PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1046955)

Clipboard (0)
None

Related Articles

1.  The Exopolysaccharide Matrix Modulates the Interaction between 3D Architecture and Virulence of a Mixed-Species Oral Biofilm 
PLoS Pathogens  2012;8(4):e1002623.
Virulent biofilms are responsible for a range of infections, including oral diseases. All biofilms harbor a microbial-derived extracellular-matrix. The exopolysaccharides (EPS) formed on tooth-pellicle and bacterial surfaces provide binding sites for microorganisms; eventually the accumulated EPS enmeshes microbial cells. The metabolic activity of the bacteria within this matrix leads to acidification of the milieu. We explored the mechanisms through which the Streptococcus mutans-produced EPS-matrix modulates the three-dimensional (3D) architecture and the population shifts during morphogenesis of biofilms on a saliva-coated-apatitic surface using a mixed-bacterial species system. Concomitantly, we examined whether the matrix influences the development of pH-microenvironments within intact-biofilms using a novel 3D in situ pH-mapping technique. Data reveal that the production of the EPS-matrix helps to create spatial heterogeneities by forming an intricate network of exopolysaccharide-enmeshed bacterial-islets (microcolonies) through localized cell-to-matrix interactions. This complex 3D architecture creates compartmentalized acidic and EPS-rich microenvironments throughout the biofilm, which triggers the dominance of pathogenic S. mutans within a mixed-species system. The establishment of a 3D-matrix and EPS-enmeshed microcolonies were largely mediated by the S. mutans gtfB/gtfC genes, expression of which was enhanced in the presence of Actinomyces naeslundii and Streptococcus oralis. Acidic pockets were found only in the interiors of bacterial-islets that are protected by EPS, which impedes rapid neutralization by buffer (pH 7.0). As a result, regions of low pH (<5.5) were detected at specific locations along the surface of attachment. Resistance to chlorhexidine was enhanced in cells within EPS-microcolony complexes compared to those outside such structures within the biofilm. Our results illustrate the critical interaction between matrix architecture and pH heterogeneity in the 3D environment. The formation of structured acidic-microenvironments in close proximity to the apatite-surface is an essential factor associated with virulence in cariogenic-biofilms. These observations may have relevance beyond the mouth, as matrix is inherent to all biofilms.
Author Summary
Virulent biofilms formed on surfaces are associated with many human infections. The disease dental caries, expressed as cavities, is a prime example of the consequences arising from interactions between bacteria and sugars on tooth-surfaces. When Streptococcus mutans metabolize sugars, they produce a glue-like polymer termed glucan, helping them to adhere firmly to teeth. Glucan is also formed on bacterial surfaces in the mouth, and will accumulate and enmesh additional microorganisms creating the gelatinous formation known as dental plaque-biofilm. We found unique islets of bacteria within these biofilms, particularly close to the tooth-surface, providing safe havens in which bacteria thrive and produce acids that erode teeth. One intriguing mystery is why acids accumulate on the tooth-surface when there is an abundance of neutral-pH saliva surrounding the teeth. We found that bacterial-islets are particularly protected by glucan, which retards neutralization. We noticed that, within biofilms, the interiors of these islets are acidic, where only acid-tolerant bacteria can prosper, ensuring continued localized acid production. Our study demonstrates that construction of biofilms mediated by glucans forms complex 3D architectures, creating a variety of acidic-microenvironments that are essential for virulence expression. These results may aid in the development of enhanced methods to modulate biofilm formation.
doi:10.1371/journal.ppat.1002623
PMCID: PMC3320608  PMID: 22496649
2.  Efficacy of E. officinalis on the Cariogenic Properties of Streptococcus mutans: A Novel and Alternative Approach to Suppress Quorum-Sensing Mechanism 
PLoS ONE  2012;7(7):e40319.
The present study was focused on evaluating the potential of Emblica officinalis against cariogenic properties of Streptococcus mutans, a causative microorganism for caries. The effect of crude extract and ethanolic fraction from Emblica officinalis fruit was analysed against S. mutans. The sub-MIC concentrations of crude and ethanolic fraction of E. officinalis were evaluated for its cariogenic properties such as acid production, biofilm formation, cell-surface hydrophobicity, glucan production, sucrose-dependent and independent adherence. Its effect on biofilm architecture was also investigated with the help of confocal and scanning electron microscopy (SEM). Moreover, expression of genes involved in biofilm formation was also studied by quantitative RT- PCR. This study showed 50% reduction in adherence at concentrations 156 µg/ and 312.5 µg/ml of crude extract and ethanolic fraction respectively. However, the biofilm was reduced to 50% in the presence of crude extract (39.04 µg/ml) and ethanolic fraction (78.08 µg/ml). Furthermore, effective reduction was observed in the glucan synthesis and cell surface hydrophobicity. The qRT-PCR revealed significant suppression of the genes involved in its virulence. Confocal and scanning electron microscopy clearly depicted the obliteration of biofilm structure with reference to control. Hence, this study reveals the potential of E. officinalis fruit extracts as an alternative and complementary medicine for dental caries by inhibiting the virulence factors of Streptococcus mutans.
doi:10.1371/journal.pone.0040319
PMCID: PMC3390397  PMID: 22792279
3.  α-Mangostin Disrupts the Development of Streptococcus mutans Biofilms and Facilitates Its Mechanical Removal 
PLoS ONE  2014;9(10):e111312.
