PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (9511)

Clipboard (0)
None

Related Articles

1.  Halococcus qingdaonensis sp. nov., a halophilic archaeon isolated from a crude sea-salt sample 
A Gram-negative, extremely halophilic, coccoid archaeal strain, CM5T, was isolated from a crude sea-salt sample collected near Qingdao, China. The organism grew optimally at 35–40 °C and pH 6.0 in the presence of 20 % (w/v) NaCl. Its colonies were red in colour and it could use glucose as a sole carbon source for growth. The 16S rRNA gene sequence of CM5T was most closely related to those of Halococcus species. Its pattern of antibiotic susceptibility was similar to those of other described Halococcus species. Biochemical tests revealed no sign of H2S production or gelatin liquefaction. The main polar lipids of strain CM5T were phosphatidylglycerol, phosphatidylglycerol methylphosphate and sulfated diglycosyl diether. No phosphatidylglycerol sulfate was present. The DNA G+C content of strain CM5T was 61.2 mol% and it gave DNA–DNA reassociation values of 33.7, 57.1 and 29.6 %, respectively, with Halococcus salifodinae DSM 8989T, Halococcus dombrowskii DSM 14522T and Halococcus morrhuae ATCC 17082T. Based on its morphological and chemotaxonomic properties and phylogenetic analysis of 16S rRNA gene sequence data, we propose that CM5T should be classified within a novel species, Halococcus qingdaonensis sp. nov., with strain CM5T (=CGMCC 1.4243T=JCM 13587T) as the type strain.
doi:10.1099/ijs.0.64673-0
PMCID: PMC3182530  PMID: 17329792
2.  Investigating the Effects of Simulated Martian Ultraviolet Radiation on Halococcus dombrowskii and Other Extremely Halophilic Archaebacteria 
Astrobiology  2009;9(1):104-112.
The isolation of viable extremely halophilic archaea from 250-million-year-old rock salt suggests the possibility of their long-term survival under desiccation. Since halite has been found on Mars and in meteorites, haloarchaeal survival of martian surface conditions is being explored. Halococcus dombrowskii H4 DSM 14522T was exposed to UV doses over a wavelength range of 200–400 nm to simulate martian UV flux. Cells embedded in a thin layer of laboratory-grown halite were found to accumulate preferentially within fluid inclusions. Survival was assessed by staining with the LIVE/DEAD kit dyes, determining colony-forming units, and using growth tests. Halite-embedded cells showed no loss of viability after exposure to about 21 kJ/m2, and they resumed growth in liquid medium with lag phases of 12 days or more after exposure up to 148 kJ/m2. The estimated D37 (dose of 37 % survival) for Hcc. dombrowskii was ≥ 400 kJ/m2. However, exposure of cells to UV flux while in liquid culture reduced D37 by 2 orders of magnitude (to about 1 kJ/m2); similar results were obtained with Halobacterium salinarum NRC-1 and Haloarcula japonica. The absorption of incoming light of shorter wavelength by color centers resulting from defects in the halite crystal structure likely contributed to these results. Under natural conditions, haloarchaeal cells become embedded in salt upon evaporation; therefore, dispersal of potential microscopic life within small crystals, perhaps in dust, on the surface of Mars could resist damage by UV radiation.
doi:10.1089/ast.2007.0234
PMCID: PMC3182532  PMID: 19215203
Halococcus dombrowskii; Simulated martian UV radiation; LIVE/DEAD staining; Halite fluid inclusions; UV transmittance and reflectance; Desiccation
3.  Properties of Halococcus salifodinae, an Isolate from Permian Rock Salt Deposits, Compared with Halococci from Surface Waters 
Life : Open Access Journal  2013;3(1):244-259.
Halococcus salifodinae BIpT DSM 8989T, an extremely halophilic archaeal isolate from an Austrian salt deposit (Bad Ischl), whose origin was dated to the Permian period, was described in 1994. Subsequently, several strains of the species have been isolated, some from similar but geographically separated salt deposits. Hcc. salifodinae may be regarded as one of the most ancient culturable species which existed already about 250 million years ago. Since its habitat probably did not change during this long period, its properties were presumably not subjected to the needs of mutational adaptation. Hcc. salifodinae and other isolates from ancient deposits would be suitable candidates for testing hypotheses on prokaryotic evolution, such as the molecular clock concept, or the net-like history of genome evolution. A comparison of available taxonomic characteristics from strains of Hcc. salifodinae and other Halococcus species, most of them originating from surface waters, is presented. The cell wall polymer of Hcc. salifodinae was examined and found to be a heteropolysaccharide, similar to that of Hcc. morrhuae. Polyhydroxyalkanoate granules were present in Hcc. salifodinae, suggesting a possible lateral gene transfer before Permian times.
doi:10.3390/life3010244
PMCID: PMC4187196  PMID: 25371342
Halococcus species; Halococcus salifodinae; haloarchaea; Permian salt deposit; cell wall polymer; polyhydroxyalkanoate; prokaryotic evolution
4.  Biochemical and molecular characterization of the Pseudomonas lemoignei polyhydroxyalkanoate depolymerase system. 
Journal of Bacteriology  1995;177(3):596-607.
