho2 control of morphogenesis and Pmk1 activity is strictly dependent upon plasma membrane localization and is not found in other cellular membranes. Indeed, artificial plasma membrane targeting bypassed the Rho2 need for palmitoylation in order to signal. Detailed functional analysis of Rho2 chimeras fused to the carboxyl end from the essential GTPase Rho1 showed that GTPase palmitoylation is partially dependent on the prenylation context and confirmed that Rho2 signaling is independent of Rho GTP dissociation inhibitor (GDI) function. We further demonstrate that Rho2 is an in vivo substrate for DHHC family acyltransferase Erf2 palmitoyltransferase. Remarkably, Rho3, another Erf2 target, negatively regulates Pmk1 activity in a Rho2-independent fashion, thus revealing the existence of cross talk whereby both GTPases antagonistically modulate the activity of this MAPK cascade.
PMCID: PMC4097651  PMID: 24820419
24.  Hsp90 Co-localizes with Rab-GDI-1 and Regulates Agonist-induced Amylase Release in AR42J Cells 
Cellular Physiology and Biochemistry  2009;24(5-6):369-378.
Rab proteins are small GTPases required for vesicle trafficking through the secretory and endocytic pathways. Rab GDP-dissociation inhibitor (rab-GDI) regulates Rab protein function and localization by maintaining Rab proteins in the GDP-bound conformation. Two isoforms of rab-GDI are present in most mammalian cells: GDI-1 and GDI-2. It has recently been demonstrated that a Heat shock protein 90 (Hsp90) chaperone complex regulates the interactions between Rab proteins and Rab-GDI-1. The AR42J cell line is derived from rat pancreatic exocrine tumor cells and develops an acinar-like phenotype when treated with dexamethasone (Dex). The aim of the present study was to examine the expression of rab-GDI isoforms and Hsp90 in AR42J cells in the presence or absence of Dex. Rab-GDI: Hsp90 interactions were also examined. Both rab-GDI isoforms were detected in AR42J cells by immunoblotting. In Dex-treated cells, quantitative immunoblotting revealed that rab-GDI-1 expression increased by 28%, although this change was not statistically significant. Rab-GDI-2 levels were unaltered by Dex treatment. Approximately 21% rab-GDI-1 was membrane associated, whereas rab-GDI-2 was exclusively cytosolic. Dex treatment did not affect the subcellular distribution of rab-GDI isoforms. Hsp90 was present in the cytosolic and membrane fractions of AR42J cells and co-immunoprecipitated with cytosolic rab-GDI-1. Moreover, density gradient centrifugation of AR42J cell membranes revealed that Hsp90 and rab-GDI-1 co-localize on low- and high-density membrane fractions, including amylase-containing secretory granules. The Hsp90 inhibitor, geldanamycin, inhibited CCK-8-induced amylase release from these cells in a dose-dependent manner. Our results indicate that as AR42J cells differentiate into acinar-like cells, rab-GDI isoform expression and localization is not significantly altered. Moreover, our findings suggest that Hsp90 regulates agonist-induced secretion in exocrine cells by interacting with rab-GDI-1.
PMCID: PMC3711583  PMID: 19910677
Rab proteins; GDI; Hsp90; Ar42J cells; Exocrine; Secretion; Pancreas; Amylase
25.  Alkynyl-farnesol reporters for detection of protein S-prenylation in cells 
Molecular bioSystems  2010;7(1):67-73.
Protein S-prenylation is a lipid modification that regulates membrane-protein and protein-protein interactions in cell signaling. Though sites of protein S-prenylation can be predicted based upon conserved C-terminal CaaX or CC/CXC motifs, biochemical detection of protein S-prenylation in cells is still challenging. Herein, we report an alkynyl-isoprenol chemical reporter (alk-FOH) as an efficient substrate for prenyltransferases in mammalian cells that enables sensitive detection of S-farnesylated and S-geranylgeranylated proteins using bioorthogonal ligation methods. Fluorescent detection alleviates the need to deplete cellular isoprenoids for biochemical analysis of S-prenylated proteins and enables robust characterization of S-prenylated proteins, such as effectors that are injected into host cells by bacterial pathogens. This alkynyl-prenylation reporter provides a sensitive tool for biochemical analysis and rapid profiling of prenylated proteins in cells.
PMCID: PMC4231476  PMID: 21107478

Results 1-25 (860829)