Search tips
Search criteria

Results 1-25 (1386993)

Clipboard (0)

Related Articles

1.  Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen 
A synthetic genetic system is designed and characterized that allows Escherichia coli to sense and eradicate Pseudomonas aeruginosa, providing a novel antimicrobial strategy that could potentially be applied to fighting infectious pathogens.
We have engineered and demonstrated a novel genetic circuit that enables Escherichia coli to produce and release pyocin upon quorum sensing detection of Pseudomonas aeruginosa, which in turn kills P. aeruginosa.The quorum sensing device, which comprises an LasR transcription factor constitutively expressed by a pTetR promoter and a downstream pLuxR inducible promoter, has a switch point of 1.2 × 10E-7 M 3OC12HSL and is able to sense 3OC12HSL natively produced by P. aeruginosa.The E7 lysis device when coupled downstream of the quorum sensing device enhances pyocin release eight-fold.The engineered E. coli, which carries the sensing, lysing, and killing devices, effectively inhibits the growth of planktonic and biofilm P. aeruginosa by 99 and 90%, respectively.
In this study, we have made progress toward developing a novel antimicrobial strategy, based on an engineered microbial system, using the synthetic biology framework. Our final system was designed to (i) detect AHLs produced by P. aeruginosa; (ii) produce pyocin S5 upon the detection; and (iii) lyse the E. coli cells by E7 lysis protein so that the produced pyocin S5 is released from the cells, leading to the killing of P. aeruginosa.
Figure 1 shows a schematic of our sensing and killing genetic system. The sensing device was designed based on the Type I quorum sensing mechanism of P. aeruginosa. The tetR promoter, which is constitutively on, produces a transcriptional factor, LasR, that binds to AHL 3OC12HSL. The luxR promoter, to which LasR-3OC12HSL activator complex reportedly binds, was adopted as the inducible promoter in our sensing device (Gray et al, 1994). Next, the formation of the LasR-3OC12HSL complex, which binds to the luxR promoter, activates the killing and lysing devices, leading to the production of pyocin S5 and lysis E7 proteins within the E. coli chassis. Upon reaching a threshold concentration, the lysis E7 protein perforates membrane of the E. coli host and releases the accumulated pyocin S5. Pyocin S5, which is a soluble protein, then diffuses toward the target pathogen and damages its cellular integrity, thereby killing it.
To evaluate and characterize the sensing device, the gene encoding the green fluorescent protein (GFP) was fused to the sensing device and the GFP expression was monitored at a range of concentrations of 3OC12HSL. From the measured GFP synthesis rates, we observed a basal expression level of 0.216 RFU per OD per minute without induction, followed by a sharp increase in GFP production rate as the concentration of 3OC12HSL was increased beyond 1.0E-7 M. A transfer function that describes the static relationship between the input (3OC12HSL) and output (GFP production rate) of the sensing device was determined by fitting an empirical mathematical model (Hill equation) to the experimental data where the input 3OC12HSL concentration is <1.0E-6 M. The resulting best fit model demonstrated that the static performance of the sensing device follows a Hill equation below the input concentration of 1.0E-6 M 3OC12HSL. The model showed that the sensing device saturated at a maximum output of 1.96 RFU per OD per minute at input concentration >3.3E-7 M but <1.0E-6 M 3OC12HSL, and the switch point for the sensing device was 1.2E-7 M 3OC12HSL, the input concentration at which output is at half-maximal. Since this switch point concentration is smaller than the concentration of 3OC12HSL present (1.0E-6 to 1.0E-4 M) within proximity to the site of P. aeruginosa infection as earlier reported in the literature (Pearson et al, 1995; Charlton et al, 2000), the sensing device would be sensitive enough to detect the amount of 3OC12HSL natively produced by P. aeruginosa.
In line with the objective of the E7 lysis device in mediating the export of pyocin, we studied the efficiency of the lysis device in the final system by measuring the amount of the released protein. While distinct bands that corresponded to pyocin S5 were observed on the SDS–PAGE of the final system, no bands were seen in lanes without the lysis device. We further validated the results by estimating the protein concentrations in the supernatant with Bradford assay and showed that the amount of pyocin released by our final system was eight times higher than the system without the lysis device.
To verify that our engineered E. coli can inhibit P. aeruginosa in a mixed culture, we monitored the growth of P. aeruginosa co-cultured with the engineered E. coli in the ratio 1:4 by CFU count. The result shows that our engineered E. coli with the final system effectively inhibited the growth of P. aeruginosa by 99% while continuous growths were apparent in P. aeruginosa co-cultured with incomplete E. coli systems missing either the pyocin S5 or E7 lysis devices.
To examine the potential application of our engineered system against a pseudo disease state of Pseudomonas, a static biofilm inhibition assay was performed. Figure 6A shows that our engineered E. coli inhibited the formation of P. aeruginosa biofilm by close to 90%. This observation is in stark contrast to the pyocin-resistant control strain PAO1 and pyocin-sensitive clinical isolate ln7 subjected to treatment with E. coli having the systems missing either the pyocin S5 or E7 lysis devices. To visualize the extent of biofilm inhibition, biofilm cells with green fluorescence were grown in the presence of engineered E. coli on glass slide substrate and examined with confocal laser scanning microscopy. Figure 6B shows that the morphology of Pseudomonas biofilm treated with the engineered E. coli appeared sparse, while elaborated honey-combed structures were apparent in the control experiments. Collectively, our results suggest that our engineered E. coli carrying the final system, which contains the sensing, killing, and lysing devices, can effectively inhibit the growth of P. aeruginosa in both planktonic and sessile states.
In summary, we engineered a novel biological system, which comprises sensing, killing, and lysing devices, that enables E. coli to sense and eradicate pathogenic P. aeruginosa strains by exploiting the synthetic biology framework. More importantly, our study presents the possibility of engineering potentially beneficial microbiota into therapeutic bioagents to arrest Pseudomonas infection. Given the stalled development of new antibiotics and the increasing emergence of multidrug-resistant pathogens, this study provides the foundational basis for a novel synthetic biology-driven antimicrobial strategy that could be extended to include other pathogens such as Vibrio cholera and Helicobacter pylori.
