PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1703110)

Clipboard (0)
None

Related Articles

1.  iMotifs: an integrated sequence motif visualization and analysis environment 
Bioinformatics  2010;26(6):843-844.
Motivation: Short sequence motifs are an important class of models in molecular biology, used most commonly for describing transcription factor binding site specificity patterns. High-throughput methods have been recently developed for detecting regulatory factor binding sites in vivo and in vitro and consequently high-quality binding site motif data are becoming available for increasing number of organisms and regulatory factors. Development of intuitive tools for the study of sequence motifs is therefore important.
iMotifs is a graphical motif analysis environment that allows visualization of annotated sequence motifs and scored motif hits in sequences. It also offers motif inference with the sensitive NestedMICA algorithm, as well as overrepresentation and pairwise motif matching capabilities. All of the analysis functionality is provided without the need to convert between file formats or learn different command line interfaces.
The application includes a bundled and graphically integrated version of the NestedMICA motif inference suite that has no outside dependencies. Problems associated with local deployment of software are therefore avoided.
Availability: iMotifs is licensed with the GNU Lesser General Public License v2.0 (LGPL 2.0). The software and its source is available at http://wiki.github.com/mz2/imotifs and can be run on Mac OS X Leopard (Intel/PowerPC). We also provide a cross-platform (Linux, OS X, Windows) LGPL 2.0 licensed library libxms for the Perl, Ruby, R and Objective-C programming languages for input and output of XMS formatted annotated sequence motif set files.
Contact: matias.piipari@gmail.com; imotifs@googlegroups.com
doi:10.1093/bioinformatics/btq026
PMCID: PMC2832821  PMID: 20106815
2.  Large-Scale Discovery of Promoter Motifs in Drosophila melanogaster 
A key step in understanding gene regulation is to identify the repertoire of transcription factor binding motifs (TFBMs) that form the building blocks of promoters and other regulatory elements. Identifying these experimentally is very laborious, and the number of TFBMs discovered remains relatively small, especially when compared with the hundreds of transcription factor genes predicted in metazoan genomes. We have used a recently developed statistical motif discovery approach, NestedMICA, to detect candidate TFBMs from a large set of Drosophila melanogaster promoter regions. Of the 120 motifs inferred in our initial analysis, 25 were statistically significant matches to previously reported motifs, while 87 appeared to be novel. Analysis of sequence conservation and motif positioning suggested that the great majority of these discovered motifs are predictive of functional elements in the genome. Many motifs showed associations with specific patterns of gene expression in the D. melanogaster embryo, and we were able to obtain confident annotation of expression patterns for 25 of our motifs, including eight of the novel motifs. The motifs are available through Tiffin, a new database of DNA sequence motifs. We have discovered many new motifs that are overrepresented in D. melanogaster promoter regions, and offer several independent lines of evidence that these are novel TFBMs. Our motif dictionary provides a solid foundation for further investigation of regulatory elements in Drosophila, and demonstrates techniques that should be applicable in other species. We suggest that further improvements in computational motif discovery should narrow the gap between the set of known motifs and the total number of transcription factors in metazoan genomes.
Author Summary
In contrast to the genomic sequences that encode proteins, little is known about the regulatory elements that instruct the cell as to when and where a given gene should be active. Regulatory elements are thought to consist of clusters of short DNA words (motifs), each of which acts as a binding site for sequence-specific DNA binding protein. Thus, building a comprehensive dictionary of such motifs is an important step towards a broader understanding of gene regulation. Using the recently published NestedMICA method for detecting overrepresented motifs in a set of sequences, we build a dictionary of 120 motifs from regulatory sequences in the fruitfly genome, 87 of which are novel. Analysis of positional biases, conservation across species, and association with specific patterns of gene expression in fruitfly embryos suggest that the great majority of these newly discovered motifs represent functional regulatory elements. In addition to providing an initial motif dictionary for one of the most intensively studied model organisms, this work provides an analytical framework for the comprehensive discovery of regulatory motifs in complex animal genomes.
doi:10.1371/journal.pcbi.0030007
PMCID: PMC1779301  PMID: 17238282
3.  NestedMICA: sensitive inference of over-represented motifs in nucleic acid sequence 
Nucleic Acids Research  2005;33(5):1445-1453.
NestedMICA is a new, scalable, pattern-discovery system for finding transcription factor binding sites and similar motifs in biological sequences. Like several previous methods, NestedMICA tackles this problem by optimizing a probabilistic mixture model to fit a set of sequences. However, the use of a newly developed inference strategy called Nested Sampling means NestedMICA is able to find optimal solutions without the need for a problematic initialization or seeding step. We investigate the performance of NestedMICA in a range scenario, on synthetic data and a well-characterized set of muscle regulatory regions, and compare it with the popular MEME program. We show that the new method is significantly more sensitive than MEME: in one case, it successfully extracted a target motif from background sequence four times longer than could be handled by the existing program. It also performs robustly on synthetic sequences containing multiple significant motifs. When tested on a real set of regulatory sequences, NestedMICA produced motifs which were good predictors for all five abundant classes of annotated binding sites.
doi:10.1093/nar/gki282
PMCID: PMC1064142  PMID: 15760844
4.  HitKeeper, a generic software package for hit list management 
Background
The automated annotation of biological sequences (protein, DNA) relies on the computation of hits (predicted features) on the sequences using various algorithms. Public databases of biological sequences provide a wealth of biological "knowledge", for example manually validated annotations (features) that are located on the sequences, but mining the sequence annotations and especially the predicted and curated features requires dedicated tools. Due to the heterogeneity and diversity of the biological information, it is difficult to handle redundancy, frequent updates, taxonomic information and "private" data together with computational algorithms in a common workflow.
Results
We present HitKeeper, a software package that controls the fully automatic handling of multiple biological databases and of hit list calculations on a large scale. The software implements an asynchronous update system that introduces updates and computes hits as soon as new data become available. A query interface enables the user to search sequences by specifying constraints, such as retrieving sequences that contain specific motifs, or a defined arrangement of motifs ("metamotifs"), or filtering based on the taxonomic classification of a sequence.
Conclusion
The software provides a generic and modular framework to handle the redundancy and incremental updates of biological databases, and an original query language. It is published under the terms and conditions of version 2 of the GNU Public License and available at .
doi:10.1186/1751-0473-2-2
PMCID: PMC1852800  PMID: 17391514
5.  NestedMICA as an ab initio protein motif discovery tool 
BMC Bioinformatics  2008;9:19.
Background
Discovering overrepresented patterns in amino acid sequences is an important step in protein functional element identification. We adapted and extended NestedMICA, an ab initio motif finder originally developed for finding transcription binding site motifs, to find short protein signals, and compared its performance with another popular protein motif finder, MEME. NestedMICA, an open source protein motif discovery tool written in Java, is driven by a Monte Carlo technique called Nested Sampling. It uses multi-class sequence background models to represent different "uninteresting" parts of sequences that do not contain motifs of interest. In order to assess NestedMICA as a protein motif finder, we have tested it on synthetic datasets produced by spiking instances of known motifs into a randomly selected set of protein sequences. NestedMICA was also tested using a biologically-authentic test set, where we evaluated its performance with respect to varying sequence length.
Results
Generally NestedMICA recovered most of the short (3–9 amino acid long) test protein motifs spiked into a test set of sequences at different frequencies. We showed that it can be used to find multiple motifs at the same time, too. In all the assessment experiments we carried out, its overall motif discovery performance was better than that of MEME.
Conclusion
NestedMICA proved itself to be a robust and sensitive ab initio protein motif finder, even for relatively short motifs that exist in only a small fraction of sequences.
Availability
NestedMICA is available under the Lesser GPL open-source license from:
doi:10.1186/1471-2105-9-19
PMCID: PMC2267705  PMID: 18194537
6.  Identification of Predictive Cis-Regulatory Elements Using a Discriminative Objective Function and a Dynamic Search Space 
PLoS ONE  2015;10(10):e0140557.
The generation of genomic binding or accessibility data from massively parallel sequencing technologies such as ChIP-seq and DNase-seq continues to accelerate. Yet state-of-the-art computational approaches for the identification of DNA binding motifs often yield motifs of weak predictive power. Here we present a novel computational algorithm called MotifSpec, designed to find predictive motifs, in contrast to over-represented sequence elements. The key distinguishing feature of this algorithm is that it uses a dynamic search space and a learned threshold to find discriminative motifs in combination with the modeling of motifs using a full PWM (position weight matrix) rather than k-mer words or regular expressions. We demonstrate that our approach finds motifs corresponding to known binding specificities in several mammalian ChIP-seq datasets, and that our PWMs classify the ChIP-seq signals with accuracy comparable to, or marginally better than motifs from the best existing algorithms. In other datasets, our algorithm identifies novel motifs where other methods fail. Finally, we apply this algorithm to detect motifs from expression datasets in C. elegans using a dynamic expression similarity metric rather than fixed expression clusters, and find novel predictive motifs.
doi:10.1371/journal.pone.0140557
PMCID: PMC4605740  PMID: 26465884
7.  Inferring intra-motif dependencies of DNA binding sites from ChIP-seq data 
BMC Bioinformatics  2015;16:375.
Background
Statistical modeling of transcription factor binding sites is one of the classical fields in bioinformatics. The position weight matrix (PWM) model, which assumes statistical independence among all nucleotides in a binding site, used to be the standard model for this task for more than three decades but its simple assumptions are increasingly put into question. Recent high-throughput sequencing methods have provided data sets of sufficient size and quality for studying the benefits of more complex models. However, learning more complex models typically entails the danger of overfitting, and while model classes that dynamically adapt the model complexity to data have been developed, effective model selection is to date only possible for fully observable data, but not, e.g., within de novo motif discovery.
Results
To address this issue, we propose a stochastic algorithm for performing robust model selection in a latent variable setting. This algorithm yields a solution without relying on hyperparameter-tuning via massive cross-validation or other computationally expensive resampling techniques. Using this algorithm for learning inhomogeneous parsimonious Markov models, we study the degree of putative higher-order intra-motif dependencies for transcription factor binding sites inferred via de novo motif discovery from ChIP-seq data. We find that intra-motif dependencies are prevalent and not limited to first-order dependencies among directly adjacent nucleotides, but that second-order models appear to be the significantly better choice.
Conclusions
The traditional PWM model appears to be indeed insufficient to infer realistic sequence motifs, as it is on average outperformed by more complex models that take into account intra-motif dependencies. Moreover, using such models together with an appropriate model selection procedure does not lead to a significant performance loss in comparison with the PWM model for any of the studied transcription factors. Hence, we find it worthwhile to recommend that any modern motif discovery algorithm should attempt to take into account intra-motif dependencies.
