PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1098740)

Clipboard (0)
None

Related Articles

1.  Deletion of LRP5 in VLDLR Knockout Mice Inhibits Retinal Neovascularization 
PLoS ONE  2013;8(9):e75186.
The development and maintenance of retinal vasculature require a precise balance between pro-angiogenic and anti-angiogenic factors. However, mechanisms underlying normal homeostasis of retinal vasculature and pathological changes of disrupted retinal vessel development are not fully understood. Recent studies of the low-density lipoprotein receptor-related protein 5 (LRP5) and the very low-density lipoprotein receptor (VLDLR) mutant mice indicate that LRP5 mediates a pro-angiogenic signal while VLDLR mediates an anti-angiogenic signal in retinal vasculature. Mice with a loss of LRP5 display underdeveloped intraretinal vasculature associated with endothelial cell (EC) clustering and failed EC migration into deep retinal layers. In contrast, VLDLR knockout mice show overgrown intraretinal vasculature and subretinal neovascularization. To understand the mechanisms for the opposite retinal vascular abnormalities between LRP5 and VLDLR mutant mice and to test how a loss of LRP5 perturbs subretinal neovascularization caused by a loss of VLDLR, we have generated and characterized the retinal vasculature in LRP5/VLDLR double knockout (DKO) mice. Our data show that DKO mice develop substantial EC clustering without subretinal neovascularization. The absence of subretinal neovascularization in DKO mice is associated with inhibited migration of ECs into the photoreceptor cell layer. In addition, the transcription level of Slc38a5, which encodes a Müller cell specific glutamine transporter, is significantly reduced in DKO mice, similar to previously reported changes in LRP5 single knockout mice. Thus, LRP5 signaling is a prerequisite for neovascularization in VLDLR knockout mice. LRP5 may be an effective target for inhibiting intraretinal neovascularization.
doi:10.1371/journal.pone.0075186
PMCID: PMC3772893  PMID: 24058663
2.  Retinal Expression of Wnt-Pathway Mediated Genes in Low-Density Lipoprotein Receptor-Related Protein 5 (Lrp5) Knockout Mice 
PLoS ONE  2012;7(1):e30203.
Mutations in low-density lipoprotein receptor-related protein 5 (Lrp5) impair retinal angiogenesis in patients with familial exudative vitreoretinopathy (FEVR), a rare type of blinding vascular eye disease. The defective retinal vasculature phenotype in human FEVR patients is recapitulated in Lrp5 knockout (Lrp5−/−) mouse with delayed and incomplete development of retinal vessels. In this study we examined gene expression changes in the developing Lrp5−/− mouse retina to gain insight into the molecular mechanisms that underlie the pathology of FEVR in humans. Gene expression levels were assessed with an Illumina microarray on total RNA from Lrp5−/− and WT retinas isolated on postnatal day (P) 8. Regulated genes were confirmed using RT-qPCR analysis. Consistent with a role in vascular development, we identified expression changes in genes involved in cell-cell adhesion, blood vessel morphogenesis and membrane transport in Lrp5−/− retina compared to WT retina. In particular, tight junction protein claudin5 and amino acid transporter slc38a5 are both highly down-regulated in Lrp5−/− retina. Similarly, several Wnt ligands including Wnt7b show decreased expression levels. Plasmalemma vesicle associated protein (plvap), an endothelial permeability marker, in contrast, is up-regulated consistent with increased permeability in Lrp5−/− retinas. Together these data suggest that Lrp5 regulates multiple groups of genes that influence retinal angiogenesis and may contribute to the pathogenesis of FEVR.
doi:10.1371/journal.pone.0030203
PMCID: PMC3260226  PMID: 22272305
3.  Contributions of VLDLR and LRP8 in the establishment of retinogeniculate projections 
Neural Development  2013;8:11.
Background
Retinal ganglion cells (RGCs), the output neurons of the retina, project to over 20 distinct brain nuclei, including the lateral geniculate nucleus (LGN), a thalamic region comprised of three functionally distinct subnuclei: the ventral LGN (vLGN), the dorsal LGN (dLGN) and the intergeniculate leaflet (IGL). We previously identified reelin, an extracellular glycoprotein, as a critical factor that directs class-specific targeting of these subnuclei. Reelin is known to bind to two receptors: very-low-density lipoprotein receptor (VLDLR) and low-density lipoprotein receptor-related protein 8 (LRP8), also known as apolipoprotein E receptor 2 (ApoER2). Here we examined the roles of these canonical reelin receptors in retinogeniculate targeting.
Results
To assess the roles of VLDLR and LRP8 in retinogeniculate targeting, we used intraocular injections of fluorescently conjugated cholera toxin B subunit (CTB) to label all RGC axons in vivo. Retinogeniculate projections in mutant mice lacking either VLDLR or LRP8 appeared similar to controls; however, deletion of both receptors resulted in dramatic defects in the pattern of retinal innervation in LGN. Surprisingly, defects in vldlr−/−;lrp8−/− double mutant mice were remarkably different than those observed in mice lacking reelin. First, we failed to observe retinal axons exiting the medial border of the vLGN and IGL to invade distant regions of non-retino-recipient thalamus. Second, an ectopic region of binocular innervation emerged in the dorsomedial pole of vldlr−/−;lrp8−/− mutant dLGN. Analysis of retinal projection development, retinal terminal sizes and LGN cytoarchitecture in vldlr−/−;lrp8−/− mutants, all suggest that a subset of retinal axons destined for the IGL are misrouted to the dorsomedial pole of dLGN in the absence of VLDLR and LRP8. Such mistargeting is likely the result of abnormal migration of IGL neurons into the dorsomedial pole of dLGN in vldlr−/−;lrp8−/− mutants.
Conclusions
In contrast to our expectations, the development of both the LGN and retinogeniculate projections appeared dramatically different in mutants lacking either reelin or both canonical reelin receptors. These results suggest that there are reelin-independent functions of VLDLR and LRP8 in LGN development, and VLDLR- and LRP8-independent functions of reelin in class-specific axonal targeting.
doi:10.1186/1749-8104-8-11
PMCID: PMC3685595  PMID: 23758727
Reelin; Synaptic targeting; Intergeniculate nucleus; Retinogeniculate; Lateral geniculate nucleus; Axon; Retinal terminal
4.  Wnt signaling mediates pathological vascular growth in proliferative retinopathy 
Circulation  2011;124(17):1871-1881.