Synthetic biology aims to systematically design and construct novel biological systems that address energy, environment, and health issues. Herein, we describe the development of a synthetic genetic system, which comprises quorum sensing, killing, and lysing devices, that enables Escherichia coli to sense and kill a pathogenic Pseudomonas aeruginosa strain through the production and release of pyocin. The sensing, killing, and lysing devices were characterized to elucidate their detection, antimicrobial and pyocin release functionalities, which subsequently aided in the construction of the final system and the verification of its designed behavior. We demonstrated that our engineered E. coli sensed and killed planktonic P. aeruginosa, evidenced by 99% reduction in the viable cells. Moreover, we showed that our engineered E. coli inhibited the formation of P. aeruginosa biofilm by close to 90%, leading to much sparser and thinner biofilm matrices. These results suggest that E. coli carrying our synthetic genetic system may provide a novel synthetic biology-driven antimicrobial strategy that could potentially be applied to fighting P. aeruginosa and other infectious pathogens.
PMCID: PMC3202794  PMID: 21847113
genetic circuits; Pseudomonas aeruginosa; pyocin; quorum sensing; synthetic biology
2.  Use of Subtractive Hybridization To Identify a Diagnostic Probe for a Cystic Fibrosis Epidemic Strain of Pseudomonas aeruginosa 
Journal of Clinical Microbiology  2002;40(12):4607-4611.
A multiresistant strain of Pseudomonas aeruginosa is widespread among cystic fibrosis (CF) patients attending clinics in Liverpool, United Kingdom. Suppression subtractive hybridization was used to identify sequences present in the Liverpool CF epidemic strain but absent from strain PAO1. Using dot blot and PCR amplification assays, the prevalence of such sequences among a panel of CF isolates was determined. Several sequences were found only in the Liverpool epidemic strain. Some sequences were present in the Liverpool epidemic strain and in a minority of other isolates, including sequences with homology to genes implicated in O6 serotype and siderophore production. The Liverpool epidemic strain and 81% of nonepidemic isolates contained a sequence identified as part of the PAGI-1 genomic island. Other strains implicated in epidemic spread, which were from Manchester, United Kingdom, and Melbourne, Australia, were also screened. None of the sequences identified was present in the Manchester strain. However, one of two Melbourne strains contained some of the sequences found in the Liverpool epidemic strain. All isolates implicated in epidemic spread and 76% of sporadic isolates contained the exoS gene. A sequence present in all isolates of the Liverpool epidemic strain was used to develop a diagnostic PCR test for identification of the strain from colonies or directly from sputum samples.
PMCID: PMC154653  PMID: 12454160
3.  Comparison of Three Molecular Techniques for Typing Pseudomonas aeruginosa Isolates in Sputum Samples from Patients with Cystic Fibrosis ▿ †  
Journal of Clinical Microbiology  2010;49(1):263-268.
Monitoring the emergence and transmission of Pseudomonas aeruginosa strains among cystic fibrosis (CF) patients is important for infection control in CF centers internationally. A recently developed multilocus sequence typing (MLST) scheme is used for epidemiologic analyses of P. aeruginosa outbreaks; however, little is known about its suitability for isolates from CF patients compared with that of pulsed-field gel electrophoresis (PFGE) and enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). As part of a prevalence study of P. aeruginosa strains in Australian CF clinics, we compared the discriminatory power and concordance of ERIC-PCR, PFGE, and MLST among 93 CF sputum and 11 control P. aeruginosa isolates. PFGE and MLST analyses were also performed on 30 paired isolates collected 85 to 354 days apart from 30 patients attending two CF centers separated by 3,600 kilometers in order to detect within-host evolution. Each of the three methods displayed high levels of concordance and discrimination; however, overall lower discrimination was seen with ERIC-PCR than with MLST and PFGE. Analysis of the 50 ERIC-PCR types yielded 54 PFGE types, which were related by ≤6 band differences, and 59 sequence types, which were classified into 7 BURST groups and 42 singletons. MLST also proved useful for detecting novel and known strains and for inferring relatedness among unique PFGE types. However, 47% of the paired isolates produced PFGE patterns that within 1 year differed by one to five bands, whereas with MLST all paired isolates remained identical. MLST thus represents a categorical analysis tool with resolving power similar to that of PFGE for typing P. aeruginosa. Its focus on highly conserved housekeeping genes is particularly suited for long-term clinical monitoring and detecting novel strains.
PMCID: PMC3020435  PMID: 21084517
4.  Pseudomonas aeruginosa inhibits the growth of Scedosporium aurantiacum, an opportunistic fungal pathogen isolated from the lungs of cystic fibrosis patients 
The filamentous fungus Scedosporium aurantiacum and the bacterium Pseudomonas aeruginosa are opportunistic pathogens isolated from lungs of the cystic fibrosis (CF) patients. P. aeruginosa has been known to suppress the growth of a number of CF related fungi such as Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. However, the interactions between P. aeruginosa and S. aurantiacum have not been investigated in depth. Hence we assessed the effect of P. aeruginosa reference strain PAO1 and two clinical isolates PASS1 and PASS2 on the growth of two clinical S. aurantiacum isolates WM 06.482 and WM 08.202 using solid plate assays and liquid cultures, in a synthetic medium mimicking the nutrient condition in the CF sputum. Solid plate assays showed a clear inhibition of growth of both S. aurantiacum strains when cultured with P. aeruginosa strains PASS1 and PAO1. The inhibitory effect was confirmed by confocal microscopy. In addition to using chemical fluorescent stains, strains tagged with yfp (P. aeruginosa PASS1) and mCherry (S. aurantiacum WM 06.482) were created to facilitate detailed microscopic observations on strain interaction. To our knowledge, this is the first study describing successful genetic transformation of S. aurantiacum. Inhibition of growth was observed only in co-cultures of P. aeruginosa and S. aurantiacum; the cell fractions obtained from independent bacterial monocultures failed to initiate a response against the fungus. In the liquid co-cultures, biofilm forming P. aeruginosa strains PASS1 and PAO1 displayed higher inhibition of fungal growth when compared to PASS2. No change was observed in the inhibition pattern when direct cell contact between the bacterial and fungal strains was prevented using a separation membrane suggesting the involvement of extracellular metabolites in the fungal inhibition. However, one of the most commonly described bacterial virulence factors, pyocyanin, had no effect against either of the S. aurantiacum strains. This study shows that P. aeruginosa has a substantial inhibitory effect on the growth of the recently described CF fungal pathogen S. aurantiacum. The findings also highlighted that P. aeruginosa biofilm formation is important but not crucial for inhibiting the growth of S. aurantiacum in a lung- mimicking environment.
PMCID: PMC4547459  PMID: 26379643
co-culture; S. aurantiacum; P. aeruginosa; interactions; growth inhibition; phenazines; SCFM; biofilms
5.  Pseudomonas aeruginosa AES-1 Exhibits Increased Virulence Gene Expression during Chronic Infection of Cystic Fibrosis Lung 
PLoS ONE  2011;6(9):e24526.
