PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (712673)

Clipboard (0)
None

Related Articles

1.  Detection of Streptococcus pneumoniae Strain Cocolonization in the Nasopharynx ▿  
Journal of Clinical Microbiology  2009;47(6):1750-1756.
Colonization with more than one distinct strain of the same species, also termed cocolonization, is a prerequisite for horizontal gene transfer between pneumococcal strains that may lead to change of the capsular serotype. Capsule switch has become an important issue since the introduction of conjugated pneumococcal polysaccharide vaccines. There is, however, a lack of techniques to detect multiple colonization by S. pneumoniae strains directly in nasopharyngeal samples. Two hundred eighty-seven nasopharyngeal swabs collected during the prevaccine era within a nationwide surveillance program were analyzed by a novel technique for the detection of cocolonization, based on PCR amplification of a noncoding region adjacent to the pneumolysin gene (plyNCR) and restriction fragment length polymorphism (RFLP) analysis. The numbers of strains and their relative abundance in cocolonized samples were determined by terminal RFLP. The pneumococcal carriage rate found by PCR was 51.6%, compared to 40.0% found by culture. Cocolonization was present in 9.5% (10/105) of samples, most (9/10) of which contained two strains in a ratio of between 1:1 and 17:1. Five of the 10 cocolonized samples showed combinations of vaccine types only (n = 2) or combinations of nonvaccine types only (n = 3). Carriers of multiple pneumococcal strains had received recent antibiotic treatment more often than those colonized with a single strain (33% versus 9%, P = 0.025). This new technique allows for the rapid and economical study of pneumococcal cocolonization in nasopharyngeal swabs. It will be valuable for the surveillance of S. pneumoniae epidemiology under vaccine selection pressure.
doi:10.1128/JCM.01877-08
PMCID: PMC2691125  PMID: 19386843
2.  Effect of Pneumococcal Conjugate Vaccination on Serotype-Specific Carriage and Invasive Disease in England: A Cross-Sectional Study 
PLoS Medicine  2011;8(4):e1001017.
A cross sectional study by Stefan Flasche and coworkers document the serotype replacement of Streptococcus pneumoniae that has occurred in England since the introduction of PCV7 vaccination.
Background
We investigated the effect of the 7-valent pneumococcal conjugate vaccine (PCV7) programme in England on serotype-specific carriage and invasive disease to help understand its role in serotype replacement and predict the impact of higher valency vaccines.
Methods and Findings
Nasopharyngeal swabs were taken from children <5 y old and family members (n = 400) 2 y after introduction of PCV7 into routine immunization programs. Proportions carrying Streptococcus pneumoniae and serotype distribution among carried isolates were compared with a similar population prior to PCV7 introduction. Serotype-specific case∶carrier ratios (CCRs) were estimated using national data on invasive disease. In vaccinated children and their contacts vaccine-type (VT) carriage decreased, but was offset by an increase in non-VT carriage, with no significant overall change in carriage prevalence, odds ratio 1.06 (95% confidence interval 0.76–1.49). The lower CCRs of the replacing serotypes resulted in a net reduction in invasive disease in children. The additional serotypes covered by higher valency vaccines had low carriage but high disease prevalence. Serotype 11C emerged as predominant in carriage but caused no invasive disease whereas 8, 12F, and 22F emerged in disease but had very low carriage prevalence.
Conclusion
Because the additional serotypes included in PCV10/13 have high CCRs but low carriage prevalence, vaccinating against them is likely to significantly reduce invasive disease with less risk of serotype replacement. However, a few serotypes with high CCRs could mitigate the benefits of higher valency vaccines. Assessment of the effect of PCV on carriage as well as invasive disease should be part of enhanced surveillance activities for PCVs.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Pneumococcal diseases—major causes of illness and death in children and adults worldwide—are caused by Streptococcus pneumoniae, a bacterium that often colonizes the nasopharynx (the area of the throat behind the nose). Carriage of S. pneumoniae bacteria does not necessarily cause disease. However, these bacteria can cause local, noninvasive diseases such as ear infections and sinusitis and, more rarely, they can spread into the lungs, the bloodstream, or the covering of the brain, where they cause pneumonia, septicemia, and meningitis, respectively. Although these invasive pneumococcal diseases (IPDs) can be successfully treated if administered early, they can be fatal. Consequently, it is better to protect people against IPDs through vaccination than risk infection. Vaccination primes the immune system to recognize and attack disease-causing organisms (pathogens) rapidly and effectively by exposing it to weakened or dead pathogens or to pathogen molecules (antigens) that it recognizes as foreign.
Why Was This Study Done?
There are more than 90 S. pneumoniae variants or “serotypes” characterized by different polysaccharide (complex sugar) coats, which trigger the immune response against S. pneumoniae and determine each serotype's propensity to cause IPD. The pneumococcal conjugate vaccine PCV7 contains polysaccharides (linked to a protein carrier) from the seven serotypes mainly responsible for IPD in the US in 2000 when routine childhood PCV7 vaccination was introduced in that country. PCV7 prevents both IPD caused by the serotypes it contains and carriage of these serotypes, which means that, after vaccination, previously uncommon, nonvaccine serotypes can colonize the nasopharynx. If these serotypes have a high invasiveness potential, then “serotype replacement” could reduce the benefits of vaccination. In this cross-sectional study (a study that investigates the relationship between a disease and an intervention in a population at one time point), the researchers investigate the effect of the UK PCV7 vaccination program (which began in 2006) on serotype-specific carriage and IPD in England to understand the role of PCV7 in serotype replacement and to predict the likely impact of vaccines containing additional serotypes (higher valency vaccines).
What Did the Researchers Do and Find?
The researchers examined nasopharyngeal swabs taken from PCV7-vaccinated children and their families for S. pneumoniae, determined the serotype of any bacteria they found, and compared the proportion of people carrying S. pneumoniae (carrier prevalence) and the distribution of serotypes in this study population and in a similar population that was studied in 2000/2001, before the PCV vaccination program began. Overall, there was no statistically significant change in carrier prevalence, but carriage of vaccine serotypes decreased in vaccinated children and their contacts whereas carriage of nonvaccine serotypes increased. The serotype-specific case-to-carrier ratios (CCRs; a measure of serotype invasiveness that was estimated using national IPD data) of the replacing serotypes were generally lower than those of the original serotypes, which resulted in a net reduction in IPD in children. Moreover, before PCV7 vaccination began, PCV7-included serotypes were responsible for similar proportions of pneumococcal carriage and disease; afterwards, the additional serotypes present in the higher valency vaccines PVC10 and PVC13 were responsible for a higher proportion of disease than carriage. Finally, three serotypes not present in the higher valency vaccines with outstandingly high CCRs (high invasiveness potential) are identified.
What Do These Findings Mean?
These findings document the serotype replacement of S. pneumoniae that has occurred in England since the introduction of PCV7 vaccination and highlight the importance of assessing the effects of pneumococcal vaccines on carriage as well as on IPDs. Because the additional serotypes included in PCV10 and PCV13 have high CCRs but low carriage prevalence and because most of the potential replacement serotypes have low CCRs, these findings suggest that the introduction of higher valency vaccines should further reduce the occurrence of invasive disease with limited risk of additional serotype replacement. However, the emergence of a few serotypes that have high CCRs but are not included in PCV10 and PCV13 might mitigate the benefits of higher valency vaccines. In other words, although the recent introduction of PCV13 into UK vaccination schedules is likely to have an incremental benefit on the reduction of IPD compared to PCV7, this benefit might be offset by increases in the carriage of some high CCR serotypes. These serotypes should be considered for inclusion in future vaccines.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001017.
The US Centers for Disease Control and Prevention provides information for patients and health professionals on all aspects of pneumococcal disease and pneumococcal vaccination
The US National Foundation for Infectious Diseases has a fact sheet on pneumococcal diseases
The UK Health Protection Agency provides information on pneumococcal disease and on pneumococcal vaccines
The World Health Organization also provides information on pneumococcal vaccines
MedlinePlus has links to further information about pneumococcal infections (in English and Spanish)
doi:10.1371/journal.pmed.1001017
PMCID: PMC3071372  PMID: 21483718
3.  Serotype-Specific Changes in Invasive Pneumococcal Disease after Pneumococcal Conjugate Vaccine Introduction: A Pooled Analysis of Multiple Surveillance Sites 
PLoS Medicine  2013;10(9):e1001517.
In a pooled analysis of data collected from invasive pneumococcal disease surveillance databases, Daniel Feikin and colleagues examine serotype replacement after the introduction of 7-valent pneumococcal conjugate vaccine (PCV7) into national immunization programs.
Please see later in the article for the Editors' Summary
Background
Vaccine-serotype (VT) invasive pneumococcal disease (IPD) rates declined substantially following introduction of 7-valent pneumococcal conjugate vaccine (PCV7) into national immunization programs. Increases in non-vaccine-serotype (NVT) IPD rates occurred in some sites, presumably representing serotype replacement. We used a standardized approach to describe serotype-specific IPD changes among multiple sites after PCV7 introduction.
