PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1127678)

Clipboard (0)
None

Related Articles

1.  Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells 
British Journal of Pharmacology  2008;153(Suppl 1):S457-S464.
The intensity and duration of host responses are determined by protective mechanisms that control tissue injury by dampening down inflammation. Adenosine generation and consequent effects, mediated via A2A adenosine receptors (A2AR) on effector cells, play a critical role in the pathophysiological modulation of these responses in vivo. Adenosine is both released by hypoxic cells/tissues and is also generated from extracellular nucleotides by ecto-enzymes e.g. CD39 (ENTPD1) and CD73 that are expressed by the vasculature and immune cells, in particular by T regulatory cell. In general, these adenosinergic mechanisms minimize the extent of collateral damage to host tissues during the course of inflammatory reactions. However, induction of suppressive pathways might also cause escape of pathogens and permit dissemination. In addition, adenosinergic responses may inhibit immune responses while enhancing vascular angiogenic responses to malignant cells that promote tumor growth. Novel drugs that block A2AR-adenosinergic effects and/or adenosine generation have the potential to boost pathogen destruction and to selectively destroy malignant tissues. In the latter instance, future treatment modalities might include novel ‘anti-adenosinergic' approaches that augment immune clearance of malignant cells and block permissive angiogenesis. This review addresses several possible pharmacological modalities to block adenosinergic pathways and speculates on their future application together with impacts on human disease.
doi:10.1038/bjp.2008.23
PMCID: PMC2268051  PMID: 18311159
adenosine receptor; T regulatory cells; immunity; cancer; inflammation; lymphocytes; T-cell receptor; infectious diseases; ectonucleotidases
2.  Hostile, Hypoxia-A2-Adenosinergic Tumor Biology as the Next Barrier to the Tumor Immunologists 
Cancer immunology research  2014;2(7):598-605.
The hypoxia-driven and A2A or A2B adenosine receptors (A2AR/A2BR)-mediated (“Hypoxia-A2-Adenosinergic”) and T cell autonomous immunosuppression was first recognized as critical and non-redundant in protection of normal tissues from inflammatory damage and autoimmunity. However, this immunosuppressive mechanism is high-jacked by bacteria and tumors to misguidedly protect pathogens and cancerous tissues. The inhibitors of Hypoxia-A2-Adenosinergic pathway represent the conceptually novel type of immunological co-adjuvants to be combined with cancer vaccines, adoptive cell transfer and/or blockade of immunological negative regulators in order to further prolong survival and minimize side effects. In support of this approach are preclinical studies and findings that some human cancers are resistant to chemotherapies and immunotherapies due to the tumor-generated extracellular adenosine and intracellular cAMP-elevating A2AR and A2BR on anti-tumor T and NK cells. Among co-adjuvants are i) antagonists of A2AR/A2BR; ii) extracellular adenosine-degrading drugs; iii) inhibitors of adenosine generation by CD39/CD73 ecto-enzymes and iv) inhibitors of the hypoxia-HIF-1 alpha signaling. It is emphasized that even after the multi-combinatorial blockade of immunological negative regulators the anti-tumor T and NK cells would be still vulnerable to inhibition by hypoxia and A2AR and A2BR. The advantage of combining these co-adjuvants with the blockade of the CTLA4-A and/or PD-1 is in expectations of additive or even synergistic effects of targeting both immunological and physiological tumor-protecting mechanisms. Yet to be tested is the potential capacity of co-adjuvants to minimize the side effects of blockade of CTLA-4 and/or PD1 by decreasing the dose of blocking antibodies or by eliminating the need in dual blockade.
doi:10.1158/2326-6066.CIR-14-0075
PMCID: PMC4331061  PMID: 24990240
3.  Targeting the hypoxia-adenosinergic signaling pathway to improve the adoptive immunotherapy of cancer 
The recent approval by the FDA of cancer vaccines and drugs that blockade immunological negative regulators has further enhanced interest in promising approaches of the immunotherapy of cancer. However, the disappointingly short life extension has also underscored the need to better understand the mechanisms that prevent tumor rejection and survival even after the blockade of immunological negative regulators. Here, we describe the implications of the “metabolism-based” immunosuppressive mechanism, where the local tissue hypoxia-driven accumulation of extracellular adenosine triggers suppression via A2 adenosine receptors on the surface of activated immune cells. This molecular pathway is of critical importance in mechanisms of immunosuppression in inflamed and cancerous tissue microenvironments. The protection of tumors by tumor-generated extracellular adenosine and A2 adenosine receptors could be the misguided application of the normal tissue-protecting mechanism that limits excessive collateral damage to vital organs during the anti-pathogen immune response. The overview of the current state of the art regarding the immunosuppressive effects of extracellular adenosine is followed by an historical perspective of studies focused on the elucidation of the physiological negative regulators that protect tissues of vital organs from excessive collateral damage, but, as a trade-off, may also weaken the anti-pathogen effector functions and negate the attempts of anti-tumor immune cells to destroy cancerous cells.
doi:10.1007/s00109-013-1001-9
PMCID: PMC3576025  PMID: 23334369
adenosine; A2A adenosine receptor; cyclic AMP; hypoxia; inflammation; tumor; cancer immunotherapy; adoptive immunotherapy; tumor microenvironment; immunosuppression; T lymphocytes; regulatory T cells; cytokines; cytotoxicity
4.  The Role of Adenosine in Alzheimer’s Disease 
Current Neuropharmacology  2009;7(3):207-216.
Alzheimer’s disease (AD) is a neurodegenerative disorder of the central nervous system manifested by cognitive and memory deterioration, a variety of neuropsychiatric symptoms, behavioral disturbances, and progressive impairment of daily life activities. Current pharmacotherapies are restricted to symptomatic interventions but do not prevent progressive neuronal degeneration. Therefore, new therapeutic strategies are needed to intervene with these progressive pathological processes. In the past several years adenosine, a ubiquitously released purine ribonucleoside, has become important for its neuromodulating capability and its emerging positive experimental effects in neurodegenerative diseases. Recent research suggests that adenosine receptors play important roles in the modulation of cognitive function. The present paper attempts to review published reports and data from different studies showing the evidence of a relationship between adenosinergic function and AD-related cognitive deficits. Epidemiological studies have found an association between coffee (a nonselective adenosine receptor antagonist) consumption and improved cognitive function in AD patients and in the elderly. Long-term administration of caffeine in transgenic animal models showed a reduced amyloid burden in brain with better cognitive performance. Antagonists of adenosine A2A receptors mimic these beneficial effects of caffeine on cognitive function. Neuronal cell cultures with amyloid beta in the presence of an A2A receptor antagonist completely prevented amyloid beta-induced neurotoxicity. These findings suggest that the adenosinergic system constitutes a new therapeutic target for AD, and caffeine and A2A receptor antagonists may have promise to manage cognitive dysfunction in AD.
doi:10.2174/157015909789152119
PMCID: PMC2769004  PMID: 20190962
Adenosine receptor; Alzheimer’s disease; amyloid beta; caffeine; cognition; neuromodulation.