α-Mangostin (αMG) has been reported to be an effective antimicrobial agent against planktonic cells of Streptococcus mutans, a biofilm-forming and acid-producing cariogenic organism. However, its anti-biofilm activity remains to be determined. We examined whether αMG, a xanthone purified from Garcinia mangostana L grown in Vietnam, disrupts the development, acidogenicity, and/or the mechanical stability of S. mutans biofilms. Treatment regimens simulating those experienced clinically (twice-daily, 60 s exposure each) were used to assess the bioactivity of αMG using a saliva-coated hydroxyapatite (sHA) biofilm model. Topical applications of early-formed biofilms with αMG (150 µM) effectively reduced further biomass accumulation and disrupted the 3D architecture of S. mutans biofilms. Biofilms treated with αMG had lower amounts of extracellular insoluble and intracellular iodophilic polysaccharides (30–45%) than those treated with vehicle control (P<0.05), while the number of viable bacterial counts was unaffected. Furthermore, αMG treatments significantly compromised the mechanical stability of the biofilm, facilitating its removal from the sHA surface when subjected to a constant shear stress of 0.809 N/m2 (>3-fold biofilm detachment from sHA vs. vehicle-treated biofilms; P<0.05). Moreover, acid production by S. mutans biofilms was disrupted following αMG treatments (vs. vehicle-control, P<0.05). The activity of enzymes associated with glucan synthesis, acid production, and acid tolerance (glucosyltransferases B and C, phosphotransferase-PTS system, and F1F0-ATPase) were significantly inhibited by αMG. The expression of manL, encoding a key component of the mannose PTS, and gtfB were slightly repressed by αMG treatment (P<0.05), while the expression of atpD (encoding F-ATPase) and gtfC genes was unaffected. Hence, this study reveals that brief exposures to αMG can disrupt the development and structural integrity of S. mutans biofilms, at least in part via inhibition of key enzymatic systems associated with exopolysaccharide synthesis and acidogenicity. αMG could be an effective anti-virulence additive for the control and/or removal of cariogenic biofilms.
doi:10.1371/journal.pone.0111312
PMCID: PMC4211880  PMID: 25350668
4.  A New Small Molecule Specifically Inhibits the Cariogenic Bacterium Streptococcus mutans in Multispecies Biofilms▿ 
Streptococcus mutans is a major cariogenic bacterium. It has adapted to the biofilm lifestyle, which is essential for pathogenesis of dental caries. We aimed to identify small molecules that can inhibit cariogenic S. mutans and to discover lead structures that could give rise to therapeutics for dental caries. In this study, we screened a focused small-molecule library of 506 compounds. Eight small molecules which inhibited S. mutans at a concentration of 4 μM or less but did not affect cell growth or biofilm formation of commensal bacteria, represented by Streptococcus sanguinis and Streptococcus gordonii, in monospecies biofilms were identified. The active compounds share similar structural properties, which are characterized by a 2-aminoimidazole (2-AI) or 2-aminobenzimidazole (2-ABI) subunit. In multispecies biofilm models, the most active compound also inhibited cell survival and biofilm formation of S. mutans but did not affect commensal streptococci. This inhibitor downregulated the expression of six biofilm-associated genes, ftf, pac, relA, comDE, gbpB, and gtfB, in planktonic S. mutans cells, while it downregulated the expression of only ftf, pac, and relA in the biofilm cells of S. mutans. The most potent compound also inhibited production of two key adhesins of S. mutans, antigen I/II and glucosyltransferase (GTF). However, the compound did not alter the expression of the corresponding genes in both S. sanguinis and S. gordonii, indicating that it possesses a selective inhibitory activity against S. mutans.
doi:10.1128/AAC.01496-10
PMCID: PMC3101470  PMID: 21402858
5.  Influences of trans-trans farnesol, a membrane-targeting sesquiterpenoid, on Streptococcus mutans physiology and survival within mixed-species oral biofilms 
Trans-trans farnesol (tt-farnesol) is a bioactive sesquiterpene alcohol commonly found in propolis (a beehive product) and citrus fruits, which disrupts the ability of Streptococcus mutans (S. mutans) to form virulent biofilms. In this study, we investigated whether tt-farnesol affects cell-membrane function, acid production and/or acid tolerance by planktonic cells and biofilms of S. mutans UA159. Furthermore, the influence of the agent on S. mutans gene expression and ability to form biofilms in the presence of other oral bacteria (Streptococcus oralis (S. oralis) 35037 and Actinomyces naeslundii (A. naeslundii) 12104) was also examined. In general, tt-farnesol (1 mmol-L−1) significantly increased the membrane proton permeability and reduced glycolytic activity of S. mutans in the planktonic state and in biofilms (P<0.05). Moreover, topical applications of 1 mmol-L−1 tt-farnesol twice daily (1 min exposure/treatment) reduced biomass accumulation and prevented ecological shifts towards S. mutans dominance within mixed-species biofilms after introduction of 1% sucrose. S. oralis (a non-cariogenic organism) became the major species after treatments with tt-farnesol, whereas vehicle-treated biofilms contained mostly S. mutans (>90% of total bacterial population). However, the agent did not affect significantly the expression of S. mutans genes involved in acidogenicity, acid tolerance or polysaccharide synthesis in the treated biofilms. Our data indicate that tt-farnesol may affect the competitiveness of S. mutans in a mixed-species environment by primarily disrupting the membrane function and physiology of this bacterium. This naturally occurring terpenoid could be a potentially useful adjunctive agent to the current anti-biofilm/anti-caries chemotherapeutic strategies.
doi:10.4248/IJOS11038
PMCID: PMC3469883  PMID: 21485314
trans-trans farnesol; acid production; acid tolerance; biofilms; proton permeability; Streptococcus mutans
6.  Influences of naturally occurring agents in combination with fluoride on gene expression and structural organization of Streptococcus mutans in biofilms 
BMC Microbiology  2009;9:228.
Background
The association of specific bioactive flavonoids and terpenoids with fluoride can modulate the development of cariogenic biofilms by simultaneously affecting the synthesis of exopolysaccharides (EPS) and acid production by Streptococcus mutans, which enhanced the cariostatic effectiveness of fluoride in vivo. In the present study, we further investigated whether the biological actions of combinations of myricetin (flavonoid), tt-farnesol (terpenoid) and fluoride can influence the expression of specific genes of S. mutans within biofilms and their structural organization using real-time PCR and confocal fluorescence microscopy.