Methods and Findings
Of 32 IPD surveillance datasets received, we identified 21 eligible databases with rate data ≥2 years before and ≥1 year after PCV7 introduction. Expected annual rates of IPD absent PCV7 introduction were estimated by extrapolation using either Poisson regression modeling of pre-PCV7 rates or averaging pre-PCV7 rates. To estimate whether changes in rates had occurred following PCV7 introduction, we calculated site specific rate ratios by dividing observed by expected IPD rates for each post-PCV7 year. We calculated summary rate ratios (RRs) using random effects meta-analysis. For children <5 years old, overall IPD decreased by year 1 post-PCV7 (RR 0·55, 95% CI 0·46–0·65) and remained relatively stable through year 7 (RR 0·49, 95% CI 0·35–0·68). Point estimates for VT IPD decreased annually through year 7 (RR 0·03, 95% CI 0·01–0·10), while NVT IPD increased (year 7 RR 2·81, 95% CI 2·12–3·71). Among adults, decreases in overall IPD also occurred but were smaller and more variable by site than among children. At year 7 after introduction, significant reductions were observed (18–49 year-olds [RR 0·52, 95% CI 0·29–0·91], 50–64 year-olds [RR 0·84, 95% CI 0·77–0·93], and ≥65 year-olds [RR 0·74, 95% CI 0·58–0·95]).
Conclusions
Consistent and significant decreases in both overall and VT IPD in children occurred quickly and were sustained for 7 years after PCV7 introduction, supporting use of PCVs. Increases in NVT IPD occurred in most sites, with variable magnitude. These findings may not represent the experience in low-income countries or the effects after introduction of higher valency PCVs. High-quality, population-based surveillance of serotype-specific IPD rates is needed to monitor vaccine impact as more countries, including low-income countries, introduce PCVs and as higher valency PCVs are used.
Please see later in the article for the Editors' Summary
Editors’ Summary
Background
Pneumococcal disease–a major cause of illness and death in children and adults worldwide–is caused by Streptococcus pneumoniae, a bacterium that often colonizes the nose and throat harmlessly. Unfortunately, S. pneumoniae occasionally spreads into the lungs, bloodstream, or covering of the brain, where it causes pneumonia, septicemia, and meningitis, respectively. These invasive pneumococcal diseases (IPDs) can usually be successfully treated with antibiotics but can be fatal. Consequently, it is better to avoid infection through vaccination. Vaccination primes the immune system to recognize and attack disease-causing organisms (pathogens) rapidly and effectively by exposing it to weakened or dead pathogens or to pathogen molecules that it recognizes as foreign (antigens). Because there are more than 90 S. pneumoniae variants or “serotypes,” each characterized by a different antigenic polysaccharide (complex sugar) coat, vaccines that protect against S. pneumoniae have to include multiple serotypes. Thus, the pneumococcal conjugate vaccine PCV7, which was introduced into the US infant immunization regimen in 2000, contains polysaccharides from the seven S. pneumoniae serotypes mainly responsible for IPD in the US at that time.
Why Was This Study Done?
Vaccination with PCV7 was subsequently introduced in several other high- and middle-income countries, and IPD caused by the serotypes included in the vaccine declined substantially in children and in adults (because of reduced bacterial transmission and herd protection) in the US and virtually all these countries. However, increases in IPD caused by non-vaccine serotypes occurred in some settings, presumably because of “serotype replacement.” PCV7 prevents both IPD caused by the serotypes it contains and carriage of these serotypes. Consequently, after vaccination, previously less common, non-vaccine serotypes can colonize the nose and throat, some of which can cause IPD. In July 2010, a World Health Organization expert consultation on serotype replacement called for a comprehensive analysis of the magnitude and variability of pneumococcal serotype replacement following PCV7 use to help guide the introduction of PCVs in low-income countries, where most pneumococcal deaths occur. In this pooled analysis of data from multiple surveillance sites, the researchers investigate serotype-specific changes in IPD after PCV7 introduction using a standardized approach.
What Did the Researchers Do and Find?
The researchers identified 21 databases that had data about the rate of IPD for at least 2 years before and 1 year after PCV7 introduction. They estimated whether changes in IPD rates had occurred after PCV7 introduction by calculating site-specific rate ratios–the observed IPD rate for each post-PCV7 year divided by the expected IPD rate in the absence of PCV7 extrapolated from the pre-PCV7 rate. Finally, they used a statistical approach (random effects meta-analysis) to estimate summary (pooled) rate ratios. For children under 5 years old, the overall number of observed cases of IPD in the first year after the introduction of PCV7 was about half the expected number; this reduction in IPD continued through year 7 after PCV7 introduction. Notably, the rate of IPD caused by the S. pneumonia serotypes in PCV7 decreased every year, but the rate of IPD caused by non-vaccine serotypes increased annually. By year 7, the number of cases of IPD caused by non-vaccine serotypes was 3-fold higher than expected, but was still smaller than the decrease in vaccine serotypes, thereby leading to the decrease in overall IPD. Finally, smaller decreases in overall IPD also occurred among adults but occurred later than in children 2 years or more after PCV7 introduction.
What Do These Findings Mean?
These findings show that consistent, rapid, and sustained decreases in overall IPD and in IPD caused by serotypes included in PCV7 occurred in children and thus support the use of PCVs. The small increases in IPD caused by non-vaccine serotypes that these findings reveal are likely to be the result of serotype replacement, but changes in antibiotic use and other factors may also be involved. These findings have several important limitations, however. For example, PCV7 is no longer made and extrapolation of these results to newer PCV10 and PCV13 formulations should be done cautiously. On the other hand, many of the serotypes causing serotype replacement after PCV7 are included in these higher valency vaccines. Moreover, because the data analyzed in this study mainly came from high-income countries, these findings may not be generalizable to low-income countries. Nevertheless, based on their analysis, the researchers make recommendations for the collection and analysis of IPD surveillance data that should allow valid interpretations of the effect of PCVs on IPD to be made, an important requisite for making sound policy decisions about vaccination against pneumococcal disease.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001517.
The US Centers for Disease Control and Prevention provides information for patients and health professionals on all aspects of pneumococcal disease and pneumococcal vaccination, including personal stories
Public Health England provides information on pneumococcal disease and on pneumococcal vaccines
The World Health Organization also provides information on pneumococcal vaccines
The not-for-profit Immunization Action Coalition has information on pneumococcal disease, including personal stories
MedlinePlus has links to further information about pneumococcal infections (in English and Spanish)
The International Vaccine Access Center at Johns Hopkins Bloomberg School of Public Health has more information on introduction of pneumococcal conjugate vaccines in low-income countries
doi:10.1371/journal.pmed.1001517
PMCID: PMC3782411  PMID: 24086113
4.  Effects of Community-Wide Vaccination with PCV-7 on Pneumococcal Nasopharyngeal Carriage in The Gambia: A Cluster-Randomized Trial 
PLoS Medicine  2011;8(10):e1001107.
In a cluster-randomized trial conducted in Gambian villages, Anna Roca and colleagues find that vaccination of children with pneumococcal conjugate vaccines reduced vaccine-type pneumococcal carriage even among nonvaccinated older children and adults.
Background
Introduction of pneumococcal conjugate vaccines (PCVs) of limited valency is justified in Africa by the high burden of pneumococcal disease. Long-term beneficial effects of PCVs may be countered by serotype replacement. We aimed to determine the impact of PCV-7 vaccination on pneumococcal carriage in rural Gambia.
Methods and Findings
A cluster-randomized (by village) trial of the impact of PCV-7 on pneumococcal nasopharyngeal carriage was conducted in 21 Gambian villages between December 2003 to June 2008 (5,441 inhabitants in 2006). Analysis was complemented with data obtained before vaccination. Because efficacy of PCV-9 in young Gambian children had been shown, it was considered unethical not to give PCV-7 to young children in all of the study villages. PCV-7 was given to children below 30 mo of age and to those born during the trial in all study villages. Villages were randomized (older children and adults) to receive one dose of PCV-7 (11 vaccinated villages) or meningococcal serogroup C conjugate vaccine (10 control villages). Cross-sectional surveys (CSSs) to collect nasopharyngeal swabs were conducted before vaccination (2,094 samples in the baseline CSS), and 4–6, 12, and 22 mo after vaccination (1,168, 1,210, and 446 samples in CSS-1, -2, and -3, respectively).
A time trend analysis showed a marked fall in the prevalence of vaccine-type pneumococcal carriage in all age groups following vaccination (from 23.7% and 26.8% in the baseline CSS to 7.1% and 8.5% in CSS-1, in vaccinated and control villages, respectively). The prevalence of vaccine-type pneumococcal carriage was lower in vaccinated than in control villages among older children (5 y to <15 y of age) and adults (≥15 y of age) at CSS-2 (odds ratio [OR] = 0.15 [95% CI 0.04–0.57] and OR = 0.32 [95% CI 0.10–0.98], respectively) and at CSS-3 (OR = 0.37 [95% CI 0.15–0.90] for older children, and 0% versus 7.6% for adults in vaccinated and control villages, respectively). Differences in the prevalence of non-vaccine-type pneumococcal carriage between vaccinated and control villages were small.
Conclusions
Vaccination of Gambian children reduced vaccine-type pneumococcal carriage across all age groups, indicating a “herd effect” in non-vaccinated older children and adults. No significant serotype replacement was detected.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
The prevention of pneumococcal disease, especially in children in developing countries, is a major international public health priority. Despite all the international attention on the UN's Millennium Development Goal 4—to reduce deaths in children under five years by two-thirds between 1990 and 2015—pneumonia, sepsis, and meningitis together compose more than 25% of the 10 million deaths occurring in children less than five years of age. Streptococcus pneumoniae is a leading bacterial cause of these diseases, and the World Health Organization estimates that approximately 800,000 children die each year of invasive pneumococcal disease.