5.  Resident Cardiac Immune Cells and Expression of the Ectonucleotidase Enzymes CD39 and CD73 after Ischemic Injury 
PLoS ONE  2012;7(4):e34730.
Background
The ectoenzymes CD39 and CD73 are expressed by a broad range of immune cells and promote the extracellular degradation of nucleotides to anti-inflammatory adenosine. This study explored the abundance of CD73 and CD39 on circulating and resident cardiac leukocytes and coronary endothelial cells under control conditions and in response to inflammation following myocardial ischemia and reperfusion (I/R).
Methods and Results
A method was elaborated to permit FACS analysis of non-myocardial cells (resident leukocytes, coronary endothelium and CD31− CD45− cells) of the unstressed heart. Under control conditions the murine heart contained 2.3×103 resident leukocytes/mg tissue, the most prominent fraction being antigen-presenting mononuclear cells (CD11b+ CD11c+ F4/80+ MHCII+) followed by B-cells, monocytes and T-cells. CD73 was highly expressed on circulating and resident cardiac lymphoid cells with little expression on myeloid cells, while the opposite was true for CD39. Cardiomyocytes and erythrocytes do not measurably express CD39/CD73 and CD39 dominates on coronary endothelium. Three days after I/R, CD73 was significantly upregulated on invading granulocytes (2.8-fold) and T-cells (1.5-fold). Compared with coronary endothelial cells, CD73 associated with leukocytes comprised 2/3 of the total cardiac CD73.
Conclusion
Our study suggests that extracellular ATP formed during I/R is preferentially degraded by CD39 present on myeloid cells, while the formation of immunosuppressive adenosine is mainly catalysed by CD73 present on granulocytes and lymphoid cells. Upregulated CD73 on granulocytes and T-cells infiltrating the injured heart is consistent with the existence of an autocrine adenosinergic loop which may promote the healing process.
doi:10.1371/journal.pone.0034730
PMCID: PMC3326036  PMID: 22514659
6.  Regulation of Leukocyte Function by Adenosine Receptors 
The immune system responds to cues in the microenvironment to make acute and chronic adaptations in response to inflammation and injury. Locally produced purine nucleotides and adenosine provide receptor-mediated signaling to all bone-marrow derived cells of the immune system to modulate their responses. This review summarizes recent advances in our understanding of the effects of adenosine signaling through G protein-coupled adenosine receptors on cells of the immune system. Adenosine A2A receptors (A2ARs) have a generally suppressive effect on the activation of immune cells. Moreover, their transcription is strongly induced by signals that activate macrophages or dendritic cells through toll-like receptors, or T cells through T cell receptors. A2AR induction is responsible for producing a gradual dissipation of inflammatory responses. A2AR activation is particularly effective in limiting the activation of invariant NKT (iNKT) cells that play a central role in acute reperfusion injury. A2A agonists have clinical promise for the treatment of vaso-occlusive tissue injury. Blockade of A2A receptors may be useful to enhance immune-mediated killing of cancer cells. A2BR expression also is transcriptionally regulated by hypoxia, cytokines, and oxygen radicals. Acute A2BR activation attenuates the production of proinflammatory cytokines from macrophages, but sustained activation facilitates macrophage and dendritic cell remodeling and the production of acute phase proteins and angiogenic factors that may participate in evoking insulin resistance and tissue fibrosis. A2BR activation also influences macrophage and neutrophil function by influencing expression of the anti-inflammatory netrin receptor, UNC5B. The therapeutic significance of adenosine-mediated effects on the immune system is discussed.
doi:10.1016/B978-0-12-385526-8.00004-7
PMCID: PMC4211873  PMID: 21586357
Leukocytes; Lymphocytes; platelets; dendritic cells; macrophages; invariant NKT cells
7.  Effect of Diabetes/Hyperglycemia on the Rat Retinal Adenosinergic System 
PLoS ONE  2013;8(6):e67499.
The early stages of diabetic retinopathy (DR) are characterized by alterations similar to neurodegenerative and inflammatory conditions such as increased neural apoptosis, microglial cell activation and amplified production of pro-inflammatory cytokines. Adenosine regulates several physiological functions by stimulating four subtypes of receptors, A1AR, A2AAR, A2BAR, and A3AR. Although the adenosinergic signaling system is affected by diabetes in several tissues, it is unknown whether diabetic conditions in the retina can also affect it. Adenosine delivers potent suppressive effects on virtually all cells of the immune system, but its potential role in the context of DR has yet to be studied in full. In this study, we used primary mixed cultures of rat retinal cells exposed to high glucose conditions, to mimic hyperglycemia, and a streptozotocin rat model of type 1 diabetes to determine the effect diabetes/hyperglycemia have on the expression and protein levels of adenosine receptors and of the enzymes adenosine deaminase and adenosine kinase. We found elevated mRNA and protein levels of A1AR and A2AAR, in retinal cell cultures under high glucose conditions and a transient increase in the levels of the same receptors in diabetic retinas. Adenosine deaminase and adenosine kinase expression and protein levels showed a significant decrease in diabetic retinas 30 days after diabetes induction. An enzymatic assay performed in retinal cell cultures revealed a marked decrease in the activity of adenosine deaminase under high glucose conditions. We also found an increase in extracellular adenosine levels accompanied by a decrease in intracellular levels when retinal cells were subjected to high glucose conditions. In conclusion, this study shows that several components of the retinal adenosinergic system are affected by diabetes and high glucose conditions, and the modulation observed may uncover a possible mechanism for the alleviation of the inflammatory and excitotoxic conditions observed in diabetic retinas.
doi:10.1371/journal.pone.0067499
PMCID: PMC3696088  PMID: 23840723
8.  Fall in oxygen tension of culture medium stimulates the adenosinergic signalling of a human T cell line 
Purinergic Signalling  2012;8(4):661-667.
