PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (803758)

Clipboard (0)
None

Related Articles

1.  Natural Product-Based Inhibitors of Hypoxia-Inducible Factor-1 (HIF-1) 
Current drug targets  2006;7(3):355-369.
The transcription factor hypoxia-inducible factor-1 (HIF-1) regulates the expression of more than 70 genes involved in cellular adaptation and survival under hypoxic stress. Activation of HIF-1 is associated with numerous physiological and pathological processes that include tumorigenesis, vascular remodeling, inflammation, and hypoxia/ischemia-related tissue damage. Clinical studies suggested that HIF-1 activation correlates directly with advanced disease stages and treatment resistance among cancer patients. Preclinical studies support the inhibition of HIF-1 as a major molecular target for antitumor drug discovery. Considerable effort is underway, in government laboratories, industry and academia, to identify therapeutically useful small molecule HIF-1 inhibitors. Natural products (low molecular weight organic compounds produced by plants, microbes, and animals) continue to play a major role in modern antitumor drug discovery. Most of the compounds discovered to inhibit HIF-1 are natural products or synthetic compounds with structures that are based on natural product leads. Natural products have also served a vital role as molecular probes to elucidate the pathways that regulate HIF-1 activity. Natural products and natural product-derived compounds that inhibit HIF-1 are summarized in light of their biological source, chemical class, ancd effect on HIF-1 and HIF-mediated gene regulation. When known, the mechanism(s) of action of HIF-1 inhibitors are described. Many of the substances found to inhibit HIF-1 are non-druggable compounds that are too cytotoxic to serve as drug leads. The application of high-throughput screening methods, complementary molecular-targeted assays, and structurally diverse chemical libraries hold promise for the discovery of therapeutically useful HIF-1 inhibitors.
PMCID: PMC2908043  PMID: 16515532
HIF-1; Natural Product; Tumor Hypoxia; Molecular-Targeted Drug Discovery; Small Molecule HIF-1 Inhibitor; Hypoxia Selective
2.  Identification of small molecule compounds that inhibit the HIF-1 signaling pathway 
Molecular Cancer  2009;8:117.
Background
Hypoxia-inducible factor-1 (HIF-1) is the major hypoxia-regulated transcription factor that regulates cellular responses to low oxygen environments. HIF-1 is composed of two subunits: hypoxia-inducible HIF-1α and constitutively-expressed HIF-1β. During hypoxic conditions, HIF-1α heterodimerizes with HIF-1β and translocates to the nucleus where the HIF-1 complex binds to the hypoxia-response element (HRE) and activates expression of target genes implicated in cell growth and survival. HIF-1α protein expression is elevated in many solid tumors, including those of the cervix and brain, where cells that are the greatest distance from blood vessels, and therefore the most hypoxic, express the highest levels of HIF-1α. Therapeutic blockade of the HIF-1 signaling pathway in cancer cells therefore provides an attractive strategy for development of anticancer drugs. To identify small molecule inhibitors of the HIF-1 pathway, we have developed a cell-based reporter gene assay and screened a large compound library by using a quantitative high-throughput screening (qHTS) approach.
Results
The assay is based upon a β-lactamase reporter under the control of a HRE. We have screened approximate 73,000 compounds by qHTS, with each compound tested over a range of seven to fifteen concentrations. After qHTS we have rapidly identified three novel structural series of HIF-1 pathway Inhibitors. Selected compounds in these series were also confirmed as inhibitors in a HRE β-lactamase reporter gene assay induced by low oxygen and in a VEGF secretion assay. Three of the four selected compounds tested showed significant inhibition of hypoxia-induced HIF-1α accumulation by western blot analysis.