Results
Twice-daily treatment (one-minute exposure) during biofilm formation affected the gene expression by S. mutans both at early (49-h) and later (97-h) stages of biofilm development. Biofilms treated with combination of agents displayed lower mRNA levels for gtfB and gtfD (associated with exopolysaccharides synthesis) and aguD (associated with S. mutans acid tolerance) than those treated with vehicle-control (p < 0.05). Furthermore, treatment with combination of agents markedly affected the structure-architecture of S. mutans biofilms by reducing the biovolume (biomass) and proportions of both EPS and bacterial cells across the biofilm depth, especially in the middle and outer layers (vs. vehicle-control, p < 0.05). The biofilms treated with combination of agents were also less acidogenic, and had reduced amounts of extracellular insoluble glucans and intracellular polysaccharides than vehicle-treated biofilms (p < 0.05).
Conclusion
The data show that the combination of naturally-occurring agents with fluoride effectively disrupted the expression of specific virulence genes, structural organization and accumulation of S. mutans biofilms, which may explain the enhanced cariostatic effect of our chemotherapeutic approach.
doi:10.1186/1471-2180-9-228
PMCID: PMC2774857  PMID: 19863808
7.  Streptococcus mutans Protein Synthesis during Mixed-Species Biofilm Development by High-Throughput Quantitative Proteomics 
PLoS ONE  2012;7(9):e45795.
Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the presence of other organisms. Our data provide insights about how S. mutans optimizes its metabolism and adapts/survives within the mixed-species community in response to a dynamically changing environment. This reflects the intricate physiological processes linked to expression of virulence by this bacterium within complex biofilms.
doi:10.1371/journal.pone.0045795
PMCID: PMC3458072  PMID: 23049864
8.  Fibrinogen-Induced Streptococcus mutans Biofilm Formation and Adherence to Endothelial Cells 
BioMed Research International  2013;2013:431465.
Streptococcus mutans, the predominant bacterial species associated with dental caries, can enter the bloodstream and cause infective endocarditis. The aim of this study was to investigate S. mutans biofilm formation and adherence to endothelial cells induced by human fibrinogen. The putative mechanism by which biofilm formation is induced as well as the impact of fibrinogen on S. mutans resistance to penicillin was also evaluated. Bovine plasma dose dependently induced biofilm formation by S. mutans. Of the various plasma proteins tested, only fibrinogen promoted the formation of biofilm in a dose-dependent manner. Scanning electron microscopy observations revealed the presence of complex aggregates of bacterial cells firmly attached to the polystyrene support. S. mutans in biofilms induced by the presence of fibrinogen was markedly resistant to the bactericidal effect of penicillin. Fibrinogen also significantly increased the adherence of S. mutans to endothelial cells. Neither S. mutans cells nor culture supernatants converted fibrinogen into fibrin. However, fibrinogen is specifically bound to the cell surface of S. mutans and may act as a bridging molecule to mediate biofilm formation. In conclusion, our study identified a new mechanism promoting S. mutans biofilm formation and adherence to endothelial cells which may contribute to infective endocarditis.
doi:10.1155/2013/431465
PMCID: PMC3816030  PMID: 24222906
9.  Inhibitory effect of zingiber officinale towards Streptococcus mutans virulence and caries development: in vitro and in vivo studies 
BMC Microbiology  2015;15(1):1.
Background
Streptococcus mutans is known as a key causative agent of dental caries. It metabolizes dietary carbohydrate to produce acids which reduce the environmental pH leading to tooth demineralization. The ability of this bacterium to tolerate acids coupled with acid production, allows its effective colonization in the oral cavity leading to the establishment of highly cariogenic plaque. For this reason, S. mutans is the only bacterium found in significantly higher numbers than other bacteria in the dental plaque. The aim of this study was to evaluate the effect of crude extract and methanolic fraction of Z. officinale against S. mutans virulence properties.
Results
We investigated in vitro and in vivo activity of crude extract and methanolic fraction at sub- MIC levels against cariogenic properties of S. mutans. We found that these extracts strongly inhibited a variety of virulence properties which are critical for its pathogenesis. The biofilm formation in S. mutans was found to be reduced during critical growth phases. Furthermore, the glucan synthesis and adherence was also found to be inhibited. Nevertheless, the insoluble glucan synthesis and sucrose dependent adherence were apparently more reduced as compared to soluble glucan synthesis and sucrose- independent adherence. Biofilm architecture inspected with the help of confocal and scanning electron microscopy, showed dispersion of cells in the treated group as compared to the control. The Quantitative Real Time PCR (qRT-PCR) data had shown the down regulation of the virulence genes, which is believed to be one of the major reasons responsible for the observed reduction in the virulence properties. The incredible reduction of caries development was found in treated group of rats as compared to the untreated group which further validate our in vitro data.
Conclusion
The whole study concludes a prospective role of crude extract and methanolic fraction of Z. officinale in targeting complete array of cariogenic properties of S. mutans, thus reducing its pathogenesis. Hence, it may be strongly proposed as a putative anti- cariogenic agent.
Electronic supplementary material
The online version of this article (doi:10.1186/s12866-014-0320-5) contains supplementary material, which is available to authorized users.
doi:10.1186/s12866-014-0320-5
PMCID: PMC4316655  PMID: 25591663
Streptococcus mutans; qRT- PCR; Biofilm; Dental caries; Gas chromatography-mass spectrometry; Glucosyltransferases; Dental plaque
10.  Subinhibitory Concentrations of Triclosan Promote Streptococcus mutans Biofilm Formation and Adherence to Oral Epithelial Cells 
PLoS ONE  2014;9(2):e89059.