Electronic supplementary material
The online version of this article (doi:10.1186/s12859-015-0797-4) contains supplementary material, which is available to authorized users.
doi:10.1186/s12859-015-0797-4
PMCID: PMC4640111  PMID: 26552868
Transcription factor binding sites; De novo motif discovery; Intra-motif dependencies; Model selection; ChIP-seq data
8.  25th Annual Computational Neuroscience Meeting: CNS-2016 
Sharpee, Tatyana O. | Destexhe, Alain | Kawato, Mitsuo | Sekulić, Vladislav | Skinner, Frances K. | Wójcik, Daniel K. | Chintaluri, Chaitanya | Cserpán, Dorottya | Somogyvári, Zoltán | Kim, Jae Kyoung | Kilpatrick, Zachary P. | Bennett, Matthew R. | Josić, Kresimir | Elices, Irene | Arroyo, David | Levi, Rafael | Rodriguez, Francisco B. | Varona, Pablo | Hwang, Eunjin | Kim, Bowon | Han, Hio-Been | Kim, Tae | McKenna, James T. | Brown, Ritchie E. | McCarley, Robert W. | Choi, Jee Hyun | Rankin, James | Popp, Pamela Osborn | Rinzel, John | Tabas, Alejandro | Rupp, André | Balaguer-Ballester, Emili | Maturana, Matias I. | Grayden, David B. | Cloherty, Shaun L. | Kameneva, Tatiana | Ibbotson, Michael R. | Meffin, Hamish | Koren, Veronika | Lochmann, Timm | Dragoi, Valentin | Obermayer, Klaus | Psarrou, Maria | Schilstra, Maria | Davey, Neil | Torben-Nielsen, Benjamin | Steuber, Volker | Ju, Huiwen | Yu, Jiao | Hines, Michael L. | Chen, Liang | Yu, Yuguo | Kim, Jimin | Leahy, Will | Shlizerman, Eli | Birgiolas, Justas | Gerkin, Richard C. | Crook, Sharon M. | Viriyopase, Atthaphon | Memmesheimer, Raoul-Martin | Gielen, Stan | Dabaghian, Yuri | DeVito, Justin | Perotti, Luca | Kim, Anmo J. | Fenk, Lisa M. | Cheng, Cheng | Maimon, Gaby | Zhao, Chang | Widmer, Yves | Sprecher, Simon | Senn, Walter | Halnes, Geir | Mäki-Marttunen, Tuomo | Keller, Daniel | Pettersen, Klas H. | Andreassen, Ole A. | Einevoll, Gaute T. | Yamada, Yasunori | Steyn-Ross, Moira L. | Alistair Steyn-Ross, D. | Mejias, Jorge F. | Murray, John D. | Kennedy, Henry | Wang, Xiao-Jing | Kruscha, Alexandra | Grewe, Jan | Benda, Jan | Lindner, Benjamin | Badel, Laurent | Ohta, Kazumi | Tsuchimoto, Yoshiko | Kazama, Hokto | Kahng, B. | Tam, Nicoladie D. | Pollonini, Luca | Zouridakis, George | Soh, Jaehyun | Kim, DaeEun | Yoo, Minsu | Palmer, S. E. | Culmone, Viviana | Bojak, Ingo | Ferrario, Andrea | Merrison-Hort, Robert | Borisyuk, Roman | Kim, Chang Sub | Tezuka, Taro | Joo, Pangyu | Rho, Young-Ah | Burton, Shawn D. | Bard Ermentrout, G. | Jeong, Jaeseung | Urban, Nathaniel N. | Marsalek, Petr | Kim, Hoon-Hee | Moon, Seok-hyun | Lee, Do-won | Lee, Sung-beom | Lee, Ji-yong | Molkov, Yaroslav I. | Hamade, Khaldoun | Teka, Wondimu | Barnett, William H. | Kim, Taegyo | Markin, Sergey | Rybak, Ilya A. | Forro, Csaba | Dermutz, Harald | Demkó, László | Vörös, János | Babichev, Andrey | Huang, Haiping | Verduzco-Flores, Sergio | Dos Santos, Filipa | Andras, Peter | Metzner, Christoph | Schweikard, Achim | Zurowski, Bartosz | Roach, James P. | Sander, Leonard M. | Zochowski, Michal R. | Skilling, Quinton M. | Ognjanovski, Nicolette | Aton, Sara J. | Zochowski, Michal | Wang, Sheng-Jun | Ouyang, Guang | Guang, Jing | Zhang, Mingsha | Michael Wong, K. Y. | Zhou, Changsong | Robinson, Peter A. | Sanz-Leon, Paula | Drysdale, Peter M. | Fung, Felix | Abeysuriya, Romesh G. | Rennie, Chris J. | Zhao, Xuelong | Choe, Yoonsuck | Yang, Huei-Fang | Mi, Yuanyuan | Lin, Xiaohan | Wu, Si | Liedtke, Joscha | Schottdorf, Manuel | Wolf, Fred | Yamamura, Yoriko | Wickens, Jeffery R. | Rumbell, Timothy | Ramsey, Julia | Reyes, Amy | Draguljić, Danel | Hof, Patrick R. | Luebke, Jennifer | Weaver, Christina M. | He, Hu | Yang, Xu | Ma, Hailin | Xu, Zhiheng | Wang, Yuzhe | Baek, Kwangyeol | Morris, Laurel S. | Kundu, Prantik | Voon, Valerie | Agnes, Everton J. | Vogels, Tim P. | Podlaski, William F. | Giese, Martin | Kuravi, Pradeep | Vogels, Rufin | Seeholzer, Alexander | Podlaski, William | Ranjan, Rajnish | Vogels, Tim | Torres, Joaquin J. | Baroni, Fabiano | Latorre, Roberto | Gips, Bart | Lowet, Eric | Roberts, Mark J. | de Weerd, Peter | Jensen, Ole | van der Eerden, Jan | Goodarzinick, Abdorreza | Niry, Mohammad D. | Valizadeh, Alireza | Pariz, Aref | Parsi, Shervin S. | Warburton, Julia M. | Marucci, Lucia | Tamagnini, Francesco | Brown, Jon | Tsaneva-Atanasova, Krasimira | Kleberg, Florence I. | Triesch, Jochen | Moezzi, Bahar | Iannella, Nicolangelo | Schaworonkow, Natalie | Plogmacher, Lukas | Goldsworthy, Mitchell R. | Hordacre, Brenton | McDonnell, Mark D. | Ridding, Michael C. | Zapotocky, Martin | Smit, Daniel | Fouquet, Coralie | Trembleau, Alain | Dasgupta, Sakyasingha | Nishikawa, Isao | Aihara, Kazuyuki | Toyoizumi, Taro | Robb, Daniel T. | Mellen, Nick | Toporikova, Natalia | Tang, Rongxiang | Tang, Yi-Yuan | Liang, Guangsheng | Kiser, Seth A. | Howard, James H. | Goncharenko, Julia | Voronenko, Sergej O. | Ahamed, Tosif | Stephens, Greg | Yger, Pierre | Lefebvre, Baptiste | Spampinato, Giulia Lia Beatrice | Esposito, Elric | et Olivier Marre, Marcel Stimberg | Choi, Hansol | Song, Min-Ho | Chung, SueYeon | Lee, Dan D. | Sompolinsky, Haim | Phillips, Ryan S. | Smith, Jeffrey | Chatzikalymniou, Alexandra Pierri | Ferguson, Katie | Alex Cayco Gajic, N. | Clopath, Claudia | Angus Silver, R. | Gleeson, Padraig | Marin, Boris | Sadeh, Sadra | Quintana, Adrian | Cantarelli, Matteo | Dura-Bernal, Salvador | Lytton, William W. | Davison, Andrew | Li, Luozheng | Zhang, Wenhao | Wang, Dahui | Song, Youngjo | Park, Sol | Choi, Ilhwan | Shin, Hee-sup | Choi, Hannah | Pasupathy, Anitha | Shea-Brown, Eric | Huh, Dongsung | Sejnowski, Terrence J. | Vogt, Simon M. | Kumar, Arvind | Schmidt, Robert | Van Wert, Stephen | Schiff, Steven J. | Veale, Richard | Scheutz, Matthias | Lee, Sang Wan | Gallinaro, Júlia | Rotter, Stefan | Rubchinsky, Leonid L. | Cheung, Chung Ching | Ratnadurai-Giridharan, Shivakeshavan | Shomali, Safura Rashid | Ahmadabadi, Majid Nili | Shimazaki, Hideaki | Nader Rasuli, S. | Zhao, Xiaochen | Rasch, Malte J. | Wilting, Jens | Priesemann, Viola | Levina, Anna | Rudelt, Lucas | Lizier, Joseph T. | Spinney, Richard E. | Rubinov, Mikail | Wibral, Michael | Bak, Ji Hyun | Pillow, Jonathan | Zaho, Yuan | Park, Il Memming | Kang, Jiyoung | Park, Hae-Jeong | Jang, Jaeson | Paik, Se-Bum | Choi, Woochul | Lee, Changju | Song, Min | Lee, Hyeonsu | Park, Youngjin | Yilmaz, Ergin | Baysal, Veli | Ozer, Mahmut | Saska, Daniel | Nowotny, Thomas | Chan, Ho Ka | Diamond, Alan | Herrmann, Christoph S. | Murray, Micah M. | Ionta, Silvio | Hutt, Axel | Lefebvre, Jérémie | Weidel, Philipp | Duarte, Renato | Morrison, Abigail | Lee, Jung H. | Iyer, Ramakrishnan | Mihalas, Stefan | Koch, Christof | Petrovici, Mihai A. | Leng, Luziwei | Breitwieser, Oliver | Stöckel, David | Bytschok, Ilja | Martel, Roman | Bill, Johannes | Schemmel, Johannes | Meier, Karlheinz | Esler, Timothy B. | Burkitt, Anthony N. | Kerr, Robert R. | Tahayori, Bahman | Nolte, Max | Reimann, Michael W. | Muller, Eilif | Markram, Henry | Parziale, Antonio | Senatore, Rosa | Marcelli, Angelo | Skiker, K. | Maouene, M. | Neymotin, Samuel A. | Seidenstein, Alexandra | Lakatos, Peter | Sanger, Terence D. | Menzies, Rosemary J. | McLauchlan, Campbell | van Albada, Sacha J. | Kedziora, David J. | Neymotin, Samuel | Kerr, Cliff C. | Suter, Benjamin A. | Shepherd, Gordon M. G. | Ryu, Juhyoung | Lee, Sang-Hun | Lee, Joonwon | Lee, Hyang Jung | Lim, Daeseob | Wang, Jisung | Lee, Heonsoo | Jung, Nam | Anh Quang, Le | Maeng, Seung Eun | Lee, Tae Ho | Lee, Jae Woo | Park, Chang-hyun | Ahn, Sora | Moon, Jangsup | Choi, Yun Seo | Kim, Juhee | Jun, Sang Beom | Lee, Seungjun | Lee, Hyang Woon | Jo, Sumin | Jun, Eunji | Yu, Suin | Goetze, Felix | Lai, Pik-Yin | Kim, Seonghyun | Kwag, Jeehyun | Jang, Hyun Jae | Filipović, Marko | Reig, Ramon | Aertsen, Ad | Silberberg, Gilad | Bachmann, Claudia | Buttler, Simone | Jacobs, Heidi | Dillen, Kim | Fink, Gereon R. | Kukolja, Juraj | Kepple, Daniel | Giaffar, Hamza | Rinberg, Dima | Shea, Steven | Koulakov, Alex | Bahuguna, Jyotika | Tetzlaff, Tom | Kotaleski, Jeanette Hellgren | Kunze, Tim | Peterson, Andre | Knösche, Thomas | Kim, Minjung | Kim, Hojeong | Park, Ji Sung | Yeon, Ji Won | Kim, Sung-Phil | Kang, Jae-Hwan | Lee, Chungho | Spiegler, Andreas | Petkoski, Spase | Palva, Matias J. | Jirsa, Viktor K. | Saggio, Maria L. | Siep, Silvan F. | Stacey, William C. | Bernar, Christophe | Choung, Oh-hyeon | Jeong, Yong | Lee, Yong-il | Kim, Su Hyun | Jeong, Mir | Lee, Jeungmin | Kwon, Jaehyung | Kralik, Jerald D. | Jahng, Jaehwan | Hwang, Dong-Uk | Kwon, Jae-Hyung | Park, Sang-Min | Kim, Seongkyun | Kim, Hyoungkyu | Kim, Pyeong Soo | Yoon, Sangsup | Lim, Sewoong | Park, Choongseok | Miller, Thomas | Clements, Katie | Ahn, Sungwoo | Ji, Eoon Hye | Issa, Fadi A. | Baek, JeongHun | Oba, Shigeyuki | Yoshimoto, Junichiro | Doya, Kenji | Ishii, Shin | Mosqueiro, Thiago S. | Strube-Bloss, Martin F. | Smith, Brian | Huerta, Ramon | Hadrava, Michal | Hlinka, Jaroslav | Bos, Hannah | Helias, Moritz | Welzig, Charles M. | Harper, Zachary J. | Kim, Won Sup | Shin, In-Seob | Baek, Hyeon-Man | Han, Seung Kee | Richter, René | Vitay, Julien | Beuth, Frederick | Hamker, Fred H. | Toppin, Kelly | Guo, Yixin | Graham, Bruce P. | Kale, Penelope J. | Gollo, Leonardo L. | Stern, Merav | Abbott, L. F. | Fedorov, Leonid A. | Giese, Martin A. | Ardestani, Mohammad Hovaidi | Faraji, Mohammad Javad | Preuschoff, Kerstin | Gerstner, Wulfram | van Gendt, Margriet J. | Briaire, Jeroen J. | Kalkman, Randy K. | Frijns, Johan H. M. | Lee, Won Hee | Frangou, Sophia | Fulcher, Ben D. | Tran, Patricia H. P. | Fornito, Alex | Gliske, Stephen V. | Lim, Eugene | Holman, Katherine A. | Fink, Christian G. | Kim, Jinseop S. | Mu, Shang | Briggman, Kevin L. | Sebastian Seung, H. | Wegener, Detlef | Bohnenkamp, Lisa | Ernst, Udo A. | Devor, Anna | Dale, Anders M. | Lines, Glenn T. | Edwards, Andy | Tveito, Aslak | Hagen, Espen | Senk, Johanna | Diesmann, Markus | Schmidt, Maximilian | Bakker, Rembrandt | Shen, Kelly | Bezgin, Gleb | Hilgetag, Claus-Christian | van Albada, Sacha Jennifer | Sun, Haoqi | Sourina, Olga | Huang, Guang-Bin | Klanner, Felix | Denk, Cornelia | Glomb, Katharina | Ponce-Alvarez, Adrián | Gilson, Matthieu | Ritter, Petra | Deco, Gustavo | Witek, Maria A. G. | Clarke, Eric F. | Hansen, Mads | Wallentin, Mikkel | Kringelbach, Morten L. | Vuust, Peter | Klingbeil, Guido | De Schutter, Erik | Chen, Weiliang | Zang, Yunliang | Hong, Sungho | Takashima, Akira | Zamora, Criseida | Gallimore, Andrew R. | Goldschmidt, Dennis | Manoonpong, Poramate | Karoly, Philippa J. | Freestone, Dean R. | Soundry, Daniel | Kuhlmann, Levin | Paninski, Liam | Cook, Mark | Lee, Jaejin | Fishman, Yonatan I. | Cohen, Yale E. | Roberts, James A. | Cocchi, Luca | Sweeney, Yann | Lee, Soohyun | Jung, Woo-Sung | Kim, Youngsoo | Jung, Younginha | Song, Yoon-Kyu | Chavane, Frédéric | Soman, Karthik | Muralidharan, Vignesh | Srinivasa Chakravarthy, V. | Shivkumar, Sabyasachi | Mandali, Alekhya | Pragathi Priyadharsini, B. | Mehta, Hima | Davey, Catherine E. | Brinkman, Braden A. W. | Kekona, Tyler | Rieke, Fred | Buice, Michael | De Pittà, Maurizio | Berry, Hugues | Brunel, Nicolas | Breakspear, Michael | Marsat, Gary | Drew, Jordan | Chapman, Phillip D. | Daly, Kevin C. | Bradle, Samual P. | Seo, Sat Byul | Su, Jianzhong | Kavalali, Ege T. | Blackwell, Justin | Shiau, LieJune | Buhry, Laure | Basnayake, Kanishka | Lee, Sue-Hyun | Levy, Brandon A. | Baker, Chris I. | Leleu, Timothée | Philips, Ryan T. | Chhabria, Karishma