Pseudomonas aeruginosa, the leading cause of morbidity and mortality in people with cystic fibrosis (CF), adapts for survival in the CF lung through both mutation and gene expression changes. Frequent clonal strains such as the Australian Epidemic Strain-1 (AES-1), have increased ability to establish infection in the CF lung and to superimpose and replace infrequent clonal strains. Little is known about the factors underpinning these properties. Analysis has been hampered by lack of expression array templates containing CF-strain specific genes. We sequenced the genome of an acute infection AES-1 isolate from a CF infant (AES-1R) and constructed a non-redundant micro-array (PANarray) comprising AES-1R and seven other sequenced P. aeruginosa genomes. The unclosed AES-1R genome comprised 6.254Mbp and contained 6957 putative genes, including 338 not found in the other seven genomes. The PANarray contained 12,543 gene probe spots; comprising 12,147 P. aeruginosa gene probes, 326 quality-control probes and 70 probes for non-P. aeruginosa genes, including phage and plant genes. We grew AES-1R and its isogenic pair AES-1M, taken from the same patient 10.5 years later and not eradicated in the intervening period, in our validated artificial sputum medium (ASMDM) and used the PANarray to compare gene expression of both in duplicate. 675 genes were differentially expressed between the isogenic pairs, including upregulation of alginate, biofilm, persistence genes and virulence-related genes such as dihydroorotase, uridylate kinase and cardiolipin synthase, in AES-1M. Non-PAO1 genes upregulated in AES-1M included pathogenesis-related (PAGI-5) genes present in strains PACS2 and PA7, and numerous phage genes. Elucidation of these genes' roles could lead to targeted treatment strategies for chronically infected CF patients.
PMCID: PMC3174184  PMID: 21935417
6.  A comparison of two informative SNP-based strategies for typing Pseudomonas aeruginosa isolates from patients with cystic fibrosis 
BMC Infectious Diseases  2014;14:307.
Molecular typing is integral for identifying Pseudomonas aeruginosa strains that may be shared between patients with cystic fibrosis (CF). We conducted a side-by-side comparison of two P. aeruginosa genotyping methods utilising informative-single nucleotide polymorphism (SNP) methods; one targeting 10 P. aeruginosa SNPs and using real-time polymerase chain reaction technology (HRM10SNP) and the other targeting 20 SNPs and based on the Sequenom MassARRAY platform (iPLEX20SNP).
An in-silico analysis of the 20 SNPs used for the iPLEX20SNP method was initially conducted using sequence type (ST) data on the P. aeruginosa PubMLST website. A total of 506 clinical isolates collected from patients attending 11 CF centres throughout Australia were then tested by both the HRM10SNP and iPLEX20SNP assays. Type-ability and discriminatory power of the methods, as well as their ability to identify commonly shared P. aeruginosa strains, were compared.
The in-silico analyses showed that the 1401 STs available on the PubMLST website could be divided into 927 different 20-SNP profiles (D-value = 0.999), and that most STs of national or international importance in CF could be distinguished either individually or as belonging to closely related single- or double-locus variant groups. When applied to the 506 clinical isolates, the iPLEX20SNP provided better discrimination over the HRM10SNP method with 147 different 20-SNP and 92 different 10-SNP profiles observed, respectively. For detecting the three most commonly shared Australian P. aeruginosa strains AUST-01, AUST-02 and AUST-06, the two methods were in agreement for 80/81 (98.8%), 48/49 (97.8%) and 11/12 (91.7%) isolates, respectively.
The iPLEX20SNP is a superior new method for broader SNP-based MLST-style investigations of P. aeruginosa. However, because of convenience and availability, the HRM10SNP method remains better suited for clinical microbiology laboratories that only utilise real-time PCR technology and where the main interest is detection of the most highly-prevalent P. aeruginosa CF strains within Australian clinics.
PMCID: PMC4053291  PMID: 24902856
Pseudomonas aeruginosa; Typing; Cystic fibrosis; MLST; SNP
7.  Immunoglobulin A and immunoglobulin G antibody responses to alginates from Pseudomonas aeruginosa in patients with cystic fibrosis. 
Journal of Clinical Microbiology  1990;28(4):747-755.
Patients with cystic fibrosis have a high prevalence of mucoid, alginate-producing Pseudomonas aeruginosa that causes chronic infection of the mucosal surface of the lungs. We developed enzyme-linked immunosorbent assays (ELISAs) for determination in serum of immunoglobulin A (IgA) and IgG antibodies to alginate purified from P. aeruginosa and an ELISA for detection of IgA antibodies to a polyvalent P. aeruginosa standard antigen. Absorption experiments indicated that the assays were antigen and antibody specific and had analytical variations that ranged from 7 to 19%. Serum samples from 207 patients with cystic fibrosis, 100 healthy children, and 94 healthy adults were examined. The patients responded to P. aeruginosa infection with early IgA and IgG antibody responses that were significantly higher than in controls and noncolonized patients. Analysis of paired serum samples showed that infected patients had an increase in specific IgG and IgA antibodies that was significantly higher than in noncolonized patients. The serological data were analyzed for correlation with clinical condition; poor lung function was significantly associated with increased levels of IgA and IgG antibodies to P. aeruginosa alginate and to the standard antigen and with a relative excess of IgA antibodies to the standard antigen compared with IgA antibodies to P. aeruginosa alginate. The assays showed high predictive values if positive, but a negative test did not exclude infection, and the ELISAs should not be used for diagnostic purposes. Mucoid strains were present initially in the sputa of 28 of 54 infected patients with paired serum samples. These patients had a significant increase in anti-alginate antibodies, but it was not different from the increase seen in patients infected only with nonmucoid strains. Therefore, alginate may also be produced in vivo by nonmucoid P. aeruginosa. The study showed that early formation of IgA and IgG antibodies to P. aeruginosa alginate did not prevent development of chronic infection and that P. aeruginosa-specific IgA antibodies correlate with poor lung function.
PMCID: PMC267788  PMID: 2110181
8.  PCR-Based Assay for Differentiation of Pseudomonas aeruginosa from Other Pseudomonas Species Recovered from Cystic Fibrosis Patients 
Journal of Clinical Microbiology  2004;42(5):2074-2079.