Background
Ischemic proliferative retinopathy, characterized by pathologic retinal neovascularization, is a major cause of blindness in working age adults and children. Defining the molecular pathways distinguishing pathological neovascularization from normal vessels is critical to controlling these blinding diseases with targeted therapy. Because mutations in Wnt signaling cause defective retinal vasculature in humans with some characteristics of the pathologic vessels in retinopathy, we investigated the potential role of Wnt signaling in pathologic retinal vascular growth in proliferative retinopathy.
Methods and Results
In this study we show that Wnt receptors (Frizzled4 and Lrp5) and activity are significantly increased in pathologic neovascularization in a mouse model of oxygen-induced proliferative retinopathy. Loss of Wnt co-receptor Lrp5 and downstream signaling molecule disheveled2 significantly decreases the formation of pathologic retinal neovascularization in retinopathy. Loss of Lrp5 also affects retinal angiogenesis during development and formation of the blood retinal barrier, which is linked to significant down-regulation of tight junction protein claudin5 (Cln5) in Lrp5−/− vessels. Blocking Cln5 significantly suppresses Wnt-pathway driven endothelial cell sprouting in vitro and developmental and pathologic vascular growth in retinopathy in vivo.
Conclusions
These results demonstrate an important role of Wnt signaling in pathologic vascular development in retinopathy and show a novel function of Cln5 in promoting angiogenesis.
doi:10.1161/CIRCULATIONAHA.111.040337
PMCID: PMC3326389  PMID: 21969016
angiogenesis; vessels; retinopathy; Wnt
5.  Defective Retinal Vascular Endothelial Cell Development As a Consequence of Impaired Integrin αVβ8-Mediated Activation of Transforming Growth Factor-β 
Deletions of the genes encoding the integrin αVβ8 (Itgav, Itgb8) have been shown to result in abnormal vascular development in the CNS, including prenatal and perinatal hemorrhage. Other work has indicated that a major function of this integrin in vivo is to promote TGFβ activation. In this paper, we show that Itgb8 mRNA is strongly expressed in murine Müller glia and retinal ganglion cells, but not astrocytes. We further show that Itgb8 deletion in the entire retina severely perturbs development of the murine retinal vasculature, elevating vascular branch point density and vascular coverage in the superficial vascular plexus, while severely impairing formation of the deep vascular plexus. The stability of the mutant vasculature is also impaired as assessed by the presence of hemorrhage and vascular basal lamina sleeves lacking endothelial cells. Specific deletion of Itgb8 in Müller glia and neurons, but not deletion in astrocytes, recapitulates the phenotype observed following Itgb8 in the entire retina. Consistent with αVβ8’s role in TGFβ1 activation, we show that retinal deletion of Tgfb1 results in very similar retinal vascular abnormalities. The vascular deficits appear to reflect impaired TGFβ signaling in vascular endothelial cells because retinal deletion of Itgb8 reduces phospho-SMAD3 in endothelial cells and endothelial cell-specific deletion of the TGFβRII gene recapitulates the major deficits observed in the Itgb8 and TGFβ1 mutants. Of special interest, the retinal vascular phenotypes observed in each mutant are remarkably similar to those of others following inhibition of neuropilin-1, a receptor previously implicated in TGFβ activation and signaling.
doi:10.1523/JNEUROSCI.5648-11.2012
PMCID: PMC3578416  PMID: 22279205
6.  Defective Retinal Vascular Endothelial Cell Development As a Consequence of Impaired Integrin αVβ8-Mediated Activation of Transforming Growth Factor-β 
The Journal of Neuroscience  2012;32(4):1197-1206.
Deletions of the genes encoding the integrin αVβ8 (Itgav, Itgb8) have been shown to result in abnormal vascular development in the CNS, including prenatal and perinatal hemorrhage. Other work has indicated that a major function of this integrin in vivo is to promote TGFβ activation. In this paper, we show that Itgb8 mRNA is strongly expressed in murine Müller glia and retinal ganglion cells, but not astrocytes. We further show that Itgb8 deletion in the entire retina severely perturbs development of the murine retinal vasculature, elevating vascular branch point density and vascular coverage in the superficial vascular plexus, while severely impairing formation of the deep vascular plexus. The stability of the mutant vasculature is also impaired as assessed by the presence of hemorrhage and vascular basal lamina sleeves lacking endothelial cells. Specific deletion of Itgb8 in Müller glia and neurons, but not deletion in astrocytes, recapitulates the phenotype observed following Itgb8 in the entire retina. Consistent with αVβ8's role in TGFβ1 activation, we show that retinal deletion of Tgfb1 results in very similar retinal vascular abnormalities. The vascular deficits appear to reflect impaired TGFβ signaling in vascular endothelial cells because retinal deletion of Itgb8 reduces phospho-SMAD3 in endothelial cells and endothelial cell-specific deletion of the TGFβRII gene recapitulates the major deficits observed in the Itgb8 and TGFβ1 mutants. Of special interest, the retinal vascular phenotypes observed in each mutant are remarkably similar to those of others following inhibition of neuropilin-1, a receptor previously implicated in TGFβ activation and signaling.
doi:10.1523/JNEUROSCI.5648-11.2012
PMCID: PMC3578416  PMID: 22279205
7.  Macrophage LRP1 Suppresses Neo-Intima Formation during Vascular Remodeling by Modulating the TGF-β Signaling Pathway 
PLoS ONE  2011;6(12):e28846.
Background
Vascular remodeling in response to alterations in blood flow has been shown to modulate the formation of neo-intima. This process results from a proliferative response of vascular smooth muscle cells and is influenced by macrophages, which potentiate the development of the intima. The LDL receptor-related protein 1 (LRP1) is a large endocytic and signaling receptor that recognizes a number of ligands including apoE-containing lipoproteins, proteases and protease-inhibitor complexes. Macrophage LRP1 is known to influence the development of atherosclerosis, but its role in vascular remodeling has not been investigated.
Methodology/Principal Findings
To define the contribution of macrophage LRP1 to vascular remodeling, we generated macrophage specific LRP1-deficient mice (macLRP1-/-) on an LDL receptor (LDLr) knock-out background. Using a carotid ligation model, we detected a 2-fold increase in neointimal thickening and a 2-fold increase in the intima/media ratio in macLRP1-/- mice. Quantitative RT-PCR arrays of the remodeled vessel wall identified increases in mRNA levels of the TGF-β2 gene as well as the Pdgfa gene in macLRP1-/- mice which could account for the alterations in vascular remodeling. Immunohistochemistry analysis revealed increased activation of the TGF-β signaling pathway in macLRP1-/- mice. Further, we observed that LRP1 binds TGF-β2 and macrophages lacking LRP1 accumulate twice as much TGF-β2 in conditioned media. Finally, TNF-α modulation of the TGF-β2 gene in macrophages is attenuated when LRP1 is expressed. Together, the data reveal that LRP1 modulates both the expression and protein levels of TGF-β2 in macrophages.