Conclusion
The use of β-lactamase reporter gene assays, in combination with qHTS, enabled the rapid identification and prioritization of inhibitors specific to the hypoxia induced signaling pathway.
doi:10.1186/1476-4598-8-117
PMCID: PMC2797767  PMID: 20003191
3.  Roles of Polo-like kinase 3 in suppressing tumor angiogenesis 
Angiogenesis is essential for promoting growth and metastasis of solid tumors by ensuring blood supply to the tumor mass. Targeting angiogenesis is therefore an attractive approach to therapeutic intervention of cancer. Tumor angiogenesis is a process that is controlled by a complex network of molecular components including sensors, signaling transducers, and effectors, leading to cellular responses under hypoxic conditions. Positioned at the center of this network are the hypoxia-inducible factors (HIFs). HIF-1 is a major transcription factor that consists of two subunits, HIF-1α and HIF-1β. It mediates transcription of a spectrum of gene targets whose products are essential for mounting hypoxic responses. HIF-1α protein level is very low in the normoxic condition but is rapidly elevated under hypoxia. This dramatic change in the cellular HIF-1α level is primarily regulated through the proteosome-mediated degradation process. In the past few years, scientific progress has clearly demonstrated that HIF-1α phosphorylation is mediated by several families of protein kinases including GSK3β and ERKs both of which play crucial roles in the regulation of HIF-1α stability. Recent research progress has identified that Polo-like kinase 3 (Plk3) phosphorylates HIF-1α at two previously unidentified serine residues and that the Plk3-mediated phosphorylation of these residues results in destabilization of HIF-1α. Plk3 has also recently been found to phosphorylate and stabilize PTEN phosphatase, a known regulator of HIF-1α and tumor angiogenesis. Given the success of targeting protein kinases and tumor angiogenesis in anti-cancer therapies, Plk3 could be a potential molecular target for the development of novel and effective therapeutic agents for cancer treatment.
doi:10.1186/2162-3619-1-5
PMCID: PMC3506990  PMID: 23210979
Plk3; Tumor angiogenesis; Tumor suppression; HIF-1α; PTEN
4.  The Critical Impact of HIF-1α on Gastric Cancer Biology 
Cancers  2013;5(1):15-26.
Hypoxia inducible factor-1 (HIF-1) monitors the cellular response to the oxygen levels in solid tumors. Under hypoxia conditions, HIF-1α protein is stabilized and forms a heterodimer with the HIF-1β subunit. The HIF-1 complex activates the transcription of numerous target genes in order to adapt the hypoxic environment in human cancer cells. In gastric cancer patients, HIF-1α activation following extended hypoxia strongly correlates with an aggressive tumor phenotype and a poor prognosis. HIF-1α activation has been also reported to occur via hypoxia-independent mechanisms such as PI3K/AKT/mTOR signaling and ROS production. This article argues for the critical roles of HIF-1α in glucose metabolism, carcinogenesis, angiogenesis, invasion, metastasis, cell survival and chemoresistance, focusing on gastric cancer.
doi:10.3390/cancers5010015
PMCID: PMC3730315  PMID: 24216696
HIF-1α; hypoxia; gastric cancer
5.  Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis1 
Neuro-Oncology  2005;7(2):134-153.
Glioblastomas, like other solid tumors, have extensive areas of hypoxia and necrosis. The importance of hypoxia in driving tumor growth is receiving increased attention. Hypoxia-inducible factor 1 (HIF-1) is one of the master regulators that orchestrate the cellular responses to hypoxia. It is a heterodimeric transcription factor composed of α and β subunits. The α subunit is stable in hypoxic conditions but is rapidly degraded in normoxia. The function of HIF-1 is also modulated by several molecular mechanisms that regulate its synthesis, degradation, and transcriptional activity. Upon stabilization or activation, HIF-1 translocates to the nucleus and induces transcription of its downstream target genes. Most important to gliomagenesis, HIF-1 is a potent activator of angiogenesis and invasion through its upregulation of target genes critical for these functions. Activation of the HIF-1 pathway is a common feature of gliomas and may explain the intense vascular hyperplasia often seen in glioblastoma multiforme. Activation of HIF results in the activation of vascular endothelial growth factors, vascular endothelial growth factor receptors, matrix metalloproteinases, plasminogen activator inhibitor, transforming growth factors α and β, angiopoietin and Tie receptors, endothelin-1, inducible nitric oxide synthase, adrenomedullin, and erythropoietin, which all affect glioma angiogenesis. In conclusion, HIF is a critical regulatory factor in the tumor microenvironment because of its central role in promoting proangiogenic and invasive properties. While HIF activation strongly promotes angiogenesis, the emerging vasculature is often abnormal, leading to a vicious cycle that causes further hypoxia and HIF upregulation.