Pseudomonas aeruginosa is the major opportunistic bacterial pathogen in persons with cystic fibrosis (CF); pulmonary infection occurs in approximately 80% of adult CF patients. Much of CF patient management depends on accurate identification of P. aeruginosa from sputum culture. However, identification of this species may be problematic due to the marked phenotypic variability demonstrated by CF sputum isolates and the presence of other closely related species. To facilitate species identification, we used 16S ribosomal DNA (rDNA) sequence data to design PCR assays intended to provide genus- or species-level identification. Both assays yielded DNA fragments of the predicted size. We tested 42 culture collection strains (including 14 P. aeruginosa strains and 28 strains representing 16 other closely related Pseudomonas species) and 43 strains that had been previously identified as belonging to 28 nonpseudomonal species also recovered from CF patient sputum. Based on these 85 strains, the specificity and sensitivity of both assays were 100%. To further assess the utility of the PCR assays, we tested 66 recent CF sputum isolates. The results indicated that preliminary phenotypic testing had misidentified several isolates. The 16S rDNA sequence was determined for 38 isolates, and in all cases it confirmed the results of the PCR assays. Thus, we have designed two PCR assays: one is specific for the genus Pseudomonas, while the other is specific for P. aeruginosa. Both assays show 100% sensitivity and specificity.
PMCID: PMC404678  PMID: 15131172
9.  Proposal of a quantitative PCR-based protocol for an optimal Pseudomonas aeruginosa detection in patients with cystic fibrosis 
BMC Microbiology  2013;13:143.
The lung of patients with cystic fibrosis (CF) is particularly sensitive to Pseudomonas aeruginosa. This bacterium plays an important role in the poor outcome of CF patients. During the disease progress, first acquisition of P. aeruginosa is the key-step in the management of CF patients. Quantitative PCR (qPCR) offers an opportunity to detect earlier the first acquisition of P. aeruginosa by CF patients. Given the lack of a validated protocol, our goal was to find an optimal molecular protocol for detection of P. aeruginosa in CF patients.
We compared two formerly described qPCR formats in early detection of P. aeruginosa in CF sputum samples: a qPCR targeting oprL gene, and a multiplex PCR targeting gyrB and ecfX genes.
Tested in vitro on a large panel of P. aeruginosa isolates and others gram-negative bacilli, oprL qPCR exhibited a better sensitivity (threshold of 10 CFU/mL versus 730 CFU/mL), whereas the gyrB/ecfX qPCR exhibited a better specificity (90% versus 73%). These results were validated ex vivo on 46 CF sputum samples positive for P. aeruginosa in culture. Ex vivo assays revealed that qPCR detected 100 times more bacterial cells than culture-based method did.
Based on these results, we proposed a reference molecular protocol combining the two qPCRs, which offers a sensitivity of 100% with a threshold of 10 CFU/mL and a specificity of 100%. This combined qPCR-based protocol can be adapted and used for other future prospective studies.
PMCID: PMC3691768  PMID: 24088260
Pseudomonas aeruginosa; Cystic fibrosis; qPCR; Early detection
10.  Binding of nonmucoid Pseudomonas aeruginosa to normal human intestinal mucin and respiratory mucin from patients with cystic fibrosis. 
Journal of Clinical Investigation  1992;89(2):657-665.
Lung infections due to Pseudomonas aeruginosa and Pseudomonas cepacia are common in patients with cystic fibrosis. Initial colonization is due to nonmucoid P. aeruginosa, while later mucoid variants emerge and are associated with chronic infection. P. cepacia colonization tends to be more prevalent in older patients. The present study was conducted to discover whether highly purified mucins (from cystic fibrosis sputum and control intestinal secretions) exhibited specific binding of nonmucoid P. aeruginosa. In vitro solid phase microtiter binding assays (with or without a blocking agent) as well as solution phase assays were conducted. Bacteria bound to both mucins via bacterial pili, but no differences in binding capacity were noted between the mucins. Unlike P. cepacia (described in the accompanying manuscript) there was also no preferential binding of P. aeruginosa to mucins versus bovine serum albumin, casein, gelatin, or a host of structurally unrelated proteins and glycoproteins. Carbohydrate hapten inhibition studies did not suggest the existence of specific mucin carbohydrate receptors for P. aeruginosa. In solid phase assays a low concentration (0.05 M) of tetramethylurea abolished P. aeruginosa bacterial binding to both mucins as well as to BSA, whereas in solution phase assays mucin binding to bacteria was not completely disrupted by tetramethylurea. Specific monoclonal antipilus antibodies did not inhibit binding to a greater extent than did Fab fragments of normal mouse IgG. Binding of strains PAO1 and PAK (and isolated PAK pili) to buccal epithelial cells was not influenced by the presence of mucin in binding assay mixtures. Our findings do not support the widely held notion that specific mucin receptors are responsible for the attachment of P. aeruginosa pili, nor do they support the idea that there is a competitive interference by mucins of bacterial binding to respiratory cells. In patients with cystic fibrosis, it would seem unlikely therefore that initial colonization of the lungs by P. aeruginosa is due to a 'selective tropism' of these bacteria for respiratory mucin.
PMCID: PMC442899  PMID: 1737853
11.  Identification of infectious Pseudomonas aeruginosa strains in an occupational saturation diving environment 
OBJECTIVES: Occupational saturation divers have various skin disorders, of which skin infections are the most serious and frequent. Pseudomonas aeruginosa is the microbe most often isolated from skin infections in divers. The purpose of the present work was (a) to report the occurrence of P aeruginosa in skin infections in operational saturation diving in the North Sea from 1987 to 1995; (b) to report the environmental occurrence of P aeruginosa in saturation diving systems, and finally (c) to identify possible relations between infection related to strains of P aeruginosa and environmental isolates of the microbe. RESULTS: During the period 1987-95, P aeruginosa was isolated from 257 skin infections in operational saturation divers. Most of the isolates related to infection by P aeruginosa show a unique growth inhibition pattern towards the normal skin flora, and the serotype pattern of P aeruginosa from skin infections is limited compared with similar infections in non-divers. In a mini-epidemiological study on board one diving vessel during one operational diving period, five significantly different DNA fragment profiles were found among the 12 isolates related to infection by P aeruginosa obtained from the saturation system. In two cases the infectious genotypes were detected in the fresh water for the saturation chambers weeks before the arrival of the infected diver. CONCLUSIONS: The most commonly used epidemiological marker for P aeruginosa world wide, also used in earlier studies, is serotyping, but with pulsed field gel electrophoresis (PFGE) miniepidemiology it was shown to be insufficient for epidemiological purposes in saturation environments. PFGE analyses were shown to be superior both to antibacterial factor and to serotyping in epidemiological analyses of P aeruginosa infections in saturation diving.
PMCID: PMC1757612  PMID: 9816382
12.  Pseudomonas aeruginosa: Immune Status in Patients with Cystic Fibrosis 
Infection and Immunity  1972;6(4):628-635.