Conclusions/Significance
Our data demonstrate that macrophage LRP1 protects the vasculature by limiting remodeling events associated with flow. This appears to occur by the ability of macrophage LRP1 to reduce TGF-β2 protein levels and to attenuate expression of the TGF-β2 gene resulting in suppression of the TGF-β signaling pathway.
doi:10.1371/journal.pone.0028846
PMCID: PMC3235159  PMID: 22174911
8.  APP interacts with LRP4 and agrin to coordinate the development of the neuromuscular junction in mice 
eLife  2013;2:e00220.
ApoE, ApoE receptors and APP cooperate in the pathogenesis of Alzheimer’s disease. Intriguingly, the ApoE receptor LRP4 and APP are also required for normal formation and function of the neuromuscular junction (NMJ). In this study, we show that APP interacts with LRP4, an obligate co-receptor for muscle-specific tyrosine kinase (MuSK). Agrin, a ligand for LRP4, also binds to APP and co-operatively enhances the interaction of APP with LRP4. In cultured myotubes, APP synergistically increases agrin-induced acetylcholine receptor (AChR) clustering. Deletion of the transmembrane domain of LRP4 (LRP4 ECD) results in growth retardation of the NMJ, and these defects are markedly enhanced in APP−/−;LRP4ECD/ECD mice. Double mutant NMJs are significantly reduced in size and number, resulting in perinatal lethality. Our findings reveal novel roles for APP in regulating neuromuscular synapse formation through hetero-oligomeric interaction with LRP4 and agrin and thereby provide new insights into the molecular mechanisms that govern NMJ formation and maintenance.
DOI: http://dx.doi.org/10.7554/eLife.00220.001
eLife digest
One of the hallmarks of Alzheimer’s disease is the formation of plaques in the brain by a protein called β-amyloid. This protein is generated by the cleavage of a precursor protein, and mutations in the gene that encodes amyloid precursor protein greatly increase the risk of developing a familial, early-onset form of Alzheimer’s disease in middle age. Individuals with a particular variant of a lipoprotein called ApoE (ApoE4) are also more likely to develop Alzheimer’s disease at a younger age than the rest of the population. Due to its prevalence—approximately 20% of the world’s population are carriers of at least one allele—ApoE4 is the single-most important risk factor for the late-onset form of Alzheimer’s disease.
Amyloid precursor protein and the receptors for ApoE—in particular one called LRP4—are also essential for the development of the specialized synapse that forms between motor neurons and muscles. However, the mechanisms by which they, individually or together, contribute to the formation of these neuromuscular junctions are incompletely understood.
Now, Choi et al. have shown that amyloid precursor protein and LRP4 interact at the developing neuromuscular junction. A protein called agrin, which is produced by motor neurons and which must bind to LRP4 to induce neuromuscular junction formation, also binds directly to amyloid precursor protein. This latter interaction leads to the formation of a complex between LRP4 and amyloid precursor protein that robustly promotes the formation of the neuromuscular junction. Mutations that remove the part of LRP4 that anchors it to the cell membrane weaken this complex and thus reduce the development of neuromuscular junctions in mice, especially if the animals also lack amyloid precursor protein.
These three proteins thus seem to influence the development and maintenance of neuromuscular junctions by regulating the activity of a fourth protein, called MuSK, which is present on the surface of muscle cells. Activation of MuSK by agrin bound to LRP4 promotes the clustering of acetylcholine receptors in the membrane, which is a crucial step in the formation of the neuromuscular junction. Intriguingly, Choi et al. have now shown that amyloid precursor protein can, by interacting directly with LRP4, also activate MuSK even in the absence of agrin, albeit only to a small extent.
The work of Choi et al. suggests that the complex formed between agrin, amyloid precursor protein and LRP4 helps to focus the activation of MuSK, and thus the clustering of acetylcholine receptors, to the site of the developing neuromuscular junction. Since all four proteins are also found in the central nervous system, similar processes might well be at work during the development and maintenance of synapses in the brain. Further studies of these interactions, both at the neuromuscular junction and in the brain, should shed new light on both normal synapse formation and the synaptic dysfunction that is seen in Alzheimer’s disease.
DOI: http://dx.doi.org/10.7554/eLife.00220.002
doi:10.7554/eLife.00220
PMCID: PMC3748711  PMID: 23986861
neuromuscular synapse; neurodegeneration; nervous system development; Alzheimer's disease; LRP; ApoE; Mouse
9.  Lrp5 and Lrp6 play compensatory roles in mouse intestinal development 
Journal of cellular biochemistry  2012;113(1):31-38.
Low-density lipoprotein receptor–related proteins 5 and 6 (Lrp5 and Lrp6) are co-receptors of Wnt ligands and play important roles in Wnt/β-catenin signal transduction. Mice homozygous for a germline deletion of Lrp6 die at birth with several associated defects, while Lrp5-deficient mice are viable. Here we conditionally deleted Lrp5 and/or Lrp6 in the mouse gut (gut−/−) by crossing mice carrying floxed alleles of Lrp5 and Lrp6 to a strain expressing Cre recombinase from the villin promoter (villin-Cre). The changes in morphology, differentiation and Wnt signal transduction were validated using immunohistochemistry and other staining. Consistent with observations in mice carrying a homozygous germline deletion in Lrp5, intestinal development in Lrp5gut−/− mice was normal. In addition, mice homozygous for villin-Cre–induced deletion of Lrp6 (Lrp6gut−/−) were viable with apparently normal intestinal differentiation and function. However, mice homozygous for villin-Cre inactivated alleles of both genes (Lrp5gut−/−;Lrp6gut−/−) died within one day of birth. Analysis of embryonic Lrp5gut−/−;Lrp6gut−/− intestinal epithelium showed a progressive loss of cells, an absence of proliferation, and a premature differentiation of crypt stem/precursor cells; no notable change in differentiation was observed in the embryos lacking either gene alone. Further immunohistochemical studies showed that expression of the Wnt/β-catenin target, cyclin D1, was specifically reduced in the intestinal epithelium of Lrp5gut−/−;Lrp6gut−/− embryos. Our data demonstrate that Lrp5 and Lrp6 play redundant roles in intestinal epithelium development, and that Lrp5/6 might regulate intestinal stem/precursor cell maintenance by regulating Wnt/β-catenin signaling.
doi:10.1002/jcb.23324
PMCID: PMC3245350  PMID: 21866564
Lrp5; Lrp6; Wnt/β-catenin signaling; intestine; epithelium; embryonic development
10.  A model for familial exudative vitreoretinopathy caused by LPR5 mutations 
Human Molecular Genetics  2008;17(11):1605-1612.