Pneumococcal conjugate vaccines are currently available and protect against the serotypes that most commonly cause invasive pneumococcal disease in young children in North America and Europe. Such vaccines have been highly successful in reducing the incidence of invasive pneumococcal disease in both vaccinated children and in the non-vaccinated older population by reducing nasopharyngeal carriage (presence of pneumococcal bacteria in the back of the nose) in vaccinated infants, resulting in decreased transmission to contacts—the so-called herd effect. However, few countries with the highest burden of invasive pneumococcal disease, especially those in sub-Saharan Africa, have introduced the vaccine into their national immunization programs.
Why Was This Study Done?
The features of pneumococcal nasopharyngeal carriage and invasive pneumococcal disease in sub-Saharan Africa are different than in other regions. Therefore, careful evaluation of the immune effects of vaccination requires long-term, longitudinal studies. As an alternative to such long-term observational studies, and to anticipate the potential long-term effects of the introduction of pneumococcal conjugate vaccination in sub-Saharan Africa, the researchers conducted a cluster-randomized (by village) trial in The Gambia in which the whole populations of some villages were immunized with the vaccine PCV-7, and other villages received a control.
What Did the Researchers Do and Find?
With full consent from communities, the researchers randomized 21 similar villages in a rural region of western Gambia to receive pneumococcal conjugate vaccine or a control—meningococcal serogroup C conjugated vaccine, which is unlikely to affect pneumococcal carriage rates. For ethical reasons, the researchers only randomized residents aged over 30 months—all young infants received PCV-7, as a similar vaccine had already been shown to be effective in young infants. Before immunization began, the researchers took nasopharyngeal swabs from a random selection of village residents to determine the baseline pneumococcal carriage rates of both the serotypes of pneumococci covered by the vaccine (vaccine types, VTs) and the serotypes of pneumococci not covered in the vaccine (non-vaccine types, NVTs). The researchers then took nasopharyngeal swabs from a random sample of 1,200 of village residents in both groups of villages in cross-sectional surveys at 4–6, 12, and 22 months after vaccination. Villagers and laboratory staff were unaware of which vaccine was which (that is, they were blinded).
Before immunization, the overall prevalence of pneumococcal carriage in both groups was high, at 71.1%, and decreased with age. After vaccination, the overall prevalence of pneumococcal carriage in all three surveys was similar between vaccinated and control villages, showing a marked fall. However, the prevalence of carriage of VT pneumococci was significantly lower in vaccinated than in control villages in all surveys for all age groups. The prevalence of carriage of NVT pneumococci was similar in vaccinated and in control villages, except for a slightly higher prevalence of NVT pneumococci among vaccinated communities in adults at 4–6 months after vaccination. The researchers also found that the overall prevalence of pneumococcal carriage fell markedly after vaccination and reached minimum levels at 12 months in both study arms and in all age groups.
What Do These Findings Mean?
These findings show that vaccination of young Gambian children reduced carriage of VT pneumococci in vaccinated children but also in vaccinated and non-vaccinated older children and adults, revealing a potential herd effect from vaccination of young children. Furthermore, the immunological pressure induced by vaccinating whole communities did not lead to a community-wide increase in carriage of NVT pneumococci during a two-year period after vaccination. The researchers plan to conduct more long-term follow-up studies to determine nasopharyngeal carriage in these communities.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001107.
The World Health Organization has information about pneumococcus
The US Centers for Disease Control and Prevention provides information about pneumococcal conjugate vaccination
doi:10.1371/journal.pmed.1001107
PMCID: PMC3196470  PMID: 22028630
5.  High Levels of Genetic Recombination during Nasopharyngeal Carriage and Biofilm Formation in Streptococcus pneumoniae 
mBio  2012;3(5):e00200-12.
ABSTRACT
Transformation of genetic material between bacteria was first observed in the 1920s using Streptococcus pneumoniae as a model organism. Since then, the mechanism of competence induction and transformation has been well characterized, mainly using planktonic bacteria or septic infection models. However, epidemiological evidence suggests that genetic exchange occurs primarily during pneumococcal nasopharyngeal carriage, which we have recently shown is associated with biofilm growth, and is associated with cocolonization with multiple strains. However, no studies to date have comprehensively investigated genetic exchange during cocolonization in vitro and in vivo or the role of the nasopharyngeal environment in these processes. In this study, we show that genetic exchange during dual-strain carriage in vivo is extremely efficient (10−2) and approximately 10,000,000-fold higher than that measured during septic infection (10−9). This high transformation efficiency was associated with environmental conditions exclusive to the nasopharynx, including the lower temperature of the nasopharynx (32 to 34°C), limited nutrient availability, and interactions with epithelial cells, which were modeled in a novel biofilm model in vitro that showed similarly high transformation efficiencies. The nasopharyngeal environmental factors, combined, were critical for biofilm formation and induced constitutive upregulation of competence genes and downregulation of capsule that promoted transformation. In addition, we show that dual-strain carriage in vivo and biofilms formed in vitro can be transformed during colonization to increase their pneumococcal fitness and also, importantly, that bacteria with lower colonization ability can be protected by strains with higher colonization efficiency, a process unrelated to genetic exchange.
IMPORTANCE
Although genetic exchange between pneumococcal strains is known to occur primarily during colonization of the nasopharynx and colonization is associated with biofilm growth, this is the first study to comprehensively investigate transformation in this environment and to analyze the role of environmental and bacterial factors in this process. We show that transformation efficiency during cocolonization by multiple strains is very high (around 10−2). Furthermore, we provide novel evidence that specific aspects of the nasopharyngeal environment, including lower temperature, limited nutrient availability, and epithelial cell interaction, are critical for optimal biofilm formation and transformation efficiency and result in bacterial protein expression changes that promote transformation and fitness of colonization-deficient strains. The results suggest that cocolonization in biofilm communities may have important clinical consequences by facilitating the spread of antibiotic resistance and enabling serotype switching and vaccine escape as well as protecting and retaining poorly colonizing strains in the pneumococcal strain pool.
doi:10.1128/mBio.00200-12
PMCID: PMC3448161  PMID: 23015736
6.  Age-Specific Cluster of Cases of Serotype 1 Streptococcus pneumoniae Carriage in Remote Indigenous Communities in Australia ▿  
Seven-valent pneumococcal conjugate vaccination commenced in 2001 for Australian indigenous infants. Pneumococcal carriage surveillance detected substantial replacement with nonvaccine serotypes and a cluster of serotype 1 carriage. Our aim was to review Streptococcus pneumoniae serotype 1 carriage and invasive pneumococcal disease (IPD) data for this population and to analyze serotype 1 isolates. Carriage data were collected between 1992 and 2004 in the Darwin region, one of the five regions in the Northern Territory. Carriage data were also collected in 2003 and 2005 from four regions in the Northern Territory. Twenty-six cases of serotype 1 IPD were reported from 1994 to 2007 in the Northern Territory. Forty-four isolates were analyzed by BOX typing and 11 by multilocus sequence typing. In the Darwin region, 26 children were reported carrying serotype 1 (ST227) in 2002 but not during later surveillance. Scattered cases of serotype 1 carriage were noted in two other regions. Cocolonization of serotype 1 with other pneumococcal serotypes was common (34% serotype 1-positive swabs). In conclusion, pneumococcal carriage studies detected intermittent serotype 1 carriage and an ST227 cluster in children in indigenous communities in the Northern Territory of Australia. There was no apparent increase in serotype 1 IPD during this time. The rate of serotype 1 cocolonization with other pneumococcal serotypes suggests that carriage of this serotype may be underestimated.
doi:10.1128/CVI.00283-08
PMCID: PMC2643542  PMID: 19091995
7.  Impact of a Pneumococcal Conjugate Vaccination Program on Carriage among Children in Norway▿  
In July 2006, the seven-valent pneumococcal conjugate vaccine (PCV7) was introduced in Norway with a reduced (2 doses + 1 boost) dose schedule. Post-PCV7 shifts in pneumococcal reservoirs were assessed by two point prevalence studies of nasopharyngeal colonization among children in day care centers, before (2006) and after (2008) widespread use of PCV7. Nasopharyngeal swabs were obtained from 1,213 children, 611 in 2006 and 602 in 2008. A total of 1,102 pneumococcal isolates were recovered. Serotyping, multilocus sequence typing, and antimicrobial drug susceptibility testing were performed on all isolates. Although carriage of PCV7 serotypes decreased among both vaccinated and unvaccinated children, the overall prevalence of pneumococcal carriage remained high (80.4%) after vaccine introduction. The pneumococcal populations were diverse, and in the shift toward non-PCV7 serotypes, expansion of a limited number of established clonal complexes was observed. While non-antimicrobial-susceptible clones persisted among PCV7 serotypes, antimicrobial resistance did not increase among non-PCV7 serotypes. Direct and indirect protection of PCV7 against nasopharyngeal colonization was inferred from an overall decrease in carriage of PCV7 serotypes. No preference was found for nonsusceptible clones among the replacing non-PCV7 serotypes.
doi:10.1128/CVI.00435-09
PMCID: PMC2837970  PMID: 20107006
8.  Prevention of pneumococcal diseases in the post-seven valent vaccine era: A European perspective 
BMC Infectious Diseases  2012;12:207.