Pseudomonas lemoignei has five different polyhydroxyalkanoate (PHA) depolymerase genes (phaZ1 to phaZ5), which encode the extracellularly localized poly(3-hydroxybutyrate) (PHB) depolymerases C, B, and D, poly(3-hydroxyvalerate) (PHV) depolymerase, and PHB depolymerase A, respectively. Four of the five genes (phaZ1 to phaZ4) have been cloned, and one of them (phaZ1) was studied in detail earlier (D. Jendrossek, B. Müller, and H. G. Schlegel, Eur. J. Biochem. 218:701-710, 1993). The fifth PHA depolymerase gene (phaZ5) was identified by colony hybridization of recombinant Escherichia coli clones with a phaZ5-specific oligonucleotide. The nucleotide sequence of a 3,704-bp EcoRI fragment was determined and found to contain two large open reading frames (ORFs) which coded for a polypeptide with significant similarities to glycerol-3-phosphate dehydrogenases of various sources (313 amino acids; M(r), 32,193) and for the precursor of PHB depolymerase A (PhaZ5; 433 amino acids; M(r), 44,906). The PHV depolymerase gene (phaZ4) was subcloned, and the nucleotide sequence of a 3,109-bp BamHI fragment was determined. Two large ORFs (ORF3 and ORF4) that represent putative coding regions were identified. The deduced amino acid sequence of ORF3 (134 amino acids; M(r), 14,686) revealed significant similarities to the branched-chain amino acid aminotransferase (IlfE) of enterobacteria. ORF4 (1,712 bp) was identified as the precursor of a PHV depolymerase (567 amino acids; M(r), 59,947). Analysis of primary structures of the five PHA depolymerases of P. lemoignei and of the PHB depolymerases of Alcaligenes faecalis and Pseudomonas pickettii revealed homologies of 25 to 83% to each other and a domain structure: at their N termini, they have typical signal peptides of exoenzymes. The adjacent catalytic domains are characterized by several conserved amino acids that constitute putative catalytic triads which consist of the consensus sequence of serine-dependent hydrolases including the pentapeptide G-X-S-X-G, a conserved histidine and aspartate, and a conserved region resembling the oxyanion hole of lipases. C terminal of the catalytic domain an approximately 40-amino-acid-long threonine-rich region (22 to 27 threonine residues) is present in PhaZ1, PhaZ2, PhaZ3, and PhaZ5. Instead of the threonine-rich region PhaZ4 and the PHB depolymerases of A. faecalis and P. pickettii contain an approximately 90-amino-acid-long sequence resembling the fibronectin type III module of eucaryotic extracellular matrix proteins. The function of the fibronectin type III module in PHA depolymerases remains obscure. Two types of C-terminal sequences apparently represent substrate-binding sites; the PHB type is present in the PHB depolymerases of A. faecalis and P. pickettii and in PhaZ2, PhaZ3, and PhaZ5 and the PHV type is present in the PHV-hydrolyzing depolymerases (PhaZ4 and PhaZ1). phaZ1 was transferred to A. eutrophus H16 and JMP222. All transconjugants of both strains were able to grow with extracellular PHB as a carbon source and produced translucent halos on PHB-containing solid media. PhaZ1, PhaZ2, PhaZ4, and PhaZ5 were purified from P. lemoignei and from recombinant E. coli; the processing sites of the precursors in E. coli were the same as in P. lemoignei, and similar substrate specificities were determined for the wild-type and the recombinant proteins. All PHA depolymerases hydrolyzed PHB at high specific activities. PhaZ1 and PhaZ4 additionally cleaved PHV, and PhaZ4 hydrolyzed poly(4-hydroxybutyrate). None of the depolymerases was able to hydrolyze polyactide or PHA consisting of monomers with more than five carbon atoms. While the wild-type depolymerase proteins were glycosylated and found to contain glucose and N-acetylglucosamine, none of the recombinant proteins was glycosylated. PHB hydrolysis was dependent on divalent cations such as Ca2+ and was inhibited by the presence of EDTA.
PMCID: PMC176633  PMID: 7836292
5.  Wide Distribution among Halophilic Archaea of a Novel Polyhydroxyalkanoate Synthase Subtype with Homology to Bacterial Type III Synthases▿ †  
Applied and Environmental Microbiology  2010;76(23):7811-7819.
Polyhydroxyalkanoates (PHAs) are accumulated as intracellular carbon and energy storage polymers by various bacteria and a few haloarchaea. In this study, 28 strains belonging to 15 genera in the family Halobacteriaceae were investigated with respect to their ability to synthesize PHAs and the types of their PHA synthases. Fermentation results showed that 18 strains from 12 genera could synthesize polyhydroxybutyrate (PHB) or poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). For most of these haloarchaea, selected regions of the phaE and phaC genes encoding PHA synthases (type III) were cloned via PCR with consensus-degenerate hybrid oligonucleotide primers (CODEHOPs) and were sequenced. The PHA synthases were also examined by Western blotting using haloarchaeal Haloarcula marismortui PhaC (PhaCHm) antisera. Phylogenetic analysis showed that the type III PHA synthases from species of the Halobacteriaceae and the Bacteria domain clustered separately. Comparison of their amino acid sequences revealed that haloarchaeal PHA synthases differed greatly in both molecular weight and certain conserved motifs. The longer C terminus of haloarchaeal PhaC was found to be indispensable for its enzymatic activity, and two additional amino acid residues (C143 and C190) of PhaCHm were proved to be important for its in vivo function. Thus, we conclude that a novel subtype (IIIA) of type III PHA synthase with unique features that distinguish it from the bacterial subtype (IIIB) is widely distributed in haloarchaea and appears to be involved in PHA biosynthesis.
doi:10.1128/AEM.01117-10
PMCID: PMC2988587  PMID: 20889776
6.  Revelation of the ability of Burkholderia sp. USM (JCM 15050) PHA synthase to polymerize 4-hydroxybutyrate monomer 
AMB Express  2012;2:41.
The nutrition-versatility of Burkholderia sp. strain USM (JCM 15050) has initiated the studies on the use of this bacterium for polyhydroxyalkanoate (PHA) production. To date, the Burkholderia sp. has been reported to synthesize 3-hydroxybutyrate, 3-hydroxyvalerate and 3-hydroxy-4-methylvalerate monomers. In this study, the PHA biosynthetic genes of this strain were successfully cloned and characterized. The PHA biosynthetic cluster of this strain consisted of a PHA synthase (phaC), β-ketothiolase (phaA), acetoacetyl-CoA reductase (phaB) and PHA synthesis regulator (phaR). The translated products of these genes revealed identities to corresponding proteins of Burkholderia vietnamiensis (99–100 %) and Cupriavidus necator H16 (63–89%). Heterologous expression of phaCBs conferred PHA synthesis to the PHA-negative Cupriavidus necator PHB¯4, confirming that phaCBs encoded functionally active protein. PHA synthase activity measurements revealed that the crude extracts of C. necator PHB¯4 transformant showed higher synthase activity (243 U/g) compared to that of wild-types Burkholderia sp. (151 U/g) and C. necator H16 (180 U/g). Interestingly, the transformant C. necator PHB¯4 harbouring Burkholderia sp. PHA synthase gene accumulated poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with 4-hydroxybutyrate monomer as high as up to 87 mol% from sodium 4-hydroxybutyrate. The wild type Burkholderia sp. did not have the ability to produce this copolymer.
doi:10.1186/2191-0855-2-41
PMCID: PMC3434029  PMID: 22877240
Biopolymer; Polyhydroxyalkanoate; PHA synthase; PHA operon; Burkholderia sp.
7.  Cloning and Molecular Analysis of the Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) Biosynthesis Genes in Pseudomonas sp. Strain 61-3 
Journal of Bacteriology  1998;180(24):6459-6467.