We have identified a mouse recessive mutation that leads to attenuated and hyperpermeable retinal vessels, recapitulating some pathological features of familial exudative vitreoretinopathy (FEVR) in human patients. DNA sequencing reveals a single nucleotide insertion in the gene encoding the low-density lipoprotein receptor-related protein 5 (LRP5), causing a frame shift and resulting in the replacement of the C-terminal 39 amino acid residues by 20 new amino acids. This change eliminates the last three PPP(S/T)P repeats in the LRP5 cytoplasmic domain that are important for mediating Wnt/β-catenin signaling. Thus, mutant LRP5 protein is probably unable to mediate its downstream signaling. Immunostaining and three-dimensional reconstructions of retinal vasculature confirm attenuated retinal vessels. Ultrastructural data further reveal that some capillaries lack lumen structure in the mutant retina. We have also verified that LRP5 null mice develop similar alterations in the retinal vasculature. This study provides direct evidence that LRP5 is essential for the development of retinal vasculature, and suggests a novel role played by LRP5 in capillary maturation. LRP5 mutant mice can be a useful model to explore the clinical manifestations of FEVR.
doi:10.1093/hmg/ddn047
PMCID: PMC2902293  PMID: 18263894
11.  Mutations in Zebrafish lrp2 Result in Adult-Onset Ocular Pathogenesis That Models Myopia and Other Risk Factors for Glaucoma 
PLoS Genetics  2011;7(2):e1001310.
The glaucomas comprise a genetically complex group of retinal neuropathies that typically occur late in life and are characterized by progressive pathology of the optic nerve head and degeneration of retinal ganglion cells. In addition to age and family history, other significant risk factors for glaucoma include elevated intraocular pressure (IOP) and myopia. The complexity of glaucoma has made it difficult to model in animals, but also challenging to identify responsible genes. We have used zebrafish to identify a genetically complex, recessive mutant that shows risk factors for glaucoma including adult onset severe myopia, elevated IOP, and progressive retinal ganglion cell pathology. Positional cloning and analysis of a non-complementing allele indicated that non-sense mutations in low density lipoprotein receptor-related protein 2 (lrp2) underlie the mutant phenotype. Lrp2, previously named Megalin, functions as an endocytic receptor for a wide-variety of bioactive molecules including Sonic hedgehog, Bone morphogenic protein 4, retinol-binding protein, vitamin D-binding protein, and apolipoprotein E, among others. Detailed phenotype analyses indicated that as lrp2 mutant fish age, many individuals—but not all—develop high IOP and severe myopia with obviously enlarged eye globes. This results in retinal stretch and prolonged stress to retinal ganglion cells, which ultimately show signs of pathogenesis. Our studies implicate altered Lrp2-mediated homeostasis as important for myopia and other risk factors for glaucoma in humans and establish a new genetic model for further study of phenotypes associated with this disease.
Author Summary
Complex genetic inheritance, including variable penetrance and severity, underlies many common eye diseases. In this study, we present analysis of a zebrafish mutant, bugeye, which shows complex inheritance of multiple ocular phenotypes that are known risk factors for glaucoma, including high myopia, elevated intraocular pressure, and up-regulation of stress-response genes in retinal ganglion cells. Molecular genetic analysis revealed that mutations in low density lipoprotein receptor-related protein 2 (lrp2) underlie the mutant phenotypes. Lrp2 is a large transmembrane protein expressed in epithelia of the eye. It facilitates transport and clearance of multiple secreted bioactive factors through receptor-mediated endocytosis. Glaucoma, a progressive blinding disorder, usually presents in adulthood and is characterized by optic nerve damage followed by ganglion cell death. In bugeye/lrp2 mutants, ganglion cell death was significantly elevated, but surprisingly moderate, and therefore they do not model this endpoint of glaucoma. As such, bugeye/lrp2 mutants should be considered valuable as a genetic model (A) for buphthalmia, myopia, and regulated eye growth; (B) for identifying genes and pathways that modify the observed ocular phenotypes; and (C) for studying the initiation of retinal ganglion cell pathology in the context of high myopia and elevated intraocular pressure.
doi:10.1371/journal.pgen.1001310
PMCID: PMC3040661  PMID: 21379331
12.  LRP1 Regulates Architecture of the Vascular Wall by Controlling PDGFRβ-Dependent Phosphatidylinositol 3-Kinase Activation 
PLoS ONE  2009;4(9):e6922.
Background
Low density lipoprotein receptor-related protein 1 (LRP1) protects against atherosclerosis by regulating the activation of platelet-derived growth factor receptor β (PDGFRβ) in vascular smooth muscle cells (SMCs). Activated PDGFRβ undergoes tyrosine phosphorylation and subsequently interacts with various signaling molecules, including phosphatidylinositol 3-kinase (PI3K), which binds to the phosphorylated tyrosine 739/750 residues in mice, and thus regulates actin polymerization and cell movement.
Methods and Principal Findings
In this study, we found disorganized actin in the form of membrane ruffling and enhanced cell migration in LRP1-deficient (LRP1−/−) SMCs. Marfan syndrome-like phenotypes such as tortuous aortas, disrupted elastic layers and abnormally activated transforming growth factor β (TGFβ) signaling are present in smooth muscle-specific LRP1 knockout (smLRP1−/−) mice. To investigate the role of LRP1-regulated PI3K activation by PDGFRβ in atherogenesis, we generated a strain of smLRP1−/− mice in which tyrosine 739/750 of the PDGFRβ had been mutated to phenylalanines (PDGFRβ F2/F2). Spontaneous atherosclerosis was significantly reduced in the absence of hypercholesterolemia in these mice compared to smLRP1−/− animals that express wild type PDGFR. Normal actin organization was restored and spontaneous SMC migration as well as PDGF-BB-induced chemotaxis was dramatically reduced, despite continued overactivation of TGFβ signaling, as indicated by high levels of nuclear phospho-Smad2.
Conclusions and Significance
Our data suggest that LRP1 regulates actin organization and cell migration by controlling PDGFRβ-dependent activation of PI3K. TGFβ activation alone is not sufficient for the expression of the Marfan-like vascular phenotype. Thus, regulation of PI3 Kinase by PDGFRβ is essential for maintaining vascular integrity, and for the prevention of atherosclerosis as well as Marfan syndrome.
doi:10.1371/journal.pone.0006922
PMCID: PMC2734324  PMID: 19742316
13.  Immunohistochemical localization of low density lipoprotein receptor-related protein 1 and α2-Macroglobulin in retinal and choroidal tissue of proliferative retinopathies 
Experimental eye research  2010;91(2):264-272.