doi:10.1215/S1152851704001115
PMCID: PMC1871894  PMID: 15831232
6.  Sulfonamides as a New Scaffold for Hypoxia Inducible Factor Pathway Inhibitors 
Solid tumors generally grow under hypoxic conditions, a pathophysiological change, which activates the expression of genes responsible for malignant, aggressive, and treatment-refractory properties. Hypoxia inducible factor (HIF) is the chief transcription factor regulating hypoxia-driven gene expression. Therefore, the HIF pathway has become a critical target for cancer therapeutics development. We screened a privileged library of about 10,000 natural-product-like compounds using a cell-based assay for HIF-dependent transcriptional activity and identified several arylsulfonamide HIF pathway inhibitors. Among these compounds, the most potent ones showed an IC50 of ~0.5 μM in the hypoxia-responsive element (HRE)-luciferase reporter system. Further studies are needed to fully elucidate the mechanism of action of this class of compounds and their structure-activity relationship.
doi:10.1016/j.bmcl.2011.06.099
PMCID: PMC3292863  PMID: 21831638
drug development; cancer; transcription factor; hypoxia; angiogenesis; glycolysis
7.  Molecular-Targeted Antitumor Agents 15: Neolamellarins from the Marine Sponge Dendrilla nigra Inhibit Hypoxia-Inducible Factor-1 (HIF-1) Activation and Secreted Vascular Endothelial Growth Factor (VEGF) Production in Breast Tumor Cells 
Journal of natural products  2007;70(11):1741-1745.
The transcription factor Hypoxia-Inducible Factor 1 (HIF-1) has emerged as a major antitumor molecular target. Inhibition of HIF-1 activation has been shown to suppress the growth, survival, and metastatic spread of hypoxic tumors. The NCI Open Repository of marine invertebrates and algae lipid extracts was evaluated for HIF-1 inhibitory activity in a T47D human breast tumor cell-based reporter assay. Bioassay-guided chromatographic separation of the active extract from the sponge Dendrilla nigra produced four new lamellarin-like phenolic pyrroles, which most closely resemble the structure of the known D. cactos compound lamellarin O. However, unlike lamellarins, the structures of neolamellarin A (1), neolamellarin B (2), 5-hydroxyneolamellarin B (3), and 7-hydroxyneolamellarin A (4) lack the carboxyl moiety at position C-2 of the substituted pyrrole ring and have a significantly different pattern of oxidation. Compound 4 was found to inhibit hypoxia-induced HIF-1 activation (IC50 1.9 μM) in T47D cells. Hypoxic induction of vascular endothelial growth factor (VEGF), a potent angiogenic factor and HIF-1 target gene, was also inhibited by 4 at the secreted protein level.
doi:10.1021/np070206e
PMCID: PMC2914556  PMID: 17958397
8.  Imaging and Targeting of the Hypoxia-inducible Factor 1-active Microenvironment 
Journal of Toxicologic Pathology  2009;22(2):93-100.
Human solid tumors contain hypoxic regions that have considerably lower oxygen tension than normal tissues. They are refractory to radiotherapy and anticancer chemotherapy. Although more than half a century has passed since it was suggested that tumour hypoxia correlates with poor treatment outcomes and contributes to recurrence of cancer, no fundamental solution to this problem has been found. Hypoxia-inducible factor-1(HIF-1) is the main transcription factor that regulates the cellular response to hypoxia. It induces various genes, whose function is strongly associated with malignant alteration of the entire tumour. The cellular changes induced by HIF-1 are extremely important therapeutic targets of cancer therapy, particularly in therapy against refractory cancers. Therefore, targeting strategies to overcome the HIF-1-active microenvironment are important for cancer therapy. To Target HIF-1-active/ hypoxic tumor cells, we developed a fusion protein drug, PTD-ODD-Procaspase-3 that selectively induces cell death in HIF-1-active/hypoxic cells. The drug consists of the following three functional domains: the protein transduction domain (PTD), which efficiently delivers the fusion protein to hypoxic tumor cells, the ODD domain, which has a VHL-mediated protein destruction motif of human HIF-1α protein and confers hypoxia-dependent stabilization to the fusion proteins, and the human procaspase-3 proenzyme responsible for the cytocidal activity of the protein drug. In vivo imaging systems capable of monitoring HIF-1 activity in transplanted human cancer cells in mice are useful in evaluating the efficiency of these drugs and in study of HIF-1-active tumor cells.
doi:10.1293/tox.22.93
PMCID: PMC3246054  PMID: 22271982
hypoxia-inducible factor 1 (HIF-1); tumour hypoxia; hypoxia responsive element (HRE); protein transduction domain (PTD); bioluminescence; in vivo imaging
9.  The Caulerpa Pigment Caulerpin Inhibits HIF-1 Activation and Mitochondrial Respiration 
Journal of natural products  2009;72(12):2104-2109.