In order to have a better understanding of the clinical significance of Pseudomonas aeruginosa, circulating and secretory antibodies were measured. Of 100 patients diagnosed as having cystic fibrosis (CF) and an atypical mucoid P. aeruginosa cultured from their sputum, each possessed serum precipitins. These immunoprecipitates, however, were not detected in the sera of 40 CF patients, some of whom were chronically ill with pulmonary colonization by typically rough-smooth strains of P. aeruginosa. The sera of 46 CF patients and 27 CF patient parents not colonized by P. aeruginosa were negative for the precipitins. The sera from 15 of 45 chronically ill patients not having CF, however, but harboring P. aeruginosa, also possessed serum precipitins. The sera from 85 subjects not having CF and not clinically infected with P. aeruginosa were negative for precipitins. Serum hemagglutination titers as high as 1:4096 were measured in older CF patients having advanced pulmonary disease and who were infected with mucoid P. aeruginosa. Salivary titers ranged from 1:8 to 1:64. Increased levels of both circulating and secretory antibodies of the immunoglobulin A and G classes were demonstrated in patients with CF. Once a patient with CF becomes colonized with P. aeruginosa a process of conversion from the rough and smooth forms to the mucoid form is almost inevitable. Although the mucoid form predominates in the sputum, intermediates of the various colony types are often present. Serum precipitins were demonstrable only after the appearance of mucoid strains in the sputum of patients with CF. Although antibiotics tend to reduce the number of mucoid microorganisms, they are rarely, if ever, eradicated from these patients' lungs. Recurrent episodes of servere pulmonary infection and the evidence of increasing antibody formation to mucoid strains indicates the invasiveness of these particular strains.
PMCID: PMC422584  PMID: 4628901
13.  Identification of a Genomic Island Present in the Majority of Pathogenic Isolates of Pseudomonas aeruginosa 
Journal of Bacteriology  2001;183(3):843-853.
Pseudomonas aeruginosa, a ubiquitous gram-negative bacterium, is capable of colonizing a wide range of environmental niches and can also cause serious infections in humans. In order to understand the genetic makeup of pathogenic P. aeruginosa strains, a method of differential hybridization of arrayed libraries of cloned DNA fragments was developed. An M13 library of DNA from strain X24509, isolated from a patient with a urinary tract infection, was screened using a DNA probe from P. aeruginosa strain PAO1. The genome of PAO1 has been recently sequenced and can be used as a reference for comparisons of genetic organization in different strains. M13 clones that did not react with a DNA probe from PAO1 carried X24509-specific inserts. When a similar array hybridization analysis with DNA probes from different strains was used, a set of M13 clones which carried sequences present in the majority of human P. aeruginosa isolates from a wide range of clinical sources was identified. The inserts of these clones were used to identify cosmids encompassing a contiguous 48.9-kb region of the X24509 chromosome called PAGI-1 (for “P. aeruginosa genomic island 1”). PAGI-1 is incorporated in the X24509 chromosome at a locus that shows a deletion of a 6,729-bp region present in strain PAO1. Survey of the incidence of PAGI-1 revealed that this island is present in 85% of the strains from clinical sources. Approximately half of the PAGI-1-carrying strains show the same deletion as X24509, while the remaining strains contain both the PAGI-1 sequences and the 6,729-bp PAO1 segment. Sequence analysis of PAGI-1 revealed that it contains 51 predicted open reading frames. Several of these genes encoded products with predictable function based on their sequence similarities to known genes, including insertion sequences, determinants of regulatory proteins, a number of dehydrogenase gene homologs, and two for proteins of implicated in detoxification of reactive oxygen species. It is very likely that PAGI-1 was acquired by a large number of P. aeruginosa isolates through horizontal gene transfer. The selection for its maintenance may be the consequence of expression of any one of the genes of unknown function or the genes which allow P. aeruginosa to survive under the conditions that generate reactive oxygen species. Alternatively, one or both of the transcriptional regulators encoded in PAGI-1 may control the expression of genes in the P. aeruginosa chromosome, which provides a selective advantage for strains that have acquired this genomic island.
PMCID: PMC94950  PMID: 11208781
14.  Cross-Sectional Analysis of Clinical and Environmental Isolates of Pseudomonas aeruginosa: Biofilm Formation, Virulence, and Genome Diversity  
Infection and Immunity  2004;72(1):133-144.
Chronic lung infections with Pseudomonas aeruginosa biofilms are associated with refractory and fatal pneumonia in cystic fibrosis (CF). In this study, a group of genomically diverse P. aeruginosa isolates were compared with the reference strain PAO1 to assess the roles of motility, twitching, growth rate, and overproduction of a capsular polysaccharide (alginate) in biofilm formation. In an in vitro biofilm assay system, P. aeruginosa displayed strain-specific biofilm formation that was not solely dependent on these parameters. Compared with non-CF isolates, CF isolates expressed two opposing growth modes: reduced planktonic growth versus efficient biofilm formation. Planktonic cells of CF isolates showed elevated sensitivity to hydrogen peroxide, a reactive oxygen intermediate, and decreased lung colonization in an aerosol infection mouse model. Despite having identical genomic profiles, CF sequential isolates produced different amounts of biofilm. While P. aeruginosa isolates exhibited genomic diversity, the genome size of these isolates was estimated to be 0.4 to 19% (27 to 1,184 kb) larger than that of PAO1. To identify these extra genetic materials, random amplification of polymorphic DNA was coupled with PAO1-subtractive hybridization. Three loci were found within the genomes of two CF isolates encoding one novel homolog involved in retaining a Shigella virulence plasmid (mvpTA) and two divergent genes that function in removing negative supercoiling (topA) and biosynthesis of pyoverdine (PA2402). Together, P. aeruginosa biodiversity could provide one cause for the variation of morbidity and mortality in CF. P. aeruginosa may possess undefined biofilm adhesins that are important to the development of an antibiofilm therapeutic target.
PMCID: PMC343948  PMID: 14688090
15.  Identification of Virulence Genes in a Pathogenic Strain of Pseudomonas aeruginosa by Representational Difference Analysis 
Journal of Bacteriology  2002;184(4):952-961.