Two types of polyhydroxyalkanoate (PHA) biosynthesis gene loci (phb and pha) of Pseudomonas sp. strain 61-3, which produces a blend of poly(3-hydroxybutyrate) [P(3HB)] homopolymer and a random copolymer {poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) [P(3HB-co-3HA]} consisting of 3HA units of 4 to 12 carbon atoms, were cloned and analyzed at the molecular level. In the phb locus, three open reading frames encoding polyhydroxybutyrate (PHB) synthase (PhbCPs), β-ketothiolase (PhbAPs), and NADPH-dependent acetoacetyl coenzyme A reductase (PhbBPs) were found. The genetic organization showed a putative promoter region, followed by phbBPs-phbAPs-phbCPs. Upstream from phbBPs was found the phbRPs gene, which exhibits significant similarity to members of the AraC/XylS family of transcriptional activators. The phbRPs gene was found to be transcribed in the opposite direction from the three structural genes. Cloning of phbRPs in a relatively high-copy vector in Pseudomonas sp. strain 61-3 elevated the levels of β-galactosidase activity from a transcriptional phb promoter-lacZ fusion and also enhanced the 3HB fraction in the polyesters synthesized by this strain, suggesting that PhbRPs is a positive regulatory protein controlling the transcription of phbBACPs in this bacterium. In the pha locus, two genes encoding PHA synthases (PhaC1Ps and PhaC2Ps) were flanked by a PHA depolymerase gene (phaZPs), and two adjacent open reading frames (ORF1 and phaDPs), and the gene order was ORF1, phaC1Ps, phaZPs, phaC2Ps, and phaDPs. Heterologous expression of the cloned fragments in PHA-negative mutants of Pseudomonas putida and Ralstonia eutropha revealed that PHB synthase and two PHA synthases of Pseudomonas sp. strain 61-3 were specific for short chain length and both short and medium chain length 3HA units, respectively.
PMCID: PMC107745  PMID: 9851987
8.  Culturable halophilic archaea at the initial and crystallization stages of salt production in a natural solar saltern of Goa, India 
Aquatic Biosystems  2012;8:15.
Background
Goa is a coastal state in India and salt making is being practiced for many years. This investigation aimed in determining the culturable haloarchaeal diversity during two different phases of salt production in a natural solar saltern of Ribandar, Goa. Water and sediment samples were collected from the saltern during pre-salt harvesting phase and salt harvesting phase. Salinity and pH of the sampling site was determined. Isolates were obtained by plating of the samples on complex and synthetic haloarchaeal media. Morphology of the isolates was determined using Gram staining and electron microscopy. Response of cells to distilled water was studied spectrophotometrically at 600nm. Molecular identification of the isolates was performed by sequencing the 16S rRNA.
Results
Salinity of salt pans varied from 3-4% (non-salt production phase) to 30% (salt production phase) and pH varied from 7.0-8.0. Seven haloarchaeal strains were isolated from water and sediment samples during non-salt production phase and seventeen haloarchaeal strains were isolated during the salt production phase. All the strains stained uniformly Gram negative. The orange-red acetone extract of the pigments showed similar spectrophotometric profile with absorption maxima at 393, 474, 501 and 535 nm. All isolates obtained from the salt dilute phase were grouped within the genus Halococcus. This was validated using both total lipid profiling and 16S rRNA data sequencing. The isolates obtained from pre-salt harvesting phase were resistant to lysis. 16S rRNA data showed that organisms belonging to Halorubrum, Haloarcula, Haloferax and Halococcus genera were obtained during the salt concentrated phase. The isolates obtained from salt harvesting phase showed varied lysis on suspension in distilled water and /or 3.5% NaCl.
Conclusion
Salterns in Goa are transiently operated during post monsoon season from January to May. During the pre-salt harvesting phase, all the isolates obtained belonged to Halococcus sp. During the salt harvesting phase, isolates belonging to Halorubrum, Haloarcula, Haloferax and Halococcus genera were obtained. This study clearly indicates that Halococcus sp. dominates during the low salinity conditions.
doi:10.1186/2046-9063-8-15
PMCID: PMC3444409  PMID: 22747590
Archaea; Haloarchaea; Hypersaline; Solar saltern
9.  The “Intracellular” Poly(3-Hydroxybutyrate) (PHB) Depolymerase of Rhodospirillum rubrum Is a Periplasm-Located Protein with Specificity for Native PHB and with Structural Similarity to Extracellular PHB Depolymerases†  
Journal of Bacteriology  2004;186(21):7243-7253.
Rhodospirillum rubrum possesses a putative intracellular poly(3-hydroxybutyrate) (PHB) depolymerase system consisting of a soluble PHB depolymerase, a heat-stable activator, and a 3-hydroxybutyrate dimer hydrolase (J. M. Merrick and M. Doudoroff, J. Bacteriol. 88:60-71, 1964). In this study we reinvestigated the soluble R. rubrum PHB depolymerase (PhaZ1). It turned out that PhaZ1 is a novel type of PHB depolymerase with unique properties. Purified PhaZ1 was specific for amorphous short-chain-length polyhydroxyalkanoates (PHA) such as native PHB, artificial PHB, and oligomer esters of (R)-3-hydroxybutyrate with 3 or more 3-hydroxybutyrate units. Atactic PHB, (S)-3-hydroxybutyrate oligomers, medium-chain-length PHA, and lipase substrates (triolein, tributyrin) were not hydrolyzed. The PHB depolymerase structural gene (phaZ1) was cloned. Its deduced amino acid sequence (37,704 Da) had no significant similarity to those of intracellular PHB depolymerases of Wautersia eutropha or of other PHB-accumulating bacteria. PhaZ1 was found to have strong amino acid homology with type-II catalytic domains of extracellular PHB depolymerases, and Ser42, Asp138, and His178 were identified as catalytic-triad amino acids, with Ser42 as the putative active site. Surprisingly, the first 23 amino acids of the PHB depolymerase previously assumed to be intracellular revealed features of classical signal peptides, and Edman sequencing of purified PhaZ1 confirmed the functionality of the predicted cleavage site. Extracellular PHB depolymerase activity was absent, and analysis of cell fractions unequivocally showed that PhaZ1 is a periplasm-located enzyme. The previously assumed intracellular activator/depolymerase system is unlikely to have a physiological function in PHB mobilization in vivo. A second gene, encoding the putative true intracellular PHB depolymerase (PhaZ2), was identified in the genome sequence of R. rubrum.
doi:10.1128/JB.186.21.7243-7253.2004
PMCID: PMC523223  PMID: 15489436
10.  Molecular Characterization of the phaECHm Genes, Required for Biosynthesis of Poly(3-Hydroxybutyrate) in the Extremely Halophilic Archaeon Haloarcula marismortui▿  
Applied and Environmental Microbiology  2007;73(19):6058-6065.