Background
The burden of invasive pneumococcal disease in young children decreased dramatically following introduction of the 7-valent pneumococcal conjugate vaccine (PCV7). The epidemiology of S. pneumoniae now reflects infections caused by serotypes not included in PCV7. Recently introduced higher valency pneumococcal vaccines target the residual burden of invasive and non-invasive infections, including those caused by serotypes not included in PCV7. This review is based on presentations made at the European Society of Pediatric Infectious Diseases in June 2011.
Discussion
Surveillance data show increased circulation of the non-PCV7 vaccine serotypes 1, 3, 6A, 6C, 7 F and 19A in countries with routine vaccination. Preliminary evidence suggests that broadened serotype coverage offered by higher valency vaccines may be having an effect on invasive disease caused by some of those serotypes, including 19A, 7 F and 6C. Aetiology of community acquired pneumonia remains a difficult clinical diagnosis. However, recent reports indicate that pneumococcal vaccination has reduced hospitalisations of children for vaccine serotype pneumonia. Variations in serotype circulation and occurrence of complicated and non-complicated pneumonia caused by non-PCV7 serotypes highlight the potential of higher valency vaccines to decrease the remaining burden. PCVs reduce nasopharyngeal carriage and acute otitis media (AOM) caused by vaccine serotypes. Recent investigations of the interaction between S. pneumoniae and non-typeable H. influenzae suggest that considerable reduction in severe, complicated AOM infections may be achieved by prevention of early pneumococcal carriage and AOM infections. Extension of the vaccine serotype spectrum beyond PCV7 may provide additional benefit in preventing the evolution of AOM. The direct and indirect costs associated with pneumococcal disease are high, thus herd protection and infections caused by non-vaccine serotypes both have strong effects on the cost effectiveness of pneumococcal vaccination. Recent evaluations highlight the public health significance of indirect benefits, prevention of pneumonia and AOM and coverage of non-PCV7 serotypes by higher valency vaccines.
Summary
Routine vaccination has greatly reduced the burden of pneumococcal diseases in children. The pneumococcal serotypes present in the 7-valent vaccine have greatly diminished among disease isolates. The prevalence of some non-vaccine serotypes (e.g. 1, 7 F and 19A) has increased. Pneumococcal vaccines with broadened serotype coverage are likely to continue decreasing the burden of invasive disease, and community acquired pneumonia in children. Further reductions in pneumococcal carriage and increased prevention of early AOM infections may prevent the evolution of severe, complicated AOM. Evaluation of the public health benefits of pneumococcal conjugate vaccines should include consideration of non-invasive pneumococcal infections, indirect effects of vaccination and broadened serotype coverage.
doi:10.1186/1471-2334-12-207
PMCID: PMC3462147  PMID: 22954038
Pneumococcal conjugate vaccine; Invasive pneumococcal disease; Community-acquired pneumonia; Acute otitis media; Vaccine serotype coverage; Epidemiology-incidence
9.  Pneumococcal Carriage in Young Children One Year after Introduction of the 13-Valent Conjugate Vaccine in Italy 
PLoS ONE  2013;8(10):e76309.
Background
In mid 2010, the 7-valent pneumococcal conjugate vaccine (PCV7) was replaced by the 13-valent conjugate vaccine (PCV13) for childhood immunization in Italy. Our objective in this study was to obtain a snapshot of pneumococcal carriage frequency, colonizing serotypes, and antibiotic resistance in healthy children in two Italian cities one year after PCV13 was introduced.
Methods
Nasopharyngeal swabs were obtained from 571 children aged 0-5 years from November 2011-April 2012. Pneumococcal isolates were serotyped and tested for antimicrobial susceptibility. Penicillin and/or erythromycin non-susceptible isolates were analyzed by Multi Locus Sequence Typing (MLST).
Results
Among the children examined, 81.2% had received at least one dose of PCV7 or PCV13 and 74.9% had completed the recommended vaccination schedule for their age. Among the latter, 57.3% of children had received PCV7, 27.1% PCV13, and 15.6% a combination of the two vaccines. The overall carriage rate was 32.9%, with children aged 6-35 months the most prone to pneumococcal colonization (6-23 months OR: 3.75; 95% CI: 2.19-6.43 and 24-35 months OR: 3.15, 95%CI: 2.36-4.22). A total of 184 pneumococcal isolates were serotyped and divided into PCV7 (5.4%), PCV13 (18.0%), and non-PCV13 (82.0%) serotypes. Serotypes 6C, 24F, and 19A were the most prevalent (10.3%, 8.6%, and 8.1%, respectively). The proportion of penicillin non-susceptible (MIC >0.6 mg/L) isolates was 30.9%, while 42.3% were erythromycin resistant. Non-PCV13 serotypes accounted for 75.4% and 70.8% of the penicillin and erythromycin non-susceptible isolates, respectively.
Conclusions
Our results revealed low rates of PCV7 and PCV13 serotypes in Italian children, potentially due to the effects of vaccination. As the use of PCV13 continues, its potential impact on vaccine serotypes such as 19A and cross-reactive serotypes such as 6C will be assessed, with this study providing a baseline for further analysis of surveillance isolates.
doi:10.1371/journal.pone.0076309
PMCID: PMC3790677  PMID: 24124543
10.  Pneumococcal Carriage and Antibiotic Resistance in Young Children before 13-Valent Conjugate Vaccine 
Background
We sought to measure trends in Streptococcus pneumoniae (SP) carriage and antibiotic resistance in young children in Massachusetts communities after widespread adoption of heptavalent pneumococcal conjugate vaccine (PCV7) and before the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13).
Methods
We conducted a cross-sectional study including collection of questionnaire data and nasopharyngeal specimens among children <7 years in primary care practices from 8 Massachusetts communities during the winter season of 2008–9 and compared with to similar studies performed in 2001, 2003–4, and 2006–7. Antimicrobial susceptibility testing and serotyping were performed on pneumococcal isolates, and risk factors for colonization in recent seasons (2006–07 and 2008–09) were evaluated.
Results
We collected nasopharyngeal specimens from 1,011 children, 290 (29%) of whom were colonized with pneumococcus. Non-PCV7 serotypes accounted for 98% of pneumococcal isolates, most commonly 19A (14%), 6C (11%), and 15B/C (11%). In 2008–09, newly-targeted PCV13 serotypes accounted for 20% of carriage isolates and 41% of penicillin non-susceptible S. pneumoniae (PNSP). In multivariate models, younger age, child care, young siblings, and upper respiratory illness remained predictors of pneumococcal carriage, despite near-complete serotype replacement. Only young age and child care were significantly associated with PNSP carriage.
Conclusions
Serotype replacement post-PCV7 is essentially complete and has been sustained in young children, with the relatively virulent 19A being the most common serotype. Predictors of carriage remained similar despite serotype replacement. PCV13 may reduce 19A and decrease antibiotic-resistant strains, but monitoring for new serotype replacement is warranted.
doi:10.1097/INF.0b013e31824214ac
PMCID: PMC3288953  PMID: 22173142
Streptococcus pneumoniae; pneumococcal conjugate vaccine; antibiotic resistance; serotype; colonization
11.  Systematic Evaluation of Serotypes Causing Invasive Pneumococcal Disease among Children Under Five: The Pneumococcal Global Serotype Project 
PLoS Medicine  2010;7(10):e1000348.
Hope Johnson and colleagues calculate the global and regional burden of serotype-specific pneumococcal disease in children under the age of five.
Background
Approximately 800,000 children die each year due to pneumococcal disease and >90% of these deaths occur in developing countries where few children have access to life-saving serotype-based vaccines. Understanding the serotype epidemiology of invasive pneumococcal disease (IPD) among children is necessary for vaccine development and introduction policies. The aim of this study was to systematically estimate the global and regional distributions of serotypes causing IPD in children <5 years of age.
Methods and Findings
We systematically reviewed studies with IPD serotype data among children <5 years of age from the published literature and unpublished data provided by researchers. Studies conducted prior to pneumococcal conjugate vaccine (PCV) introduction, from 1980 to 2007, with ≥12 months of surveillance, and reporting ≥20 serotyped isolates were included. Serotype-specific proportions were pooled in a random effects meta-analysis and combined with PD incidence and mortality estimates to infer global and regional serotype-specific PD burden. Of 1,292, studies reviewed, 169 were included comprising 60,090 isolates from 70 countries. Globally and regionally, six to 11 serotypes accounted for ≥70% of IPD. Seven serotypes (1, 5, 6A, 6B, 14, 19F, 23F) were the most common globally; and based on year 2000 incidence and mortality estimates these seven serotypes accounted for >300,000 deaths in Africa and 200,000 deaths in Asia. Serotypes included in both the 10- and 13-valent PCVs accounted for 10 million cases and 600,000 deaths worldwide.
Conclusions
A limited number of serotypes cause most IPD worldwide. The serotypes included in existing PCV formulations account for 49%–88% of deaths in Africa and Asia where PD morbidity and mortality are the highest, but few children have access to these life-saving vaccines.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Despite all the international attention on Millennium Development Goal (MDG) 4—to reduce deaths in children under 5 years by two thirds by 2015—pneumonia, sepsis, and meningitis together comprise >25% of the 10 million deaths occurring annually in children <5 years of age. Streptococcus pneumoniae is a leading bacterial cause of these diseases and the World Health Organization estimates that approximately 800,000 children die each year of invasive pneumococcal disease. Three pneumococcal conjugate vaccines are currently available and protect against the serotypes most commonly causing invasive pneumococcal disease in young children in North America. However, few countries with the highest burden of invasive pneumococcal disease have introduced the vaccines into their national immunization programs. Not only is it important to introduce a vaccine, but also to use a vaccine covering the appropriate serotypes prevalent in a susceptible region.