Pseudomonas aeruginosa is an opportunistic pathogen that may cause severe infections in humans and other vertebrates. In addition, a human clinical isolate of P. aeruginosa, strain PA14, also causes disease in a variety of nonvertebrate hosts, including plants, Caenorhabditis elegans, and the greater wax moth, Galleria mellonella. This has led to the development of a multihost pathogenesis system in which plants, nematodes, and insects have been used as adjuncts to animal models for the identification of P. aeruginosa virulence factors. Another approach to identifying virulence genes in bacteria is to take advantage of the natural differences in pathogenicity between isolates of the same species and to use a subtractive hybridization technique to recover relevant genomic differences. The sequenced strain of P. aeruginosa, strain PAO1, has substantial differences in virulence from strain PA14 in several of the multihost models of pathogenicity, and we have utilized the technique of representational difference analysis (RDA) to directly identify genomic differences between P. aeruginosa strains PA14 and PAO1. We have found that the pilC, pilA, and uvrD genes in strain PA14 differ substantially from their counterparts in strain PAO1. In addition, we have recovered a gene homologous to the ybtQ gene from Yersinia, which is specifically present in strain PA14 but absent in strain PAO1. Mutation of the ybtQ homolog in P. aeruginosa strain PA14 significantly attenuates the virulence of this strain in both G. mellonella and a burned mouse model of sepsis to levels comparable to those seen with PAO1. This suggests that the increased virulence of P. aeruginosa strain PA14 compared to PAO1 may relate to specific genomic differences identifiable by RDA.
PMCID: PMC134824  PMID: 11807055
16.  Occurrence of Hypermutable Pseudomonas aeruginosa in Cystic Fibrosis Patients Is Associated with the Oxidative Stress Caused by Chronic Lung Inflammation 
Oxidative stress caused by chronic lung inflammation in patients with cystic fibrosis (CF) and chronic lung infection with Pseudomonas aeruginosa is characterized by the reactive oxygen species (ROS) liberated by polymorphonuclear leukocytes (PMNs). We formulated the hypothesis that oxidation of the bacterial DNA by ROS presents an increased risk for the occurrence of hypermutable P. aeruginosa. The occurrence of hypermutable P. aeruginosa isolates was investigated directly in the sputum of 79 CF patients and among 141 isolates collected from 11 CF patients (10 to 15 isolates/patient) collected from the 1st and up to the 25th year of their chronic lung infection. The level of oxidized guanine moiety 8-oxo-2′-deoxyguanosine (8-oxodG), which is a frequently investigated DNA oxidative lesion, was measured. Hypermutable P. aeruginosa isolates were found in the sputum bacterial population of 54.4% of the CF patients. The earliest mutator P. aeruginosa isolates were found after 5 years from the onset of the chronic lung infection, and once they were present in the CF lung, the prevalence increased with time. The hypermutable isolates were significantly more resistant to antipseudomonal antibiotics than nonhypermutable isolates (P ≤ 0.001). The level of 8-oxodG/106 deoxyguanosine (dG) was significantly higher in hypermutable P. aeruginosa isolates (87 ± 38) than in nonhypermutable P. aeruginosa isolates (59.4 ± 17) (P = 0.02), and an increase to 86.84 from 21.65 8-oxodG/106 dG was found after exposure of the reference strain PAO1 to activated PMNs. Our results suggest that the chronic PMN inflammation in the CF lung promotes oxidative stress and is associated with the occurrence of hypermutable bacteria in the lung. The hypermutable phenotype can associate with mutations that confer adaptation of the bacteria in the lung and persistence of the infection.
PMCID: PMC1140492  PMID: 15917521
17.  Multilocus Sequence Typing and Phylogenetic Analyses of Pseudomonas aeruginosa Isolates from the Ocean▿  
Applied and Environmental Microbiology  2008;74(20):6194-6205.
Recent isolation of Pseudomonas aeruginosa strains from the open ocean and subsequent pulsed-field gel electrophoresis analyses indicate that these strains have a unique genotype (N. H. Khan, Y. Ishii, N. Kimata-Kino, H. Esaki, T. Nishino, M. Nishimura, and K. Kogure, Microb. Ecol. 53:173-186, 2007). We hypothesized that ocean P. aeruginosa strains have a unique phylogenetic position relative to other strains. The objective of this study was to clarify the intraspecies phylogenetic relationship between marine strains and other strains from various geographical locations. Considering the advantages of using databases, multilocus sequence typing (MLST) was chosen for the typing and discrimination of ocean P. aeruginosa strains. Seven housekeeping genes (acsA, aroE, guaA, mutL, nuoD, ppsA, and trpE) were analyzed, and the results were compared with data on the MLST website. These genes were also used for phylogenetic analysis of P. aeruginosa. Rooted and unrooted phylogenetic trees were generated for each gene locus and the concatenated gene fragments. MLST data showed that all the ocean strains were new. Trees constructed for individual and concatenated genes revealed that ocean P. aeruginosa strains have clusters distinct from those of other P. aeruginosa strains. These clusters roughly reflected the geographical locations of the isolates. These data support our previous findings that P. aeruginosa strains are present in the ocean. It can be concluded that the ocean P. aeruginosa strains have diverged from other isolates and form a distinct cluster based on MLST and phylogenetic analyses of seven housekeeping genes.
PMCID: PMC2570286  PMID: 18757570
18.  Extensive Genomic Plasticity in Pseudomonas aeruginosa Revealed by Identification and Distribution Studies of Novel Genes among Clinical Isolates  
Infection and Immunity  2006;74(9):5272-5283.
The distributed genome hypothesis (DGH) states that each strain within a bacterial species receives a unique distribution of genes from a population-based supragenome that is many times larger than the genome of any given strain. The observations that natural infecting populations are often polyclonal and that most chronic bacterial pathogens have highly developed mechanisms for horizontal gene transfer suggested the DGH and provided the means and the mechanisms to explain how chronic infections persist in the face of a mammalian host's adaptive defense mechanisms. Having previously established the validity of the DGH for obligate pathogens, we wished to evaluate its applicability to an opportunistic bacterial pathogen. This was accomplished by construction and analysis of a highly redundant pooled genomic library containing approximately 216,000 functional clones that was constructed from 12 low-passage clinical isolates of Pseudomonas aeruginosa, 6 otorrheic isolates and 6 from other body sites. Sequence analysis of 3,214 randomly picked clones (mean insert size, ∼1.4 kb) from this library demonstrated that 348 (10.8%) of the clones were unique with respect to all genomic sequences of the P. aeruginosa prototype strain, PAO1. Hypothetical translations of the open reading frames within these unique sequences demonstrated protein homologies to a number of bacterial virulence factors and other proteins not previously identified in P. aeruginosa. PCR and reverse transcription-PCR-based assays were performed to analyze the distribution and expression patterns of a 70-open reading frame subset of these sequences among 11 of the clinical strains. These sequences were unevenly distributed among the clinical isolates, with nearly half (34/70) of the novel sequences being present in only one or two of the individual strains. Expression profiling revealed that a vast majority of these sequences are expressed, strongly suggesting they encode functional proteins.