Triclosan is a general membrane-active agent with a broad-spectrum antimicrobial activity that is commonly used in oral care products. In this study, we investigated the effect of sub-minimum inhibitory concentrations (MICs) of triclosan on the capacity of the cariogenic bacterium Streptococcus mutans to form biofilm and adhere to oral epithelial cells. As quantified by crystal violet staining, biofilm formation by two reference strains of S. mutans was dose-dependently promoted, in the range of 2.2- to 6.2-fold, by 1/2 and 1/4 MIC of triclosan. Observations by scanning electron microscopy revealed the presence of a dense biofilm attached to the polystyrene surface. Growth of S. mutans in the presence of triclosan at sub-MICs also increased its capacity to adhere to a monolayer of gingival epithelial cells. The expression of several genes involved in adherence and biofilm formation in S. mutans was investigated by quantitative RT-PCR. It was found that sub-MICs of triclosan significantly increased the expression of comD, gtfC, and luxS, and to a lesser extent of gtfB and atlA genes. These findings stress the importance of maintaining effective bactericidal concentrations of therapeutic triclosan since sub-MICs may promote colonization of the oral cavity by S. mutans.
doi:10.1371/journal.pone.0089059
PMCID: PMC3923858  PMID: 24551218
11.  Assembly and Development of the Pseudomonas aeruginosa Biofilm Matrix 
PLoS Pathogens  2009;5(3):e1000354.
Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide) at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell–cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA) are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications.
Author Summary
Pseudomonas aeruginosa causes life-threatening, persistent infections in cystic fibrosis patients, despite highly aggressive antimicrobial therapy. Persistence is due, in part, to the ability of these bacteria to form surface-associated communities (biofilms) enmeshed in an extracellular matrix. This matrix is a poorly defined mixture of protein, polysaccharide, and DNA. An understanding of the organization and composition of the biofilm matrix will assist in the development of therapeutics aimed at disrupting biofilms. Using reagents that specifically recognize the P. aeruginosa Psl exopolysaccharide, we visualized matrix formation in real time during a biofilm development cycle. This revealed a highly organized and coordinated assembly of both polysaccharide and DNA components of the matrix. At late stages of biofilm morphogenesis, a Psl-free matrix cavity, occupied with numerous motile cells, developed. Mutants with reduced cell lysis were unable to form the Psl matrix cavity, whereas those with elevated cell death and lysis formed a larger matrix cavity, leading to accelerated dispersion. We propose that programmed cell death and autolysis are critical for the proper timing of biofilm development and dispersion. The data indicate that Psl is a key scaffolding component of the biofilm matrix, a property that likely plays a critical role in P. aeruginosa persistence.
doi:10.1371/journal.ppat.1000354
PMCID: PMC2654510  PMID: 19325879
12.  Psr is involved in regulation of glucan production, and double deficiency of BrpA and Psr is lethal in Streptococcus mutans 
Microbiology  2013;159(Pt 3):493-506.
Streptococcus mutans, the primary causative agent of dental caries, contains two paralogues of the LytR-CpsA-Psr family proteins encoded by brpA and psr, respectively. Previous studies have shown that BrpA plays an important role in cell envelope biogenesis/homeostasis and affects stress responses and biofilm formation by Strep. mutans, traits critical to cariogenicity of this bacterium. In this study, a Psr-deficient mutant, TW251, was constructed. Characterization of TW251 showed that deficiency of Psr did not have any major impact on growth rate. However, when subjected to acid killing at pH 2.8, the survival rate of TW251 was decreased dramatically compared with the parent strain UA159. In addition, TW251 also displayed major defects in biofilm formation, especially during growth with sucrose. When compared to UA159, the biofilms of TW251 were mainly planar and devoid of extracellular glucans. Real-time-PCR and Western blot analyses revealed that deficiency of Psr significantly decreased the expression of glucosyltransferase C, a protein known to play a major role in biofilm formation by Strep. mutans. Transmission electron microscopy analysis showed that deficiency of BrpA caused alterations in cell envelope and cell division, and the most significant defects were observed in TW314, a Psr-deficient and BrpA-down mutant. No such effects were observed with Psr mutant TW251 under similar conditions. These results suggest that while there are similarities in functions between BrpA and Psr, distinctive differences also exist between these two paralogues. Like Bacillus subtilis but different from Staphylococcus aureus, a functional BrpA or Psr is required for viability in Strep. mutans.
doi:10.1099/mic.0.063032-0
PMCID: PMC3709821  PMID: 23288544
13.  Setup of an In Vitro Test System for Basic Studies on Biofilm Behavior of Mixed-Species Cultures with Dental and Periodontal Pathogens 
PLoS ONE  2010;5(10):e13135.
Background
Caries and periodontitis are important human diseases associated with formation of multi-species biofilms. The involved bacteria are intensively studied to understand the molecular basis of the interactions in such biofilms. This study established a basic in vitro single and mixed-species culture model for oral bacteria combining three complimentary methods. The setup allows a rapid screening for effects in the mutual species interaction. Furthermore, it is easy to handle, inexpensive, and reproducible.
Methods
Streptococcus mitis, S. salivarius and S. sanguinis, typical inhabitants of the healthy oral cavity, S. mutans as main carriogenic species, and Porphyromonas gingivalis, Fusobacterium nucleatum, Parvimonas micra, S. intermedius and Aggregatibacter actinomycetemcomitans as periodontitis-associated bacteria, were investigated for their biofilm forming ability. Different liquid growth media were evaluated. Safranin-staining allowed monitoring of biofilm formation under the chosen conditions. Viable counts and microscopy permitted investigation of biofilm behavior in mixed-species and transwell setups.
Findings
S. mitis, F. nucleatum, P. gingivalis and P. micra failed to form biofilm structures. S. mutans, S. sanguinis, S. intermedius and S. salivarius established abundant biofilm masses in CDM/sucrose. A. actinomycetemcomitans formed patchy monolayers. For in depth analysis S. mitis, S. mutans and A. actinomycetemcomitans were chosen, because i) they are representatives of the physiological-, cariogenic and periodontitis-associated bacterial flora, respectively and ii) their difference in their biofilm forming ability. Microscopic analysis confirmed the results of safranin staining. Investigation of two species combinations of S. mitis with either S. mutans or A. actinomycetemcomitans revealed bacterial interactions influencing biofilm mass, biofilm structure and cell viability.