We examined the short-course expression of various parameters involved in the adenosinergic signalling of a human T cell line during in vitro decrease of the medium culture oxygen tension mimicking in vivo hypoxia. Fall of 92 mmHg in oxygen tension of culture medium induced in CEM, a CD4+ human T cell line, a continuous production of hypoxia-inducing factor-1α with a plateau value at 9 h, a rapid increase in adenosine production peaking at 3 h and a decrease in adenosine deaminase peaking at 6 h. The adenosine A2A receptor (A2AR) protein level of CEM cells was enhanced with a peak at 6 h. Intracellular 3′,5′-cyclic adenosine monophosphate accumulated in CEM cells with a maximal level at 9 h. These results show that a human-cultured T cells line can upregulate its own adenosine production and A2AR expression during exposure to acute hypoxia. Hypoxia-increased stimulation of the adenosinergic signalling of T cells may have immunosuppressive properties and, consequently, A2AR agonists may have therapeutic relevance.
doi:10.1007/s11302-012-9295-6
PMCID: PMC3486161  PMID: 22331499
Hypoxia; HIF-1α; Adenosine; A2AR; T cells
9.  The adenosine transporter, ENT1, in cardiomyocytes is sensitive to inhibition by ethanol in a kinase-dependent manner: implications for ethanol-dependent cardioprotection and nucleoside analog drug cytotoxicity 
Purinergic Signalling  2013;10(2):305-312.
The adenosine transporter 1 (ENT1) transports nucleosides, such as adenosine, and cytotoxic nucleoside analog drugs. ENT1 is well established to play a role in adenosinergic signaling in the cardiovascular system by modulating adenosine levels. Moderate ethanol consumption is cardioprotective and underlying mechanisms of action are not clear although adenosinergic signaling has been implicated. Here, we show that ethanol (5–200 mM) significantly reduces ENT1-dependent [3H] 2-chloroadenosine uptake (by up to 27 %) in the cardiomyocyte cell line, HL-1. Inhibition or absence of ENT1 is known to be cardioprotective, suggesting that the interaction of ethanol with ENT1 may promote adenosinergic cardioprotective pathways in the cardiovasculature.
Ethanol sensitivity of adenosine uptake is altered by pharmacological activation of PKA and PKC. Primary cardiomyocytes from PKCε-null mice have significantly greater sensitivity to inhibition (by approximately 37 %) of adenosine uptake by ethanol than controls. These data suggest that the presence of ethanol may compromise ENT1-dependent nucleoside analog drug cytotoxicity, and indeed, ethanol (5 mM) reduces the cytotoxic effects of gemcitabine (2 nM), an anti-cancer drug, in the human cancer cell line, HTB2. Thus, the pharmacological inhibition of ENT1 by ethanol may contribute to ethanol-dependent cardioprotection but compromise gemcitabine cytotoxicity.
doi:10.1007/s11302-013-9391-2
PMCID: PMC4040176  PMID: 24163005
ENT1; Ethanol; Gemcitabine; Regulation; Adenosine; Transporter
10.  An optimized approach to study endocannabinoid signaling: evidence against constitutive activity of rat brain adenosine A1 and cannabinoid CB1 receptors 
British Journal of Pharmacology  2003;140(8):1451-1459.
At nanomolar concentrations, SR141716 and AM251 act as specific and selective antagonists of the cannabinoid CB1 receptor. In the micromolar range, these compounds were shown to inhibit basal G-protein activity, and this is often interpreted to implicate constitutive activity of the CB1 receptors in native tissue. We show here, using [35S]GTPγS binding techniques, that micromolar concentrations of SR141716 and AM251 inhibit basal G-protein activity in rat cerebellar membranes, but only in conditions where tonic adenosine A1 receptor signaling is not eliminated.Unlike lipophilic A1 receptor antagonists (potency order DPCPX≫N-0840 ≈cirsimarin>caffeine), adenosine deaminase (ADA) was not fully capable in eliminating basal A1 receptor-dependent G-protein activity. Importantly, all antagonists reduced basal signal to the same extent (20%), and the response evoked by the inverse agonist DPCPX was not reversed by the neutral antagonist N-0840. These data indicate that rat brain A1 receptors are not constitutively active, but that an ADA-resistant adenosine pool is responsible for tonic A1 receptor activity in brain membranes.SR141716 and AM251, at concentrations fully effective in reversing CB1-mediated responses (10−6 M), did not reduce basal G-protein activity, indicating that CB1 receptors are not constitutively active in these preparations.At higher concentrations (1–2.5 × 10−5 M), both antagonists reduced basal G-protein activity in control and ADA-treated membranes, but had no effect when A1 receptor signaling was blocked with DPCPX. Moreover, the CB1 antagonists right-shifted A1 agonist dose–response curves without affecting maximal responses, suggesting competitive mode of antagonist action. The CB1 antagonists did not affect muscarinic acetylcholine or GABAB receptor signaling.When further optimizing G-protein activation assay for the labile endocannabinoid 2-arachidonoylglycerol (2-AG), we show, by using HPLC, that pretreatment of cerebellar membranes with methyl arachidonoyl fluorophosphonate (MAFP) fully prevented enzymatic degradation of 2-AG and concomitantly enhanced the potency of 2-AG. In contrast to previous claims, MAFP exhibited no antagonist activity at the CB1 receptor.The findings establish an optimized method with improved signal-to-noise ratio to assess endocannabinoid-dependent G-protein activity in brain membranes, under assay conditions where basal adenosinergic tone and enzymatic degradation of 2-AG are fully eliminated.
doi:10.1038/sj.bjp.0705577
PMCID: PMC1574161  PMID: 14623770
Adenosine A1 receptor; AM251; constitutive activity; cryptic adenosine; endocannabinoid; inverse agonist; monoacylglycerol lipase; SR141716
11.  Adverse and Protective Influences of Adenosine on the Newborn and Embryo: Implications for Preterm White Matter Injury and Embryo Protection 
Pediatric research  2011;69(4):271-278.
Few signaling molecules have the potential to influence the developing mammal as the nucleoside adenosine. Adenosine levels increase rapidly with tissue hypoxia and inflammation. Adenosine antagonists include the methlyxanthines caffeine and theophylline. The receptors that transduce adenosine action are the A1, A2a, A2b, and A3 adenosine receptors (ARs). In the postnatal period, A1AR activation may contribute to white matter injury in the preterm infant by altering oligodendrocyte (OL) development. In models of perinatal brain injury, caffeine is neuroprotective against periventricular white matter injury (PWMI) and hypoxic-ischemic encephalopathy (HIE). Supporting the notion that blockade of adenosine action is of benefit in the premature infant, caffeine reduces the incidence of broncho-pulmonary dysplasia and cerebral palsy in clinical studies. In comparison with the adverse effects on the postnatal brain, adenosine acts via A1ARs to play an essential role in protecting the embryo from hypoxia. Embryo protective effects are blocked by caffeine, and caffeine intake during early pregnancy increases the risk of miscarriage and fetal growth retardation. Adenosine and adenosine antagonists play important modulatory roles during mammalian development. The protective and deleterious effects of adenosine depend on the time of exposure and target sites of action.
doi:10.1203/PDR.0b013e31820efbcf
PMCID: PMC3100210  PMID: 21228731
12.  Increased ectonucleotidase expression and activity in Treg of patients with head and neck cancer 
Purpose
Regulatory T cells (Treg) frequency/activity are increased in cancer patients and play a major in tumor escape. While disease progression is favored by the presence of Treg, mechanisms used by Treg to suppress anti-tumor immunity are unknown. The ectonucleotidases CD39 and CD73 are expressed in Treg and convert ATP into immunosuppressive adenosine. In this study, the involvement of the adenosinergic pathway in Treg-mediated suppression in HNSCC patients was evaluated.