BMC Neuroscience  2016;17(Suppl 1):54.
Table of contents
A1 Functional advantages of cell-type heterogeneity in neural circuits
Tatyana O. Sharpee
A2 Mesoscopic modeling of propagating waves in visual cortex
Alain Destexhe
A3 Dynamics and biomarkers of mental disorders
Mitsuo Kawato
F1 Precise recruitment of spiking output at theta frequencies requires dendritic h-channels in multi-compartment models of oriens-lacunosum/moleculare hippocampal interneurons
Vladislav Sekulić, Frances K. Skinner
F2 Kernel methods in reconstruction of current sources from extracellular potentials for single cells and the whole brains
Daniel K. Wójcik, Chaitanya Chintaluri, Dorottya Cserpán, Zoltán Somogyvári
F3 The synchronized periods depend on intracellular transcriptional repression mechanisms in circadian clocks.
Jae Kyoung Kim, Zachary P. Kilpatrick, Matthew R. Bennett, Kresimir Josić
O1 Assessing irregularity and coordination of spiking-bursting rhythms in central pattern generators
Irene Elices, David Arroyo, Rafael Levi, Francisco B. Rodriguez, Pablo Varona
O2 Regulation of top-down processing by cortically-projecting parvalbumin positive neurons in basal forebrain
Eunjin Hwang, Bowon Kim, Hio-Been Han, Tae Kim, James T. McKenna, Ritchie E. Brown, Robert W. McCarley, Jee Hyun Choi
O3 Modeling auditory stream segregation, build-up and bistability
James Rankin, Pamela Osborn Popp, John Rinzel
O4 Strong competition between tonotopic neural ensembles explains pitch-related dynamics of auditory cortex evoked fields
Alejandro Tabas, André Rupp, Emili Balaguer-Ballester
O5 A simple model of retinal response to multi-electrode stimulation
Matias I. Maturana, David B. Grayden, Shaun L. Cloherty, Tatiana Kameneva, Michael R. Ibbotson, Hamish Meffin
O6 Noise correlations in V4 area correlate with behavioral performance in visual discrimination task
Veronika Koren, Timm Lochmann, Valentin Dragoi, Klaus Obermayer
O7 Input-location dependent gain modulation in cerebellar nucleus neurons
Maria Psarrou, Maria Schilstra, Neil Davey, Benjamin Torben-Nielsen, Volker Steuber
O8 Analytic solution of cable energy function for cortical axons and dendrites
Huiwen Ju, Jiao Yu, Michael L. Hines, Liang Chen, Yuguo Yu
O9 C. elegans interactome: interactive visualization of Caenorhabditis elegans worm neuronal network
Jimin Kim, Will Leahy, Eli Shlizerman
O10 Is the model any good? Objective criteria for computational neuroscience model selection
Justas Birgiolas, Richard C. Gerkin, Sharon M. Crook
O11 Cooperation and competition of gamma oscillation mechanisms
Atthaphon Viriyopase, Raoul-Martin Memmesheimer, Stan Gielen
O12 A discrete structure of the brain waves
Yuri Dabaghian, Justin DeVito, Luca Perotti
O13 Direction-specific silencing of the Drosophila gaze stabilization system
Anmo J. Kim, Lisa M. Fenk, Cheng Lyu, Gaby Maimon
O14 What does the fruit fly think about values? A model of olfactory associative learning
Chang Zhao, Yves Widmer, Simon Sprecher,Walter Senn
O15 Effects of ionic diffusion on power spectra of local field potentials (LFP)
Geir Halnes, Tuomo Mäki-Marttunen, Daniel Keller, Klas H. Pettersen,Ole A. Andreassen, Gaute T. Einevoll
O16 Large-scale cortical models towards understanding relationship between brain structure abnormalities and cognitive deficits
Yasunori Yamada
O17 Spatial coarse-graining the brain: origin of minicolumns
Moira L. Steyn-Ross, D. Alistair Steyn-Ross
O18 Modeling large-scale cortical networks with laminar structure
Jorge F. Mejias, John D. Murray, Henry Kennedy, Xiao-Jing Wang
O19 Information filtering by partial synchronous spikes in a neural population
Alexandra Kruscha, Jan Grewe, Jan Benda, Benjamin Lindner
O20 Decoding context-dependent olfactory valence in Drosophila
Laurent Badel, Kazumi Ohta, Yoshiko Tsuchimoto, Hokto Kazama
P1 Neural network as a scale-free network: the role of a hub
B. Kahng
P2 Hemodynamic responses to emotions and decisions using near-infrared spectroscopy optical imaging
Nicoladie D. Tam
P3 Phase space analysis of hemodynamic responses to intentional movement directions using functional near-infrared spectroscopy (fNIRS) optical imaging technique
Nicoladie D.Tam, Luca Pollonini, George Zouridakis
P4 Modeling jamming avoidance of weakly electric fish
Jaehyun Soh, DaeEun Kim
P5 Synergy and redundancy of retinal ganglion cells in prediction
Minsu Yoo, S. E. Palmer
P6 A neural field model with a third dimension representing cortical depth
Viviana Culmone, Ingo Bojak
P7 Network analysis of a probabilistic connectivity model of the Xenopus tadpole spinal cord
Andrea Ferrario, Robert Merrison-Hort, Roman Borisyuk
P8 The recognition dynamics in the brain
Chang Sub Kim
P9 Multivariate spike train analysis using a positive definite kernel
Taro Tezuka
P10 Synchronization of burst periods may govern slow brain dynamics during general anesthesia
Pangyu Joo
P11 The ionic basis of heterogeneity affects stochastic synchrony
Young-Ah Rho, Shawn D. Burton, G. Bard Ermentrout, Jaeseung Jeong, Nathaniel N. Urban
P12 Circular statistics of noise in spike trains with a periodic component
Petr Marsalek
P14 Representations of directions in EEG-BCI using Gaussian readouts
Hoon-Hee Kim, Seok-hyun Moon, Do-won Lee, Sung-beom Lee, Ji-yong Lee, Jaeseung Jeong
P15 Action selection and reinforcement learning in basal ganglia during reaching movements
Yaroslav I. Molkov, Khaldoun Hamade, Wondimu Teka, William H. Barnett, Taegyo Kim, Sergey Markin, Ilya A. Rybak
P17 Axon guidance: modeling axonal growth in T-Junction assay
Csaba Forro, Harald Dermutz, László Demkó, János Vörös
P19 Transient cell assembly networks encode persistent spatial memories
Yuri Dabaghian, Andrey Babichev
P20 Theory of population coupling and applications to describe high order correlations in large populations of interacting neurons
Haiping Huang
P21 Design of biologically-realistic simulations for motor control
Sergio Verduzco-Flores
P22 Towards understanding the functional impact of the behavioural variability of neurons
Filipa Dos Santos, Peter Andras
P23 Different oscillatory dynamics underlying gamma entrainment deficits in schizophrenia
Christoph Metzner, Achim Schweikard, Bartosz Zurowski
P24 Memory recall and spike frequency adaptation
James P. Roach, Leonard M. Sander, Michal R. Zochowski
P25 Stability of neural networks and memory consolidation preferentially occur near criticality
Quinton M. Skilling, Nicolette Ognjanovski, Sara J. Aton, Michal Zochowski
P26 Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems
Sheng-Jun Wang, Guang Ouyang, Jing Guang, Mingsha Zhang, K. Y. Michael Wong, Changsong Zhou
P27 Neurofield: a C++ library for fast simulation of 2D neural field models
Peter A. Robinson, Paula Sanz-Leon, Peter M. Drysdale, Felix Fung, Romesh G. Abeysuriya, Chris J. Rennie, Xuelong Zhao
P28 Action-based grounding: Beyond encoding/decoding in neural code
Yoonsuck Choe, Huei-Fang Yang
P29 Neural computation in a dynamical system with multiple time scales
Yuanyuan Mi, Xiaohan Lin, Si Wu
P30 Maximum entropy models for 3D layouts of orientation selectivity
Joscha Liedtke, Manuel Schottdorf, Fred Wolf
P31 A behavioral assay for probing computations underlying curiosity in rodents
Yoriko Yamamura, Jeffery R. Wickens
P32 Using statistical sampling to balance error function contributions to optimization of conductance-based models
Timothy Rumbell, Julia Ramsey, Amy Reyes, Danel Draguljić, Patrick R. Hof, Jennifer Luebke, Christina M. Weaver
P33 Exploration and implementation of a self-growing and self-organizing neuron network building algorithm
Hu He, Xu Yang, Hailin Ma, Zhiheng Xu, Yuzhe Wang
P34 Disrupted resting state brain network in obese subjects: a data-driven graph theory analysis
Kwangyeol Baek, Laurel S. Morris, Prantik Kundu, Valerie Voon
P35 Dynamics of cooperative excitatory and inhibitory plasticity
Everton J. Agnes, Tim P. Vogels
P36 Frequency-dependent oscillatory signal gating in feed-forward networks of integrate-and-fire neurons
William F. Podlaski, Tim P. Vogels
P37 Phenomenological neural model for adaptation of neurons in area IT
Martin Giese, Pradeep Kuravi, Rufin Vogels
P38 ICGenealogy: towards a common topology of neuronal ion channel function and genealogy in model and experiment
Alexander Seeholzer, William Podlaski, Rajnish Ranjan, Tim Vogels
P39 Temporal input discrimination from the interaction between dynamic synapses and neural subthreshold oscillations
Joaquin J. Torres, Fabiano Baroni, Roberto Latorre, Pablo Varona
P40 Different roles for transient and sustained activity during active visual processing
Bart Gips, Eric Lowet, Mark J. Roberts, Peter de Weerd, Ole Jensen, Jan van der Eerden
P41 Scale-free functional networks of 2D Ising model are highly robust against structural defects: neuroscience implications
Abdorreza Goodarzinick, Mohammad D. Niry, Alireza Valizadeh
P42 High frequency neuron can facilitate propagation of signal in neural networks
Aref Pariz, Shervin S. Parsi, Alireza Valizadeh
P43 Investigating the effect of Alzheimer’s disease related amyloidopathy on gamma oscillations in the CA1 region of the hippocampus
Julia M. Warburton, Lucia Marucci, Francesco Tamagnini, Jon Brown, Krasimira Tsaneva-Atanasova
P44 Long-tailed distributions of inhibitory and excitatory weights in a balanced network with eSTDP and iSTDP
Florence I. Kleberg, Jochen Triesch
P45 Simulation of EMG recording from hand muscle due to TMS of motor cortex