The transcription factor hypoxia-inducible factor-1 (HIF-1) represents an important molecular target for anticancer drug discovery. In a T47D cell-based reporter assay, the Caulerpa spp. algal pigment caulerpin (1) inhibited hypoxia-induced as well as 1,10-phenanthroline-induced HIF-1 activation. The angiogenic factor vascular endothelial growth factor (VEGF) is regulated by HIF-1. Caulerpin (10 μM) suppressed hypoxic induction of secreted VEGF protein and the ability of hypoxic T47D cell-conditioned media to promote tumor angiogenesis in vitro. Under hypoxic conditions, 1 (10 μM) blocked the induction of HIF-1α protein, the oxygen-regulated subunit that controls HIF-1 activity. Reactive oxygen species produced by mitochondrial complex III are believed to act as a signal of cellular hypoxia that leads to HIF-1α protein induction and activation. Further mechanistic studies revealed that 1 inhibits mitochondrial respiration at electron transport chain (ETC) complex I (NADH-ubiquinone oxidoreductase). Under hypoxic conditions, it is proposed that 1 may disrupt mitochondrial ROS-regulated HIF-1 activation and HIF-1 downstream target gene expression by inhibiting the transport or delivery of electrons to complex III.
doi:10.1021/np9005794
PMCID: PMC2798910  PMID: 19921787
10.  Benzochromenones from the Marine Crinoid Comantheria rotula Inhibit Hypoxia-Inducible Factor-1 (HIF-1) in Cell-Based Reporter Assays and Differentially Suppress the Growth of Certain Tumor Cell Lines 
Journal of natural products  2007;70(9):1462-1466.
Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that promotes tumor cell adaptation and survival under hypoxic conditions. HIF-1 is currently recognized as an important molecular target for anti-cancer drug discovery. The NCI Open Repository of marine invertebrates and algae lipid extracts was evaluated using a T47D breast tumor cell-based reporter assay for HIF-1 inhibitory activity. Bioassay-guided fractionation of an active extract from a crinoid Comantheria rotula yielded seven benzo[g]chromen-4-one and benzo[h]chromen-4-one pigments (1–7). The structures of the new benzo[g]chromenone dimer 9,9'-oxybis-neocomantherin (1) and another new natural pigment 5 were deduced from spectroscopic and spectrometric data. The crinoid pigments significantly inhibited both hypoxia-induced and iron chelator-induced HIF-1 luciferase reporter activity in breast and prostate tumor cells. However, inhibition of HIF-1 in the reporter assay did not translate into a significant decrease in expression of the downstream HIF-1 target secreted vascular endothelial growth factor (VEGF). Compound 1 was found to inhibit tumor cell growth in the NCI 60-cell line panel (GI50 values 1.6 to 18.2 μM) and 6 produced a unique pattern of tumor cell growth suppression. Five cell lines from different organs were hypersensitive to 6 (GI50 values 0.29 to 0.62 μM) and three others were moderately sensitive (GI50 values 2.2 to 5.1 μM), while the GI50 values for most other cell lines ranged from 20 to 47 μM. Crinoid benzo[g]chromenones were also found to scavenge radicals in a modified DPPH assay.
doi:10.1021/np070224w
PMCID: PMC2910718  PMID: 17844994
11.  A Novel Function of Novobiocin: Disrupting the Interaction of HIF 1α and p300/CBP through Direct Binding to the HIF1α C-Terminal Activation Domain 
PLoS ONE  2013;8(5):e62014.