Why Was This Study Done?
Over the past few years, data on serotyping in many high burden countries has become available. The authors conducted this study (a systematic review and meta-analysis) to quantify the serotypes causing invasive pneumococcal disease in children <5 years of age in order to estimate the global and regional serotype distribution and serotype-specific disease burden. This information can then be used to estimate the potential public health impact of pneumococcal conjugate vaccine formulations and help to inform decision making for both pneumococcal vaccine development and the introduction of a vaccine into a specific region.
What Did the Researchers Do and Find?
Using published studies and unpublished data provided by researchers, the researchers systematically reviewed studies that included data on invasive pneumococcal disease serotype among children <5 years of age. The researchers then used statistical tools to pool the serotype-specific proportions and combined this information with pneumococcal disease incidence and mortality estimates to calculate the global and regional burden of serotype-specific pneumococcal disease.
The researchers reviewed 1,292 studies and included 169 suitable studies in their analysis, which included information on 60,090 isolates from 70 countries. The researchers produced regional estimates of the serotypes that caused invasive pneumococcal disease among under five-year-olds in different regions: six serotypes were identified as causing most invasive pneumococcal disease in North America; nine serotypes were identified in Africa; and 11 serotypes were identified in Asia. The researchers also found that seven serotypes (1, 5, 6A, 6B, 14, 19F, and 23F) were the most common globally and that these seven serotypes accounted for 58%–66% of invasive pneumococcal disease in every region. On the basis of incidence and mortality estimates of invasive pneumococcal disease for the year 2000 (before pneumococcal conjugate vaccines were introduced), the researchers found that these serotypes represented >300,000 deaths in Africa and 200,000 deaths in Asia.
What Do These Findings Mean?
This study shows that a limited number of serotypes cause most invasive pneumococcal disease worldwide. This finding contradicts the conventional supposition that the most common serotypes causing invasive pneumococcal disease vary greatly across geographic regions. Crucially, the findings of this study also show that the serotypes currently included in existing pneumococcal conjugate formulations account for 49%–74% of deaths in Africa and Asia where the morbidity and mortality of pneumococcal disease are the highest and where most children do not have access to current pneumococcal conjugate vaccines. Although the authors do not provide country-level estimates of serotype distribution, country-specific vaccine impact estimates can be made using country-level pneumococcal disease burden numbers combined with the regional serotype estimates provided in this study. This means that national policy makers can assess the potential impact of serotypes included in different conjugate vaccines, which should contribute to their decision-making process. In addition, manufacturers can now work from a consensus set of serotype coverage estimates to plan and design future serotype-based vaccine formulations to target the pneumococcal disease burden.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000348
The World Health Organization provides information about pneumococcus
The PneumoACTION provides information about pneumonia and pneumococcal disease
The Global Alliance for Vaccination and Immunisation has information on all aspects of vaccination and immunization
The US Centers for Disease Control provides information about pneumococcal conjugate vaccination
The Word Pneumonia Day coalition provides information about pneumonia
doi:10.1371/journal.pmed.1000348
PMCID: PMC2950132  PMID: 20957191
12.  The blp Bacteriocins of Streptococcus pneumoniae Mediate Intraspecies Competition both In Vitro and In Vivo▿  
Infection and Immunity  2006;75(1):443-451.
The introduction of the conjugate seven-valent pneumococcal vaccine has led to the replacement of vaccine serotypes with nonvaccine serotypes of Streptococcus pneumoniae. This observation implies that intraspecies competition between pneumococci occurs during nasopharyngeal colonization, allowing one strain or set of strains to predominate over others. We investigated the contribution of the blp locus, encoding putative bacteriocins and cognate immunity peptides, to intraspecies competition. We sequenced the relevant regions of the blp locus of a type 6A strain able to inhibit the growth of the type 4 strain, TIGR4, in vitro. Using deletional analysis, we confirmed that inhibitory activity is regulated by the function of the response regulator, BlpR, and requires the two putative bacteriocin genes blpM and blpN. Comparison of the TIGR4 BlpM and -N amino acid sequences demonstrated that only five amino acid differences were sufficient to target the heterologous strain. Analysis of a number of clinical isolates suggested that the BlpMN bacteriocins divide into two families. A mutant in the blpMN operon created in the clinically relevant type 19A background was deficient in both bacteriocin activity and immunity. This strain was unable to compete with both its parent strain and a serotype 4 isolate during cocolonization in the mouse nasopharynx, suggesting that the locus is functional in vivo and confirming its role in promoting intraspecies competition.
doi:10.1128/IAI.01775-05
PMCID: PMC1828380  PMID: 17074857
13.  Direct Effect of 10-Valent Conjugate Pneumococcal Vaccination on Pneumococcal Carriage in Children Brazil 
PLoS ONE  2014;9(6):e98128.
Background
10-valent conjugate pneumococcal vaccine/PCV10 was introduced in the Brazilian National Immunization Program along the year of 2010. We assessed the direct effectiveness of PCV10 vaccination in preventing nasopharyngeal/NP pneumococcal carriage in infants.
Methods
A cross-sectional population-based household survey was conducted in Goiania Brazil, from December/2010-February/2011 targeting children aged 7–11 m and 15–18 m. Participants were selected using a systematic sampling. NP swabs, demographic data, and vaccination status were collected from 1,287 children during home visits. Main outcome and exposure of interest were PCV10 vaccine-type carriage and dosing schedules (3p+0, 2p+0, and one catch-up dose), respectively. Pneumococcal carriage was defined by a positive culture and serotyping was performed by Quellung reaction. Rate ratio/RR was calculated as the ratio between the prevalence of vaccine-types carriage in children exposed to different schedules and unvaccinated for PCV10. Adjusted RR was estimated using Poisson regression. PCV10 effectiveness/VE on vaccine-type carriage was calculated as 1-RR*100.
Results
The prevalence of pneumococcal carriage was 41.0% (95%CI: 38.4–43.7). Serotypes covered by PCV10 and PCV13 were 35.2% and 53.0%, respectively. Vaccine serotypes 6B (11.6%), 23F (7.8%), 14 (6.8%), and 19F (6.6%) were the most frequently observed. After adjusted for confounders, children who had received 2p+0 or 3p+0 dosing schedule presented a significant reduction in pneumococcal vaccine-type carriage, with PCV10 VE equal to 35.9% (95%CI: 4.2–57.1; p = 0.030) and 44.0% (95%CI: 14.–63.5; p = 0.008), respectively, when compared with unvaccinated children. For children who received one catch-up dose, no significant VE was detected (p = 0.905).
Conclusion
PCV10 was associated with high protection against vaccine-type carriage with 2p+0 and 3p+0 doses for children vaccinated before the second semester of life. The continuous evaluation of carriage serotypes distribution is likely to be useful for evaluating the long-term effectiveness and impact of pneumococcal vaccination on serotypes reduction.
doi:10.1371/journal.pone.0098128
PMCID: PMC4043727  PMID: 24892409
14.  Decrease in Pneumococcal Co-Colonization following Vaccination with the Seven-Valent Pneumococcal Conjugate Vaccine 
PLoS ONE  2012;7(1):e30235.
Understanding the epidemiology of pneumococcal co-colonization is important for monitoring vaccine effectiveness and the occurrence of horizontal gene transfer between pneumococcal strains. In this study we aimed to evaluate the impact of the seven-valent pneumococcal conjugate vaccine (PCV7) on pneumococcal co-colonization among Portuguese children. Nasopharyngeal samples from children up to 6 years old yielding a pneumococcal culture were clustered into three groups: pre-vaccine era (n = 173), unvaccinated children of the vaccine era (n = 169), and fully vaccinated children (4 doses; n = 150). Co-colonization, serotype identification, and relative serotype abundance were detected by analysis of DNA of the total bacterial growth of the primary culture plate using the plyNCR-RFLP method and a molecular serotyping microarray-based strategy. The plyNCR-RFLP method detected an overall co-colonization rate of 20.1%. Microarray analysis confirmed the plyNCR-RFLP results. Vaccination status was the only factor found to be significantly associated with co-colonization: co-colonization rates were significantly lower (p = 0.004; Fisher's exact test) among fully vaccinated children (8.0%) than among children from the pre-PCV7 era (17.3%) or unvaccinated children of the PCV7 era (18.3%). In the PCV7 era there were significantly less non-vaccine type (NVT) co-colonization events than would be expected based on the NVT distribution observed in the pre-PCV7 era (p = 0.024). In conclusion, vaccination with PCV7 resulted in a lower co-colonization rate due to an asymmetric distribution between NVTs found in single and co-colonized samples. We propose that some NVTs prevalent in the PCV7 era are more competitive than others, hampering their co-existence in the same niche. This result may have important implications since a decrease in co-colonization events is expected to translate in decreased opportunities for horizontal gene transfer, hindering pneumococcal evolution events such as acquisition of antibiotic resistance determinants or capsular switch. This might represent a novel potential benefit of conjugate vaccines.
doi:10.1371/journal.pone.0030235
PMCID: PMC3257259  PMID: 22253924
15.  Long-Term Effects of Pneumococcal Conjugate Vaccine on Nasopharyngeal Carriage of S. pneumoniae, S. aureus, H. influenzae and M. catarrhalis 
PLoS ONE  2012;7(6):e39730.