Conclusions
This setup shows safranin staining, microscopic analysis and viable counts together are crucial for basic examination and evaluation of biofilms. Our experiment generated meaningful results, exemplified by the noted S. mitis influence, and allows a fast decision about the most important bacterial interactions which should be investigated in depth.
doi:10.1371/journal.pone.0013135
PMCID: PMC2948514  PMID: 20957048
14.  The virulence of Streptococcus mutans and the ability to form biofilms 
In some diseases, a very important role is played by the ability of bacteria to form multi-dimensional complex structure known as biofilm. The most common disease of the oral cavity, known as dental caries, is a top leader. Streptococcus mutans, one of the many etiological factors of dental caries, is a microorganism which is able to acquire new properties allowing for the expression of pathogenicity determinants determining its virulence in specific environmental conditions. Through the mechanism of adhesion to a solid surface, S. mutans is capable of colonizing the oral cavity and also of forming bacterial biofilm. Additional properties enabling S. mutans to colonize the oral cavity include the ability to survive in an acidic environment and specific interaction with other microorganisms colonizing this ecosystem. This review is an attempt to establish which characteristics associated with biofilm formation—virulence determinants of S. mutans—are responsible for the development of dental caries. In order to extend the knowledge of the nature of Streptococcus infections, an attempt to face the following problems will be made: Biofilm formation as a complex process of protein–bacterium interaction. To what extent do microorganisms of the cariogenic flora exemplified by S. mutans differ in virulence determinants “expression” from microorganisms of physiological flora? How does the environment of the oral cavity and its microorganisms affect the biofilm formation of dominant species? How do selected inhibitors affect the biofilm formation of cariogenic microorganisms?
doi:10.1007/s10096-013-1993-7
PMCID: PMC3953549  PMID: 24154653
15.  Novel Two-Component Regulatory System Involved in Biofilm Formation and Acid Resistance in Streptococcus mutans 
Journal of Bacteriology  2002;184(22):6333-6342.
The abilities of Streptococcus mutans to form biofilms and to survive acidic pH are regarded as two important virulence determinants in the pathogenesis of dental caries. Environmental stimuli are thought to regulate the expression of several genes associated with virulence factors through the activity of two-component signal transduction systems. Yet, little is known of the involvement of these systems in the physiology and pathogenicity of S. mutans. In this study, we describe a two-component regulatory system and its involvement in biofilm formation and acid resistance in S. mutans. By searching the S. mutans genome database with tblastn with the HK03 and RR03 protein sequences from S. pneumoniae as queries, we identified two genes, designated hk11 and rr11, that encode a putative histidine kinase and its cognate response regulator. To gain insight into their function, a PCR-mediated allelic-exchange mutagenesis strategy was used to create the hk11 (Emr) and rr11 (Emr) deletion mutants from S. mutans wild-type NG8 named SMHK11 and SMRR11, respectively. The mutants were examined for their growth rates, genetic competence, ability to form biofilms, and resistance to low-pH challenge. The results showed that deletion of hk11 or rr11 resulted in defects in biofilm formation and resistance to acidic pH. Both mutants formed biofilms with reduced biomass (50 to 70% of the density of the parent strain). Scanning electron microscopy revealed that the biofilms formed by the mutants had sponge-like architecture with what appeared to be large gaps that resembled water channel-like structures. The mutant biofilms were composed of longer chains of cells than those of the parent biofilm. Deletion of hk11 also resulted in greatly diminished resistance to low pH, although we did not observe the same effect when rr11 was deleted. Genetic competence was not affected in either mutant. The results suggested that the gene product of hk11 in S. mutans might act as a pH sensor that could cross talk with one or more response regulators. We conclude that the two-component signal transduction system encoded by hk11 and rr11 represents a new regulatory system involved in biofilm formation and acid resistance in S. mutans.
doi:10.1128/JB.184.22.6333-6342.2002
PMCID: PMC151940  PMID: 12399503
16.  A Novel Signaling Network Essential for Regulating Pseudomonas aeruginosa Biofilm Development 
PLoS Pathogens  2009;5(11):e1000668.
The important human pathogen Pseudomonas aeruginosa has been linked to numerous biofilm-related chronic infections. Here, we demonstrate that biofilm formation following the transition to the surface attached lifestyle is regulated by three previously undescribed two-component systems: BfiSR (PA4196-4197) harboring an RpoD-like domain, an OmpR-like BfmSR (PA4101-4102), and MifSR (PA5511-5512) belonging to the family of NtrC-like transcriptional regulators. These two-component systems become sequentially phosphorylated during biofilm formation. Inactivation of bfiS, bfmR, and mifR arrested biofilm formation at the transition to the irreversible attachment, maturation-1 and -2 stages, respectively, as indicated by analyses of biofilm architecture, and protein and phosphoprotein patterns. Moreover, discontinuation of bfiS, bfmR, and mifR expression in established biofilms resulted in the collapse of biofilms to an earlier developmental stage, indicating a requirement for these regulatory systems for the development and maintenance of normal biofilm architecture. Interestingly, inactivation did not affect planktonic growth, motility, polysaccharide production, or initial attachment. Further, we demonstrate the interdependency of this two-component systems network with GacS (PA0928), which was found to play a dual role in biofilm formation. This work describes a novel signal transduction network regulating committed biofilm developmental steps following attachment, in which phosphorelays and two sigma factor-dependent response regulators appear to be key components of the regulatory machinery that coordinates gene expression during P. aeruginosa biofilm development in response to environmental cues.