Bahar Moezzi, Nicolangelo Iannella, Natalie Schaworonkow, Lukas Plogmacher, Mitchell R. Goldsworthy, Brenton Hordacre, Mark D. McDonnell, Michael C. Ridding, Jochen Triesch
P46 Structure and dynamics of axon network formed in primary cell culture
Martin Zapotocky, Daniel Smit, Coralie Fouquet, Alain Trembleau
P47 Efficient signal processing and sampling in random networks that generate variability
Sakyasingha Dasgupta, Isao Nishikawa, Kazuyuki Aihara, Taro Toyoizumi
P48 Modeling the effect of riluzole on bursting in respiratory neural networks
Daniel T. Robb, Nick Mellen, Natalia Toporikova
P49 Mapping relaxation training using effective connectivity analysis
Rongxiang Tang, Yi-Yuan Tang
P50 Modeling neuron oscillation of implicit sequence learning
Guangsheng Liang, Seth A. Kiser, James H. Howard, Jr., Yi-Yuan Tang
P51 The role of cerebellar short-term synaptic plasticity in the pathology and medication of downbeat nystagmus
Julia Goncharenko, Neil Davey, Maria Schilstra, Volker Steuber
P52 Nonlinear response of noisy neurons
Sergej O. Voronenko, Benjamin Lindner
P53 Behavioral embedding suggests multiple chaotic dimensions underlie C. elegans locomotion
Tosif Ahamed, Greg Stephens
P54 Fast and scalable spike sorting for large and dense multi-electrodes recordings
Pierre Yger, Baptiste Lefebvre, Giulia Lia Beatrice Spampinato, Elric Esposito, Marcel Stimberg et Olivier Marre
P55 Sufficient sampling rates for fast hand motion tracking
Hansol Choi, Min-Ho Song
P56 Linear readout of object manifolds
SueYeon Chung, Dan D. Lee, Haim Sompolinsky
P57 Differentiating models of intrinsic bursting and rhythm generation of the respiratory pre-Bötzinger complex using phase response curves
Ryan S. Phillips, Jeffrey Smith
P58 The effect of inhibitory cell network interactions during theta rhythms on extracellular field potentials in CA1 hippocampus
Alexandra Pierri Chatzikalymniou, Katie Ferguson, Frances K. Skinner
P59 Expansion recoding through sparse sampling in the cerebellar input layer speeds learning
N. Alex Cayco Gajic, Claudia Clopath, R. Angus Silver
P60 A set of curated cortical models at multiple scales on Open Source Brain
Padraig Gleeson, Boris Marin, Sadra Sadeh, Adrian Quintana, Matteo Cantarelli, Salvador Dura-Bernal, William W. Lytton, Andrew Davison, R. Angus Silver
P61 A synaptic story of dynamical information encoding in neural adaptation
Luozheng Li, Wenhao Zhang, Yuanyuan Mi, Dahui Wang, Si Wu
P62 Physical modeling of rule-observant rodent behavior
Youngjo Song, Sol Park, Ilhwan Choi, Jaeseung Jeong, Hee-sup Shin
P64 Predictive coding in area V4 and prefrontal cortex explains dynamic discrimination of partially occluded shapes
Hannah Choi, Anitha Pasupathy, Eric Shea-Brown
P65 Stability of FORCE learning on spiking and rate-based networks
Dongsung Huh, Terrence J. Sejnowski
P66 Stabilising STDP in striatal neurons for reliable fast state recognition in noisy environments
Simon M. Vogt, Arvind Kumar, Robert Schmidt
P67 Electrodiffusion in one- and two-compartment neuron models for characterizing cellular effects of electrical stimulation
Stephen Van Wert, Steven J. Schiff
P68 STDP improves speech recognition capabilities in spiking recurrent circuits parameterized via differential evolution Markov Chain Monte Carlo
Richard Veale, Matthias Scheutz
P69 Bidirectional transformation between dominant cortical neural activities and phase difference distributions
Sang Wan Lee
P70 Maturation of sensory networks through homeostatic structural plasticity
Júlia Gallinaro, Stefan Rotter
P71 Corticothalamic dynamics: structure, number of solutions and stability of steady-state solutions in the space of synaptic couplings
Paula Sanz-Leon, Peter A. Robinson
P72 Optogenetic versus electrical stimulation of the parkinsonian basal ganglia. Computational study
Leonid L. Rubchinsky, Chung Ching Cheung, Shivakeshavan Ratnadurai-Giridharan
P73 Exact spike-timing distribution reveals higher-order interactions of neurons
Safura Rashid Shomali, Majid Nili Ahmadabadi, Hideaki Shimazaki, S. Nader Rasuli
P74 Neural mechanism of visual perceptual learning using a multi-layered neural network
Xiaochen Zhao, Malte J. Rasch
P75 Inferring collective spiking dynamics from mostly unobserved systems
Jens Wilting, Viola Priesemann
P76 How to infer distributions in the brain from subsampled observations
Anna Levina, Viola Priesemann
P77 Influences of embedding and estimation strategies on the inferred memory of single spiking neurons
Lucas Rudelt, Joseph T. Lizier, Viola Priesemann
P78 A nearest-neighbours based estimator for transfer entropy between spike trains
Joseph T. Lizier, Richard E. Spinney, Mikail Rubinov, Michael Wibral, Viola Priesemann
P79 Active learning of psychometric functions with multinomial logistic models
Ji Hyun Bak, Jonathan Pillow
P81 Inferring low-dimensional network dynamics with variational latent Gaussian process
Yuan Zaho, Il Memming Park
P82 Computational investigation of energy landscapes in the resting state subcortical brain network
Jiyoung Kang, Hae-Jeong Park
P83 Local repulsive interaction between retinal ganglion cells can generate a consistent spatial periodicity of orientation map
Jaeson Jang, Se-Bum Paik
P84 Phase duration of bistable perception reveals intrinsic time scale of perceptual decision under noisy condition
Woochul Choi, Se-Bum Paik
P85 Feedforward convergence between retina and primary visual cortex can determine the structure of orientation map
Changju Lee, Jaeson Jang, Se-Bum Paik
P86 Computational method classifying neural network activity patterns for imaging data
Min Song, Hyeonsu Lee, Se-Bum Paik
P87 Symmetry of spike-timing-dependent-plasticity kernels regulates volatility of memory
Youngjin Park, Woochul Choi, Se-Bum Paik
P88 Effects of time-periodic coupling strength on the first-spike latency dynamics of a scale-free network of stochastic Hodgkin-Huxley neurons
Ergin Yilmaz, Veli Baysal, Mahmut Ozer
P89 Spectral properties of spiking responses in V1 and V4 change within the trial and are highly relevant for behavioral performance
Veronika Koren, Klaus Obermayer
P90 Methods for building accurate models of individual neurons
Daniel Saska, Thomas Nowotny
P91 A full size mathematical model of the early olfactory system of honeybees
Ho Ka Chan, Alan Diamond, Thomas Nowotny
P92 Stimulation-induced tuning of ongoing oscillations in spiking neural networks
Christoph S. Herrmann, Micah M. Murray, Silvio Ionta, Axel Hutt, Jérémie Lefebvre
P93 Decision-specific sequences of neural activity in balanced random networks driven by structured sensory input
Philipp Weidel, Renato Duarte, Abigail Morrison
P94 Modulation of tuning induced by abrupt reduction of SST cell activity
Jung H. Lee, Ramakrishnan Iyer, Stefan Mihalas
P95 The functional role of VIP cell activation during locomotion
Jung H. Lee, Ramakrishnan Iyer, Christof Koch, Stefan Mihalas
P96 Stochastic inference with spiking neural networks
Mihai A. Petrovici, Luziwei Leng, Oliver Breitwieser, David Stöckel, Ilja Bytschok, Roman Martel, Johannes Bill, Johannes Schemmel, Karlheinz Meier
P97 Modeling orientation-selective electrical stimulation with retinal prostheses
Timothy B. Esler, Anthony N. Burkitt, David B. Grayden, Robert R. Kerr, Bahman Tahayori, Hamish Meffin
P98 Ion channel noise can explain firing correlation in auditory nerves
Bahar Moezzi, Nicolangelo Iannella, Mark D. McDonnell
P99 Limits of temporal encoding of thalamocortical inputs in a neocortical microcircuit
Max Nolte, Michael W. Reimann, Eilif Muller, Henry Markram
P100 On the representation of arm reaching movements: a computational model
Antonio Parziale, Rosa Senatore, Angelo Marcelli
P101 A computational model for investigating the role of cerebellum in acquisition and retention of motor behavior
Rosa Senatore, Antonio Parziale, Angelo Marcelli
P102 The emergence of semantic categories from a large-scale brain network of semantic knowledge
K. Skiker, M. Maouene
P103 Multiscale modeling of M1 multitarget pharmacotherapy for dystonia
Samuel A. Neymotin, Salvador Dura-Bernal, Alexandra Seidenstein, Peter Lakatos, Terence D. Sanger, William W. Lytton
P104 Effect of network size on computational capacity
Salvador Dura-Bernal, Rosemary J. Menzies, Campbell McLauchlan, Sacha J. van Albada, David J. Kedziora, Samuel Neymotin, William W. Lytton, Cliff C. Kerr
P105 NetPyNE: a Python package for NEURON to facilitate development and parallel simulation of biological neuronal networks
Salvador Dura-Bernal, Benjamin A. Suter, Samuel A. Neymotin, Cliff C. Kerr, Adrian Quintana, Padraig Gleeson, Gordon M. G. Shepherd, William W. Lytton
P107 Inter-areal and inter-regional inhomogeneity in co-axial anisotropy of Cortical Point Spread in human visual areas
Juhyoung Ryu, Sang-Hun Lee
P108 Two bayesian quanta of uncertainty explain the temporal dynamics of cortical activity in the non-sensory areas during bistable perception
Joonwon Lee, Sang-Hun Lee
P109 Optimal and suboptimal integration of sensory and value information in perceptual decision making
Hyang Jung Lee, Sang-Hun Lee
P110 A Bayesian algorithm for phoneme Perception and its neural implementation
Daeseob Lim, Sang-Hun Lee
P111 Complexity of EEG signals is reduced during unconsciousness induced by ketamine and propofol
Jisung Wang, Heonsoo Lee
P112 Self-organized criticality of neural avalanche in a neural model on complex networks
Nam Jung, Le Anh Quang, Seung Eun Maeng, Tae Ho Lee, Jae Woo Lee
P113 Dynamic alterations in connection topology of the hippocampal network during ictal-like epileptiform activity in an in vitro rat model
Chang-hyun Park, Sora Ahn, Jangsup Moon, Yun Seo Choi, Juhee Kim, Sang Beom Jun, Seungjun Lee, Hyang Woon Lee
P114 Computational model to replicate seizure suppression effect by electrical stimulation
Sora Ahn, Sumin Jo, Eunji Jun, Suin Yu, Hyang Woon Lee, Sang Beom Jun, Seungjun Lee
P115 Identifying excitatory and inhibitory synapses in neuronal networks from spike trains using sorted local transfer entropy
Felix Goetze, Pik-Yin Lai
P116 Neural network model for obstacle avoidance based on neuromorphic computational model of boundary vector cell and head direction cell
Seonghyun Kim, Jeehyun Kwag
P117 Dynamic gating of spike pattern propagation by Hebbian and anti-Hebbian spike timing-dependent plasticity in excitatory feedforward network model
Hyun Jae Jang, Jeehyun Kwag
P118 Inferring characteristics of input correlations of cells exhibiting up-down state transitions in the rat striatum
Marko Filipović, Ramon Reig, Ad Aertsen, Gilad Silberberg, Arvind Kumar