PMCID: PMC1594838  PMID: 16926421
19.  Proteomic profiling of Pseudomonas aeruginosa AES-1R, PAO1 and PA14 reveals potential virulence determinants associated with a transmissible cystic fibrosis-associated strain 
BMC Microbiology  2012;12:16.
Pseudomonas aeruginosa is an opportunistic pathogen that is the major cause of morbidity and mortality in patients with cystic fibrosis (CF). While most CF patients are thought to acquire P. aeruginosa from the environment, person-person transmissible strains have been identified in CF clinics worldwide. The molecular basis for transmissibility and colonization of the CF lung remains poorly understood.
A dual proteomics approach consisting of gel-based and gel-free comparisons were undertaken to analyse protein profiles in a transmissible, early (acute) isolate of the Australian epidemic strain 1 (AES-1R), the virulent burns/wound isolate PA14, and the poorly virulent, laboratory-associated strain PAO1. Over 1700 P. aeruginosa proteins were confidently identified. AES-1R protein profiles revealed elevated abundance of proteins associated with virulence and siderophore biosynthesis and acquisition, antibiotic resistance and lipopolysaccharide and fatty acid biosynthesis. The most abundant protein in AES-1R was confirmed as a previously hypothetical protein with sequence similarity to carbohydrate-binding proteins and database search revealed this gene is only found in the CF-associated strain PA2192. The link with CF infection may suggest that transmissible strains have acquired an ability to rapidly interact with host mucosal glycoproteins.
Our data suggest that AES-1R expresses higher levels of proteins, such as those involved in antibiotic resistance, iron acquisition and virulence that may provide a competitive advantage during early infection in the CF lung. Identification of novel proteins associated with transmissibility and acute infection may aid in deciphering new strategies for intervention to limit P. aeruginosa infections in CF patients.
PMCID: PMC3398322  PMID: 22264352
20.  Low Rates of Pseudomonas aeruginosa Misidentification in Isolates from Cystic Fibrosis Patients▿  
Journal of Clinical Microbiology  2009;47(5):1503-1509.
Pseudomonas aeruginosa is an important cause of pulmonary infection in cystic fibrosis (CF). Its correct identification ensures effective patient management and infection control strategies. However, little is known about how often CF sputum isolates are falsely identified as P. aeruginosa. We used P. aeruginosa-specific duplex real-time PCR assays to determine if 2,267 P. aeruginosa sputum isolates from 561 CF patients were correctly identified by 17 Australian clinical microbiology laboratories. Misidentified isolates underwent further phenotypic tests, amplified rRNA gene restriction analysis, and partial 16S rRNA gene sequence analysis. Participating laboratories were surveyed on how they identified P. aeruginosa from CF sputum. Overall, 2,214 (97.7%) isolates from 531 (94.7%) CF patients were correctly identified as P. aeruginosa. Further testing with the API 20NE kit correctly identified only 34 (59%) of the misidentified isolates. Twelve (40%) patients had previously grown the misidentified species in their sputum. Achromobacter xylosoxidans (n = 21), Stenotrophomonas maltophilia (n = 15), and Inquilinus limosus (n = 4) were the species most commonly misidentified as P. aeruginosa. Overall, there were very low rates of P. aeruginosa misidentification among isolates from a broad cross section of Australian CF patients. Additional improvements are possible by undertaking a culture history review, noting colonial morphology, and performing stringent oxidase, DNase, and colistin susceptibility testing for all presumptive P. aeruginosa isolates. Isolates exhibiting atypical phenotypic features should be evaluated further by additional phenotypic or genotypic identification techniques.
PMCID: PMC2681828  PMID: 19261796
21.  Acquisition of Expression of the Pseudomonas aeruginosa ExoU Cytotoxin Leads to Increased Bacterial Virulence in a Murine Model of Acute Pneumonia and Systemic Spread 
Infection and Immunity  2000;68(7):3998-4004.
Pseudomonas aeruginosa is the nosocomial bacterial pathogen most commonly isolated from the respiratory tract. Animal models of this infection are extremely valuable for studies of virulence and immunity. We thus evaluated the utility of a simple model of acute pneumonia for analyzing P. aeruginosa virulence by characterizing the course of bacterial infection in BALB/c mice following application of bacteria to the nares of anesthetized animals. Bacterial aspiration into the lungs was rapid, and 67 to 100% of the inoculum could be recovered within minutes from the lungs, with 0.1 to 1% of the inoculum found intracellularly shortly after infection. At later time points up to 10% of the bacteria were intracellular, as revealed by gentamicin exclusion assays on single-cell suspensions of infected lungs. Expression of exoenzyme U (ExoU) by P. aeruginosa is associated with a cytotoxic effect on epithelial cells in vitro and virulence in animal models. Insertional mutations in the exoU gene confer a noncytotoxic phenotype on mutant strains and decrease virulence for animals. We used the model of acute pneumonia to determine whether introduction of the exoU gene into noncytotoxic strains of P. aeruginosa lacking this gene affected virulence. Seven phenotypically noncytotoxic P. aeruginosa strains were transformed with pUCP19exoUspcU which carries the exoU gene and its associated chaperone. Three of these strains became cytotoxic to cultured epithelial cells in vitro. These strains all secreted ExoU, as confirmed by detection of the ExoU protein with specific antisera. The 50% lethal dose of exoU-expressing strains was significantly lower for all three P. aeruginosa isolates carrying plasmid pUCP19exoUspcU than for the isogenic exoU-negative strains. mRNA specific for ExoU was readily detected in the lungs of animals infected with the transformed P. aeruginosa strains. Introduction of the exoU gene confers a cytotoxic phenotype on some, but not all, otherwise-noncytotoxic P. aeruginosa strains and, for recombinant strains that could express ExoU, there was markedly increased virulence in a murine model of acute pneumonia and systemic spread.
PMCID: PMC101680  PMID: 10858214
22.  Population Structure of Pseudomonas aeruginosa from Five Mediterranean Countries: Evidence for Frequent Recombination and Epidemic Occurrence of CC235 
PLoS ONE  2011;6(10):e25617.