The immunolocalization of the low density lipoprotein receptor-related protein 1 (LRP1) and its ligand alpha 2-Macroglobulin (α2M) was examined in tissues from human donor eyes of normal, diabetic and sickle cell disease subjects. Streptavidin alkaline phosphatase immunohistochemistry was performed with a mouse anti-human LRP1 and rabbit anti-human α2M antibodies. Retinal and choroidal blood vessels were labeled with mouse anti-human CD34 antibody in adjacent tissue sections. Mean scores for immunostaining from the pathological and control eyes were statistically compared.
LRP1 immunoreactivity was very weak to negative in the neural retina of normal subjects except in scattered astrocytes. LRP1 expression in diabetic eyes was detected in the inner limiting membrane (ILM), astrocytes, inner photoreceptor matrix, choriocapillaris and choroidal stroma. The ligand α2M, however, was limited mainly to blood vessel walls, some areas of the inner nuclear layer (INL), photoreceptors, RPE-Bruch’s membrane–choriocapillaris complex, intercapillary septa, and choroidal stroma. In sickle cell eyes, avascular and vascular retina as well as choroidal neovascularization (CNV) were analyzed. In avascular areas, LRP1 immunoreactivity was in innermost retina (presumably ILM, astrocytes, and Muller cells) and INL as well as RPE–Bruch’s membrane–choriocapillaris complex and choroidal stroma. α2M was very weak in avascular peripheral retina compared to vascularized areas and limited to stroma in choroid. In contrast, in areas with CNV, LRP1 immunoreactivity was significantly decreased in overlying retina and in RPE–Bruch’s membrane and choroidal stroma compared to the controls, while α2M was elevated in RPE–Bruch’s membrane near CNV compared to normal areas in sickle cell choroid. The mean scores revealed that LRP1 and α2M in neural retina were significantly elevated in astrocytes and ILM in diabetic eyes (p ≤ 0.05), whereas in sickle cell eyes scores were elevated in ILM and INL (p ≤ 0.05). In addition, α2M immunoreactivity was in photoreceptors in both ischemic retinopathies. In choroid, the patterns of LRP1 and α2M expression were different and not coincident.
This is the first demonstration of the presence of LRP1 and α2M in human proliferative retinopathies. Elevated LRP1 expression in sickle cell neural retina and diabetic inner retina and choroid suggests that LRP1 plays an important role in ischemic neovascular diseases.
doi:10.1016/j.exer.2010.05.017
PMCID: PMC2907439  PMID: 20561980
α2-Macroglobulin; LRP1; Diabetes Mellitus; Sickle cell disease; Ischemia
14.  The deletion of Math5 disrupts retinal blood vessel and glial development in mice 
Experimental Eye Research  2011;96(1):147-156.
Retinal vascular development is a complex process that is not yet fully understood. The majority of research in this area has focused on astrocytes and the template they form in the inner retina, which precedes endothelial cells in the mouse retina. In humans and dogs, however, astrocyte migration follows behind development of blood vessels, suggesting that other cell types may guide this process. One such cell type is the ganglion cell, which differentiates before blood vessel formation and lies adjacent to the primary retinal vascular plexus. The present study investigated the potential role played by ganglion cells in vascular development using Math5−/− mice. It has previously been reported that Math5 regulates the differentiation of ganglion cells and Math5−/− mice have a 95% reduction in these cells. The development of blood vessels and glia was investigated using Griffonia simplicifolia isolectin B4 labeling and GFAP immunohistochemistry, respectively. JB-4 analysis demonstrated that the hyaloid vessels arose from choriovitreal vessels adjacent to the optic nerve area. As previously reported, Math5−/− mice had a rudimentary optic nerve. The primary retinal vessels did not develop post-natally in the Math5−/− mice, however, branches of the hyaloid vasculature eventually dove into the retina and formed the inner retinal capillary networks. An astrocyte template only formed in some areas of the Math5−/− retina. In addition, GFAP+ Müller cells were seen throughout the retina that had long processes wrapped around the hyaloid vessels. Transmission electron microscopy confirmed Müller cell abnormalities and revealed disruptions in the inner limiting membrane. The present data demonstrates that the loss of ganglion cells in the Math5−/− mice is associated with a lack of retinal vascular development.
doi:10.1016/j.exer.2011.12.005
PMCID: PMC3296879  PMID: 22200487
retina; angiogenesis; persistent fetal vasculature; Math5; ganglion cells
15.  The Wnt Co-Receptor Lrp6 Is Required for Normal Mouse Mammary Gland Development 
PLoS ONE  2009;4(6):e5813.
Canonical Wnt signals are transduced through a Frizzled receptor and either the LRP5 or LRP6 co-receptor; such signals play central roles during development and in disease. We have previously shown that Lrp5 is required for ductal stem cell activity and that loss of Lrp5 delays normal mammary development and Wnt1-induced tumorigenesis. Here we show that canonical Wnt signals through the Lrp6 co-receptor are also required for normal mouse mammary gland development. Loss of Lrp6 compromises Wnt/β-catenin signaling and interferes with mammary placode, fat pad, and branching development during embryogenesis. Heterozygosity for an inactivating mutation in Lrp6 is associated with a reduced number of terminal end buds and branches during postnatal development. While Lrp6 is expressed in both the basal and luminal mammary epithelium during embryogenesis, Lrp6 expression later becomes restricted to cells residing in the basal epithelial layer. Interestingly, these cells also express mammary stem cell markers. In humans, increased Lrp6 expression is associated with basal-like breast cancer. Taken together, our results suggest both overlapping and specific functions for Lrp5 and Lrp6 in the mammary gland.
doi:10.1371/journal.pone.0005813
PMCID: PMC2686096  PMID: 19503830
16.  AAV-Mediated, Optogenetic Ablation of Müller Glia Leads to Structural and Functional Changes in the Mouse Retina 
PLoS ONE  2013;8(9):e76075.