Although many haloarchaea produce biodegradable polyhydroxyalkanoates (PHAs), the genes involved in PHA synthesis in the domain of Archaea have not yet been experimentally investigated yet. In this study, we revealed that Haloarcula marismortui was able to accumulate poly(3-hydroxybutyrate) (PHB) up to 21% of cellular dry weight when cultured in a minimal medium with excessive glucose and identified the phaEHm and phaCHm genes, probably encoding two subunits of a class III PHA synthase. These two genes were adjacent and directed by a single promoter located 26 bp upstream of the transcriptional start site and were constitutively expressed under both nutrient-rich and -limited conditions. Interestingly, PhaCHm was revealed to be strongly bound with the PHB granules, but PhaEHm seemed not to be. Introduction of either the phaEHm or phaCHm gene into Haloarcula hispanica, which harbors highly homologous phaECHh genes, could enhance the PHB synthesis in the recombinant strains, while coexpression of the both genes always generated the highest PHB yield. Significantly, knockout of the phaECHh genes in H. hispanica led to a complete loss of the PHA synthase activity. Complementation with phaECHm genes, but not a single one, restored the capability of PHB accumulation as well as the PHA synthase activity in this phaEC-deleted haloarchaeon. These results indicated that the phaEC genes are required for biosynthesis of PHB and might encode an active PHA synthase in the Haloarcula species.
doi:10.1128/AEM.00953-07
PMCID: PMC2075026  PMID: 17675423
11.  Poly(3-Hydroxyvalerate) Depolymerase of Pseudomonas lemoignei 
Pseudomonas lemoignei is equipped with at least five polyhydroxyalkanoate (PHA) depolymerase structural genes (phaZ1 to phaZ5) which enable the bacterium to utilize extracellular poly(3-hydroxybutyrate) (PHB), poly(3-hydroxyvalerate) (PHV), and related polyesters consisting of short-chain-length hxdroxyalkanoates (PHASCL) as the sole sources of carbon and energy. Four genes (phaZ1, phaZ2, phaZ3, and phaZ5) encode PHB depolymerases C, B, D, and A, respectively. It was speculated that the remaining gene, phaZ4, encodes the PHV depolymerase (D. Jendrossek, A. Frisse, A. Behrends, M. Andermann, H. D. Kratzin, T. Stanislawski, and H. G. Schlegel, J. Bacteriol. 177:596–607, 1995). However, in this study, we show that phaZ4 codes for another PHB depolymeraes (i) by disagreement of 5 out of 41 amino acids that had been determined by Edman degradation of the PHV depolymerase and of four endoproteinase GluC-generated internal peptides with the DNA-deduced sequence of phaZ4, (ii) by the lack of immunological reaction of purified recombinant PhaZ4 with PHV depolymerase-specific antibodies, and (iii) by the low activity of the PhaZ4 depolymerase with PHV as a substrate. The true PHV depolymerase-encoding structural gene, phaZ6, was identified by screening a genomic library of P. lemoignei in Escherichia coli for clearing zone formation on PHV agar. The DNA sequence of phaZ6 contained all 41 amino acids of the GluC-generated peptide fragments of the PHV depolymerase. PhaZ6 was expressed and purified from recombinant E. coli and showed immunological identity to the wild-type PHV depolymerase and had high specific activities with PHB and PHV as substrates. To our knowledge, this is the first report on a PHASCL depolymerase gene that is expressed during growth on PHV or odd-numbered carbon sources and that encodes a protein with high PHV depolymerase activity. Amino acid analysis revealed that PhaZ6 (relative molecular mass [Mr], 43,610 Da) resembles precursors of other extracellular PHASCL depolymerases (28 to 50% identical amino acids). The mature protein (Mr, 41,048) is composed of (i) a large catalytic domain including a catalytic triad of S136, D211, and H269 similar to serine hydrolases; (ii) a linker region highly enriched in threonine residues and other amino acids with hydroxylated or small side chains (Thr-rich region); and (iii) a C-terminal domain similar in sequence to the substrate-binding domain of PHASCL depolymerases. Differences in the codon usage of phaZ6 for some codons from the average codon usage of P. lemoignei indicated that phaZ6 might be derived from other organisms by gene transfer. Multialignment of separate domains of bacterial PHASCL depolymerases suggested that not only complete depolymerase genes but also individual domains might have been exchanged between bacteria during evolution of PHASCL depolymerases.
PMCID: PMC91997  PMID: 10742216
12.  Production of copolyesters of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by E. coli containing an optimized PHA synthase gene 
Background
Microbial polyhydroxyalkanoates (PHA) are biopolyesters consisting of diverse monomers. PHA synthase PhaC2Ps cloned from Pseudomonas stutzeri 1317 is able to polymerize short-chain-length (scl) 3-hydroxybutyrate (3HB) monomers and medium-chain-length (mcl) 3-hydroxyalkanoates (3HA) with carbon chain lengths ranging from C6 to C12. However, the scl and mcl PHA production in Escherichia coli expressing PhaC2Ps is limited with very low PHA yield.
Results
To improve the production of PHA with a wide range of monomer compositions in E. coli, a series of optimization strategies were applied on the PHA synthase PhaC2Ps. Codon optimization of the gene and mRNA stabilization with a hairpin structure were conducted and the function of the optimized PHA synthase was tested in E. coli. The transcript was more stable after the hairpin structure was introduced, and western blot analysis showed that both codon optimization and hairpin introduction increased the protein expression level. Compared with the wild type PhaC2Ps, the optimized PhaC2Ps increased poly-3-hydroxybutyrate (PHB) production by approximately 16-fold to 30% of the cell dry weight. When grown on dodecanoate, the recombinant E. coli harboring the optimized gene phaC2PsO with a hairpin structure in the 5’ untranslated region was able to synthesize 4-fold more PHA consisting of 3HB and medium-chain-length 3HA compared to the recombinant harboring the wild type phaC2Ps.
Conclusions
The levels of both PHB and scl-mcl PHA in E. coli were significantly increased by series of optimization strategies applied on PHA synthase PhaC2Ps. These results indicate that strategies including codon optimization and mRNA stabilization are useful for heterologous PHA synthase expression and therefore enhance PHA production.
doi:10.1186/1475-2859-11-130
PMCID: PMC3503839  PMID: 22978778
PHB; Polyhydroxyalkanoates; PHA synthase; Codon optimization; Hairpin; Escherichia coli
13.  Comparison of four phaC genes from Haloferax mediterranei and their function in different PHBV copolymer biosyntheses in Haloarcula hispanica 
Saline Systems  2010;6:9.