Experimental Design
HNSCC patients with an active disease (AD) (n=19) and patients with no evident disease (NED) after therapy (n=14) were studied. Ectonucleotidase expression on CD4+ T cells and CD4+CD25high Treg was evaluated by flow cytometry and compared to normal controls (NC). Ectonucleotidase activity was also compared within these 3 groups. The data were analyzed for associations of ectonucleotidase expression/function with disease stage.
Results
The percentages and expression levels of CD39 and CD73 in CD4+ T cells and Treg were greater in HNSCC than NC and were highest in NED. Patients' Treg hydrolyzed ATP at higher rates and produced higher levels of adenosine than NC' Treg. The increased frequency and enzymatic activity of CD4+CD39+ cells corresponded to increased adenosine-mediated suppression of effector T cells, which was partly inhibited by ARL67156, an ectonucleotidase inhibitor, and by ZM241385, a selective A2a/A2b receptor antagonist.
Conclusions
CD39+ Treg frequency and adenosine-mediated suppression are significantly increased in HNSCC patients. The adenosinergic pathway is involved in Treg-mediated immunosuppression in cancer and its attenuation could be a promising immunotherapeutic strategy for patients with HNSCC.
doi:10.1158/1078-0432.CCR-09-1143
PMCID: PMC2763335  PMID: 19825957
head and neck cancer; ectonucleotidases; regulatory T cells; tumor escape; adenosine
13.  The Impact of Caffeine on the Behavioral Effects of Ethanol Related to Abuse and Addiction: A Review of Animal Studies 
The impact of caffeine on the behavioral effects of ethanol, including ethanol consumption and abuse, has become a topic of great interest due to the rise in popularity of the so-called energy drinks. Energy drinks high in caffeine are frequently taken in combination with ethanol under the popular belief that caffeine can offset some of the intoxicating effects of ethanol. However, scientific research has not universally supported the idea that caffeine can reduce the effects of ethanol in humans or in rodents, and the mechanisms mediating the caffeine–ethanol interactions are not well understood. Caffeine and ethanol have a common biological substrate; both act on neurochemical processes related to the neuromodulator adenosine. Caffeine acts as a nonselective adenosine A1 and A2A receptor antagonist, while ethanol has been demonstrated to increase the basal adenosinergic tone via multiple mechanisms. Since adenosine transmission modulates multiple behavioral processes, the interaction of both drugs can regulate a wide range of effects related to alcohol consumption and the development of ethanol addiction. In the present review, we discuss the relatively small number of animal studies that have assessed the interactions between caffeine and ethanol, as well as the interactions between ethanol and subtype-selective adenosine receptor antagonists, to understand the basic findings and determine the possible mechanisms of action underlying the caffeine–ethanol interactions.
doi:10.1089/jcr.2013.0003
PMCID: PMC3643311  PMID: 24761272
14.  Caffeine and a selective adenosine A2A receptor antagonist induce sensitization and cross-sensitization behavior associated with increased striatal dopamine in mice 
Background
Caffeine, a nonselective adenosine A1 and A2A receptor antagonist, is the most widely used psychoactive substance in the world. Evidence demonstrates that caffeine and selective adenosine A2A antagonists interact with the neuronal systems involved in drug reinforcement, locomotor sensitization, and therapeutic effect in Parkinson's disease (PD). Evidence also indicates that low doses of caffeine and a selective adenosine A2A antagonist SCH58261 elicit locomotor stimulation whereas high doses of these drugs exert locomotor inhibition. Since these behavioral and therapeutic effects are mediated by the mesolimbic and nigrostriatal dopaminergic pathways which project to the striatum, we hypothesize that low doses of caffeine and SCH58261 may modulate the functions of dopaminergic neurons in the striatum.
Methods
In this study, we evaluated the neuroadaptations in the striatum by using reverse-phase high performance liquid chromatography (HPLC) to quantitate the concentrations of striatal dopamine and its metabolites, dihydroxylphenylacetic acid (DOPAC) and homovanilic acid (HVA), and using immunoblotting to measure the level of phosphorylation of tyrosine hydroxylase (TH) at Ser31, following chronic caffeine and SCH58261 sensitization in mice. Moreover, to validate further that the behavior sensitization of caffeine is through antagonism at the adenosine A2A receptor, we also evaluate whether chronic pretreatment with a selective adenosine A2A antagonist SCH58261 or a selective adenosine A1 antagonist DPCPX can sensitize the locomotor stimulating effects of caffeine.
Results
Chronic treatments with low dose caffeine (10 mg/kg) or SCH58261 (2 mg/kg) increased the concentrations of dopamine, DOPAC and HVA, concomitant with increased TH phosphorylation at Ser31 and consequently enhanced TH activity in the striatal tissues in both caffeine- and SCH58261-sensitized mice. In addition, chronic caffeine or SCH58261 administration induced locomotor sensitization, and locomotor cross-sensitization to caffeine was observed following chronic treatment of mice with SCH58261 but not with DPCPX.
Conclusions
Our study demonstrated that low dosages of caffeine and a selective adenosine A2A antagonist SCH58261 elicited locomotor sensitization and cross-sensitization, which were associated with elevated dopamine concentration and TH phosphorylation at Ser31 in the striatum. Blockade of adenosine A2A receptor may play an important role in the striatal neuroadaptations observed in the caffeine-sensitized and SCH58261-sensitized mice.
doi:10.1186/1423-0127-17-4
PMCID: PMC2843608  PMID: 20074377
15.  Increased Level of Extracellular ATP at Tumor Sites: In Vivo Imaging with Plasma Membrane Luciferase 
PLoS ONE  2008;3(7):e2599.
Background
There is growing awareness that tumour cells build up a “self-advantageous” microenvironment that reduces effectiveness of anti-tumour immune response. While many different immunosuppressive mechanisms are likely to come into play, recent evidence suggests that extracellular adenosine acting at A2A receptors may have a major role in down-modulating the immune response as cancerous tissues contain elevated levels of adenosine and adenosine break-down products. While there is no doubt that all cells possess plasma membrane adenosine transporters that mediate adenosine uptake and may also allow its release, it is now clear that most of extracellularly-generated adenosine originates from the catabolism of extracellular ATP.
Methodology/Principal Findings
Measurement of extracellular ATP is generally performed in cell supernatants by HPLC or soluble luciferin-luciferase assay, thus it generally turns out to be laborious and inaccurate. We have engineered a chimeric plasma membrane-targeted luciferase that allows in vivo real-time imaging of extracellular ATP. With this novel probe we have measured the ATP concentration within the tumour microenvironment of several experimentally-induced tumours.