Müller glia, the primary glial cell in the retina, provide structural and metabolic support for neurons and are essential for retinal integrity. Müller cells are closely involved in many retinal degenerative diseases, including macular telangiectasia type 2, in which impairment of central vision may be linked to a primary defect in Müller glia. Here, we used an engineered, Müller-specific variant of AAV, called ShH10, to deliver a photo-inducibly toxic protein, KillerRed, to Müller cells in the mouse retina. We characterized the results of specific ablation of these cells on visual function and retinal structure. ShH10-KillerRed expression was obtained following intravitreal injection and eyes were then irradiated with green light to induce toxicity. Induction of KillerRed led to loss of Müller cells and a concomitant decrease of Müller cell markers glutamine synthetase and cellular retinaldehyde-binding protein, reduction of rhodopsin and cone opsin, and upregulation of glial fibrillary acidic protein. Loss of Müller cells also resulted in retinal disorganization, including thinning of the outer nuclear layer and the photoreceptor inner and outer segments. High resolution imaging of thin sections revealed displacement of photoreceptors from the ONL, formation of rosette-like structures and the presence of phagocytic cells. Furthermore, Müller cell ablation resulted in increased area and volume of retinal blood vessels, as well as the formation of tortuous blood vessels and vascular leakage. Electrophysiologic measures demonstrated reduced retinal function, evident in decreased photopic and scotopic electroretinogram amplitudes. These results show that loss of Müller cells can cause progressive retinal degenerative disease, and suggest that AAV delivery of an inducibly toxic protein in Müller cells may be useful to create large animal models of retinal dystrophies.
doi:10.1371/journal.pone.0076075
PMCID: PMC3785414  PMID: 24086689
17.  Low-Density Lipoprotein Receptor Related protein-1 (LRP1)-Dependent Cell Signaling Promotes Neurotrophic Activity in Embryonic Sensory Neurons 
PLoS ONE  2013;8(9):e75497.
Developing sensory neurons require neurotrophic support for survival, neurite outgrowth and myelination. The low-density lipoprotein receptor-related protein-1 (LRP1) transactivates Trk receptors and thereby functions as a putative neurotrophin. Herein, we show that LRP1 is abundantly expressed in developing dorsal root ganglia (DRG) and that LRP1-dependent cell signaling supports survival, neurite extension and receptivity to Schwann cells even in the absence of neurotrophins. Cultured embryonic DRG neurons (E15) were treated with previously characterized LRP1 ligands, LRP1-receptor binding domain of α2-macroglobulin (RBD), hemopexin domain of MMP-9 (PEX) or controls (GST) for two weeks. These structurally diverse LRP1 ligands significantly activated and sustained extracellular signal-regulated kinases (ERK1/2) 5-fold (p<0.05), increased expression of growth-associated protein-43(GAP43) 15-fold (P<0.01), and increased neurite outgrowth 20-fold (P<0.01). Primary sensory neurons treated with LRP1 ligands survived > 2 weeks in vitro, to an extent equaling NGF, a finding associated with canonical signaling mechanisms and blockade of caspase-3 cleavage. LRP1 ligand-induced survival and sprouting were blocked by co-incubation with the LRP1 antagonist, receptor associated protein (RAP), whereas RAP had no effect on NGF-induced activity. Site directed mutagenesis of the LRP1 ligand, RBD, in which Lys1370 and Lys1374 are converted to alanine to preclude LRP1 binding, were ineffective in promoting cell signaling, survival or inducing neurite extension in primary sensory neurons, confirming LRP1 specificity. Furthermore, LRP1-induced neurite sprouting was mediated by Src-family kinase (SFK) activation, suggesting transactivation of Trk receptors. Co-cultures of primary embryonic neurons and Schwann cells showed that LRP1 agonists promoted axonal receptivity to myelination to Schwann cells. Collectively, these findings identify LRP1 as a novel and perhaps essential trophic molecule for sensory neuronal survival and development.
doi:10.1371/journal.pone.0075497
PMCID: PMC3781060  PMID: 24086544
18.  CDC42 Is Required for Tissue Lamination and Cell Survival in the Mouse Retina 
PLoS ONE  2013;8(1):e53806.
The small GTPase CDC42 has pleiotropic functions during development and in the adult. These functions include intra- as well as intercellular tasks such as organization of the cytoskeleton and, at least in epithelial cells, formation of adherens junctions. To investigate CDC42 in the neuronal retina, we generated retina-specific Cdc42-knockdown mice (Cdc42-KD) and analyzed the ensuing consequences for the developing and postnatal retina. Lack of CDC42 affected organization of the developing retina as early as E17.5, prevented correct tissue lamination, and resulted in progressive retinal degeneration and severely reduced retinal function of the postnatal retina. Despite the disorganization of the retina, formation of the primary vascular plexus was not strongly affected. However, both deeper vascular plexi developed abnormally with no clear layering of the vessels. Retinas of Cdc42-KD mice showed increased expression of pro-survival, but also of pro-apoptotic and pro-inflammatory genes and exhibited prolonged Müller glia hypertrophy. Thus, functional CDC42 is important for correct tissue organization already during retinal development. Its absence leads to severe destabilization of the postnatal retina with strong degeneration and loss of retinal function.
doi:10.1371/journal.pone.0053806
PMCID: PMC3553133  PMID: 23372671
19.  LRP1 is critical for the surface distribution and internalization of the NR2B NMDA receptor subtype 
Background
The N-methyl-D-aspartate receptors are key mediators of excitatory transmission and are implicated in many forms of synaptic plasticity. These receptors are heterotetrameres consisting of two obligatory NR1 and two regulatory subunits, usually NR2A or NR2B. The NR2B subunits are abundant in the early postnatal brain, while the NR2A/NR2B ratio increases during early postnatal development. This shift is driven by NMDA receptor activity. A functional interplay of the Low Density Lipoprotein Receptor Related Protein 1 (LRP1) NMDA receptor has already been reported. Such abilities as interaction of LRP1 with NMDA receptor subunits or its important role in tPa-mediated NMDA receptor signaling were already demonstrated. Moreover, mice harboring a conditional neuronal knock-out mutation of the entire Lrp1 gene display NMDA-associated behavioral changes. However, the exact role of LRP1 on NMDA receptor function remains still elusive.
Results
To provide a mechanistic explanation for such effects we investigated whether an inactivating knock-in mutation into the NPxY2 motif of LRP1 might influence the cell surface expression of LRP1 and NMDA receptors in primary cortical neurons. Here we demonstrate that a knock-in into the NPxY2 motif of LRP1 results in an increased surface expression of LRP1 and NR2B NMDA receptor subunit due to reduced endocytosis rates of LRP1 and the NR2B subunit in primary neurons derived from LRP1ΔNPxY2 animals. Furthermore, we demonstrate an altered phosphorylation pattern of S1480 and Y1472 in the NR2B subunit at the surface of LRP1ΔNPxY2 neurons, while the respective kinases Fyn and casein kinase II are not differently regulated compared with wild type controls. Performing co-immunoprecipitation experiments we demonstrate that binding of LRP1 to NR2B might be linked by PSD95, is phosphorylation dependent and this regulation mechanism is impaired in LRP1ΔNPxY2 neurons. Finally, we demonstrate hyperactivity and changes in spatial and reversal learning in LRP1ΔNPxY2 mice, confirming the mechanistic interaction in a physiological readout.