Background
The halophilic archaeon Haloferax mediterranei is able to accumulate large amounts of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with high molar fraction of 3-hydroxyvalerate (3HV) from unrelated carbon sources. A Polyhydroxyalkanoate (PHA) synthase composed of two subunits, PhaCHme and PhaEHme, has been identified in this strain, and shown to account for the PHBV biosynthesis.
Results
With the aid of the genome sequence of Hfx. mediterranei CGMCC 1.2087, three additional phaC genes (designated phaC1, phaC2, and phaC3) were identified, which encoded putative PhaCs. Like PhaCHme (54.8 kDa), PhaC1 (49.7 kDa) and PhaC3 (62.5 kDa) possessed the conserved motifs of type III PHA synthase, which was not observed in PhaC2 (40.4 kDa). Furthermore, the longer C terminus found in the other three PhaCs was also absent in PhaC2. Reverse transcription PCR (RT-PCR) revealed that, among the four genes, only phaCHme was transcribed under PHA-accumulating conditions in the wild-type strain. However, heterologous coexpression of phaEHme with each phaC gene in Haloarcula hispanica PHB-1 showed that all PhaCs, except PhaC2, could lead to PHBV accumulation with various 3HV fractions. The three kinds of copolymers were characterized using gel-permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Their thermal properties changed with the variations in monomer composition as well as the different molecular weights (Mw), thus might meet various application requirements.
Conclusion
We discover three cryptic phaC genes in Hfx. mediterranei, and demonstrate that genetic engineering of these newly identified phaC genes has biotechnological potential for PHBV production with tailor-made material properties.
doi:10.1186/1746-1448-6-9
PMCID: PMC2939530  PMID: 20727166
14.  Engineering of Chimeric Class II Polyhydroxyalkanoate Synthases 
Applied and Environmental Microbiology  2004;70(11):6789-6799.
PHA synthase is a key enzyme involved in the biosynthesis of polyhydroxyalkanoates (PHAs). Using a combinatorial genetic strategy to create unique chimeric class II PHA synthases, we have obtained a number of novel chimeras which display improved catalytic properties. To engineer the chimeric PHA synthases, we constructed a synthetic phaC gene from Pseudomonas oleovorans (phaC1Po) that was devoid of an internal 540-bp fragment. Randomly amplified PCR products (created with primers based on conserved phaC sequences flanking the deleted internal fragment) were generated using genomic DNA isolated from soil and were substituted for the 540-bp internal region. The chimeric genes were expressed in a PHA-negative strain of Ralstonia eutropha, PHB−4 (DSM 541). Out of 1,478 recombinant clones screened for PHA production, we obtained five different chimeric phaC1Po genes that produced more PHA than the native phaC1Po. Chimeras S1-71, S4-8, S5-58, S3-69, and S3-44 exhibited 1.3-, 1.4-, 2.0-, 2.1-, and 3.0-fold-increased levels of in vivo activity, respectively. All of the mutants mediated the synthesis of PHAs with a slightly increased molar fraction of 3-hydroxyoctanoate; however, the weight-average molecular weights (Mw) of the PHAs in all cases remained almost the same. Based upon DNA sequence analyses, the various phaC fragments appear to have originated from Pseudomonas fluorescens and Pseudomonas aureofaciens. The amino acid sequence analyses showed that the chimeric proteins had 17 to 20 amino acid differences from the wild-type phaC1Po, and these differences were clustered in the same positions in the five chimeric clones. A threading model of PhaC1Po, developed based on homology of the enzyme to the Burkholderia glumae lipase, suggested that the amino acid substitutions found in the active chimeras were located mostly on the protein model surface. Thus, our combinatorial genetic engineering strategy proved to be broadly useful for improving the catalytic activities of PHA synthase enzymes.
doi:10.1128/AEM.70.11.6789-6799.2004
PMCID: PMC525123  PMID: 15528546
15.  Localization of Poly(3-Hydroxybutyrate) (PHB) Granule-Associated Proteins during PHB Granule Formation and Identification of Two New Phasins, PhaP6 and PhaP7, in Ralstonia eutropha H16 
Journal of Bacteriology  2012;194(21):5909-5921.
Poly(3-hydroxybutyrate) (PHB) granules are covered by a surface layer consisting of mainly phasins and other PHB granule-associated proteins (PGAPs). Phasins are small amphiphilic proteins that determine the number and size of accumulated PHB granules. Five phasin proteins (PhaP1 to PhaP5) are known for Ralstonia eutropha. In this study, we identified three additional potential phasin genes (H16_B1988, H16_B2296, and H16_B2326) by inspection of the R. eutropha genome for sequences with “phasin 2 motifs.” To determine whether the corresponding proteins represent true PGAPs, fusions with eYFP (enhanced yellow fluorescent protein) were constructed. Similar fusions of eYFP with PhaP1 to PhaP5 as well as fusions with PHB synthase (PhaC1), an inactive PhaC1 variant (PhaC1-C319A), and PhaC2 were also made. All fusions were investigated in wild-type and PHB-negative backgrounds. Colocalization with PHB granules was found for all PhaC variants and for PhaP1 to PhaP5. Additionally, eYFP fusions with H16_B1988 and H16_B2326 colocalized with PHB. Fusions of H16_B2296 with eYFP, however, did not colocalize with PHB granules but did colocalize with the nucleoid region. Notably, all fusions (except H16_B2296) were soluble in a ΔphaC1 strain. These data confirm that H16_B1988 and H16_B2326 but not H16_B2296 encode true PGAPs, for which we propose the designation PhaP6 (H16_B1988) and PhaP7 (H16_B2326). When localization of phasins was investigated at different stages of PHB accumulation, fusions of PhaP6 and PhaP7 were soluble in the first 3 h under PHB-permissive conditions, although PHB granules appeared after 10 min. At later time points, the fusions colocalized with PHB. Remarkably, PHB granules of strains expressing eYFP fusions with PhaP5, PhaP6, or PhaP7 localized predominantly near the cell poles or in the area of future septum formation. This phenomenon was not observed for the other PGAPs (PhaP1 to PhaP4, PhaC1, PhaC1-C319A, and PhaC2) and indicated that some phasins can have additional functions. A chromosomal deletion of phaP6 or phaP7 had no visible effect on formation of PHB granules.