Several studies in recent years have provided evidence that Pseudomonas aeruginosa has a non-clonal population structure punctuated by highly successful epidemic clones or clonal complexes. The role of recombination in the diversification of P. aeruginosa clones has been suggested, but not yet demonstrated using multi-locus sequence typing (MLST). Isolates of P. aeruginosa from five Mediterranean countries (n = 141) were subjected to pulsed-field gel electrophoresis (PFGE), serotyping and PCR targeting the virulence genes exoS and exoU. The occurrence of multi-resistance (≥3 antipseudomonal drugs) was analyzed with disk diffusion according to EUCAST. MLST was performed on a subset of strains (n = 110) most of them had a distinct PFGE variant. MLST data were analyzed with Bionumerics 6.0, using minimal spanning tree (MST) as well as eBURST. Measurement of clonality was assessed by the standardized index of association (IAS). Evidence of recombination was estimated by ClonalFrame as well as SplitsTree4.0. The MST analysis connected 70 sequence types, among which ST235 was by far the most common. ST235 was very frequently associated with the O11 serotype, and frequently displayed multi-resistance and the virulence genotype exoS−/exoU+. ClonalFrame linked several groups previously identified by eBURST and MST, and provided insight to the evolutionary events occurring in the population; the recombination/mutation ratio was found to be 8.4. A Neighbor-Net analysis based on the concatenated sequences revealed a complex network, providing evidence of frequent recombination. The index of association when all the strains were considered indicated a freely recombining population. P. aeruginosa isolates from the Mediterranean countries display an epidemic population structure, particularly dominated by ST235-O11, which has earlier also been coupled to the spread of ß-lactamases in many countries.
PMCID: PMC3184967  PMID: 21984923
23.  Rapid detection of Pseudomonas aeruginosa from positive blood cultures by quantitative PCR 
Pseudomonas aeruginosa is responsible for numerous bloodstream infections associated with severe adverse outcomes in case of inappropriate initial antimicrobial therapy. The present study was aimed to develop a novel quantitative PCR (qPCR) assay, using ecfX as the specific target gene, for the rapid and accurate identification of P. aeruginosa from positive blood cultures (BCs).
Over the period August 2008 to June 2009, 100 BC bottles positive for gram-negative bacilli were tested in order to evaluate performances of the qPCR technique with conventional methods as gold standard (i.e. culture and phenotypic identification).
Thirty-three strains of P. aeruginosa, 53 strains of Enterobactericaeae, nine strains of Stenotrophomonas maltophilia and two other gram-negative species were isolated while 3 BCs were polymicrobial including one mixture containing P. aeruginosa. All P. aeruginosa clinical isolates were detected by qPCR except a single strain in mixed culture. Performances of the qPCR technique were: specificity, 100%; positive predictive value, 100%; negative predictive value, 98.5%; and sensitivity, 97%.
This reliable technique may offer a rapid (<1.5 h) tool that would help clinicians to initiate an appropriate treatment earlier. Further investigations are needed to assess the clinical benefit of this novel strategy as compared to phenotypic methods.
PMCID: PMC2928764  PMID: 20684778
24.  Detection of Pseudomonas aeruginosa Producing Metallo-β-Lactamases in a Large Centralized Laboratory 
Journal of Clinical Microbiology  2005;43(7):3129-3135.
Metallo-β-lactamases (MBLs) have been increasingly recognized from clinical isolates worldwide, but the laboratory detection of these strains is not well defined. We report a study that developed an EDTA disk screen test and a molecular diagnostic assay for the detection of MBL-producing Pseudomonas aeruginosa. Using NCCLS disk methodology, inhibition zone diameters were determined in tests with imipenem (IPM) and meropenem (MEM) disks alone and in combination with 930 μg of EDTA. This test was compared with the MBL Etest. The duplex PCR assay showed 100% sensitivity and specificity for detecting MBL-producing control strains. Of the 241 clinical strains of IPM-nonsusceptible P. aeruginosa from the Calgary Health Region isolated from 2002 to 2004, 110/241 (46%) were MBL positive using phenotypic methods while 107/241 (45%) were PCR positive for MBL genes: 103/241 (43%) for blaVIM and 4/241 (2%) for blaIMP. The EDTA disk screen test using MEM showed 100% sensitivity and 97% specificity for detecting MBLs in control and clinical strains. The EDTA disk screen test is simple to perform and to interpret and can easily be introduced into the workflow of a clinical laboratory. We recommend that all IPM-nonsusceptible P. aeruginosa isolates be routinely screened for MBL production using the EDTA disk screen test and that PCR confirmation be performed at a regional laboratory.
PMCID: PMC1169086  PMID: 16000424
25.  Dictyostelium transcriptional responses to Pseudomonas aeruginosa: common and specific effects from PAO1 and PA14 strains 
BMC Microbiology  2008;8:109.
Pseudomonas aeruginosa is one of the most relevant human opportunistic bacterial pathogens. Two strains (PAO1 and PA14) have been mainly used as models for studying virulence of P. aeruginosa. The strain PA14 is more virulent than PAO1 in a wide range of hosts including insects, nematodes and plants. Whereas some of the differences might be attributable to concerted action of determinants encoded in pathogenicity islands present in the genome of PA14, a global analysis of the differential host responses to these P. aeruginosa strains has not been addressed. Little is known about the host response to infection with P. aeruginosa and whether or not the global host transcription is being affected as a defense mechanism or altered in the benefit of the pathogen. Since the social amoeba Dictyostelium discoideum is a suitable host to study virulence of P. aeruginosa and other pathogens, we used available genomic tools in this model system to study the transcriptional host response to P. aeruginosa infection.
We have compared the virulence of the P. aeruginosa PAO1 and PA14 using D. discoideum and studied the transcriptional response of the amoeba upon infection. Our results showed that PA14 is more virulent in Dictyostelium than PA01using different plating assays. For studying the differential response of the host to infection by these model strains, D. discoideum cells were exposed to either P. aeruginosa PAO1 or P. aeruginosa PA14 (mixed with an excess of the non-pathogenic bacterium Klebsiella aerogenes as food supply) and after 4 hours, cellular RNA extracted. A three-way comparison was made using whole-genome D. discoideum microarrays between RNA samples from cells treated with the two different strains and control cells exposed only to K. aerogenes. The transcriptomic analyses have shown the existence of common and specific responses to infection. The expression of 364 genes changed in a similar way upon infection with one or another strain, whereas 169 genes were differentially regulated depending on whether the infecting strain was either P. aeruginosa PAO1 or PA14. Effects on metabolism, signalling, stress response and cell cycle can be inferred from the genes affected.
Our results show that pathogenic Pseudomonas strains invoke both a common transcriptional response from Dictyostelium and a strain specific one, indicating that the infective process of bacterial pathogens can be strain-specific and is more complex than previously thought.
PMCID: PMC2474670  PMID: 18590548

Results 1-25 (1386993)