Hypoxia-inducible factor 1α (HIF1α) is an important cellular survival protein under hypoxic conditions, regulating the cellular response to low oxygen tension via recruitment of a transcriptional co-activator, p300/CBP. p300/CBP induces expression of multiple genes involved in cell survival, proliferation, angiogenesis, and tumor development. Thus, a strategy to inhibit hypoxic responses in tumors may be to target the protein-protein interaction between HIF1α and p300/CBP. Here, we document, for the first time, that the aminocoumarin antibiotic, novobiocin, directly blocks the protein-protein interaction between the HIF1α C-terminal activation domain (CTAD) and the cysteine-histidine rich (CH1) region of p300/CBP. Also, novobiocin down-regulated HIF1α-controlled gene expression, specifically CA9, which is related to tumorigenesis. In a monolayer cell culture, novobiocin inhibited cell proliferation and colony formation in the MCF-7 human breast adenocarcinoma cell line and the A549 human lung cancer cell line. Rescue experiments revealed that the recombinant CTAD fragment of HIF1α partially reversed novobiocin’s inhibitory effects on cell proliferation and colony formation in MCF-7 cells. These findings suggest a novel mechanism of action for novobiocin which has the potential for innovative therapeutic use in tumor treatment.
doi:10.1371/journal.pone.0062014
PMCID: PMC3646014  PMID: 23671581
12.  The Antioxidant N-Acetylcysteine Prevents HIF-1 Stabilization under Hypoxia In Vitro but Does Not Affect Tumorigenesis in Multiple Breast Cancer Models In Vivo 
PLoS ONE  2013;8(6):e66388.
Intratumoral hypoxia is a poor prognostic factor associated with reduced disease-free survival in many cancer types, including breast cancer. Hypoxia encourages tumor cell proliferation, stimulates angiogenesis and lymphangiogenesis, and promotes epithelial-mesenchymal transition and metastasis. Tumor cells respond to a hypoxic state by stabilizing the Hif-1α subunit of the Hypoxia-Inducible Factor (HIF) transcription factor to promote expression of various tumor- and metastasis-promoting hypoxic response genes. The antioxidant N-acetylcysteine (NAC) was recently shown to prevent Hif-1α stabilization under hypoxia, and has been identified as a potential alternative method to target the hypoxic response in tumors. We utilized three orthotopic syngeneic murine models of breast cancer, the PyMT, EO771 and 4T1.2 models, to investigate the ability of NAC to modulate the hypoxic response in vitro and in vivo. While NAC prevented Hif-1α stabilization under hypoxia in vitro and increased levels of glutathione in the blood of mice in vivo, this did not translate to a difference in tumor growth or the hypoxic state of the tumor compared to untreated control mice. In addition, NAC treatment actually increased metastatic burden in an experimental metastasis model. This work raises questions regarding the validity of NAC as an anti-tumorigenic agent in breast cancer, and highlights the need to further investigate its properties in vivo in different cancer models.
doi:10.1371/journal.pone.0066388
PMCID: PMC3688768  PMID: 23840457
13.  Identification of Chemical Compounds that Induce HIF-1α Activity 
Toxicological Sciences  2009;112(1):153-163.
Cellular metabolism depends on the availability of oxygen and the major regulator of oxygen homeostasis is hypoxia-inducible factor 1 (HIF-1), a highly conserved transcription factor that plays an essential role in cellular and systemic homeostatic responses to hypoxia. HIF-1 is a heterodimeric transcription factor composed of hypoxia-inducible HIF-1α and constitutively expressed HIF-1β. Under hypoxic conditions, the two subunits dimerize, allowing translocation of the HIF-1 complex to the nucleus where it binds to hypoxia-response elements (HREs) and activates expression of target genes implicated in angiogenesis, cell growth, and survival. The HIF-1 pathway is essential to normal growth and development, and is involved in the pathophysiology of cancer, inflammation, and ischemia. Thus, there is considerable interest in identifying compounds that modulate the HIF-1 signaling pathway. To assess the ability of environmental chemicals to stimulate the HIF-1 signaling pathway, we screened a National Toxicology Program collection of 1408 compounds using a cell-based β-lactamase HRE reporter gene assay in a quantitative high-throughput screening (qHTS) format. Twelve active compounds were identified. These compounds were tested in a confirmatory assay for induction of vascular endothelial growth factor, a known hypoxia target gene, and confirmed compounds were further tested for their ability to mimic the effect of a reduced-oxygen environment on hypoxia-regulated promoter activity. Based on this testing strategy, three compounds (o-phenanthroline, iodochlorohydroxyquinoline, cobalt sulfate heptahydrate) were confirmed as hypoxia mimetics, whereas two compounds (7-diethylamino-4-methylcoumarin and 7,12-dimethylbenz(a)anthracence) were found to interact with HIF-1 in a manner different from hypoxia. These results demonstrate the effectiveness of qHTS in combination with secondary assays for identification of HIF-1α inducers and for distinguishing among inducers based on their pattern of activated hypoxic target genes. Identification of environmental compounds having HIF-1α activation activity in cell-based assays may be useful for prioritizing chemicals for further testing as hypoxia-response inducers in vivo.