doi:10.1128/JB.00779-12
PMCID: PMC3486113  PMID: 22923598
16.  Polyhydroxyalkanoate (PHA) Accumulation in Sulfate-Reducing Bacteria and Identification of a Class III PHA Synthase (PhaEC) in Desulfococcus multivorans 
Seven strains of sulfate-reducing bacteria (SRB) were tested for the accumulation of polyhydroxyalkanoates (PHAs). During growth with benzoate Desulfonema magnum accumulated large amounts of poly(3-hydroxybutyrate) [poly(3HB)]. Desulfosarcina variabilis (during growth with benzoate), Desulfobotulus sapovorans (during growth with caproate), and Desulfobacterium autotrophicum (during growth with caproate) accumulated poly(3HB) that accounted for 20 to 43% of cell dry matter. Desulfobotulus sapovorans and Desulfobacterium autotrophicum also synthesized copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyvalerate when valerate was used as the growth substrate. Desulfovibrio vulgaris and Desulfotalea psychrophila were the only SRB tested in which PHAs were not detected. When total DNA isolated from Desulfococcus multivorans and specific primers deduced from highly conserved regions of known PHA synthases (PhaC) were used, a PCR product homologous to the central region of class III PHA synthases was obtained. The complete pha locus of Desulfococcus multivorans was subsequently obtained by inverse PCR, and it contained adjacent phaEDm and phaCDm genes. PhaCDm and PhaEDm were composed of 371 and 306 amino acid residues and showed up to 49 or 23% amino acid identity to the corresponding subunits of other class III PHA synthases. Constructs of phaCDm alone (pBBRMCS-2::phaCDm) and of phaEDmCDm (pBBRMCS-2::phaEDmCDm) in various vectors were obtained and transferred to several strains of Escherichia coli, as well as to the PHA-negative mutants PHB−4 and GPp104 of Ralstonia eutropha and Pseudomonas putida, respectively. In cells of the recombinant strains harboring phaEDmCDm small but significant amounts (up to 1.7% of cell dry matter) of poly(3HB) and of PHA synthase activity (up to 1.5 U/mg protein) were detected. This indicated that the cloned genes encode functionally active proteins. Hybrid synthases consisting of PhaCDm and PhaE of Thiococcus pfennigii or Synechocystis sp. strain PCC 6308 were also constructed and were shown to be functionally active.
doi:10.1128/AEM.70.8.4440-4448.2004
PMCID: PMC492432  PMID: 15294771
17.  Analyses of a Polyhydroxyalkanoic Acid Granule-Associated 16-Kilodalton Protein and Its Putative Regulator in the pha Locus of Paracoccus denitrificans 
Journal of Bacteriology  1999;181(9):2914-2921.
The polyhydroxyalkanoic acid (PHA) granule-associated 16-kDa protein (GA16 protein) of Paracoccus denitrificans was identified, and its corresponding gene was cloned and analyzed at the molecular level. The N-terminal amino acid sequence of GA16 protein revealed that its structural gene is located downstream from the PHA synthase gene (phaCPd) cloned recently (S. Ueda, T. Yabutani, A. Maehara, and T. Yamane, J. Bacteriol. 178:774–779, 1996). Gene walking around phaCPd revealed two new open reading frames (ORFs) possibly related to PHA synthesis, one of which was the phaPPd gene, encoding GA16 protein, and the other was the phaRPd gene, encoding a protein that is putatively involved in the regulation of the expression of phaPPd. Overproduction of PhaPPd was observed in Escherichia coli carrying phaPPd, but the overproduction was not observed in the presence of phaRPd. Coexpression of phaPPd and PHA biosynthesis genes in E. coli caused increases in both the number of poly-(3-hydroxybutyric acid) (PHB) granules and PHB content and caused decreases in both the size of the granules and the molecular weight of PHB. GA16 protein was considered a phasin protein. The phaRPd gene had significant similarities to stdC, a possible transcriptional factor of Comamonas testosteroni, as well as to other ORFs of unknown function previously found in other PHA-synthetic bacteria.
PMCID: PMC93737  PMID: 10217786
18.  Development of a Transferable Bimolecular Fluorescence Complementation System for the Investigation of Interactions between Poly(3-Hydroxybutyrate) Granule-Associated Proteins in Gram-Negative Bacteria 
Poly(3-hydroxybutyrate) (PHB) granules are organelle-like multienzyme-polymer complexes (carbonosomes) and are widespread storage compounds in prokaryotes. The interaction of three PHB granule-bound proteins (PHB synthase PhaC1, phasin PhaP5, and PHB/DNA binding protein PhaM) was studied in vivo by bimolecular fluorescence complementation (BiFC) microscopy in Ralstonia eutropha. To this end, a mobilizable 2-plasmid system for arabinose-controlled expression of protein fusions with the N-terminal (YN) and C-terminal (YC) parts of the enhanced yellow fluorescent protein (eYfp) in Gram-negative bacteria was developed. Both plasmids were stably expressed in Escherichia coli and in transconjugants of R. eutropha. Homo-oligomerization of PhaC1, PhaP5, and PhaM and interactions between PhaC1 and PhaM and between PhaM and PhaP5 were detected in R. eutropha and colocalized with PHB granules under PHB-permissive conditions. PhaM-PhaC1 complexes were detected near the midcell/nucleoid region in the absence of PHB. Expression of BiFC complexes in R. eutropha with PhaM (PhaM homo-oligomers or PhaM-PhaC1 or PhaM-PhaP5 complexes) resulted in substantial cell elongation compared to wild-type cells and in BiFC signals that were generally located near the midcell/nucleoid region. Western blot analysis of wild-type cell extracts and proteome analysis of PHB granule-bound proteins revealed that PhaM and PhaP5 are expressed in R. eutropha and that PhaM is constitutively expressed independently of the presence or absence of PHB. Size exclusion chromatography analysis in combination with cross-linking experiments of purified PhaP5-His6 and PhaM-His6 showed that PhaP5 forms dimers and that PhaM is present in oligomeric (dodecamer) form. Implications of this finding for subcellular PHB localization and initiation of PHB granule formation in R. eutropha will be discussed.
doi:10.1128/AEM.03965-12
PMCID: PMC3623147  PMID: 23435892
19.  Cloning of the Alcaligenes latus Polyhydroxyalkanoate Biosynthesis Genes and Use of These Genes for Enhanced Production of Poly(3-hydroxybutyrate) in Escherichia coli 
Applied and Environmental Microbiology  1998;64(12):4897-4903.