Author Summary
Biofilms are complex communities of microorganisms encased in a matrix and attached to surfaces. It is well recognized that biofilm cells differ from their free swimming counterparts with respect to gene expression, protein production, and resistance to antibiotics and the human immune system. However, little is known about the underlying regulatory events that lead to the formation of biofilms, the primary cause of many chronic and persistent human infections. By mapping the phosphoproteome over the course of P. aeruginosa biofilm development, we identified three novel two-component regulatory systems that were required for the development and maturation of P. aeruginosa biofilms. Activation (phosphorylation) of these three regulatory systems occurred in a sequential manner and inactivation arrested biofilm formation at three distinct developmental stages. Discontinuation of bfiS, bfmR, or mifR expression after biofilms had already matured resulted in disaggregation/collapse of biofilms. Furthermore, this regulatory cascade appears to be linked via BfiS-dependent GacS-phosphorylation to the previously identified LadS/RetS/GacAS/RsmA network that reciprocally regulates virulence and surface attachment. Our data thus indicate the existence of a previously unidentified regulatory program of biofilm development once P. aeruginosa cells have committed to a surface associated lifestyle, and may provide new targets for controlling the programmed differentiation process of biofilm formation.
doi:10.1371/journal.ppat.1000668
PMCID: PMC2774163  PMID: 19936057
17.  The Tea Catechin Epigallocatechin Gallate Suppresses Cariogenic Virulence Factors of Streptococcus mutans▿  
Streptococcus mutans, the primary etiologic agent of dental caries, possesses a series of virulence factors associated with its cariogenicity. Alternatives to traditional antimicrobial treatment, agents selectively inhibiting the virulence factors without necessarily suppressing the resident oral species, are promising. The anticariogenic properties of tea have been suggested in experimental animals and humans. Tea polyphenols, especially epigallocatechin gallate (EGCg), have been shown to inhibit the growth and glucosyltransferases activity of S. mutans. However, their effects on biofilm and cariogenic virulence factors of oral streptococci other than glucosyltransferases have not been well documented. In this study, we investigated the biological effect of EGCg on the virulence factors of S. mutans associated with its acidogenicity and acidurity. The antimicrobial effects of EGCg on S. mutans biofilm grown in chemically defined medium were also examined. EGCg inhibited growth of S. mutans planktonic cells at an MIC of 31.25 μg/ml and a minimal bactericidal concentration (MBC) of 62.5 μg/ml. EGCg also inhibited S. mutans biofilm formation at 15.6 μg/ml (minimum concentration that showed at least 90% inhibition of biofilm formation) and reduced viability of the preformed biofilm at 625 μg/ml (sessile MIC80). EGCg at sub-MIC levels inhibited acidogenicity and acidurity of S. mutans cells. Analysis of the data obtained from real-time PCR showed that EGCg significantly suppressed the ldh, eno, atpD, and aguD genes of S. mutans UA159. Inhibition of the enzymatic activity of F1Fo-ATPase and lactate dehydrogenase was also noted (50% inhibitory concentration between 15.6 and 31.25 μg/ml). These findings suggest that EGCg is a natural anticariogenic agent in that it exhibits antimicrobial activity against S. mutans and suppresses the specific virulence factors associated with its cariogenicity.
doi:10.1128/AAC.01016-10
PMCID: PMC3067078  PMID: 21149622
18.  Novel Antibiofilm Chemotherapy Targets Exopolysaccharide Synthesis and Stress Tolerance in Streptococcus mutans To Modulate Virulence Expression In Vivo 
Antimicrobial Agents and Chemotherapy  2012;56(12):6201-6211.
Fluoride is the mainstay of dental caries prevention, and yet current applications offer incomplete protection and may not effectively address the infectious character of the disease. Therefore, we evaluated the effectiveness of a novel combination therapy (CT; 2 mM myricetin, 4 mM tt-farnesol, 250 ppm of fluoride) that supplements fluoride with naturally occurring, food-derived, antibiofilm compounds. Treatment regimens simulating those experienced clinically (twice daily for ≤60 s) were used both in vitro over a saliva-coated hydroxyapatite biofilm model and in vivo with a rodent model of dental caries. The effectiveness of CT was evaluated based on the incidence and severity of carious lesions (compared to fluoride or vehicle control). We found that CT was superior to fluoride (positive control, P < 0.05); topical applications dramatically reduced caries development in Sprague-Dawley rats, all without altering the Streptococcus mutans or total populations within the plaque. We subsequently identified the underlying mechanisms through which applications of CT modulate biofilm virulence. CT targets expression of key Streptococcus mutans genes during biofilm formation in vitro and in vivo. These are associated with exopolysaccharide matrix synthesis (gtfB) and the ability to tolerate exogenous stress (e.g., sloA), which are essential for cariogenic biofilm assembly. We also identified a unique gene (SMU.940) that was severely repressed and may represent a potentially novel target; its inactivation disrupted exopolysaccharide accumulation and matrix development. Altogether, CT may be clinically more effective than current anticaries modalities, targeting expression of bacterial virulence associated with pathogenesis of the disease. These observations may have relevance for development of enhanced therapies against other biofilm-dependent infections.
doi:10.1128/AAC.01381-12
PMCID: PMC3497192  PMID: 22985885
19.  Dynamics of Streptococcus mutans Transcriptome in Response to Starch and Sucrose during Biofilm Development 
PLoS ONE  2010;5(10):e13478.
The combination of sucrose and starch in the presence of surface-adsorbed salivary α-amylase and bacterial glucosyltransferases increase the formation of a structurally and metabolically distinctive biofilm by Streptococcus mutans. This host-pathogen-diet interaction may modulate the formation of pathogenic biofilms related to dental caries disease. We conducted a comprehensive study to further investigate the influence of the dietary carbohydrates on S. mutans-transcriptome at distinct stages of biofilm development using whole genomic profiling with a new computational tool (MDV) for data mining. S. mutans UA159 biofilms were formed on amylase-active saliva coated hydroxyapatite discs in the presence of various concentrations of sucrose alone (ranging from 0.25 to 5% w/v) or in combination with starch (0.5 to 1% w/v). Overall, the presence of sucrose and starch (suc+st) influenced the dynamics of S. mutans transcriptome (vs. sucrose alone), which may be associated with gradual digestion of starch by surface-adsorbed amylase. At 21 h of biofilm formation, most of the differentially expressed genes were related to sugar metabolism, such as upregulation of genes involved in maltose/maltotriose uptake and glycogen synthesis. In addition, the groEL/groES chaperones were induced in the suc+st-biofilm, indicating that presence of starch hydrolysates may cause environmental stress. In contrast, at 30 h of biofilm development, multiple genes associated with sugar uptake/transport (e.g. maltose), two-component systems, fermentation/glycolysis and iron transport were differentially expressed in suc+st-biofilms (vs. sucrose-biofilms). Interestingly, lytT (bacteria autolysis) was upregulated, which was correlated with presence of extracellular DNA in the matrix of suc+st-biofilms. Specific genes related to carbohydrate uptake and glycogen metabolism were detected in suc+st-biofilms in more than one time point, indicating an association between presence of starch hydrolysates and intracellular polysaccharide storage. Our data show complex remodeling of S. mutans-transcriptome in response to changing environmental conditions in situ, which could modulate the dynamics of biofilm development and pathogenicity.