Conclusions
In summary, our data demonstrate that LRP1 plays a critical role in the regulation of NR2B expression at the cell surface and may provide a mechanistic explanation for the behavioral abnormalities detected in neuronal LRP1 knock-out animals reported earlier.
doi:10.1186/1750-1326-8-25
PMCID: PMC3722104  PMID: 23866919
LRP1; NPxY2 motif; NMDA receptor; NR1; NR2B receptor subunit; PSD95; Cell surface expression
20.  Endothelial Expression of TGFβ Type II Receptor Is Required to Maintain Vascular Integrity during Postnatal Development of the Central Nervous System 
PLoS ONE  2012;7(6):e39336.
TGFβ signalling in endothelial cells is important for angiogenesis in early embryonic development, but little is known about its role in early postnatal life. To address this we used a tamoxifen inducible Cre-LoxP strategy in neonatal mice to deplete the TypeII TGFβ receptor (Tgfbr2) specifically in endothelial cells. This resulted in multiple micro-haemorrhages, and glomeruloid-like vascular tufts throughout the cerebral cortices and hypothalamus of the brain as well as in retinal tissues. A detailed examination of the retinal defects in these mutants revealed that endothelial adherens and tight junctions were in place, pericytes were recruited and there was no failure of vascular smooth muscle differentiation. However, the deeper retinal plexus failed to form in these mutants and the angiogenic sprouts stalled in their progress towards the inner nuclear layer. Instead the leading endothelial cells formed glomerular tufts with associated smooth muscle cells. This evidence suggests that TGFβ signalling is not required for vessel maturation, but is essential for the organised migration of endothelial cells as they begin to enter the deeper layers of the retina. Thus, TGFβ signalling is essential in vascular endothelial cells for maintaining vascular integrity at the angiogenic front as it migrates into developing neural tissues in early postnatal life.
doi:10.1371/journal.pone.0039336
PMCID: PMC3383742  PMID: 22745736
21.  Lipopolysaccharide impairs amyloid beta efflux from brain: altered vascular sequestration, cerebrospinal fluid reabsorption, peripheral clearance and transporter function at the blood–brain barrier 
Background
Defects in the low density lipoprotein receptor-related protein-1 (LRP-1) and p-glycoprotein (Pgp) clearance of amyloid beta (Aβ) from brain are thought to contribute to Alzheimer’s disease (AD). We have recently shown that induction of systemic inflammation by lipopolysaccharide (LPS) results in impaired efflux of Aβ from the brain. The same treatment also impairs Pgp function. Here, our aim is to determine which physiological routes of Aβ clearance are affected following systemic inflammation, including those relying on LRP-1 and Pgp function at the blood–brain barrier.
Methods
CD-1 mice aged between 6 and 8 weeks were treated with 3 intraperitoneal injections of 3 mg/kg LPS at 0, 6, and 24 hours and studied at 28 hours. 125I-Aβ1-42 or 125I-alpha-2-macroglobulin injected into the lateral ventricle of the brain (intracerebroventricular (ICV)) or into the jugular vein (intravenous (IV)) was used to quantify LRP-1-dependent partitioning between the brain vasculature and parenchyma and peripheral clearance, respectively. Disappearance of ICV-injected 14 C-inulin from brain was measured to quantify bulk flow of cerebrospinal fluid (CSF). Brain microvascular protein expression of LRP-1 and Pgp was measured by immunoblotting. Endothelial cell localization of LRP-1 was measured by immunofluorescence microscopy. Oxidative modifications to LRP-1 at the brain microvasculature were measured by immunoprecipitation of LRP-1 followed by immunoblotting for 4-hydroxynonenal and 3-nitrotyrosine.
Results
We found that LPS: caused an LRP-1-dependent redistribution of ICV-injected Aβ from brain parenchyma to brain vasculature and decreased entry into blood; impaired peripheral clearance of IV-injected Aβ; inhibited reabsorption of CSF; did not significantly alter brain microvascular protein levels of LRP-1 or Pgp, or oxidative modifications to LRP-1; and downregulated LRP-1 protein levels and caused LRP-1 mislocalization in cultured brain endothelial cells.
Conclusions
These results suggest that LRP-1 undergoes complex functional regulation following systemic inflammation which may depend on cell type, subcellular location, and post-translational modifications. Our findings that systemic inflammation causes deficits in both Aβ transport and bulk flow like those observed in AD indicate that inflammation could induce and promote the disease.
doi:10.1186/1742-2094-9-150
PMCID: PMC3410805  PMID: 22747709
Alzheimer’s disease; amyloid beta; blood–brain barrier; inflammation; lipopolysaccharide; LRP1; Pgp; ABCB1; MDR1; cerebrospinal fluid
22.  Lrp5 and Lrp6 Exert Overlapping Functions in Osteoblasts during Postnatal Bone Acquisition 
PLoS ONE  2013;8(5):e63323.
The canonical Wnt signaling pathway is critical for skeletal development and maintenance, but the precise roles of the individual Wnt co-receptors, Lrp5 and Lrp6, that enable Wnt signals to be transmitted in osteoblasts remain controversial. In these studies, we used Cre-loxP recombination, in which Cre-expression is driven by the human osteocalcin promoter, to determine the individual contributions of Lrp5 and Lrp6 in postnatal bone acquisition and osteoblast function. Mice selectively lacking either Lrp5 or Lrp6 in mature osteoblasts were born at the expected Mendelian frequency but demonstrated significant reductions in whole-body bone mineral density. Bone architecture measured by microCT revealed that Lrp6 mutant mice failed to accumulate normal amounts of trabecular bone. By contrast, Lrp5 mutants had normal trabecular bone volume at 8 weeks of age, but with age, these mice also exhibited trabecular bone loss. Both mutants also exhibited significant alterations in cortical bone structure. In vitro differentiation was impaired in both Lrp5 and Lrp6 null osteoblasts as indexed by alkaline phosphatase and Alizarin red staining, but the defect was more pronounced in Lrp6 mutant cells. Mice lacking both Wnt co-receptors developed severe osteopenia similar to that observed previously in mice lacking β-catenin in osteoblasts. Likewise, calvarial cells doubly deficient for Lrp5 and Lrp6 failed to form osteoblasts when cultured in osteogenic media, but instead attained a chondrocyte-like phenotype. These results indicate that expression of both Lrp5 and Lrp6 are required within mature osteoblasts for normal postnatal bone development.
doi:10.1371/journal.pone.0063323
PMCID: PMC3651091  PMID: 23675479
23.  Lrp4, a Novel Receptor for Dickkopf 1 and Sclerostin, Is Expressed by Osteoblasts and Regulates Bone Growth and Turnover In Vivo 
PLoS ONE  2009;4(11):e7930.