Conclusions/Significance
Our results show that ATP in the tumour interstitium is in the hundrends micromolar range, while it is basically undetectable in healthy tissues. Here we show that a chimeric plasma membrane-targeted luciferase allows in vivo detection of high extracellular ATP concentration at tumour sites. On the contrary, tumour-free tissues show undetectable extracellular ATP levels. Extracellular ATP may be crucial for the tumour not only as a stimulus for growth but also as a source of an immunosuppressive agent such as adenosine. Our approach offers a new tool for the investigation of the biochemical composition of tumour milieu and for development of novel therapies based on the modulation of extracellular purine-based signalling.
doi:10.1371/journal.pone.0002599
PMCID: PMC2440522  PMID: 18612415
16.  Extracellular Adenosine Generation in the Regulation of Pro-Inflammatory Responses and Pathogen Colonization 
Biomolecules  2015;5(2):775-792.
Adenosine, an immunomodulatory biomolecule, is produced by the ecto-enzymes CD39 (nucleoside triphosphate dephosphorylase) and CD73 (ecto-5'-nucleotidase) by dephosphorylation of extracellular ATP. CD73 is expressed by many cell types during injury, infection and during steady-state conditions. Besides host cells, many bacteria also have CD39-CD73-like machinery, which helps the pathogen subvert the host inflammatory response. The major function for adenosine is anti-inflammatory, and most recent research has focused on adenosine’s control of inflammatory mechanisms underlying various autoimmune diseases (e.g., colitis, arthritis). Although adenosine generated through CD73 provides a feedback to control tissue damage mediated by a host immune response, it can also contribute to immunosuppression. Thus, inflammation can be a double-edged sword: it may harm the host but eventually helps by killing the invading pathogen. The role of adenosine in dampening inflammation has been an area of active research, but the relevance of the CD39/CD73-axis and adenosine receptor signaling in host defense against infection has received less attention. Here, we review our recent knowledge regarding CD73 expression during murine Salmonellosis and Helicobacter-induced gastric infection and its role in disease pathogenesis and bacterial persistence. We also explored a possible role for the CD73/adenosine pathway in regulating innate host defense function during infection.
doi:10.3390/biom5020775
PMCID: PMC4496696  PMID: 25950510
adenosine; CD39; CD73; adenosine receptors; immune response; lymphocytes; macrophage; bacterial-persistence; inflammation; cytokine
17.  Protection against cartilage and bone destruction by systemic interleukin-4 treatment in established murine type II collagen-induced arthritis 
Arthritis Research  1999;1(1):81-91.
Destruction of cartilage and bone are hallmarks of human rheumatoid arthritis (RA), and controlling these erosive processes is the most challenging objective in the treatment of RA. Systemic interleukin-4 treatment of established murine collagen-induced arthritis suppressed disease activity and protected against cartilage and bone destruction. Reduced cartilage pathology was confirmed by both decreased serum cartilage oligomeric matrix protein (COMP) and histological examination. In addition, radiological analysis revealed that bone destruction was also partially prevented. Improved suppression of joint swelling was achieved when interleukin-4 treatment was combined with low-dose prednisolone treatment. Interestingly, synergistic reduction of both serum COMP and inflammatory parameters was noted when low-dose interleukin-4 was combined with prednisolone. Systemic treatment with interleukin-4 appeared to be a protective therapy for cartilage and bone in arthritis, and in combination with prednisolone at low dosages may offer an alternative therapy in RA.
Introduction:
Rheumatoid arthritis (RA) is associated with an increased production of a range of cytokines including tumour necrosis factor (TNF)-α and interleukin (IL)-1, which display potent proinflammatory actions that are thought to contribute to the pathogenesis of the disease. Although TNF-α seems to be the major cytokine in the inflammatory process, IL-1 is the key mediator with regard to cartilage and bone destruction. Apart from direct blockade of IL-1/TNF, regulation can be exerted at the level of modulatory cytokines such as IL-4 and IL-10. IL-4 is a pleiotropic T-cell derived cytokine that can exert either suppressive or stimulatory effects on different cell types, and was originally identified as a B-cell growth factor and regulator of humoral immune pathways. IL-4 is produced by activated CD4+ T cells and it promotes the maturation of Th2 cells. IL-4 stimulates proliferation, differentiation and activation of several cell types, including fibroblasts, endothelial cells and epithelial cells. IL-4 is also known to be a potent anti-inflammatory cytokine that acts by inhibiting the synthesis of proinflammatory cytokines such as IL-1, TNF-α, IL-6, IL-8 and IL-12 by macrophages and monocytes. Moreover, IL-4 stimulates the synthesis of several cytokine inhibitors such as interleukin-1 receptor antagonist (IL-1Ra), soluble IL-1-receptor type II and TNF receptors IL-4 suppresses metalloproteinase production and stimulates tissue inhibitor of metalloproteinase-1 production in human mononuclear phagocytes and cartilage explants, indicating a protective effect of IL-4 towards extracellular matrix degradation. Furthermore, IL-4 inhibits both osteoclast activity and survival, and thereby blocks bone resorption in vitro. Of great importance is that IL-4 could not be detected in synovial fluid or in tissues. This absence of IL-4 in the joint probably contributes to the disturbance in the Th1/Th2 balance in chronic RA.
Collagen-induced arthritis (CIA) is a widely used model of arthritis that displays several features of human RA. Recently it was demonstrated that the onset of CIA is under stringent control of IL-4 and IL-10. Furthermore, it was demonstrated that exposure to IL-4 during the immunization stage reduced onset and severity of CIA. However, after cessation of IL-4 treatment disease expression increased to control values.
Aims:
Because it was reported that IL-4 suppresses several proinflammatory cytokines and matrix degrading enzymes and upregulates inhibitors of both cytokines and catabolic enzymes, we investigated the tissue protective effect of systemic IL-4 treatment using established murine CIA as a model. Potential synergy of low dosages of anti-inflammatory glucocorticosteroids and IL-4 was also evaluated.
Methods:
DBA-1J/Bom mice were immunized with bovine type II collagen and boosted at day 21. Mice with established CIA were selected at day 28 after immunization and treated for days with IL-4, prednisolone, or combinations of prednisolone and IL-4. Arthritis score was monitored visually. Joint pathology was evaluated by histology, radiology and serum cartilage oligomeric matrix protein (COMP). In addition, serum levels of IL-1Ra and anticollagen antibodies were determined.