Background
Shifts in pneumococcal serotypes following introduction of 7-valent pneumococcal conjugate vaccine (PCV-7) may alter the presence of other bacterial pathogens co-inhabiting the same nasopharyngeal niche.
Methodology/Principal Findings
Nasopharyngeal prevalence rates of S. pneumoniae, S. aureus, H. influenzae and M. catarrhalis were investigated before, 3 and 4.5 years after introduction of PCV-7 in the national immunisation program in children at 11 and 24 months of age, and parents of 24-month-old children (n≈330/group) using conventional culture methods. Despite a virtual disappearance of PCV-7 serotypes over time, similar overall pneumococcal rates were observed in all age groups, except for a significant reduction in the 11-month-old group (adjusted Odds Ratio after 4.5 years 0.48, 95% Confidence Interval 0.34–0.67). Before, 3 and 4.5 years after PCV-7 implementation, prevalence rates of S. aureus were 5%, 9% and 14% at 11 months of age (3.59, 1.90–6.79) and 20%, 32% and 34% in parents (1.96, 1.36–2.83), but remained similar at 24 months of age, respectively. Prevalence rates of H. influenzae were 46%, 65% and 65% at 11 months (2.22, 1.58–3.13), 52%, 73% and 76% at 24 months of age (2.68, 1.88–3.82) and 23%, 30% and 40% in parents (2.26, 1.58–3.33), respectively. No consistent changes in M. catarrhalis carriage rates were observed over time.
Conclusions/Significance
In addition to large shifts in pneumococcal serotypes, persistently higher nasopharyngeal prevalence rates of S. aureus and H. influenzae were observed among young children and their parents after PCV-7 implementation. These findings may have implications for disease incidence and antibiotic treatment in the post-PCV era.
doi:10.1371/journal.pone.0039730
PMCID: PMC3382588  PMID: 22761879
16.  Pneumococcal vaccination: what have we learnt so far and what can we expect in the future? 
Individuals <2 years and ≥50 years of age, as well as those with other specific risk factors, are especially vulnerable to invasive pneumococcal disease (IPD). Conjugate vaccines have been developed against encapsulated bacteria such as Streptococcus pneumoniae to provide improved immune responses. The 7-valent pneumococcal conjugate vaccine (PCV7) has significantly reduced the burden of vaccine-type pneumococcal diseases in children, including invasive disease and pneumonia and acute otitis media. There have also been significant declines in antimicrobial resistance in 7-valent vaccine serotypes and carriage of S. pneumoniae in the post-PCV7 era. Two to three years after the introduction of PCV13, there is emerging, global evidence of a reduced burden of pneumococcal diseases in children, including declines in IPD (UK and Germany) and nasopharyngeal carriage of PCV13 serotypes (Portugal and France). The functional immunogenicity of PCV13 in individuals ≥50 years of age has been demonstrated in clinical trials in comparison with the 23-valent pneumococcal polysaccharide vaccine and for children and adults 6 to 49 years of age. Between 2011 and 2013, PCV13 received market authorisation by the European Medicines Agency (EMA) for these additional age groups and is now available in Europe for the prevention of pneumococcal disease in all age groups.
doi:10.1007/s10096-014-2208-6
PMCID: PMC4281374  PMID: 25149825
17.  Improved Detection of Nasopharyngeal Cocolonization by Multiple Pneumococcal Serotypes by Use of Latex Agglutination or Molecular Serotyping by Microarray▿† 
Journal of Clinical Microbiology  2011;49(5):1784-1789.
Identification of Streptococcus pneumoniae in the nasopharynx is critical for an understanding of transmission, estimates of vaccine efficacy, and possible replacement disease. Conventional nasopharyngeal swab (NPS) culture and serotyping (the WHO protocol) is likely to underestimate multiple-serotype carriage. We compared the WHO protocol with methods aimed at improving cocolonization detection. One hundred twenty-five NPSs from an infant pneumococcal-carriage study, containing ≥1 serotype by WHO culture, were recultured in duplicate. A sweep of colonies from one plate culture was serotyped by latex agglutination. DNA extracted from the second plate was analyzed by S. pneumoniae molecular-serotyping microarray. Multiple serotypes were detected in 11.2% of the swabs by WHO culture, 43.2% by sweep serotyping, and 48.8% by microarray. Sweep and microarray were more likely to detect multiple serotypes than WHO culture (P < 0.0001). Cocolonization detection rates were similar between microarray and sweep, but the microarray identified the greatest number of serotypes. A common serogroup type was identified in 95.2% of swabs by all methods. WHO methodology significantly underestimates multiple-serotype carriage compared to these alternate methods. Sweep serotyping is cost-effective and field deployable but may fail to detect serotypes at low abundance, whereas microarray serotyping is more costly and technology dependent but may detect these additional minor carried serotypes.
doi:10.1128/JCM.00157-11
PMCID: PMC3122683  PMID: 21411589
18.  Epidemiology of nasopharyngeal carriage of respiratory bacterial pathogens in children and adults: cross-sectional surveys in a population with high rates of pneumococcal disease 
BMC Infectious Diseases  2010;10:304.
Background
To determine the prevalence of carriage of respiratory bacterial pathogens, and the risk factors for and serotype distribution of pneumococcal carriage in an Australian Aboriginal population.
Methods
Surveys of nasopharyngeal carriage of Streptococcus pneumoniae, non-typeable Haemophilus influenzae, and Moraxella catarrhalis were conducted among adults (≥16 years) and children (2 to 15 years) in four rural communities in 2002 and 2004. Infant seven-valent pneumococcal conjugate vaccine (7PCV) with booster 23-valent pneumococcal polysaccharide vaccine was introduced in 2001. Standard microbiological methods were used.
Results
At the time of the 2002 survey, 94% of eligible children had received catch-up pneumococcal vaccination. 324 adults (538 examinations) and 218 children (350 examinations) were enrolled. Pneumococcal carriage prevalence was 26% (95% CI, 22-30) among adults and 67% (95% CI, 62-72) among children. Carriage of non-typeable H. influenzae among adults and children was 23% (95% CI, 19-27) and 57% (95% CI, 52-63) respectively and for M. catarrhalis, 17% (95% CI, 14-21) and 74% (95% CI, 69-78) respectively. Adult pneumococcal carriage was associated with increasing age (p = 0.0005 test of trend), concurrent carriage of non-typeable H. influenzae (Odds ratio [OR] 6.74; 95% CI, 4.06-11.2) or M. catarrhalis (OR 3.27; 95% CI, 1.97-5.45), male sex (OR 2.21; 95% CI, 1.31-3.73), rhinorrhoea (OR 1.66; 95% CI, 1.05-2.64), and frequent exposure to outside fires (OR 6.89; 95% CI, 1.87-25.4). Among children, pneumococcal carriage was associated with decreasing age (p < 0.0001 test of trend), and carriage of non-typeable H. influenzae (OR 9.34; 95% CI, 4.71-18.5) or M. catarrhalis (OR 2.67; 95% CI, 1.34-5.33). Excluding an outbreak of serotype 1 in children, the percentages of serotypes included in 7, 10, and 13PCV were 23%, 23%, and 29% (adults) and 22%, 24%, and 40% (2-15 years). Dominance of serotype 16F, and persistent 19F and 6B carriage three years after initiation of 7PCV is noteworthy.
Conclusions
Population-based carriage of S. pneumoniae, non-typeable H. influenzae, and M. catarrhalis was high in this Australian Aboriginal population. Reducing smoke exposure may reduce pneumococcal carriage. The indirect effects of 10 or 13PCV, above those of 7PCV, among adults in this population may be limited.
doi:10.1186/1471-2334-10-304
PMCID: PMC2974682  PMID: 20969800
19.  Nasopharyngeal flora in children with acute otitis media before and after implementation of 7 valent pneumococcal conjugate vaccine in France 
Background
Several studies have investigated the impact of 7-valent pneumococcal conjugate vaccine (PCV7) on pneumococcal (Sp) and staphylococcal (Sa) nasopharyngeal (NP) carriage. Few have investigated the impact on Haemophilus influenzae (Hi) and Moraxella catarrhalis (Mc) carriage. We aimed to compare the NP carriage rates in young children with acute otitis media (AOM) before and after PCV7 implementation in France.
Methods
Prior to PCV7 implementation, we performed 4 successive randomized trials with NP samples. These studies compared several antibiotic regimens for treating AOM in young children (6 to 30 months). After PCV7 implementation, to assess the impact of the vaccination program on NP flora, young children with AOM were enrolled in a prospective surveillance study. In each study, we obtained an NP sample to analyze the carriage rates of Sp, Hi, Mc and Sa and the factors influencing the carriage. Standardized history and physical examination findings were recorded; the methods used for NP swabs (sampling and cultures) were the same in all studies.
Results
We enrolled 4,405 children (mean age 13.9 months, median 12.8). Among the 2,598 children enrolled after PCV7 implementation, 98.3% were vaccinated with PCV7. In comparing the pre- and post-PCV7 periods, we found a slight but non-significant decrease in carriage rates of pneumococcus (AOR = 0.85 [0.69;1.05]), H. influenzae (AOR = 0.89 [0.73;1.09]) and S. aureus (AOR = 0.92 [0.70;1.19]). By contrast, the carriage rate of M. catarrhalis increased slightly but not significantly between the 2 periods (AOR = 1.08 [0.95;1.2]). Among Sp carriers, the proportion of PCV7 vaccine types decreased from 66.6% to 10.7% (P < 0.001), penicillin intermediate-resistant strains increased from 30.3% to 43.4% (P < 0.001), and penicillin-resistant strains decreased greatly from 22.8% to 3.8% (P < 0.001). The proportion of Hi ß-lactamase-producing strains decreased from 38.6% to 17.1% (P < 0.001).