P119 Graph properties of the functional connected brain under the influence of Alzheimer’s disease
Claudia Bachmann, Simone Buttler, Heidi Jacobs, Kim Dillen, Gereon R. Fink, Juraj Kukolja, Abigail Morrison
P120 Learning sparse representations in the olfactory bulb
Daniel Kepple, Hamza Giaffar, Dima Rinberg, Steven Shea, Alex Koulakov
P121 Functional classification of homologous basal-ganglia networks
Jyotika Bahuguna,Tom Tetzlaff, Abigail Morrison, Arvind Kumar, Jeanette Hellgren Kotaleski
P122 Short term memory based on multistability
Tim Kunze, Andre Peterson, Thomas Knösche
P123 A physiologically plausible, computationally efficient model and simulation software for mammalian motor units
Minjung Kim, Hojeong Kim
P125 Decoding laser-induced somatosensory information from EEG
Ji Sung Park, Ji Won Yeon, Sung-Phil Kim
P126 Phase synchronization of alpha activity for EEG-based personal authentication
Jae-Hwan Kang, Chungho Lee, Sung-Phil Kim
P129 Investigating phase-lags in sEEG data using spatially distributed time delays in a large-scale brain network model
Andreas Spiegler, Spase Petkoski, Matias J. Palva, Viktor K. Jirsa
P130 Epileptic seizures in the unfolding of a codimension-3 singularity
Maria L. Saggio, Silvan F. Siep, Andreas Spiegler, William C. Stacey, Christophe Bernard, Viktor K. Jirsa
P131 Incremental dimensional exploratory reasoning under multi-dimensional environment
Oh-hyeon Choung, Yong Jeong
P132 A low-cost model of eye movements and memory in personal visual cognition
Yong-il Lee, Jaeseung Jeong
P133 Complex network analysis of structural connectome of autism spectrum disorder patients
Su Hyun Kim, Mir Jeong, Jaeseung Jeong
P134 Cognitive motives and the neural correlates underlying human social information transmission, gossip
Jeungmin Lee, Jaehyung Kwon, Jerald D. Kralik, Jaeseung Jeong
P135 EEG hyperscanning detects neural oscillation for the social interaction during the economic decision-making
Jaehwan Jahng, Dong-Uk Hwang, Jaeseung Jeong
P136 Detecting purchase decision based on hyperfrontality of the EEG
Jae-Hyung Kwon, Sang-Min Park, Jaeseung Jeong
P137 Vulnerability-based critical neurons, synapses, and pathways in the Caenorhabditis elegans connectome
Seongkyun Kim, Hyoungkyu Kim, Jerald D. Kralik, Jaeseung Jeong
P138 Motif analysis reveals functionally asymmetrical neurons in C. elegans
Pyeong Soo Kim, Seongkyun Kim, Hyoungkyu Kim, Jaeseung Jeong
P139 Computational approach to preference-based serial decision dynamics: do temporal discounting and working memory affect it?
Sangsup Yoon, Jaehyung Kwon, Sewoong Lim, Jaeseung Jeong
P141 Social stress induced neural network reconfiguration affects decision making and learning in zebrafish
Choongseok Park, Thomas Miller, Katie Clements, Sungwoo Ahn, Eoon Hye Ji, Fadi A. Issa
P142 Descriptive, generative, and hybrid approaches for neural connectivity inference from neural activity data
JeongHun Baek, Shigeyuki Oba, Junichiro Yoshimoto, Kenji Doya, Shin Ishii
P145 Divergent-convergent synaptic connectivities accelerate coding in multilayered sensory systems
Thiago S. Mosqueiro, Martin F. Strube-Bloss, Brian Smith, Ramon Huerta
P146 Swinging networks
Michal Hadrava, Jaroslav Hlinka
P147 Inferring dynamically relevant motifs from oscillatory stimuli: challenges, pitfalls, and solutions
Hannah Bos, Moritz Helias
P148 Spatiotemporal mapping of brain network dynamics during cognitive tasks using magnetoencephalography and deep learning
Charles M. Welzig, Zachary J. Harper
P149 Multiscale complexity analysis for the segmentation of MRI images
Won Sup Kim, In-Seob Shin, Hyeon-Man Baek, Seung Kee Han
P150 A neuro-computational model of emotional attention
René Richter, Julien Vitay, Frederick Beuth, Fred H. Hamker
P151 Multi-site delayed feedback stimulation in parkinsonian networks
Kelly Toppin, Yixin Guo
P152 Bistability in Hodgkin–Huxley-type equations
Tatiana Kameneva, Hamish Meffin, Anthony N. Burkitt, David B. Grayden
P153 Phase changes in postsynaptic spiking due to synaptic connectivity and short term plasticity: mathematical analysis of frequency dependency
Mark D. McDonnell, Bruce P. Graham
P154 Quantifying resilience patterns in brain networks: the importance of directionality
Penelope J. Kale, Leonardo L. Gollo
P155 Dynamics of rate-model networks with separate excitatory and inhibitory populations
Merav Stern, L. F. Abbott
P156 A model for multi-stable dynamics in action recognition modulated by integration of silhouette and shading cues
Leonid A. Fedorov, Martin A. Giese
P157 Spiking model for the interaction between action recognition and action execution
Mohammad Hovaidi Ardestani, Martin Giese
P158 Surprise-modulated belief update: how to learn within changing environments?
Mohammad Javad Faraji, Kerstin Preuschoff, Wulfram Gerstner
P159 A fast, stochastic and adaptive model of auditory nerve responses to cochlear implant stimulation
Margriet J. van Gendt, Jeroen J. Briaire, Randy K. Kalkman, Johan H. M. Frijns
P160 Quantitative comparison of graph theoretical measures of simulated and empirical functional brain networks
Won Hee Lee, Sophia Frangou
P161 Determining discriminative properties of fMRI signals in schizophrenia using highly comparative time-series analysis
Ben D. Fulcher, Patricia H. P. Tran, Alex Fornito
P162 Emergence of narrowband LFP oscillations from completely asynchronous activity during seizures and high-frequency oscillations
Stephen V. Gliske, William C. Stacey, Eugene Lim, Katherine A. Holman, Christian G. Fink
P163 Neuronal diversity in structure and function: cross-validation of anatomical and physiological classification of retinal ganglion cells in the mouse
Jinseop S. Kim, Shang Mu, Kevin L. Briggman, H. Sebastian Seung, the EyeWirers
P164 Analysis and modelling of transient firing rate changes in area MT in response to rapid stimulus feature changes
Detlef Wegener, Lisa Bohnenkamp, Udo A. Ernst
P165 Step-wise model fitting accounting for high-resolution spatial measurements: construction of a layer V pyramidal cell model with reduced morphology
Tuomo Mäki-Marttunen, Geir Halnes, Anna Devor, Christoph Metzner, Anders M. Dale, Ole A. Andreassen, Gaute T. Einevoll
P166 Contributions of schizophrenia-associated genes to neuron firing and cardiac pacemaking: a polygenic modeling approach
Tuomo Mäki-Marttunen, Glenn T. Lines, Andy Edwards, Aslak Tveito, Anders M. Dale, Gaute T. Einevoll, Ole A. Andreassen
P167 Local field potentials in a 4 × 4 mm2 multi-layered network model
Espen Hagen, Johanna Senk, Sacha J. van Albada, Markus Diesmann
P168 A spiking network model explains multi-scale properties of cortical dynamics
Maximilian Schmidt, Rembrandt Bakker, Kelly Shen, Gleb Bezgin, Claus-Christian Hilgetag, Markus Diesmann, Sacha Jennifer van Albada
P169 Using joint weight-delay spike-timing dependent plasticity to find polychronous neuronal groups
Haoqi Sun, Olga Sourina, Guang-Bin Huang, Felix Klanner, Cornelia Denk
P170 Tensor decomposition reveals RSNs in simulated resting state fMRI
Katharina Glomb, Adrián Ponce-Alvarez, Matthieu Gilson, Petra Ritter, Gustavo Deco
P171 Getting in the groove: testing a new model-based method for comparing task-evoked vs resting-state activity in fMRI data on music listening
Matthieu Gilson, Maria AG Witek, Eric F. Clarke, Mads Hansen, Mikkel Wallentin, Gustavo Deco, Morten L. Kringelbach, Peter Vuust
P172 STochastic engine for pathway simulation (STEPS) on massively parallel processors
Guido Klingbeil, Erik De Schutter
P173 Toolkit support for complex parallel spatial stochastic reaction–diffusion simulation in STEPS
Weiliang Chen, Erik De Schutter
P174 Modeling the generation and propagation of Purkinje cell dendritic spikes caused by parallel fiber synaptic input
Yunliang Zang, Erik De Schutter
P175 Dendritic morphology determines how dendrites are organized into functional subunits
Sungho Hong, Akira Takashima, Erik De Schutter
P176 A model of Ca2+/calmodulin-dependent protein kinase II activity in long term depression at Purkinje cells
Criseida Zamora, Andrew R. Gallimore, Erik De Schutter
P177 Reward-modulated learning of population-encoded vectors for insect-like navigation in embodied agents
Dennis Goldschmidt, Poramate Manoonpong, Sakyasingha Dasgupta
P178 Data-driven neural models part II: connectivity patterns of human seizures
Philippa J. Karoly, Dean R. Freestone, Daniel Soundry, Levin Kuhlmann, Liam Paninski, Mark Cook
P179 Data-driven neural models part I: state and parameter estimation
Dean R. Freestone, Philippa J. Karoly, Daniel Soundry, Levin Kuhlmann, Mark Cook
P180 Spectral and spatial information processing in human auditory streaming
Jaejin Lee, Yonatan I. Fishman, Yale E. Cohen
P181 A tuning curve for the global effects of local perturbations in neural activity: Mapping the systems-level susceptibility of the brain
Leonardo L. Gollo, James A. Roberts, Luca Cocchi
P182 Diverse homeostatic responses to visual deprivation mediated by neural ensembles
Yann Sweeney, Claudia Clopath
P183 Opto-EEG: a novel method for investigating functional connectome in mouse brain based on optogenetics and high density electroencephalography
Soohyun Lee, Woo-Sung Jung, Jee Hyun Choi
P184 Biphasic responses of frontal gamma network to repetitive sleep deprivation during REM sleep
Bowon Kim, Youngsoo Kim, Eunjin Hwang, Jee Hyun Choi
P185 Brain-state correlate and cortical connectivity for frontal gamma oscillations in top-down fashion assessed by auditory steady-state response
Younginha Jung, Eunjin Hwang, Yoon-Kyu Song, Jee Hyun Choi
P186 Neural field model of localized orientation selective activation in V1
James Rankin, Frédéric Chavane
P187 An oscillatory network model of Head direction and Grid cells using locomotor inputs
Karthik Soman, Vignesh Muralidharan, V. Srinivasa Chakravarthy
P188 A computational model of hippocampus inspired by the functional architecture of basal ganglia
Karthik Soman, Vignesh Muralidharan, V. Srinivasa Chakravarthy
P189 A computational architecture to model the microanatomy of the striatum and its functional properties
Sabyasachi Shivkumar, Vignesh Muralidharan, V. Srinivasa Chakravarthy
P190 A scalable cortico-basal ganglia model to understand the neural dynamics of targeted reaching
Vignesh Muralidharan, Alekhya Mandali, B. Pragathi Priyadharsini, Hima Mehta, V. Srinivasa Chakravarthy
P191 Emergence of radial orientation selectivity from synaptic plasticity
Catherine E. Davey, David B. Grayden, Anthony N. Burkitt
P192 How do hidden units shape effective connections between neurons?