doi:10.1371/journal.pone.0013478
PMCID: PMC2957427  PMID: 20976057
20.  Biofilm formation and virulence expression by Streptococcus mutans are altered when grown in dual-species model 
BMC Microbiology  2010;10:111.
Background
Microbial cell-cell interactions in the oral flora are believed to play an integral role in the development of dental plaque and ultimately, its pathogenicity. The effects of other species of oral bacteria on biofilm formation and virulence gene expression by Streptococcus mutans, the primary etiologic agent of dental caries, were evaluated using a dual-species biofilm model and RealTime-PCR analysis.
Results
As compared to mono-species biofilms, biofilm formation by S. mutans was significantly decreased when grown with Streptococcus sanguinis, but was modestly increased when co-cultivated with Lactobacillus casei. Co-cultivation with S. mutans significantly enhanced biofilm formation by Streptococcus oralis and L. casei, as compared to the respective mono-species biofilms. RealTime-PCR analysis showed that expression of spaP (for multi-functional adhesin SpaP, a surface-associated protein that S. mutans uses to bind to the tooth surface in the absence of sucrose), gtfB (for glucosyltransferase B that synthesizes α1,6-linked glucan polymers from sucrose and starch carbohydrates) and gbpB (for surface-associated protein GbpB, which binds to the glucan polymers) was decreased significantly when S. mutans were co-cultivated with L. casei. Similar results were also found with expression of spaP and gbpB, but not gtfB, when S. mutans was grown in biofilms with S. oralis. Compared to mono-species biofilms, the expression of luxS in S. mutans co-cultivated with S. oralis or L. casei was also significantly decreased. No significant differences were observed in expression of the selected genes when S. mutans was co-cultivated with S. sanguinis.
Conclusions
These results suggest that the presence of specific oral bacteria differentially affects biofilm formation and virulence gene expression by S. mutans.
doi:10.1186/1471-2180-10-111
PMCID: PMC2867949  PMID: 20398271
21.  Inhibition of Major Virulence Pathways of Streptococcus mutans by Quercitrin and Deoxynojirimycin: A Synergistic Approach of Infection Control 
PLoS ONE  2014;9(3):e91736.
Objectives
To evaluate the synergistic effect of Quercitrin and Deoxynojirimycin (DNJ) together with their individual inhibitory effect against virulence pathways of Streptococcus mutans.
Methodology
MICs of both the compounds were determined by the microdilution method, followed by their in vitrosynergy using checkerboard and time kill assay. The nature of interaction was classified as synergistic on the basis of fractional inhibitory concentration index (FICI) value of ≤0.5. Furthermore, the activity of Quercitrin and DNJ was evaluated individually and in combination against various cariogenic properties of S. mutans UA159 such as acidogenesis, aciduracity, glucan production, hydrophobicity, biofilm and adherence. Moreover, expression of virulent genes in S. mutans was analysed by quantitative RT- PCR (qRT-PCR) and inhibition of F1F0-ATPase, lactate dehydrogenase and enolase was also evaluated. Finally, scanning electron microscopy (SEM) was used to investigate structural obliteration of biofilm.
Results
The in vitro synergism between Quercitrin and DNJ was observed, with a FICI of 0.313. Their MIC values were found to be 64 μg/ml and 16 μg/ml respectively. The synergistic combination consistently showed best activity against all the virulence factors as compared to Quercitrin and DNJ individually. A reduction in glucan synthesis and biofilm formation was observed at different phases of growth. The qRT-PCR revealed significant downregulation of various virulent genes. Electron micrographs depicted the obliteration of biofilm as compared to control and the activity of cariogenic enzymes was also inhibited.
Conclusions
The whole study reflects a prospective role of Quercitrin and DNJ in combination as a potent anticariogenic agent against S. mutans.
doi:10.1371/journal.pone.0091736
PMCID: PMC3951425  PMID: 24622055
22.  Functional Genomics Approach to Identifying Genes Required for Biofilm Development by Streptococcus mutans 
Streptococcus mutans, the primary etiological agent of human dental caries, is an obligate biofilm-forming bacterium. The goals of this study were to identify the gene(s) required for biofilm formation by this organism and to elucidate the role(s) that some of the known global regulators of gene expression play in controlling biofilm formation. In S. mutans UA159, the brpA gene (for biofilm regulatory protein) was found to encode a novel protein of 406 amino acid residues. A strain carrying an insertionally inactivated copy of brpA formed longer chains than did the parental strain, aggregated in liquid culture, and was unable to form biofilms as shown by an in vitro biofilm assay. A putative homologue of the enzyme responsible for synthesis of autoinducer II (AI-2) of the bacterial quorum-sensing system was also identified in S. mutans UA159, but insertional inactivation of the gene (luxSSm) did not alter colony or cell morphology or diminish the capacity of S. mutans to form biofilms. We also examined the role of the homologue of the Bacillus subtilis catabolite control protein CcpA in S. mutans in biofilm formation, and the results showed that loss of CcpA resulted in about a 60% decrease in the ability to form biofilms on an abiotic surface. From these data, we conclude that CcpA and BrpA may regulate genes that are required for stable biofilm formation by S. mutans.
doi:10.1128/AEM.68.3.1196-1203.2002
PMCID: PMC123778  PMID: 11872468
23.  Effects of Oxygen on Biofilm Formation and the AtlA Autolysin of Streptococcus mutans▿  
Journal of Bacteriology  2007;189(17):6293-6302.