Polyhydroxyalkanoates (PHAs) are microbial polyesters that can be used as completely biodegradable polymers, but the high production cost prevents their use in a wide range of applications. Recombinant Escherichia coli strains harboring the Ralstonia eutropha PHA biosynthesis genes have been reported to have several advantages as PHA producers compared with wild-type PHA-producing bacteria. However, the PHA productivity (amount of PHA produced per unit volume per unit time) obtained with these recombinant E. coli strains has been lower than that obtained with the wild-type bacterium Alcaligenes latus. To endow the potentially superior PHA biosynthetic machinery to E. coli, we cloned the PHA biosynthesis genes from A. latus. The three PHA biosynthesis genes formed an operon with the order PHA synthase, β-ketothiolase, and reductase genes and were constitutively expressed from the natural promoter in E. coli. Recombinant E. coli strains harboring the A. latus PHA biosynthesis genes accumulated poly(3-hydroxybutyrate) (PHB), a model PHA product, more efficiently than those harboring the R. eutropha genes. With a pH-stat fed-batch culture of recombinant E. coli harboring a stable plasmid containing the A. latus PHA biosynthesis genes, final cell and PHB concentrations of 194.1 and 141.6 g/liter, respectively, were obtained, resulting in a high productivity of 4.63 g of PHB/liter/h. This improvement should allow recombinant E. coli to be used for the production of PHB with a high level of economic competitiveness.
PMCID: PMC90940  PMID: 9835580
20.  High Polyhydroxybutyrate Production in Pseudomonas extremaustralis Is Associated with Differential Expression of Horizontally Acquired and Core Genome Polyhydroxyalkanoate Synthase Genes 
PLoS ONE  2014;9(6):e98873.
Pseudomonas extremaustralis produces mainly polyhydroxybutyrate (PHB), a short chain length polyhydroxyalkanoate (sclPHA) infrequently found in Pseudomonas species. Previous studies with this strain demonstrated that PHB genes are located in a genomic island. In this work, the analysis of the genome of P. extremaustralis revealed the presence of another PHB cluster phbFPX, with high similarity to genes belonging to Burkholderiales, and also a cluster, phaC1ZC2D, coding for medium chain length PHA production (mclPHA). All mclPHA genes showed high similarity to genes from Pseudomonas species and interestingly, this cluster also showed a natural insertion of seven ORFs not related to mclPHA metabolism. Besides PHB, P. extremaustralis is able to produce mclPHA although in minor amounts. Complementation analysis demonstrated that both mclPHA synthases, PhaC1 and PhaC2, were functional. RT-qPCR analysis showed different levels of expression for the PHB synthase, phbC, and the mclPHA synthases. The expression level of phbC, was significantly higher than the obtained for phaC1 and phaC2, in late exponential phase cultures. The analysis of the proteins bound to the PHA granules showed the presence of PhbC and PhaC1, whilst PhaC2 could not be detected. In addition, two phasin like proteins (PhbP and PhaI) associated with the production of scl and mcl PHAs, respectively, were detected. The results of this work show the high efficiency of a foreign gene (phbC) in comparison with the mclPHA core genome genes (phaC1 and phaC2) indicating that the ability of P. extremaustralis to produce high amounts of PHB could be explained by the different expression levels of the genes encoding the scl and mcl PHA synthases.
doi:10.1371/journal.pone.0098873
PMCID: PMC4041789  PMID: 24887088
21.  To Be or Not To Be a Poly(3-Hydroxybutyrate) (PHB) Depolymerase: PhaZd1 (PhaZ6) and PhaZd2 (PhaZ7) of Ralstonia eutropha, Highly Active PHB Depolymerases with No Detectable Role in Mobilization of Accumulated PHB 
Applied and Environmental Microbiology  2014;80(16):4936-4946.
The putative physiological functions of two related intracellular poly(3-hydroxybutyrate) (PHB) depolymerases, PhaZd1 and PhaZd2, of Ralstonia eutropha H16 were investigated. Purified PhaZd1 and PhaZd2 were active with native PHB granules in vitro. Partial removal of the proteinaceous surface layer of native PHB granules by trypsin treatment or the use of PHB granules isolated from ΔphaP1 or ΔphaP1-phaP5 mutant strains resulted in increased specific PHB depolymerase activity, especially for PhaZd2. Constitutive expression of PhaZd1 or PhaZd2 reduced or even prevented the accumulation of PHB under PHB-permissive conditions in vivo. Expression of translational fusions of enhanced yellow fluorescent protein (EYFP) with PhaZd1 and PhaZd2 in which the active-site serines (S190 and Ser193) were replaced with alanine resulted in the colocalization of only PhaZd1 fusions with PHB granules. C-terminal fusions of inactive PhaZd2(S193A) with EYFP revealed the presence of spindle-like structures, and no colocalization with PHB granules was observed. Chromosomal deletion of phaZd1, phaZd2, or both depolymerase genes had no significant effect on PHB accumulation and mobilization during growth in nutrient broth (NB) or NB-gluconate medium. Moreover, neither proteome analysis of purified native PHB granules nor lacZ fusion studies gave any indication that PhaZd1 or PhaZd2 was detectably present in the PHB granule fraction or expressed at all during growth on NB-gluconate medium. In conclusion, PhaZd1 and PhaZd2 are two PHB depolymerases with a high capacity to degrade PHB when artificially expressed but are apparently not involved in PHB mobilization in the wild type. The true in vivo functions of PhaZd1 and PhaZd2 remain obscure.
doi:10.1128/AEM.01056-14
PMCID: PMC4135762  PMID: 24907326
22.  Genetic and Biochemical Characterization of the Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Synthase in Haloferax mediterranei▿ †  
Journal of Bacteriology  2008;190(12):4173-4180.
The haloarchaeon Haloferax mediterranei has shown promise for the economical production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a desirable bioplastic. However, little is known at present about the genes involved in PHBV synthesis in the domain Archaea. In this study, we cloned the gene cluster (phaECHme) encoding a polyhydroxyalkanoate (PHA) synthase in H. mediterranei CGMCC 1.2087 via thermal asymmetric interlaced PCR. Western blotting revealed that the phaEHme and phaCHme genes were constitutively expressed, and both the PhaEHme and PhaCHme proteins were strongly bound to the PHBV granules. Interestingly, CGMCC 1.2087 could synthesize PHBV in either nutrient-limited medium (supplemented with 1% starch) or nutrient-rich medium, up to 24 or 18% (wt/wt) in shaking flasks. Knockout of the phaECHme genes in CGMCC 1.2087 led to a complete loss of PHBV synthesis, and only complementation with the phaECHme genes together (but not either one alone) could restore to this mutant the capability for PHBV accumulation. The known haloarchaeal PhaC subunits are much longer at their C termini than their bacterial counterparts, and the C-terminal extension of PhaCHme was proven to be indispensable for its function in vivo. Moreover, the mixture of purified PhaEHme/PhaCHme (1:1) showed significant activity of PHA synthase in vitro. Taken together, our results indicated that a novel member of the class III PHA synthases, composed of PhaCHme and PhaEHme, accounted for the PHBV synthesis in H. mediterranei.
doi:10.1128/JB.00134-08
PMCID: PMC2446746  PMID: 18408025
23.  Whole genome amplification approach reveals novel polyhydroxyalkanoate synthases (PhaCs) from Japan Trench and Nankai Trough seawater 
BMC Microbiology  2014;14(1):318.