Braden A. W. Brinkman, Tyler Kekona, Fred Rieke, Eric Shea-Brown, Michael Buice
P193 Characterization of neural firing in the presence of astrocyte-synapse signaling
Maurizio De Pittà, Hugues Berry, Nicolas Brunel
P194 Metastability of spatiotemporal patterns in a large-scale network model of brain dynamics
James A. Roberts, Leonardo L. Gollo, Michael Breakspear
P195 Comparison of three methods to quantify detection and discrimination capacity estimated from neural population recordings
Gary Marsat, Jordan Drew, Phillip D. Chapman, Kevin C. Daly, Samual P. Bradley
P196 Quantifying the constraints for independent evoked and spontaneous NMDA receptor mediated synaptic transmission at individual synapses
Sat Byul Seo, Jianzhong Su, Ege T. Kavalali, Justin Blackwell
P199 Gamma oscillation via adaptive exponential integrate-and-fire neurons
LieJune Shiau, Laure Buhry, Kanishka Basnayake
P200 Visual face representations during memory retrieval compared to perception
Sue-Hyun Lee, Brandon A. Levy, Chris I. Baker
P201 Top-down modulation of sequential activity within packets modeled using avalanche dynamics
Timothée Leleu, Kazuyuki Aihara
Q28 An auto-encoder network realizes sparse features under the influence of desynchronized vascular dynamics
Ryan T. Philips, Karishma Chhabria, V. Srinivasa Chakravarthy
doi:10.1186/s12868-016-0283-6
PMCID: PMC5001212  PMID: 27534393
9.  Creating PWMs of transcription factors using 3D structure-based computation of protein-DNA free binding energies 
BMC Bioinformatics  2010;11:225.
Background
Knowledge of transcription factor-DNA binding patterns is crucial for understanding gene transcription. Numerous DNA-binding proteins are annotated as transcription factors in the literature, however, for many of them the corresponding DNA-binding motifs remain uncharacterized.
Results
The position weight matrices (PWMs) of transcription factors from different structural classes have been determined using a knowledge-based statistical potential. The scoring function calibrated against crystallographic data on protein-DNA contacts recovered PWMs of various members of widely studied transcription factor families such as p53 and NF-κB. Where it was possible, extensive comparison to experimental binding affinity data and other physical models was made. Although the p50p50, p50RelB, and p50p65 dimers belong to the same family, particular differences in their PWMs were detected, thereby suggesting possibly different in vivo binding modes. The PWMs of p63 and p73 were computed on the basis of homology modeling and their performance was studied using upstream sequences of 85 p53/p73-regulated human genes. Interestingly, about half of the p63 and p73 hits reported by the Match algorithm in the altogether 126 promoters lay more than 2 kb upstream of the corresponding transcription start sites, which deviates from the common assumption that most regulatory sites are located more proximal to the TSS. The fact that in most of the cases the binding sites of p63 and p73 did not overlap with the p53 sites suggests that p63 and p73 could influence the p53 transcriptional activity cooperatively. The newly computed p50p50 PWM recovered 5 more experimental binding sites than the corresponding TRANSFAC matrix, while both PWMs showed comparable receiver operator characteristics.
Conclusions
A novel algorithm was developed to calculate position weight matrices from protein-DNA complex structures. The proposed algorithm was extensively validated against experimental data. The method was further combined with Homology Modeling to obtain PWMs of factors for which crystallographic complexes with DNA are not yet available. The performance of PWMs obtained in this work in comparison to traditionally constructed matrices demonstrates that the structure-based approach presents a promising alternative to experimental determination of transcription factor binding properties.
doi:10.1186/1471-2105-11-225
PMCID: PMC2879287  PMID: 20438625
10.  BayesMotif: de novo protein sorting motif discovery from impure datasets 
BMC Bioinformatics  2010;11(Suppl 1):S66.
Background
Protein sorting is the process that newly synthesized proteins are transported to their target locations within or outside of the cell. This process is precisely regulated by protein sorting signals in different forms. A major category of sorting signals are amino acid sub-sequences usually located at the N-terminals or C-terminals of protein sequences. Genome-wide experimental identification of protein sorting signals is extremely time-consuming and costly. Effective computational algorithms for de novo discovery of protein sorting signals is needed to improve the understanding of protein sorting mechanisms.
Methods
We formulated the protein sorting motif discovery problem as a classification problem and proposed a Bayesian classifier based algorithm (BayesMotif) for de novo identification of a common type of protein sorting motifs in which a highly conserved anchor is present along with a less conserved motif regions. A false positive removal procedure is developed to iteratively remove sequences that are unlikely to contain true motifs so that the algorithm can identify motifs from impure input sequences.
Results
Experiments on both implanted motif datasets and real-world datasets showed that the enhanced BayesMotif algorithm can identify anchored sorting motifs from pure or impure protein sequence dataset. It also shows that the false positive removal procedure can help to identify true motifs even when there is only 20% of the input sequences containing true motif instances.
Conclusion
We proposed BayesMotif, a novel Bayesian classification based algorithm for de novo discovery of a special category of anchored protein sorting motifs from impure datasets. Compared to conventional motif discovery algorithms such as MEME, our algorithm can find less-conserved motifs with short highly conserved anchors. Our algorithm also has the advantage of easy incorporation of additional meta-sequence features such as hydrophobicity or charge of the motifs which may help to overcome the limitations of PWM (position weight matrix) motif model.
doi:10.1186/1471-2105-11-S1-S66
PMCID: PMC3009540  PMID: 20122242
11.  Characterization of Protein Hubs by Inferring Interacting Motifs from Protein Interactions 
PLoS Computational Biology  2007;3(9):e178.
The characterization of protein interactions is essential for understanding biological systems. While genome-scale methods are available for identifying interacting proteins, they do not pinpoint the interacting motifs (e.g., a domain, sequence segments, a binding site, or a set of residues). Here, we develop and apply a method for delineating the interacting motifs of hub proteins (i.e., highly connected proteins). The method relies on the observation that proteins with common interaction partners tend to interact with these partners through a common interacting motif. The sole input for the method are binary protein interactions; neither sequence nor structure information is needed. The approach is evaluated by comparing the inferred interacting motifs with domain families defined for 368 proteins in the Structural Classification of Proteins (SCOP). The positive predictive value of the method for detecting proteins with common SCOP families is 75% at sensitivity of 10%. Most of the inferred interacting motifs were significantly associated with sequence patterns, which could be responsible for the common interactions. We find that yeast hubs with multiple interacting motifs are more likely to be essential than hubs with one or two interacting motifs, thus rationalizing the previously observed correlation between essentiality and the number of interacting partners of a protein. We also find that yeast hubs with multiple interacting motifs evolve slower than the average protein, contrary to the hubs with one or two interacting motifs. The proposed method will help us discover unknown interacting motifs and provide biological insights about protein hubs and their roles in interaction networks.
Author Summary
Recent advances in experimental methods have produced a deluge of protein–protein interactions data. However, these methods do not supply information on which specific protein regions are physically in contact during the interactions. Identifying these regions (interfaces) is fundamental for scientific disciplines that require detailed characterizations of protein interactions. In this work, we present a computational method that identifies groups of proteins with similar interfaces. This is achieved by relying on the observation that proteins with common interaction partners tend to interact through similar interfaces. The proposed method retrieves protein interactions from public data repositories and groups proteins that share a sensible number of interacting partners. Proteins within the same group are then labeled with the same “interacting motif” identifier (iMotif). The evaluation performed using known protein domains and structural binding sites suggests that the method is better suited for proteins with multiple interacting partners (hubs). Using yeast data, we show that the cellular essentiality of a gene better correlates with the number of interacting motifs than with the absolute number of interactions.
doi:10.1371/journal.pcbi.0030178
PMCID: PMC1976338  PMID: 17941705
12.  The Next Generation of Transcription Factor Binding Site Prediction 
PLoS Computational Biology  2013;9(9):e1003214.
Finding where transcription factors (TFs) bind to the DNA is of key importance to decipher gene regulation at a transcriptional level. Classically, computational prediction of TF binding sites (TFBSs) is based on basic position weight matrices (PWMs) which quantitatively score binding motifs based on the observed nucleotide patterns in a set of TFBSs for the corresponding TF. Such models make the strong assumption that each nucleotide participates independently in the corresponding DNA-protein interaction and do not account for flexible length motifs. We introduce transcription factor flexible models (TFFMs) to represent TF binding properties. Based on hidden Markov models, TFFMs are flexible, and can model both position interdependence within TFBSs and variable length motifs within a single dedicated framework. The availability of thousands of experimentally validated DNA-TF interaction sequences from ChIP-seq allows for the generation of models that perform as well as PWMs for stereotypical TFs and can improve performance for TFs with flexible binding characteristics. We present a new graphical representation of the motifs that convey properties of position interdependence. TFFMs have been assessed on ChIP-seq data sets coming from the ENCODE project, revealing that they can perform better than both PWMs and the dinucleotide weight matrix extension in discriminating ChIP-seq from background sequences. Under the assumption that ChIP-seq signal values are correlated with the affinity of the TF-DNA binding, we find that TFFM scores correlate with ChIP-seq peak signals. Moreover, using available TF-DNA affinity measurements for the Max TF, we demonstrate that TFFMs constructed from ChIP-seq data correlate with published experimentally measured DNA-binding affinities. Finally, TFFMs allow for the straightforward computation of an integrated TF occupancy score across a sequence. These results demonstrate the capacity of TFFMs to accurately model DNA-protein interactions, while providing a single unified framework suitable for the next generation of TFBS prediction.
Author Summary
Transcription factors are critical proteins for sequence-specific control of transcriptional regulation. Finding where these proteins bind to DNA is of key importance for global efforts to decipher the complex mechanisms of gene regulation. Greater understanding of the regulation of transcription promises to improve human genetic analysis by specifying critical gene components that have eluded investigators. Classically, computational prediction of transcription factor binding sites (TFBS) is based on models giving weights to each nucleotide at each position. We introduce a novel statistical model for the prediction of TFBS tolerant of a broader range of TFBS configurations than can be conveniently accommodated by existing methods. The new models are designed to address the confounding properties of nucleotide composition, inter-positional sequence dependence and variable lengths (e.g. variable spacing between half-sites) observed in the more comprehensive experimental data now emerging. The new models generate scores consistent with DNA-protein affinities measured experimentally and can be represented graphically, retaining desirable attributes of past methods. It demonstrates the capacity of the new approach to accurately assess DNA-protein interactions. With the rich experimental data generated from chromatin immunoprecipitation experiments, a greater diversity of TFBS properties has emerged that can now be accommodated within a single predictive approach.
doi:10.1371/journal.pcbi.1003214
PMCID: PMC3764009  PMID: 24039567
13.  Improved benchmarks for computational motif discovery 
BMC Bioinformatics  2007;8:193.