doi:10.1093/toxsci/kfp123
PMCID: PMC2910898  PMID: 19502547
cobalt sulfate heptahydrate; 7-diethylamino-4-methylcoumarin; 7,12-dimethylbenz(a)anthracence; HIF-1α; inducers; iodochlorohydroxyquinoline; NTP 1408 compound library; o-phenanthroline; qHTS
14.  Identification of a novel small molecule HIF-1α translation inhibitor 
Purpose
Hypoxia inducible factor-1 (HIF-1) is the central mediator of the cellular response to low oxygen and functions as a transcription factor for a broad range of genes that provide adaptive responses to oxygen deprivation. HIF-1 is over-expressed in cancer and has become an important therapeutic target in solid tumors. In this study, a novel HIF-1α inhibitor was identified and its molecular mechanism was investigated.
Experimental Design
Using a HIF-responsive reporter cell-based assay, a 10,000-membered natural product-like chemical compound library was screened to identify novel HIF-1 inhibitors. This led us to discover KC7F2, a lead compound with a central structure of cystamine. The effects of KC7F2 on HIF-1 transcription, translation and protein degradation processes were analyzed.
Results
KC7F2 markedly inhibited HIF-mediated transcription in cells derived from different tumor types, including glioma, breast and prostate cancers and exhibited enhanced cytotoxicity under hypoxia. KC7F2 prevented the activation of HIF-target genes such as Carbonic Anhydrase IX, Matrix Metalloproteinase 2 (MMP2), Endothelin 1 and Enolase 1. Investigation of the mechanism of action of KC7F2 showed that it worked through the down-regulation of HIF-1α protein synthesis, an effect accompanied by the suppression of the phosphorylation of eukaryotic translation initiation factor 4E binding protein 1 (4EBP1) and p70 S6 kinase (S6K), key regulators of HIF-1α protein synthesis.
Conclusion
These results show that KC7F2 is a potent HIF-1 pathway inhibitor and that its potential as a cancer therapy agent warrants further study.
doi:10.1158/1078-0432.CCR-08-3180
PMCID: PMC2770235  PMID: 19789328
15.  Differential hypoxic regulation of hypoxia-inducible factors 1α and 2α 
Molecular cancer research : MCR  2011;9(6):757-765.
The hypoxia-inducible transcription factors (HIF)-1α and -2α play a critical role in cellular response to hypoxia. Elevated HIF-α expression correlates with poor patient survival in a large number of cancers. Recent evidence suggests that HIF-2α appears to be preferentially expressed in neuronal tumor cells that exhibit cancer stem cell characteristics. These observations suggest that expression of HIF-1α and -2α is differentially regulated in the hypoxic tumor microenvironment. However, the underlying mechanisms remain to be fully investigated. In this study, we investigated the transcriptional regulation HIF-1α and -2α under different physiologically relevant hypoxic conditions. We found that transcription of HIF-2α was consistently increased by hypoxia, whereas transcription of HIF-1α showed variable levels of repression. Mechanistically, differential regulation of HIF-α transcription involved hypoxia-induced changes in acetylation of core histones H3 and H4 associated with the proximal promoters of the HIF-1α or HIF-2α gene. We also found that, although highly stable under acute hypoxia, HIF-1α and HIF-2α proteins become destabilized under chronic hypoxia. Our results have thus provided new mechanistic insights into the differential regulation of HIF-1α and -2α by the hypoxic tumor microenvironment. These findings also suggest an important role of HIF-2α in the regulation of tumor progression under chronic hypoxia.
doi:10.1158/1541-7786.MCR-11-0053
PMCID: PMC3117969  PMID: 21571835
hypoxia; hypoxia-inducible factor; HIF-1α and HIF-2α; transcription; promoter
16.  Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells 
Cancer cell  2009;15(6):501-513.