Results:
Treatment of established CIA with IL-4 (1 μg/day) resulted in suppression of disease activity as depicted in Figure 1. Of great interest is that, although 1 μg/day IL-4 had only a moderate effect on the inflammatory component of the disease activity, it strongly reduced cartilage pathology, as determined by histological examination (Fig. 1). Moreover, serum COMP levels were significantly reduced, confirming decreased cartilage involvement. In addition, both histological and radiological analysis showed that bone destruction was prevented (Fig. 1). Systemic IL-4 administration increased serum IL-1Ra levels and reduced anticollagen type II antibody levels. Treatment with low-dose IL-4 (0.1 μg/day) was ineffective in suppressing disease score, serum COMP or joint destruction. Synergistic suppression of both arthritis severity and COMP levels was noted when low-dose IL-4 was combined with prednisolone (0.05 mg/kg/day), however, which in itself was not effective.
Discussion:
In the present study, we demonstrate that systemic IL-4 treatment ameliorates disease progression of established CIA. Although clinical disease progression was only arrested and not reversed, clear protection against cartilage and bone destruction was noted. This is in accord with findings in both human RA and animal models of RA that show that inflammation and tissue destruction sometimes are uncoupled processes. Of great importance is that, although inflammation was still present, strong reduction in serum COMP was found after exposure to IL-4. This indicated that serum COMP levels reflected cartilage damage, although a limited contribution of the inflamed synovium cannot be excluded.
Increased serum IL-1Ra level (twofold) was found after systemic treatment with IL-4, but it is not likely that this could explain the suppression of CIA. We and others have reported that high dosages of IL-1Ra are needed for marked suppression of CIA. As reported previously, lower dosages of IL-4 did not reduce clinical disease severity of established CIA. Of importance is that combined treatment of low dosages of IL-4 and IL-10 appeared to have more potent anti-inflammatory effects, and markedly protected against cartilage destruction. Improved anti-inflammatory effect was achieved with IL-4/prednisolone treatment. In addition, synergistic effects were found for the reduction of cartilage and bone destruction. This indicates that systemic IL-4/prednisolone treatment may provide a cartilage and bone protective therapy for human RA.
Effects in mice of treatment with interleukin-4 or control on disease activity, cartilage damage and bone destruction. Mice were treated intraperitoneally for 7 days with either vehicle (control) or 1 μg/day interleukin-4 (IL-4). CIA, collagen-induced arthritis. *P < 0.05, versus control, by Mann-Whitney U test.
PMCID: PMC17779  PMID: 11056663
bone destruction; cartilage oligomeric matrix protein levels; collagen-induced arthritis; interleukin-4; prednisolone
18.  Soluble Ecto-5′-nucleotidase (5′-NT), Alkaline Phosphatase, and Adenosine Deaminase (ADA1) Activities in Neonatal Blood Favor Elevated Extracellular Adenosine*  
The Journal of Biological Chemistry  2013;288(38):27315-27326.
Background: Newborns have elevated plasma adenosine levels, which may influence their immunological function.
Results: Compared with adults, newborns have elevated plasma 5′-NT and alkaline phosphatase activities and lower adenosine deaminase activity.
Conclusion: Soluble enzymes significantly influence extracellular purine metabolism in blood, and the levels of these enzymes in newborns promote elevated adenosine.
Significance: Higher adenosine generation in newborn blood may promote an anti-inflammatory immunological status.
Extracellular adenosine, a key regulator of physiology and immune cell function that is found at elevated levels in neonatal blood, is generated by phosphohydrolysis of adenine nucleotides released from cells and catabolized by deamination to inosine. Generation of adenosine monophosphate (AMP) in blood is driven by cell-associated enzymes, whereas conversion of AMP to adenosine is largely mediated by soluble enzymes. The identities of the enzymes responsible for these activities in whole blood of neonates have been defined in this study and contrasted to adult blood. We demonstrate that soluble 5′-nucleotidase (5′-NT) and alkaline phosphatase (AP) mediate conversion of AMP to adenosine, whereas soluble adenosine deaminase (ADA) catabolizes adenosine to inosine. Newborn blood plasma demonstrates substantially higher adenosine-generating 5′-NT and AP activity and lower adenosine-metabolizing ADA activity than adult plasma. In addition to a role in soluble purine metabolism, abundant AP expressed on the surface of circulating neonatal neutrophils is the dominant AMPase on these cells. Plasma samples from infant observational cohorts reveal a relative plasma ADA deficiency at birth, followed by a gradual maturation of plasma ADA through infancy. The robust adenosine-generating capacity of neonates appears functionally relevant because supplementation with AMP inhibited whereas selective pharmacologic inhibition of 5′-NT enhanced Toll-like receptor-mediated TNF-α production in neonatal whole blood. Overall, we have characterized previously unrecognized age-dependent expression patterns of plasma purine-metabolizing enzymes that result in elevated plasma concentrations of anti-inflammatory adenosine in newborns. Targeted manipulation of purine-metabolizing enzymes may benefit this vulnerable population.
doi:10.1074/jbc.M113.484212
PMCID: PMC3779727  PMID: 23897810
Adenosine; Adenosine Receptor; ADP; AMP; ATP; Immunology; Infectious Diseases; Innate Immunity; Purine; Purinergic Agonists
19.  Enhancement of tumor immunotherapy by deletion of the A2A adenosine receptor 
The A2A adenosine receptor plays a critical and non-redundant role in suppressing inflammation at sites of hypoxia and tissue damage. The tumor microenvironment has high levels of adenosine as a result of hypoxia and ectopic expression of enzymes responsible for the generation of extracellular adenosine. Thus, we sought to determine the ability of A2A receptor null mice to immunologically reject tumors. We observed that mice lacking the A2A adenosine receptor showed significantly delayed growth of lymphoma cells when compared to WT mice. Furthermore, when immunized with a low dose of tumor or with an irradiated GM-CSF–secreting tumor vaccine, A2A receptor null mice showed significantly enhanced protection from a subsequent high-dose challenge from both immunogenic and poorly immunogenic tumor lines. This increase in protection was accompanied by an increase in the number of tumor-antigen-specific CD8 T cells at the vaccine-site draining lymph node. Finally, we found that A2A receptor null mice displayed more robust anti-tumor responses than WT mice when they were treated with a soluble B7-DC/Fc fusion protein designed to antagonize B7-H1-mediated co-inhibition. This combinatorial immunotherapy strategy could also be recapitulated with pharmacological A2A receptor blockade paired with B7-DC/Fc administration. In light of these data, we believe that blockade of the A2A adenosine receptor is an attractive target for tumor immunotherapy that synergizes with other immunomodulatory approaches currently in clinical trials.
doi:10.1007/s00262-011-1155-7
PMCID: PMC3589752  PMID: 22116345
A2a Adenosine receptor; Tumor; T cell; Co-inhibition; B7-DC; Vaccine
20.  Genetic deletion of the alternative isoform I.1 of HIF-1α in T cells enhances anti-bacterial immune response and improves survival in the model of bacterial peritonitis in mice 
European journal of immunology  2013;43(3):655-666.