Background
An important step in annotation of sequenced genomes is the identification of transcription factor binding sites. More than a hundred different computational methods have been proposed, and it is difficult to make an informed choice. Therefore, robust assessment of motif discovery methods becomes important, both for validation of existing tools and for identification of promising directions for future research.
Results
We use a machine learning perspective to analyze collections of transcription factors with known binding sites. Algorithms are presented for finding position weight matrices (PWMs), IUPAC-type motifs and mismatch motifs with optimal discrimination of binding sites from remaining sequence. We show that for many data sets in a recently proposed benchmark suite for motif discovery, none of the common motif models can accurately discriminate the binding sites from remaining sequence. This may obscure the distinction between the potential performance of the motif discovery tool itself versus the intrinsic complexity of the problem we are trying to solve. Synthetic data sets may avoid this problem, but we show on some previously proposed benchmarks that there may be a strong bias towards a presupposed motif model. We also propose a new approach to benchmark data set construction. This approach is based on collections of binding site fragments that are ranked according to the optimal level of discrimination achieved with our algorithms. This allows us to select subsets with specific properties. We present one benchmark suite with data sets that allow good discrimination between positive and negative instances with the common motif models. These data sets are suitable for evaluating algorithms for motif discovery that rely on these models. We present another benchmark suite where PWM, IUPAC and mismatch motif models are not able to discriminate reliably between positive and negative instances. This suite could be used for evaluating more powerful motif models.
Conclusion
Our improved benchmark suites have been designed to differentiate between the performance of motif discovery algorithms and the power of motif models. We provide a web server where users can download our benchmark suites, submit predictions and visualize scores on the benchmarks.
doi:10.1186/1471-2105-8-193
PMCID: PMC1903367  PMID: 17559676
14.  fdrMotif 
Bioinformatics (Oxford, England)  2008;24(5):629-636.
Motivation
Most de novo motif identification methods optimize the motif model first and then separately test the statistical significance of the motif score. In the first stage, a motif abundance parameter needs to be specified or modeled. In the second stage, a z-score or p-value is used as the test statistic. Error rates under multiple comparisons are not fully considered.
Methodology
We propose a simple but novel approach, fdrMotif, that selects as many binding sites as possible while controlling a user-specified false discovery rate (FDR). Unlike existing iterative methods, fdrMotif combines model optimization (e.g., position weight matrix (PWM)) and significance testing at each step. By monitoring the proportion of binding sites selected in many sets of background sequences, fdrMotif controls the FDR in the original data. The model is then updated using an expectation (E) and maximization (M)-like procedure. We propose a new normalization procedure in the E-step for updating the model. This process is repeated until either the model converges or the number of iterations exceeds a maximum.
Results
Simulation studies suggest that our normalization procedure assigns larger weights to the binding sites than do two other commonly used normalization procedures. Furthermore, fdrMotif requires only a user-specified FDR and an initial PWM. When tested on 542 high confidence experimental p53 binding loci, fdrMotif identified 569 p53 binding sites in 505 (93.2%) sequences. In comparison, MEME identified more binding sites but in fewer ChIP sequences than fdrMotif. When tested on 500 sets of simulated “ChIP” sequences with embedded known p53 binding sites, fdrMotif, compared to MEME, has higher sensitivity with similar positive predictive value. Furthermore, fdrMotif is robust to noise: it selected nearly identical binding sites in data adulterated with 50% added background sequences and the unadulterated data. We suggest that fdrMotif represents an improvement over MEME.
doi:10.1093/bioinformatics/btn009
PMCID: PMC2376047  PMID: 18296465
15.  Position Weight Matrix, Gibbs Sampler, and the Associated Significance Tests in Motif Characterization and Prediction 
Scientifica  2012;2012:917540.
Position weight matrix (PWM) is not only one of the most widely used bioinformatic methods, but also a key component in more advanced computational algorithms (e.g., Gibbs sampler) for characterizing and discovering motifs in nucleotide or amino acid sequences. However, few generally applicable statistical tests are available for evaluating the significance of site patterns, PWM, and PWM scores (PWMS) of putative motifs. Statistical significance tests of the PWM output, that is, site-specific frequencies, PWM itself, and PWMS, are in disparate sources and have never been collected in a single paper, with the consequence that many implementations of PWM do not include any significance test. Here I review PWM-based methods used in motif characterization and prediction (including a detailed illustration of the Gibbs sampler for de novo motif discovery), present statistical and probabilistic rationales behind statistical significance tests relevant to PWM, and illustrate their application with real data. The multiple comparison problem associated with the test of site-specific frequencies is best handled by false discovery rate methods. The test of PWM, due to the use of pseudocounts, is best done by resampling methods. The test of individual PWMS for each sequence segment should be based on the extreme value distribution.
doi:10.6064/2012/917540
PMCID: PMC3820676  PMID: 24278755
16.  Fast Matching of Transcription Factor Motifs Using Generalized Position Weight Matrix Models 
Journal of Computational Biology  2013;20(9):621-630.
Abstract
The problem of finding the locations in DNA sequences that match a given motif describing the binding specificities of a transcription factor (TF) has many applications in computational biology. This problem has been extensively studied when the position weight matrix (PWM) model is used to represent motifs. We investigate it under the feature motif model, a generalization of the PWM model that does not assume independence between positions in the pattern while being compatible with the original PWM. We present a new method for finding the binding sites of a transcription factor in a DNA sequence when the feature motif model is used to describe transcription factor binding specificities. The experimental results on random and real data show that the search algorithm is fast in practice.
doi:10.1089/cmb.2012.0289
PMCID: PMC3761436  PMID: 23919388
algorithms; automata; sequence analysis; strings
17.  A Novel Bayesian DNA Motif Comparison Method for Clustering and Retrieval 
PLoS Computational Biology  2008;4(2):e1000010.
Characterizing the DNA-binding specificities of transcription factors is a key problem in computational biology that has been addressed by multiple algorithms. These usually take as input sequences that are putatively bound by the same factor and output one or more DNA motifs. A common practice is to apply several such algorithms simultaneously to improve coverage at the price of redundancy. In interpreting such results, two tasks are crucial: clustering of redundant motifs, and attributing the motifs to transcription factors by retrieval of similar motifs from previously characterized motif libraries. Both tasks inherently involve motif comparison. Here we present a novel method for comparing and merging motifs, based on Bayesian probabilistic principles. This method takes into account both the similarity in positional nucleotide distributions of the two motifs and their dissimilarity to the background distribution. We demonstrate the use of the new comparison method as a basis for motif clustering and retrieval procedures, and compare it to several commonly used alternatives. Our results show that the new method outperforms other available methods in accuracy and sensitivity. We incorporated the resulting motif clustering and retrieval procedures in a large-scale automated pipeline for analyzing DNA motifs. This pipeline integrates the results of various DNA motif discovery algorithms and automatically merges redundant motifs from multiple training sets into a coherent annotated library of motifs. Application of this pipeline to recent genome-wide transcription factor location data in S. cerevisiae successfully identified DNA motifs in a manner that is as good as semi-automated analysis reported in the literature. Moreover, we show how this analysis elucidates the mechanisms of condition-specific preferences of transcription factors.
Author Summary
Regulation of gene expression plays a central role in the activity of living cells and in their response to internal (e.g., cell division) or external (e.g., stress) stimuli. Key players in determining gene-specific regulation are transcription factors that bind sequence-specific sites on the DNA, modulating the expression of nearby genes. To understand the regulatory program of the cell, we need to identify these transcription factors, when they act, and on which genes. Transcription regulatory maps can be assembled by computational analysis of experimental data, by discovering the DNA recognition sequences (motifs) of transcription factors and their occurrences along the genome. Such an analysis usually results in a large number of overlapping motifs. To reconstruct regulatory maps, it is crucial to combine similar motifs and to relate them to transcription factors. To this end we developed an accurate fully-automated method, termed BLiC, based upon an improved similarity measure for comparing DNA motifs. By applying it to genome-wide data in yeast, we identified the DNA motifs of transcription factors and their putative target genes. Finally, we analyze motifs of transcription factor that alter their target genes under different conditions, and show how cells adjust their regulatory program in response to environmental changes.
doi:10.1371/journal.pcbi.1000010
PMCID: PMC2265534  PMID: 18463706
18.  Variable structure motifs for transcription factor binding sites 
BMC Genomics  2010;11:30.
Background
Classically, models of DNA-transcription factor binding sites (TFBSs) have been based on relatively few known instances and have treated them as sites of fixed length using position weight matrices (PWMs). Various extensions to this model have been proposed, most of which take account of dependencies between the bases in the binding sites. However, some transcription factors are known to exhibit some flexibility and bind to DNA in more than one possible physical configuration. In some cases this variation is known to affect the function of binding sites. With the increasing volume of ChIP-seq data available it is now possible to investigate models that incorporate this flexibility. Previous work on variable length models has been constrained by: a focus on specific zinc finger proteins in yeast using restrictive models; a reliance on hand-crafted models for just one transcription factor at a time; and a lack of evaluation on realistically sized data sets.
Results
We re-analysed binding sites from the TRANSFAC database and found motivating examples where our new variable length model provides a better fit. We analysed several ChIP-seq data sets with a novel motif search algorithm and compared the results to one of the best standard PWM finders and a recently developed alternative method for finding motifs of variable structure. All the methods performed comparably in held-out cross validation tests. Known motifs of variable structure were recovered for p53, Stat5a and Stat5b. In addition our method recovered a novel generalised version of an existing PWM for Sp1 that allows for variable length binding. This motif improved classification performance.
Conclusions
We have presented a new gapped PWM model for variable length DNA binding sites that is not too restrictive nor over-parameterised. Our comparison with existing tools shows that on average it does not have better predictive accuracy than existing methods. However, it does provide more interpretable models of motifs of variable structure that are suitable for follow-up structural studies. To our knowledge, we are the first to apply variable length motif models to eukaryotic ChIP-seq data sets and consequently the first to show their value in this domain. The results include a novel motif for the ubiquitous transcription factor Sp1.
doi:10.1186/1471-2164-11-30
PMCID: PMC2824720  PMID: 20074339
19.  Uncovering transcriptional interactions via an adaptive fuzzy logic approach 
BMC Bioinformatics  2009;10:400.
Background
To date, only a limited number of transcriptional regulatory interactions have been uncovered. In a pilot study integrating sequence data with microarray data, a position weight matrix (PWM) performed poorly in inferring transcriptional interactions (TIs), which represent physical interactions between transcription factors (TF) and upstream sequences of target genes. Inferring a TI means that the promoter sequence of a target is inferred to match the consensus sequence motifs of a potential TF, and their interaction type such as AT or RT is also predicted. Thus, a robust PWM (rPWM) was developed to search for consensus sequence motifs. In addition to rPWM, one feature extracted from ChIP-chip data was incorporated to identify potential TIs under specific conditions. An interaction type classifier was assembled to predict activation/repression of potential TIs using microarray data. This approach, combining an adaptive (learning) fuzzy inference system and an interaction type classifier to predict transcriptional regulatory networks, was named AdaFuzzy.