Summary
Glioblastomas are lethal cancers characterized by florid angiogenesis promoted in part by glioma stem cells (GSCs). As hypoxia regulates angiogenesis, we examined hypoxic responses in GSCs. We now demonstrate that hypoxia-inducible factor HIF2α and multiple HIF-regulated genes are preferentially expressed in GSCs in comparison to nonstem tumor cells and normal neural progenitors. In tumor specimens, HIF2α co-localizes with cancer stem cell markers. Targeting HIFs in GSCs inhibits self-renewal, proliferation and survival in vitro, and attenuates tumor initiation potential of GSCs in vivo. Analysis of a molecular database reveals that HIF2A expression correlates with poor glioma patient survival. Our results demonstrate that GSCs differentially respond to hypoxia with distinct HIF induction patterns and HIF2α may represent a promising target for anti-glioblastoma therapies.
Significance
Recent evidence supports the presence of cancer stem cell populations that contribute to tumor progression through preferential resistance to radiation and chemotherapy, and promotion of tumor angiogenesis, invasion, and metastasis. Therefore, the elucidation of molecular regulators of cancer stem cells may translate into improved anti-neoplastic therapies. Our work demonstrates that cancer stem cells derived from glioblastomas differentially respond to hypoxia with a distinct induction of HIF2α. We find that HIFs are critical to cancer stem cell maintenance and angiogenic drive, and that expression of HIF2α is significantly associated with poor glioma patient survival. These data further suggest that anti-angiogenic therapies can be designed to target cancer stem cell specific molecules involved in neoangiogenesis, including HIF2α and its regulated factors.
doi:10.1016/j.ccr.2009.03.018
PMCID: PMC2693960  PMID: 19477429
17.  STAT3 and HIF1α cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells 
Oncogene  2013;33(13):1670-1679.
Solid tumors often exhibit simultaneously inflammatory and hypoxic microenvironments. The ‘signal transducer and activator of transcription-3’ (STAT3)-mediated inflammatory response and the hypoxia-inducible factor (HIF)-mediated hypoxia response have been independently shown to promote tumorigenesis through the activation of HIF or STAT3 target genes and to be indicative of a poor prognosis in a variety of tumors. We report here for the first time that STAT3 is involved in the HIF1, but not HIF2-mediated hypoxic transcriptional response. We show that inhibiting STAT3 activity in MDA-MB-231 and RCC4 cells by a STAT3 inhibitor or STAT3 small interfering RNA significantly reduces the levels of HIF1, but not HIF2 target genes in spite of normal levels of hypoxia-inducible transcription factor 1α (HIF1α) and HIF2α protein. Mechanistically, STAT3 activates HIF1 target genes by binding to HIF1 target gene promoters, interacting with HIF1α protein and recruiting coactivators CREB binding protein (CBP) and p300, and RNA polymerase II (Pol II) to form enhanceosome complexes that contain HIF1α, STAT3, CBP, p300 and RNA Pol II on HIF1 target gene promoters. Functionally, the effect of STAT3 knockdown on proliferation, motility and clonogenic survival of tumor cells in vitro is phenocopied by HIF1α knockdown in hypoxic cells, whereas STAT3 knockdown in normoxic cells also reduces cell proliferation, motility and clonogenic survival. This indicates that STAT3 works with HIF1 to activate HIF1 target genes and to drive HIF1-depedent tumorigenesis under hypoxic conditions, but also has HIF-independent activity in normoxic and hypoxic cells. Identifying the role of STAT3 in the hypoxia response provides further data supporting the effectiveness of STAT3 inhibitors in solid tumor treatment owing to their usefulness in inhibiting both the STAT3 and HIF1 pro-tumorigenic signaling pathways in some cancer types.
doi:10.1038/onc.2013.115
PMCID: PMC3868635  PMID: 23604114
cotranscriptional activation; HIF; hypoxia; STAT3; transcription
18.  Natural Product-Derived Small Molecule Activators of Hypoxia-Inducible Factor-1 (HIF-1) 
Current pharmaceutical design  2006;12(21):2673-2688.