Summary
Hypoxia-adenosinergic suppression and re-direction of the immune response has been implicated in the regulation of anti-pathogen and anti-tumor immunity, with Hypoxia-inducible factor 1α (HIF-1α) playing a major role. In this study, we investigated the role of isoform I.1, a quantitatively minor alternative isoform of HIF-1α, in anti-bacterial immunity and sepsis survival. By using the cecal ligation and puncture model of bacterial peritonitis we studied the function of I.1 isoform in T cells using mice with total I.1-isoform deficiency and mice with T cell-targeted I.1 knockdown. We found that genetic deletion of the I.1 isoform resulted in enhanced resistance to septic lethality, significantly reduced bacterial load in peripheral blood, increased M1 macrophage polarization, augmented levels of pro-inflammatory cytokines in serum, and significantly decreased levels of the anti-inflammatory cytokine IL-10. Our data suggest an immunosuppressive role of the I.1 isoform in T cells during bacterial sepsis that was previously unrecognized. We interpret these data as indicative that activation-inducible isoform I.1 hinders the contribution of T cells to the anti-bacterial response by affecting M1/M2 macrophage polarization and microbicidal function.
doi:10.1002/eji.201242765
PMCID: PMC3757952  PMID: 23208786
Animal models; Hypoxia-inducible Factor; Sepsis; T lymphocytes
21.  Nucleosides Present on Phlebotomine Saliva Induce Immunossuppression and Promote the Infection Establishment 
PLoS Neglected Tropical Diseases  2015;9(4):e0003600.
Background
Sand fly saliva plays a crucial role in establishing Leishmania infection. We identified adenosine (ADO) and adenosine monophosphate (AMP) as active pharmacologic compounds present in Phlebotomus papatasi saliva that inhibit dendritic cell (DC) functions through a PGE2/IL 10-dependent mechanism.
Methodology/Principal Findings
Herein, we prepared a mixture of ADO and AMP in equimolar amounts similar to those present in the salivary-gland extract (SGE) form one pair of salivary glands of P. papatasi and co-injected it with Leishmania amazonensis or L. major into mouse ears. ADO+AMP mimicked exacerbative effects of P. papatasi saliva in leishmaniasis, increasing parasite burden and cutaneous lesions. Enzymatic catabolism of salivary nucleosides reversed the SGE-induced immunosuppressive effect associated with IL-10 enhancement. Immunosuppressive factors COX2 and IL-10 were upregulated and failed to enhance ear lesion and parasite burden in IL 10-/- infected mice. Furthermore, nucleosides increased regulatory T cell (Treg) marker expression on CD4+CD25- cells, suggesting induction of Tregs on effector T cells (T eff). Treg induction (iTreg) was associated with nucleoside-induced tolerogenic dendritic cells (tDCs) expressing higher levels of COX2 and IL-10. In vitro generation of Tregs was more efficient in DCs treated with nucleosides. Suppressive effects of nucleosides during cutaneous leishmaniasis were mediated through an A2AR-dependent mechanism. Using BALB/c mice deficient in A2A ADO receptor (A2AR–/–), we showed that co-inoculated mice controlled infection, displaying lower parasite numbers at infection sites and reduced iTreg generation.
Conclusion/Significance
We have demonstrated that ADO and AMP in P. papatasi saliva mediate exacerbative effects of Leishmania infection by acting preferentially on DCs promoting a tolerogenic profile in DCs and by generating iTregs in inflammatory foci through an A2AR mechanism.
Author Summary
Leishmania parasites are transmitted to their vertebrate hosts by infected Phlebotomine sand flies during the blood meal of the flies. During the Leishmania transmission, the saliva is inoculated together with parasites and exhibit several pharmacological compounds that facilitate blood feeding, interfering on homeostasis and avoiding inflammation. Thus, these compounds allow the establishment of pathogen infection. We recently identified adenosine (ADO) and adenosine monophosphate (AMP) as major immunomodulatory compounds present within the Old World sand fly species Phlebotomus papatasii, which protected mice from extreme inflammatory insults. ADO limits the magnitude of immune response by displaying a potent anti-inflammatory activity. Here, we demonstrated that ADO and AMP present in Phlebotomus papatasi saliva are involved in the establishment of parasite infection. Such nucleosides act through adenosine A2A receptor (A2AR), inducing a tolerogenic profile on dendritic cells (tDC) that may generate regulatory T cells differentiation, thus leading to suppression of the immune response and parasite survival. The identification of the active salivary constituents could serve as a strategy for the development of new vaccines to control pathogen transmission.
doi:10.1371/journal.pntd.0003600
PMCID: PMC4388340  PMID: 25849562
22.  Reduced Neurobehavioral Impairment from Sleep Deprivation in Older Adults: Contribution of Adenosinergic Mechanisms 
A night without sleep is followed by enhanced sleepiness, increased low-frequency activity in the waking EEG, and reduced vigilant attention. The magnitude of these changes is highly variable among healthy individuals. Findings in young men of low and high subjective caffeine sensitivity suggest that adenosinergic mechanisms contribute to inter-individual differences in sleep deprivation-induced changes in EEG theta activity, as well as optimal performance on the psychomotor vigilance task (PVT). In comparison to young subjects, healthy adults of older age typically feel less sleepy after sleep deprivation, and show fewer response lapses, and faster reaction times on the PVT, especially in the morning after the night without sleep. We hypothesized that age-related changes in adenosine signal transmission underlie reduced vulnerability to sleep deprivation in older individuals. To test this hypothesis, the combined effects of prolonged wakefulness and the adenosine receptor antagonist, caffeine, on an antero-posterior power gradient in EEG theta activity and PVT performance were analyzed in healthy older and caffeine-insensitive and -sensitive young men. The results show that age-related differences in sleep loss-induced changes in brain rhythmic activity and neurobehavioral functions are mirrored in young individuals of low and high sensitivity to the stimulant effects of caffeine. Moreover, the effects of sleep deprivation and caffeine on regional theta power and vigilant attention are inversely correlated across older and young age groups. Genetic variants of the adenosine A2A receptor gene contribute to individual differences in neurobehavioral performance in rested and sleep deprived state, and modulate the actions of caffeine in wakefulness and sleep. Based upon this evidence, we propose that age-related differences in A2A receptor-mediated signal transduction could be involved in age-related changes in the vulnerability to acute sleep deprivation.
doi:10.3389/fneur.2012.00062
PMCID: PMC3338069  PMID: 22557989
aging; electroencephalogram; attention; A1 receptors; A2A receptors; ADORA2A
23.  Purine antagonists in the identification of adenosine-receptors in guinea-pig trachea and the role of purines in non-adrenergic inhibitory neurotransmission 
British Journal of Pharmacology  1980;69(3):359-366.