Results
AdaFuzzy was applied to predict TIs using real genomics data from Saccharomyces cerevisiae. Following one of the latest advances in predicting TIs, constrained probabilistic sparse matrix factorization (cPSMF), and using 19 transcription factors (TFs), we compared AdaFuzzy to four well-known approaches using over-representation analysis and gene set enrichment analysis. AdaFuzzy outperformed these four algorithms. Furthermore, AdaFuzzy was shown to perform comparably to 'ChIP-experimental method' in inferring TIs identified by two sets of large scale ChIP-chip data, respectively. AdaFuzzy was also able to classify all predicted TIs into one or more of the four promoter architectures. The results coincided with known promoter architectures in yeast and provided insights into transcriptional regulatory mechanisms.
Conclusion
AdaFuzzy successfully integrates multiple types of data (sequence, ChIP, and microarray) to predict transcriptional regulatory networks. The validated success in the prediction results implies that AdaFuzzy can be applied to uncover TIs in yeast.
doi:10.1186/1471-2105-10-400
PMCID: PMC2797023  PMID: 19961622
20.  Tree-Based Position Weight Matrix Approach to Model Transcription Factor Binding Site Profiles 
PLoS ONE  2011;6(9):e24210.
Most of the position weight matrix (PWM) based bioinformatics methods developed to predict transcription factor binding sites (TFBS) assume each nucleotide in the sequence motif contributes independently to the interaction between protein and DNA sequence, usually producing high false positive predictions. The increasing availability of TF enrichment profiles from recent ChIP-Seq methodology facilitates the investigation of dependent structure and accurate prediction of TFBSs. We develop a novel Tree-based PWM (TPWM) approach to accurately model the interaction between TF and its binding site. The whole tree-structured PWM could be considered as a mixture of different conditional-PWMs. We propose a discriminative approach, called TPD (TPWM based Discriminative Approach), to construct the TPWM from the ChIP-Seq data with a pre-existing PWM. To achieve the maximum discriminative power between the positive and negative datasets, the cutoff value is determined based on the Matthew Correlation Coefficient (MCC). The resulting TPWMs are evaluated with respect to accuracy on extensive synthetic datasets. We then apply our TPWM discriminative approach on several real ChIP-Seq datasets to refine the current TFBS models stored in the TRANSFAC database. Experiments on both the simulated and real ChIP-Seq data show that the proposed method starting from existing PWM has consistently better performance than existing tools in detecting the TFBSs. The improved accuracy is the result of modelling the complete dependent structure of the motifs and better prediction of true positive rate. The findings could lead to better understanding of the mechanisms of TF-DNA interactions.
doi:10.1371/journal.pone.0024210
PMCID: PMC3166302  PMID: 21912677
21.  Discriminative motif discovery in DNA and protein sequences using the DEME algorithm 
BMC Bioinformatics  2007;8:385.
Background
Motif discovery aims to detect short, highly conserved patterns in a collection of unaligned DNA or protein sequences. Discriminative motif finding algorithms aim to increase the sensitivity and selectivity of motif discovery by utilizing a second set of sequences, and searching only for patterns that can differentiate the two sets of sequences. Potential applications of discriminative motif discovery include discovering transcription factor binding site motifs in ChIP-chip data and finding protein motifs involved in thermal stability using sets of orthologous proteins from thermophilic and mesophilic organisms.
Results
We describe DEME, a discriminative motif discovery algorithm for use with protein and DNA sequences. Input to DEME is two sets of sequences; a "positive" set and a "negative" set. DEME represents motifs using a probabilistic model, and uses a novel combination of global and local search to find the motif that optimally discriminates between the two sets of sequences. DEME is unique among discriminative motif finders in that it uses an informative Bayesian prior on protein motif columns, allowing it to incorporate prior knowledge of residue characteristics. We also introduce four, synthetic, discriminative motif discovery problems that are designed for evaluating discriminative motif finders in various biologically motivated contexts. We test DEME using these synthetic problems and on two biological problems: finding yeast transcription factor binding motifs in ChIP-chip data, and finding motifs that discriminate between groups of thermophilic and mesophilic orthologous proteins.
Conclusion
Using artificial data, we show that DEME is more effective than a non-discriminative approach when there are "decoy" motifs or when a variant of the motif is present in the "negative" sequences. With real data, we show that DEME is as good, but not better than non-discriminative algorithms at discovering yeast transcription factor binding motifs. We also show that DEME can find highly informative thermal-stability protein motifs. Binaries for the stand-alone program DEME is free for academic use and is available at
doi:10.1186/1471-2105-8-385
PMCID: PMC2194741  PMID: 17937785
22.  A General Pairwise Interaction Model Provides an Accurate Description of In Vivo Transcription Factor Binding Sites 
PLoS ONE  2014;9(6):e99015.
The identification of transcription factor binding sites (TFBSs) on genomic DNA is of crucial importance for understanding and predicting regulatory elements in gene networks. TFBS motifs are commonly described by Position Weight Matrices (PWMs), in which each DNA base pair contributes independently to the transcription factor (TF) binding. However, this description ignores correlations between nucleotides at different positions, and is generally inaccurate: analysing fly and mouse in vivo ChIPseq data, we show that in most cases the PWM model fails to reproduce the observed statistics of TFBSs. To overcome this issue, we introduce the pairwise interaction model (PIM), a generalization of the PWM model. The model is based on the principle of maximum entropy and explicitly describes pairwise correlations between nucleotides at different positions, while being otherwise as unconstrained as possible. It is mathematically equivalent to considering a TF-DNA binding energy that depends additively on each nucleotide identity at all positions in the TFBS, like the PWM model, but also additively on pairs of nucleotides. We find that the PIM significantly improves over the PWM model, and even provides an optimal description of TFBS statistics within statistical noise. The PIM generalizes previous approaches to interdependent positions: it accounts for co-variation of two or more base pairs, and predicts secondary motifs, while outperforming multiple-motif models consisting of mixtures of PWMs. We analyse the structure of pairwise interactions between nucleotides, and find that they are sparse and dominantly located between consecutive base pairs in the flanking region of TFBS. Nonetheless, interactions between pairs of non-consecutive nucleotides are found to play a significant role in the obtained accurate description of TFBS statistics. The PIM is computationally tractable, and provides a general framework that should be useful for describing and predicting TFBSs beyond PWMs.
doi:10.1371/journal.pone.0099015
PMCID: PMC4057186  PMID: 24926895
23.  Dinucleotide Weight Matrices for Predicting Transcription Factor Binding Sites: Generalizing the Position Weight Matrix 
PLoS ONE  2010;5(3):e9722.
Background
Identifying transcription factor binding sites (TFBS) in silico is key in understanding gene regulation. TFBS are string patterns that exhibit some variability, commonly modelled as “position weight matrices” (PWMs). Though convenient, the PWM has significant limitations, in particular the assumed independence of positions within the binding motif; and predictions based on PWMs are usually not very specific to known functional sites. Analysis here on binding sites in yeast suggests that correlation of dinucleotides is not limited to near-neighbours, but can extend over considerable gaps.
Methodology/Principal Findings
I describe a straightforward generalization of the PWM model, that considers frequencies of dinucleotides instead of individual nucleotides. Unlike previous efforts, this method considers all dinucleotides within an extended binding region, and does not make an attempt to determine a priori the significance of particular dinucleotide correlations. I describe how to use a “dinucleotide weight matrix” (DWM) to predict binding sites, dealing in particular with the complication that its entries are not independent probabilities. Benchmarks show, for many factors, a dramatic improvement over PWMs in precision of predicting known targets. In most cases, significant further improvement arises by extending the commonly defined “core motifs” by about 10bp on either side. Though this flanking sequence shows no strong motif at the nucleotide level, the predictive power of the dinucleotide model suggests that the “signature” in DNA sequence of protein-binding affinity extends beyond the core protein-DNA contact region.
Conclusion/Significance
While computationally more demanding and slower than PWM-based approaches, this dinucleotide method is straightforward, both conceptually and in implementation, and can serve as a basis for future improvements.
doi:10.1371/journal.pone.0009722
PMCID: PMC2842295  PMID: 20339533
24.  A Discriminative Approach for Unsupervised Clustering of DNA Sequence Motifs 
PLoS Computational Biology  2013;9(3):e1002958.
Algorithmic comparison of DNA sequence motifs is a problem in bioinformatics that has received increased attention during the last years. Its main applications concern characterization of potentially novel motifs and clustering of a motif collection in order to remove redundancy. Despite growing interest in motif clustering, the question which motif clusters to aim at has so far not been systematically addressed. Here we analyzed motif similarities in a comprehensive set of vertebrate transcription factor classes. For this we developed enhanced similarity scores by inclusion of the information coverage (IC) criterion, which evaluates the fraction of information an alignment covers in aligned motifs. A network-based method enabled us to identify motif clusters with high correspondence to DNA-binding domain phylogenies and prior experimental findings. Based on this analysis we derived a set of motif families representing distinct binding specificities. These motif families were used to train a classifier which was further integrated into a novel algorithm for unsupervised motif clustering. Application of the new algorithm demonstrated its superiority to previously published methods and its ability to reproduce entrained motif families. As a result, our work proposes a probabilistic approach to decide whether two motifs represent common or distinct binding specificities.
Author Summary
Transcription factors play a central role in the regulation of gene expression. Their interaction with specific elements in the DNA mediates dynamic changes in transcriptional activity. Databases store a growing number of known DNA sequence patterns, also denoted as DNA sequence motifs that are recognized by transcription factors. Such databases can be searched to find a match for a newly discovered pattern and that way identify the potential binding factor. It is also of interest to cluster motifs in order to examine which transcription factors have similar binding properties and, thus, may promiscuously bind to each other's sites, or how many distinct specificities have been described. To gain deeper insight into the similarities between DNA sequence motifs, we analyzed a comprehensive set of known motifs. For this purpose we devised a network-based approach that enabled us to identify clusters of related motifs that largely coincided with grouping of related TFs on the basis of protein similarity. On the basis of these results, we were able to predict whether two motifs belong to the same subgroup and constructed a novel, fully-automated method for motif clustering, which enables users to assess the similarity of a newly found motif with all known motifs in the collection.
doi:10.1371/journal.pcbi.1002958
PMCID: PMC3605052  PMID: 23555204
25.  Increasing Coverage of Transcription Factor Position Weight Matrices through Domain-level Homology 
PLoS ONE  2012;7(8):e42779.
Transcription factor-DNA interactions, central to cellular regulation and control, are commonly described by position weight matrices (PWMs). These matrices are frequently used to predict transcription factor binding sites in regulatory regions of DNA to complement and guide further experimental investigation. The DNA sequence preferences of transcription factors, encoded in PWMs, are dictated primarily by select residues within the DNA binding domain(s) that interact directly with DNA. Therefore, the DNA binding properties of homologous transcription factors with identical DNA binding domains may be characterized by PWMs derived from different species. Accordingly, we have implemented a fully automated domain-level homology searching method for identical DNA binding sequences.
By applying the domain-level homology search to transcription factors with existing PWMs in the JASPAR and TRANSFAC databases, we were able to significantly increase coverage in terms of the total number of PWMs associated with a given species, assign PWMs to transcription factors that did not previously have any associations, and increase the number of represented species with PWMs over an order of magnitude. Additionally, using protein binding microarray (PBM) data, we have validated the domain-level method by demonstrating that transcription factor pairs with matching DNA binding domains exhibit comparable DNA binding specificity predictions to transcription factor pairs with completely identical sequences.
The increased coverage achieved herein demonstrates the potential for more thorough species-associated investigation of protein-DNA interactions using existing resources. The PWM scanning results highlight the challenging nature of transcription factors that contain multiple DNA binding domains, as well as the impact of motif discovery on the ability to predict DNA binding properties. The method is additionally suitable for identifying domain-level homology mappings to enable utilization of additional information sources in the study of transcription factors. The domain-level homology search method, resulting PWM mappings, web-based user interface, and web API are publicly available at http://dodoma.systemsbiology.netdodoma.systemsbiology.net.
doi:10.1371/journal.pone.0042779
PMCID: PMC3428306  PMID: 22952610

Results 1-25 (1703110)