The Streptococcus mutans atlA gene encodes an autolysin required for biofilm maturation and biogenesis of a normal cell surface. We found that the capacity to form biofilms by S. mutans, one of the principal causative agents of dental caries, was dramatically impaired by growth of the organism in an aerated environment and that cells exposed to oxygen displayed marked changes in surface protein profiles. Inactivation of the atlA gene alleviated repression of biofilm formation in the presence of oxygen. Also, the formation of long chains, a characteristic of AtlA-deficient strains, was less evident in cells grown with aeration. The SMu0629 gene is immediately upstream of atlA and encodes a product that contains a C-X-X-C motif, a characteristic of thiol-disulfide oxidoreductases. Inactivation of SMu0629 significantly reduced the levels of AtlA protein and led to resistance to autolysis. The SMu0629 mutant also displayed an enhanced capacity to form biofilms in the presence of oxygen compared to that of the parental strain. The expression of SMu0629 was shown to be under the control of the VicRK two-component system, which influences oxidative stress tolerance in S. mutans. Disruption of vicK also led to inhibition of processing of AtlA, and the mutant was hyperresistant to autolysis. When grown under aerobic conditions, the vicK mutant also showed significantly increased biofilm formation compared to strain UA159. This study illustrates the central role of AtlA and VicK in orchestrating growth on surfaces and envelope biogenesis in response to redox conditions.
doi:10.1128/JB.00546-07
PMCID: PMC1951938  PMID: 17616606
24.  Temporal and Stochastic Control of Staphylococcus aureus Biofilm Development 
mBio  2014;5(5):e01341-14.
ABSTRACT
Biofilm communities contain distinct microniches that result in metabolic heterogeneity and variability in gene expression. Previously, these niches were visualized within Staphylococcus aureus biofilms by observing differential expression of the cid and lrg operons during tower formation. In the present study, we examined early biofilm development and identified two new stages (designated “multiplication” and “exodus”) that were associated with changes in matrix composition and a distinct reorganization of the cells as the biofilm matured. The initial attachment and multiplication stages were shown to be protease sensitive but independent of most cell surface-associated proteins. Interestingly, after 6 h of growth, an exodus of the biofilm population that followed the transition of the biofilm to DNase I sensitivity was demonstrated. Furthermore, disruption of the gene encoding staphylococcal nuclease (nuc) abrogated this exodus event, causing hyperproliferation of the biofilm and disrupting normal tower development. Immediately prior to the exodus event, S. aureus cells carrying a nuc::gfp promoter fusion demonstrated Sae-dependent expression but only in an apparently random subpopulation of cells. In contrast to the existing model for tower development in S. aureus, the results of this study suggest the presence of a Sae-controlled nuclease-mediated exodus of biofilm cells that is required for the development of tower structures. Furthermore, these studies indicate that the differential expression of nuc during biofilm development is subject to stochastic regulatory mechanisms that are independent of the formation of metabolic microniches.
IMPORTANCE
In this study, we provide a novel view of four early stages of biofilm formation by the human pathogen Staphylococcus aureus. We identified an initial nucleoprotein matrix during biofilm development that is DNase I insensitive until a critical point when a nuclease-mediated exodus of the population is induced prior to tower formation. Unlike the previously described dispersal of cells that occurs after tower development, we found that the mechanism controlling this exodus event is dependent on the Sae regulatory system and independent of Agr. In addition, we revealed that the gene encoding the secreted staphylococcal nuclease was expressed in only a subpopulation of cells, consistent with a model in which biofilms exhibit multicellular characteristics, including the presence of specialized cells and a division of labor that imparts functional consequences to the remainder of the population.
doi:10.1128/mBio.01341-14
PMCID: PMC4205790  PMID: 25316695
25.  Symbiotic Relationship between Streptococcus mutans and Candida albicans Synergizes Virulence of Plaque Biofilms In Vivo 
Infection and Immunity  2014;82(5):1968-1981.
Streptococcus mutans is often cited as the main bacterial pathogen in dental caries, particularly in early-childhood caries (ECC). S. mutans may not act alone; Candida albicans cells are frequently detected along with heavy infection by S. mutans in plaque biofilms from ECC-affected children. It remains to be elucidated whether this association is involved in the enhancement of biofilm virulence. We showed that the ability of these organisms together to form biofilms is enhanced in vitro and in vivo. The presence of C. albicans augments the production of exopolysaccharides (EPS), such that cospecies biofilms accrue more biomass and harbor more viable S. mutans cells than single-species biofilms. The resulting 3-dimensional biofilm architecture displays sizeable S. mutans microcolonies surrounded by fungal cells, which are enmeshed in a dense EPS-rich matrix. Using a rodent model, we explored the implications of this cross-kingdom interaction for the pathogenesis of dental caries. Coinfected animals displayed higher levels of infection and microbial carriage within plaque biofilms than animals infected with either species alone. Furthermore, coinfection synergistically enhanced biofilm virulence, leading to aggressive onset of the disease with rampant carious lesions. Our in vitro data also revealed that glucosyltransferase-derived EPS is a key mediator of cospecies biofilm development and that coexistence with C. albicans induces the expression of virulence genes in S. mutans (e.g., gtfB, fabM). We also found that Candida-derived β1,3-glucans contribute to the EPS matrix structure, while fungal mannan and β-glucan provide sites for GtfB binding and activity. Altogether, we demonstrate a novel mutualistic bacterium-fungus relationship that occurs at a clinically relevant site to amplify the severity of a ubiquitous infectious disease.
doi:10.1128/IAI.00087-14
PMCID: PMC3993459  PMID: 24566629

Results 1-25 (1046955)