Lrp4 is a multifunctional member of the low density lipoprotein-receptor gene family and a modulator of extracellular cell signaling pathways in development. For example, Lrp4 binds Wise, a secreted Wnt modulator and BMP antagonist. Lrp4 shares structural elements within the extracellular ligand binding domain with Lrp5 and Lrp6, two established Wnt co-receptors with important roles in osteogenesis. Sclerostin is a potent osteocyte secreted inhibitor of bone formation that directly binds Lrp5 and Lrp6 and modulates both BMP and Wnt signaling. The anti-osteogenic effect of sclerostin is thought to be mediated mainly by inhibition of Wnt signaling through Lrp5/6 within osteoblasts. Dickkopf1 (Dkk1) is another potent soluble Wnt inhibitor that binds to Lrp5 and Lrp6, can displace Lrp5-bound sclerostin and is itself regulated by BMPs. In a recent genome-wide association study of bone mineral density a significant modifier locus was detected near the SOST gene at 17q21, which encodes sclerostin. In addition, nonsynonymous SNPs in the LRP4 gene were suggestively associated with bone mineral density. Here we show that Lrp4 is expressed in bone and cultured osteoblasts and binds Dkk1 and sclerostin in vitro. MicroCT analysis of Lrp4 deficient mutant mice revealed shortened total femur length, reduced cortical femoral perimeter, and reduced total femur bone mineral content (BMC) and bone mineral density (BMD). Lumbar spine trabecular bone volume per total volume (BV/TV) was significantly reduced in the mutants and the serum and urinary bone turnover markers alkaline phosphatase, osteocalcin and desoxypyridinoline were increased. We conclude that Lrp4 is a novel osteoblast expressed Dkk1 and sclerostin receptor with a physiological role in the regulation of bone growth and turnover, which is likely mediated through its function as an integrator of Wnt and BMP signaling pathways.
doi:10.1371/journal.pone.0007930
PMCID: PMC2775917  PMID: 19936252
24.  Ectodomains of the LDL Receptor-Related Proteins LRP1b and LRP4 Have Anchorage Independent Functions In Vivo 
PLoS ONE  2010;5(4):e9960.
Background
The low-density lipoprotein (LDL) receptor gene family is a highly conserved group of membrane receptors with diverse functions in developmental processes, lipoprotein trafficking, and cell signaling. The low-density lipoprotein (LDL) receptor-related protein 1b (LRP1B) was reported to be deleted in several types of human malignancies, including non-small cell lung cancer. Our group has previously reported that a distal extracellular truncation of murine Lrp1b that is predicted to secrete the entire intact extracellular domain (ECD) is fully viable with no apparent phenotype.
Methods and Principal Findings
Here, we have used a gene targeting approach to create two mouse lines carrying internally rearranged exons of Lrp1b that are predicted to truncate the protein closer to the N-terminus and to prevent normal trafficking through the secretary pathway. Both mutations result in early embryonic lethality, but, as expected from the restricted expression pattern of LRP1b in vivo, loss of Lrp1b does not cause cellular lethality as homozygous Lrp1b-deficient blastocysts can be propagated normally in culture. This is similar to findings for another LDL receptor family member, Lrp4. We provide in vitro evidence that Lrp4 undergoes regulated intramembraneous processing through metalloproteases and γ-secretase cleavage. We further demonstrate negative regulation of the Wnt signaling pathway by the soluble extracellular domain.
Conclusions and Significance
Our results underline a crucial role for Lrp1b in development. The expression in mice of truncated alleles of Lrp1b and Lrp4 with deletions of the transmembrane and intracellular domains leads to release of the extracellular domain into the extracellular space, which is sufficient to confer viability. In contrast, null mutations are embryonically (Lrp1b) or perinatally (Lrp4) lethal. These findings suggest that the extracellular domains of both proteins may function as a scavenger for signaling ligands or signal modulators in the extracellular space, thereby preserving signaling thresholds that are critical for embryonic development, as well as for the clear, but poorly understood role of LRP1b in cancer.
doi:10.1371/journal.pone.0009960
PMCID: PMC2850915  PMID: 20383322
25.  Extensive proteomic screening identifies the obesity-related NYGGF4 protein as a novel LRP1-interactor, showing reduced expression in early Alzheimer's disease 
Background
The low-density lipoprotein receptor related protein 1 (LRP1) has been implicated in Alzheimer's disease (AD) but its signalling has not been fully evaluated. There is good evidence that the cytoplasmic domain of LRP1 is involved in protein-protein interactions, important in the cell biology of LRP1.
Results
We carried out three yeast two-hybrid screens to identify proteins that interact with the cytoplasmic domain of LRP1. The screens included both conventional screens as well as a novel, split-ubiquitin-based screen in which an LRP1 construct was expressed and screened as a transmembrane protein. The split-ubiquitin screen was validated in a screen using full-length amyloid protein precursor (APP), which successfully identified FE65 and FE65L2, as well as novel interactors (Rab3a, Napg, and ubiquitin b). Using both a conventional screen as well as the split-ubiquitin screen, we identified NYGGF4 as a novel LRP1 interactor. The interaction between LRP1 and NYGGF4 was validated using two-hybrid assays, coprecipitation and colocalization in mammalian cells. Mutation analysis demonstrated a specific interaction of NYGGF4 with an NPXY motif that required an intact tyrosine residue. Interestingly, while we confirmed that other LRP1 interactors we identified, including JIP1B and EB-1, were also able to bind to APP, NYGGF4 was unique in that it showed specific binding with LRP1. Expression of NYGGF4 decreased significantly in patients with AD as compared to age-matched controls, and showed decreasing expression with AD disease progression. Examination of Nyggf4 expression in mice with different alleles of the human APOE4 gene showed significant differences in Nyggf4 expression.
Conclusions
These results implicate NYGGF4 as a novel and specific interactor of LRP1. Decreased expression of LRP1 and NYGGF4 over disease, evident with the presence of even moderate numbers of neuritic plaques, suggests that LRP1-NYGGF4 is a system altered early in disease. Genetic and functional studies have implicated both LRP1 and NYGGF4 in obesity and cardiovascular disease and the physical association of these proteins may reflect a common mechanism. This is particularly interesting in light of the dual role of ApoE in both cardiovascular risk and AD. The results support further studies on the functional relationship between NYGGF4 and LRP1.
doi:10.1186/1750-1326-5-1
PMCID: PMC2823744  PMID: 20205790

Results 1-25 (1098740)