Conclusion
The carriage rates of otopathogen species (Sp, Hi, Mc) and Sa did not significantly change in children with AOM after PCV7 implementation in France. However, we observed significant changes in carriage rates of PCV7 vaccine serotypes and penicillin non-susceptible Sp.
doi:10.1186/1471-2334-12-52
PMCID: PMC3323894  PMID: 22397629
20.  Association between Respiratory Syncytial Virus Activity and Pneumococcal Disease in Infants: A Time Series Analysis of US Hospitalization Data 
PLoS Medicine  2015;12(1):e1001776.
Daniel Weinberger and colleagues examine a possible interaction between two serious respiratory infections in children under 2 years of age.
Please see later in the article for the Editors' Summary
Background
The importance of bacterial infections following respiratory syncytial virus (RSV) remains unclear. We evaluated whether variations in RSV epidemic timing and magnitude are associated with variations in pneumococcal disease epidemics and whether changes in pneumococcal disease following the introduction of seven-valent pneumococcal conjugate vaccine (PCV7) were associated with changes in the rate of hospitalizations coded as RSV.
Methods and Findings
We used data from the State Inpatient Databases (Agency for Healthcare Research and Quality), including >700,000 RSV hospitalizations and >16,000 pneumococcal pneumonia hospitalizations in 36 states (1992/1993–2008/2009). Harmonic regression was used to estimate the timing of the average seasonal peak of RSV, pneumococcal pneumonia, and pneumococcal septicemia. We then estimated the association between the incidence of pneumococcal disease in children and the activity of RSV and influenza (where there is a well-established association) using Poisson regression models that controlled for shared seasonal variations. Finally, we estimated changes in the rate of hospitalizations coded as RSV following the introduction of PCV7. RSV and pneumococcal pneumonia shared a distinctive spatiotemporal pattern (correlation of peak timing: ρ = 0.70, 95% CI: 0.45, 0.84). RSV was associated with a significant increase in the incidence of pneumococcal pneumonia in children aged <1 y (attributable percent [AP]: 20.3%, 95% CI: 17.4%, 25.1%) and among children aged 1–2 y (AP: 10.1%, 95% CI: 7.6%, 13.9%). Influenza was also associated with an increase in pneumococcal pneumonia among children aged 1–2 y (AP: 3.2%, 95% CI: 1.7%, 4.7%). Finally, we observed a significant decline in RSV-coded hospitalizations in children aged <1 y following PCV7 introduction (−18.0%, 95% CI: −22.6%, −13.1%, for 2004/2005–2008/2009 versus 1997/1998–1999/2000). This study used aggregated hospitalization data, and studies with individual-level, laboratory-confirmed data could help to confirm these findings.
Conclusions
These analyses provide evidence for an interaction between RSV and pneumococcal pneumonia. Future work should evaluate whether treatment for secondary bacterial infections could be considered for pneumonia cases even if a child tests positive for RSV.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Respiratory infections—bacterial and viral infections of the lungs and the airways (the tubes that take oxygen-rich air to the lungs)—are major causes of illness and death in children worldwide. Pneumonia (infection of the lungs) alone is responsible for about 15% of all child deaths. The leading cause of bacterial pneumonia in children is Streptococcus pneumoniae, which is transmitted through contact with infected respiratory secretions. S. pneumoniae usually causes noninvasive diseases such as bronchitis, but sometimes the bacteria invade the lungs, the bloodstream, or the covering of the brain, where they cause pneumonia, septicemia, or meningitis, respectively. These potentially fatal invasive pneumococcal diseases can be treated with antibiotics but can also be prevented by vaccination with pneumococcal conjugate vaccines such as PCV7. The leading cause of viral pneumonia is respiratory syncytial virus (RSV), which is also readily transmitted through contact with infected respiratory secretions. Almost all children have an RSV infection before their second birthday—RSV usually causes a mild cold-like illness. However, some children infected with RSV develop pneumonia and have to be admitted to hospital for supportive care such as the provision of supplemental oxygen; there is no specific treatment for RSV infection.
Why Was This Study Done?
Co-infections with bacteria and viruses can sometimes have a synergistic effect and lead to more severe disease than an infection with either type of pathogen (disease-causing organism) alone. For example, influenza infections increase the risk of invasive pneumococcal disease. But does pneumococcal disease also interact with RSV infection? It is important to understand the interaction between pneumococcal disease and RSV to improve the treatment of respiratory infections in young children, but the importance of bacterial infections following RSV infection is currently unclear. Here, the researchers undertake a time series analysis of US hospitalization data to investigate the association between RSV activity and pneumococcal disease in infants. Time series analysis uses statistical methods to analyze data collected at successive, evenly spaced time points.
What Did the Researchers Do and Find?
For their analysis, the researchers used data collected between 1992/1993 and 2008/2009 by the State Inpatient Databases on more than 700,000 hospitalizations for RSV and more than 16,000 hospitalizations for pneumococcal pneumonia or septicemia among children under two years old in 36 US states. Using a statistical technique called harmonic regression to measure seasonal variations in disease incidence (the rate of occurrence of new cases of a disease), the researchers show that RSV and pneumococcal pneumonia shared a distinctive spatiotemporal pattern over the study period. Next, using Poisson regression models (another type of statistical analysis), they show that RSV was associated with significant increases (increases unlikely to have happened by chance) in the incidence of pneumococcal disease. Among children under one year old, 20.3% of pneumococcal pneumonia cases were associated with RSV activity; among children 1–2 years old, 10.1% of pneumococcal pneumonia cases were associated with RSV activity. Finally, the researchers report that following the introduction of routine vaccination in the US against S. pneumoniae with PCV7 in 2000, there was a significant decline in hospitalizations for RSV among children under one year old.
What Do These Findings Mean?
These findings provide evidence for an interaction between RSV and pneumococcal pneumonia and indicate that RSV is associated with increases in the incidence of pneumococcal pneumonia, particularly in young infants. Notably, the finding that RSV hospitalizations declined after the introduction of routine pneumococcal vaccination suggests that some RSV hospitalizations may have a joint viral–bacterial etiology (cause), although it is possible that PCV7 vaccination reduced the diagnosis of RSV because fewer children were hospitalized with pneumococcal disease and subsequently tested for RSV. Because this is an ecological study (an observational investigation that looks at risk factors and outcomes in temporally and geographically defined populations), these findings do not provide evidence for a causal link between hospitalizations for RSV and pneumococcal pneumonia. The similar spatiotemporal patterns for the two infections might reflect another unknown factor shared by the children who were hospitalized for RSV or pneumococcal pneumonia. Moreover, because pooled hospitalization discharge data were used in this study, these results need to be confirmed through analysis of individual-level, laboratory-confirmed data. Importantly, however, these findings support the initiation of studies to determine whether treatment for bacterial infections should be considered for children with pneumonia even if they have tested positive for RSV.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001776.
The US National Heart, Lung, and Blood Institute provides information about the respiratory system and about pneumonia
The US Centers for Disease Control and Prevention provides information on all aspects of pneumococcal disease and pneumococcal vaccination, including personal stories and information about RSV infection
The UK National Health Service Choices website provides information about pneumonia (including a personal story) and about pneumococcal diseases
KidsHealth, a website provided by the US-based non-profit Nemours Foundation, includes information on pneumonia and on RSV (in English and Spanish)
MedlinePlus provides links to other resources about pneumonia, RSV infections, and pneumococcal infections (in English and Spanish)
HCUPnet provides aggregated hospitalization data from the State Inpatient Databases used in this study
doi:10.1371/journal.pmed.1001776
PMCID: PMC4285401  PMID: 25562317
21.  Pneumococcal Carriage in Sub-Saharan Africa—A Systematic Review 
PLoS ONE  2014;9(1):e85001.
Background
Pneumococcal epidemiology varies geographically and few data are available from the African continent. We assess pneumococcal carriage from studies conducted in sub-Saharan Africa (sSA) before and after the pneumococcal conjugate vaccine (PCV) era.
Methods
A search for pneumococcal carriage studies published before 2012 was conducted to describe carriage in sSA. The review also describes pneumococcal serotypes and assesses the impact of vaccination on carriage in this region.
Results
Fifty-seven studies were included in this review with the majority (40.3%) from South Africa. There was considerable variability in the prevalence of carriage between studies (I-squared statistic = 99%). Carriage was higher in children and decreased with increasing age, 63.2% (95% CI: 55.6–70.8) in children less than 5 years, 42.6% (95% CI: 29.9–55.4) in children 5–15 years and 28.0% (95% CI: 19.0–37.0) in adults older than 15 years. There was no difference in the prevalence of carriage between males and females in 9/11 studies. Serotypes 19F, 6B, 6A, 14 and 23F were the five most common isolates. A meta-analysis of four randomized trials of PCV vaccination in children aged 9–24 months showed that carriage of vaccine type (VT) serotypes decreased with PCV vaccination; however, overall carriage remained the same because of a concomitant increase in non-vaccine type (NVT) serotypes.