Background
Special features of the Japanese ocean include its ranges of latitude and depth. This study is the first to examine the diversity of Class I and II PHA synthases (PhaC) in DNA samples from pelagic seawater taken from the Japan Trench and Nankai Trough from a range of depths from 24 m to 5373 m. PhaC is the key enzyme in microorganisms that determines the types of monomer units that are polymerized into polyhydroxyalkanoate (PHA) and thus affects the physicochemical properties of this thermoplastic polymer. Complete putative PhaC sequences were determined via genome walking, and the activities of newly discovered PhaCs were evaluated in a heterologous host.
Results
A total of 76 putative phaC PCR fragments were amplified from the whole genome amplified seawater DNA. Of these 55 clones contained conserved PhaC domains and were classified into 20 genetic groups depending on their sequence similarity. Eleven genetic groups have undisclosed PhaC activity based on their distinct phylogenetic lineages from known PHA producers. Three complete DNA coding sequences were determined by IAN-PCR, and one PhaC was able to produce poly(3-hydroxybutyrate) in recombinant Cupriavidus necator PHBˉ4 (PHB-negative mutant).
Conclusions
A new functional PhaC that has close identity to Marinobacter sp. was discovered in this study. Phylogenetic classification for all the phaC genes isolated from uncultured bacteria has revealed that seawater and other environmental resources harbor a great diversity of PhaCs with activities that have not yet been investigated. Functional evaluation of these in silico-based PhaCs via genome walking has provided new insights into the polymerizing ability of these enzymes.
Electronic supplementary material
The online version of this article (doi:10.1186/s12866-014-0318-z) contains supplementary material, which is available to authorized users.
doi:10.1186/s12866-014-0318-z
PMCID: PMC4326521  PMID: 25539583
Japan seawater; Polyhydroxyalkanoate (PHA); PHA synthase (PhaC); Whole genome amplification (WGA); Genome walking; Marinobacter
24.  Responses of Haloarchaea to Simulated Microgravity 
Astrobiology  2011;11(3):199-205.
Abstract
Various effects of microgravity on prokaryotes have been recognized in recent years, with the focus on studies of pathogenic bacteria. No archaea have been investigated yet with respect to their responses to microgravity. For exposure experiments on spacecrafts or on the International Space Station, halophilic archaea (haloarchaea) are usually embedded in halite, where they accumulate in fluid inclusions. In a liquid environment, these cells will experience microgravity in space, which might influence their viability and survival. Two haloarchaeal strains, Haloferax mediterranei and Halococcus dombrowskii, were grown in simulated microgravity (SMG) with the rotary cell culture system (RCCS, Synthecon). Initially, salt precipitation and detachment of the porous aeration membranes in the RCCS were observed, but they were avoided in the remainder of the experiment by using disposable instead of reusable vessels. Several effects were detected, which were ascribed to growth in SMG: Hfx. mediterranei's resistance to the antibiotics bacitracin, erythromycin, and rifampicin increased markedly; differences in pigmentation and whole cell protein composition (proteome) of both strains were noted; cell aggregation of Hcc. dombrowskii was notably reduced. The results suggest profound effects of SMG on haloarchaeal physiology and cellular processes, some of which were easily observable and measurable. This is the first report of archaeal responses to SMG. The molecular mechanisms of the effects induced by SMG on prokaryotes are largely unknown; haloarchaea could be used as nonpathogenic model systems for their elucidation and in addition could provide information about survival during lithopanspermia (interplanetary transport of microbes inside meteorites). Key Words: Haloferax mediterranei—Halococcus dombrowskii—Simulated microgravity—Rotary cell culture system—Antibiotic resistance—Lithopanspermia. Astrobiology 11, 199–205.
doi:10.1089/ast.2010.0536
PMCID: PMC3079168  PMID: 21417742
25.  Ralstonia eutropha H16 Encodes Two and Possibly Three Intracellular Poly[d-(−)-3-Hydroxybutyrate] Depolymerase Genes 
Journal of Bacteriology  2003;185(13):3788-3794.
Intracellular poly[d-(−)-3-hydroxybutyrate] (PHB) depolymerases degrade PHB granules to oligomers and monomers of 3-hydroxybutyric acid. Recently an intracellular PHB depolymerase gene (phaZ1) from Ralstonia eutropha was identified. We now report identification of candidate PHB depolymerase genes from R. eutropha, namely, phaZ2 and phaZ3, and their characterization in vivo. phaZ1 was used to identify two candidate depolymerase genes in the genome of Ralstonia metallidurans. phaZ1 and these genes were then used to design degenerate primers. These primers and PCR methods on the R. eutropha genome were used to identify two new candidate depolymerase genes in R. eutropha: phaZ2 and phaZ3. Inverse PCR methods were used to obtain the complete sequence of phaZ3, and library screening was used to obtain the complete sequence of phaZ2. PhaZ1, PhaZ2, and PhaZ3 share ∼30% sequence identity. The function of PhaZ2 and PhaZ3 was examined by generating R. eutropha H16 deletion strains (ΔphaZ1, ΔphaZ2, ΔphaZ3, ΔphaZ1ΔphaZ2, ΔphaZ1ΔphaZ3, ΔphaZ2ΔphaZ3, and ΔphaZ1ΔphaZ2ΔphaZ3). These strains were analyzed for PHB production and utilization under two sets of conditions. When cells were grown in rich medium, PhaZ1 was sufficient to account for intracellular PHB degradation. When cells that had accumulated ∼80% (cell dry weight) PHB were subjected to PHB utilization conditions, PhaZ1 and PhaZ2 were sufficient to account for PHB degradation. PhaZ2 is thus suggested to be an intracellular depolymerase. The role of PhaZ3 remains to be established.
doi:10.1128/JB.185.13.3788-3794.2003
PMCID: PMC161563  PMID: 12813072

Results 1-25 (9511)