1 To test the possibility that adenosine receptors exist within the trachea of the guinea-pig, an attempt has been made to identify a compound with adenosine antagonist activity in this tissue.
2 Quinidine, phentolamine, phenoxybenzamine, 2-2′-pyridylisatogen tosylate (PIT) and caffeine were tested for antagonism of spasmolytic responses to adenosine, adenosine 5′-triphosphate (ATP) and adenine on the guinea-pig isolated trachea.
3 Quinidine (10 and 25 μg/ml), phentolamine (10 and 30 μg/ml) and phenoxybenzamine (10 μg/ml) had little or no effect on response to adenosine, ATP and adenine. PIT (21 μg/ml) potentiated responses to adenosine, ATP and adenine by an unexplained mechanism.
4 Caffeine (25 μg/ml) partially relaxed the trachea and inhibited spasmolytic responses to both adenosine and ATP, but not to adenine, isoprenaline, aminophylline or prostaglandin E2 (PGE2).
5 A number of compounds related to caffeine (xanthine, hypoxanthine, theophylline and theobromine) were tested for adenosine antagonist activity. Xanthine (300 μg/ml) and hypoxanthine (300 μg/ml) did not relax the trachea or antagonize spasmolytic responses to adenosine. Both theophylline (10 μg/ml) and theobromine (30 μg/ml) partially relaxed the trachea; theophylline, but not theobromine, antagonized spasmolytic responses to adenosine.
6 pA2 values for caffeine and theophylline as antagonists of adenosine were 4.3 and 4.7 respectively. However, the slopes of the Schild plot regressions were significantly less than 1.0 for both compounds.
7 Four compounds, adenine, AH 8883, M30966 and ICI 63197, which like caffeine and theophylline, have phosphodiesterase inhibitory activity were tested for adenosine antagonist activity in the trachea. Adenine and AH 8883 had no effect and M30966 and ICI 63197 caused significant potentiation.
8 The effects of caffeine and theophylline were also investigated on the non-adrenergic inhibitory response to nerve stimulation (NAIR). Both caffeine (100 μg/ml, n = 4) and theophylline (30 μg/ml, n = 4) enhanced the NAIR (20 Hz) while virtually abolishing matched responses to exogenous adenosine.
9 The results support the existence of adenosine receptors in the guinea-pig trachea.
PMCID: PMC2044281  PMID: 6249433
24.  Hyaluronan Fragments Promote Inflammation by Down-Regulating the Anti-inflammatory A2a Receptor 
The tissue microenvironment plays a critical role in regulating inflammation. Chronic inflammation leads to an influx of inflammatory cells and mediators, extracellular matrix turnover, and increased extracellular adenosine. Low molecular weight (LMW) fragments of hyaluronan (HA), a matrix component, play a critical role in lung inflammation and fibrosis by inducing inflammatory gene expression at the injury site. Adenosine, a crucial negative regulator of inflammation, protects tissues from immune destruction via the adenosine A2a receptor (A2aR). Therefore, these two extracellular products of inflammation play opposing roles in regulating immune responses. As such, we wanted to determine the effect of LMW HA on A2aR function. In this article, we demonstrate that LMW HA causes a rapid, significant, and sustained down-regulation of the A2aR. CD44 was found to be necessary for LMW HA to down-modulate the A2aR as was protein kinase C signaling. We also demonstrate that LMW HA induces A2aR down-regulation during inflammation in vivo, and that this down-regulation can be blocked by treatment with an HA-blocking peptide. Because adenosine plays a critical role in limiting inflammation, our data provide a novel mechanism whereby LMW HA itself may further augment inflammation. By defining the pro- and anti-inflammatory properties of extracellular matrix components, we will be better able to identify specific pharmacologic targets as potential therapies.
doi:10.1165/rcmb.2010-0387OC
PMCID: PMC3208614  PMID: 21257926
hyaluronan; extracellular matrix; inflammation; adenosine; macrophages
25.  Positive allosteric modulation of the adenosine A2a receptor attenuates inflammation 
Background
Adenosine is produced at high levels at inflamed sites as a by-product of cellular activation and breakdown. Adenosine mediates its anti-inflammatory activity primarily through the adenosine A2a receptor (A2aR), a member of the G-protein coupled receptors. A2aR agonists have demonstrated anti-inflammatory efficacy, however, their therapeutic utility is hindered by a lack of adenosine receptor subtype selectivity upon systemic exposure. We sought to harness the anti-inflammatory effects of adenosine by enhancing the responsiveness of A2aR to endogenously produced adenosine through allosteric modulation. We have identified a family of positive allosteric modulators (PAMs) of the A2aR. Using one member of this PAM family, AEA061, we demonstrate that A2aRs are amenable to allosteric enhancement and such enhancement produces increased A2aR signaling and diminished inflammation in vivo.
Methods
A2aR activity was evaluated using a cell-based cAMP assay. Binding affinity of A2aR was determined using [3H]CGS 21680. A2aR-mediated G-protein activation was quantified using [35S]GTP-γS. The effect of AEA061 on cytokine production was evaluated using primary monocytes and splenocytes. The anti-inflammatory effect of AEA061 was evaluated in the LPS-induced mouse model of inflammation.
Results
AEA061 had no detectable intrinsic agonist activity towards either rat or human A2aRs. AEA061 enhanced the efficacy of adenosine to rat and human A2aRs by 11.5 and 2.8 fold respectively. AEA061 also enhanced the maximal response by 4.2 and 2.1 fold for the rat and the human A2aR respectively. AEA061 potentiated agonist-mediated Gα activation by 3.7 fold. Additionally, AEA061 enhanced both the affinity as well as the Bmax at the human A2aR by 1.8 and 3 fold respectively. Consistent with the anti-inflammatory role of the A2aR, allosteric enhancement with AEA061 inhibited the production of TNF-α, MIP-1α, MIP-1β, MIP-2, IL-1α, KC and RANTES by LPS-stimulated macrophages and/or splenocytes. Moreover, AEA061 reduced circulating plasma TNF-α and MCP-1 levels and increased plasma IL-10 in endotoxemic A2aR intact, but not in A2aR deficient, mice.
Conclusions
AEA061 increases affinity and Bmax of A2aR to adenosine, thereby increasing adenosine potency and efficacy, which translates to enhanced A2aR responsiveness. Since the A2aR negatively regulates inflammation, PAMs of the receptor offer a novel means of modulating inflammatory processes.
doi:10.1186/s12950-014-0037-0
PMCID: PMC4253011  PMID: 25473378
Adenosine A2a receptor; G protein-couple receptor; Allosteric enhancement; Inflammation; Positive allosteric modulator; Inhibition of TNF-α production

Results 1-25 (1127678)