Conclusion
Pneumococcal carriage is generally high in the African continent, particularly in young children. The five most common serotypes in sSA are among the top seven serotypes that cause invasive pneumococcal disease in children globally. These serotypes are covered by the two PCVs recommended for routine childhood immunization by the WHO. The distribution of serotypes found in the nasopharynx is altered by PCV vaccination.
doi:10.1371/journal.pone.0085001
PMCID: PMC3896352  PMID: 24465464
22.  Risk factors for serotype 19A carriage after introduction of 7-valent pneumococcal vaccination 
Background
After the implementation of 7-valent pneumococcal conjugate vaccine (PCV7), in several countries, serotype 19A is now the serotype most frequently involved in pneumococcal diseases and carriage. To determine factors potentially related to 19A nasopharyngeal (NP) carriage we analyzed data from an ongoing prospective French national surveillance study of pneumococcal NP carriage in young children.
Methods
NP swabs were obtained from children aged 6 to 24 months, either during routine check-ups with normal findings, or when they presented with acute otitis media (AOM). The swabs were sent for analysis to the French National Reference Centre for Pneumococci. Factors influencing pneumococcal carriage and carriage of penicillin non-susceptible (PNSP), 19A and PNS-19A were investigated by multivariate logistic regression.
Results
From 2006 to 2009, 66 practitioners enrolled 3507 children (mean age 13.6 months), of whom, 98.3% of children had been vaccinated with PCV7 and 33.4% of children attended daycare centres (DCC). Serotype 19A was found in 10.4% of the overall population, 20.5% of S. pneumoniae carriers (n = 1780) and 40.8% of PNSP carriers (n = 799). Among 19A strains, 10.7% were penicillin-susceptible, 80% intermediate and 9.3% fully resistant. Logistic regression analysis showed that the main factors associated with PNSP carriage were AOM (OR = 3.09, 95% CI [2.39;3.98]), DCC (OR = 1.70, 95% CI [1.42;2.03]), and recent antibiotic use (OR = 1.24, 95% CI [1.05;1.47]. The main factors predictive of 19A carriage were recent antibiotic use (OR = 1.81, 95% CI [1.42;2.30]), AOM (OR = 1.67, 95% CI [1.11;2.49]), DCC (OR = 1.56, 95% CI [1.21;2.2] and young age, <12 months (OR = 1.51, 95% CI [1.16;1.97]).
Conclusion
In a population of children aged from 6 to 24 months with a high rate of PCV7 vaccination coverage, we found that antibiotic exposure, DCC attendance and AOM were linked to 19A carriage.
doi:10.1186/1471-2334-11-95
PMCID: PMC3101155  PMID: 21501471
23.  The Prevalence and Risk Factors for Pneumococcal Colonization of the Nasopharynx among Children in Kilifi District, Kenya 
PLoS ONE  2012;7(2):e30787.
Background
Pneumococcal conjugate vaccines (PCV) reduce nasopharyngeal carriage of vaccine-serotype pneumococci but increase in the carriage of non-vaccine serotypes. We studied the epidemiology of carriage among children 3–59 months old before vaccine introduction in Kilifi, Kenya.
Methods
In a rolling cross-sectional study from October 2006 to December 2008 we approached 3570 healthy children selected at random from the population register of the Kilifi Health and Demographic Surveillance System and 134 HIV-infected children registered at a specialist clinic. A single nasopharyngeal swab was transported in STGG and cultured on gentamicin blood agar. A single colony of pneumococcus was serotyped by Quellung reaction.
Results
Families of 2840 children in the population-based sample and 99 in the HIV-infected sample consented to participate; carriage prevalence was 65.8% (95% CI, 64.0–67.5%) and 76% (95% CI, 66–84%) in the two samples, respectively. Carriage prevalence declined progressively with age from 79% at 6–11 months to 51% at 54–59 months (p<0.0005). Carriage was positively associated with coryza (Odds ratio 2.63, 95%CI 2.12–3.25) and cough (1.55, 95%CI 1.26–1.91) and negatively associated with recent antibiotic use (0.53 95%CI 0.34–0.81). 53 different serotypes were identified and 42% of isolates were of serotypes contained in the 10-valent PCV. Common serotypes declined in prevalence with age while less common serotypes did not.
Conclusion
Carriage prevalence in children was high, serotypes were diverse, and the majority of strains were of serotypes not represented in the 10-valent PCV. Vaccine introduction in Kenya will provide a natural test of virulence for the many circulating non-vaccine serotypes.
doi:10.1371/journal.pone.0030787
PMCID: PMC3282706  PMID: 22363489
24.  Nasopharyngeal Carriage of Pneumococci Four Years after Community-Wide Vaccination with PCV-7 in The Gambia: Long-Term Evaluation of a Cluster Randomized Trial 
PLoS ONE  2013;8(9):e72198.
Background
A village-randomized trial of a seven-valent pneumococcal-conjugate-vaccine (PCV-7) conducted in rural Gambia showed a decrease of vaccine-type (VT) and a non-significant increase in non-vaccine-type (NVT) nasopharyngeal carriage of pneumococci two years after vaccination. Here, we report findings four years after vaccination.
Methods
PCV-7 was given to all children below 30 months of age enrolled in the trial and to those born during its course in all study villages. Villages were randomized (older children and adults) to receive PCV-7 (wholly vaccinated villages) or serogroup-C-meningococcal-conjugate-vaccine (partly vaccinated villages). Cross-sectional surveys (CSS) to collect nasopharyngeal swabs were conducted before and at various intervals after vaccination. Sixteen of these randomized villages (8 wholly vaccinated and 8 partly vaccinated) participated in a CSS conducted four years after vaccination started.
Results
Four years after vaccination, the prevalence of VT pneumococcal carriage was slightly higher in partly than in wholly vaccinated villages [6.4% versus 3.9% (p = 0.120)] compared to 24.4% in the pre-vaccination CSS (p<0.001). Prevalence of NVT four years after vaccination was similar between study groups [32.7% versus 29.8% (p = 0.392), respectively] compared to 51.1% in the pre-vaccination CSS (p<0.001). Four years after vaccination started, lower prevalence of serotype 6A was detected in wholly vaccinated than in partly vaccinated villages (1.6% versus 3.5%, p = 0.093) whilst the prevalence of serotype 19A was similar between groups (2.9% versus 2.5%, p = 0.779). The most prevalent serotype 19A clone was ST 847. The most prevalent serotype 6A clone before vaccination was ST3324 whilst after vaccination ST913 and ST1737 predominated. Fourteen out of 26 STs detected among the serotype 6A isolates were new while no new 19A serotype ST was found.
Conclusions
The decline in prevalence of VT pneumococci seen shortly after PCV-7 vaccination was sustained four years later with only a small difference between study arms. No significant serotype replacement was detected.
Trial Registration
ClinicalTrials.gov ISRCTN51695599
doi:10.1371/journal.pone.0072198
PMCID: PMC3785494  PMID: 24086259
25.  High Nasopharyngeal Carriage of Non-Vaccine Serotypes in Western Australian Aboriginal People Following 10 Years of Pneumococcal Conjugate Vaccination 
PLoS ONE  2013;8(12):e82280.
Background
Invasive pneumococcal disease (IPD) continues to occur at high rates among Australian Aboriginal people. The seven-valent pneumococcal conjugate vaccine (7vPCV) was given in a 2-4-6-month schedule from 2001, with a 23-valent pneumococcal polysaccharide vaccine (23vPPV) booster at 18 months, and replaced with 13vPCV in July 2011. Since carriage surveillance can supplement IPD surveillance, we have monitored pneumococcal carriage in western Australia (WA) since 2008 to assess the impact of the 10-year 7vPCV program.
Methods
We collected 1,500 nasopharyngeal specimens from Aboriginal people living in varied regions of WA from August 2008 until June 2011. Specimens were cultured on selective media. Pneumococcal isolates were serotyped by the quellung reaction.
Results
Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis were carried by 71.9%, 63.2% and 63.3% respectively of children <5 years of age, and 34.6%, 22.4% and 27.2% of people ≥5 years. Of 43 pneumococcal serotypes identified, the most common were 19A, 16F and 6C in children <5 years, and 15B, 34 and 22F in older people. 7vPCV serotypes accounted for 14.5% of all serotypeable isolates, 13vPCV for 32.4% and 23vPPV for 49.9%, with little variation across all age groups. Serotypes 1 and 12F were rarely identified, despite causing recent IPD outbreaks in WA. Complete penicillin resistance (MIC ≥2µg/ml) was found in 1.6% of serotype 19A (5.2%), 19F (4.9%) and 16F (3.2%) isolates and reduced penicillin susceptibility (MIC ≥0.125µg/ml) in 24.9% of isolates, particularly 19F (92.7%), 19A (41.3%), 16F (29.0%). Multi-resistance to cotrimoxazole, tetracycline and erythromycin was found in 83.0% of 23F isolates. Among non-serotypeable isolates 76.0% had reduced susceptibility and 4.0% showed complete resistance to penicillin.
Conclusions
Ten years after introduction of 7vPCV for Aboriginal Australian children, 7vPCV serotypes account for a small proportion of carried pneumococci. A large proportion of circulating serotypes are not covered by any currently licensed vaccine.
doi:10.1371/journal.pone.0082280
PMCID: PMC3857785  PMID: 24349245

Results 1-25 (712673)