Hypoxia-inducible factor-1 (HIF-1) is a key mediator of oxygen homeostasis that was first identified as a transcription factor that is induced and activated by decreased oxygen tension. Upon activation, HIF-1 upregulates the transcription of genes that promote adaptation and survival under hypoxic conditions. HIF-1 is a heterodimer composed of an oxygen-regulated subunit known as HIF-1α and a constitutively expressed HIF-1β subunit. In general, the availability and activity of the HIF-1α subunit determines the activity of HIF-1. Subsequent studies have revealed that HIF-1 is also activated by environmental and physiological stimuli that range from iron chelators to hormones. Preclinical studies suggest that HIF-1 activation may be a valuable therapeutic approach to treat tissue ischemia and other ischemia/hypoxia-related disorders.
The focus of this review is natural product-derived small molecule HIF-1 activators. Natural products, relatively low molecular weight organic compounds produced by plants, animals, and microbes, have been and continue to be a major source of new drugs and molecular probes. The majority of known natural product-derived HIF-1 activators were discovered through pharmacological evaluation of specifically selected individual compounds. The combination of natural products chemistry with appropriate high-throughput screening bioassays could provide an alternative approach to discover novel natural product-derived HIF-1 activators. Potent natural product-derived HIF-1 activators that exhibit a low level of toxicity and side effects hold promise as new treatment options for diseases such as myocardial and peripheral ischemia, and as chemopreventative agents that could be used to reduce the level of ischemia/reperfusion injury following heart attack and stroke.
PMCID: PMC2907550  PMID: 16842166
HIF-1; Natural Product; Tissue Ischemia; Therapeutic Angiogenesis; Molecular-Target; Small Molecule Activator; Chemoprevention; Ischemia/Reperfusion Injury
19.  Targeted Cancer Gene Therapy Using a Hypoxia Inducible Factor–Dependent Oncolytic Adenovirus Armed with Interleukin-4 
Cancer research  2007;67(14):6872-6881.
There is a need for novel therapies targeting hypoxic cells in tumors. These cells are associated with tumor resistance to therapy and express hypoxia inducible factor-1 (HIF-1), a transcription factor that mediates metabolic adaptation to hypoxia and activates tumor angiogenesis. We previously developed an oncolytic adenovirus (HYPR-Ad) for the specific killing of hypoxic/HIF-active tumor cells, which we now armed with an interleukin-4 gene (HYPR-Ad-IL4). We designed HYPR-Ad-IL4 by cloning the Ad E1A viral replication and IL-4 genes under the regulation of a bidirectional hypoxia/HIF-responsive promoter. The IL-4 cytokine was chosen for its ability to induce a strong host antitumor immune response and its potential antiangiogenic activity. HYPR-Ad-IL4 induced hypoxia-dependent IL-4 expression, viral replication, and conditional cytolysis of hypoxic, but not normoxic cells. The treatment of established human tumor xenografts with HYPR-Ad-IL4 resulted in rapid and maintained tumor regression with the same potency as that of wild-type dl309-Ad. HYPR-Ad-IL4–treated tumors displayed extensive necrosis, fibrosis, and widespread viral replication. Additionally, these tumors contained a distinctive leukocyte infiltrate and prominent hypoxia. The use of an oncolytic Ad that locally delivers IL-4 to tumors is novel, and we expect that HYPR-Ad-IL4 will have broad therapeutic use for all solid tumors that have hypoxia or active HIF, regardless of tissue origin or genetic alterations.
doi:10.1158/0008-5472.CAN-06-3244
PMCID: PMC2262867  PMID: 17638898
20.  Sodwanone and Yardenone Triterpenes from a South African Species of the Marine Sponge Axinella Inhibit Hypoxia-Inducible Factor-1 (HIF-1) Activation in both Breast and Prostate Tumor Cells 
Journal of natural products  2006;69(12):1715-1720.
Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that promotes tumor cell adaptation and survival under hypoxic conditions. HIF-1 is currently recognized as an important molecular target for anti-cancer drug discovery. A T47D breast tumor cell-based reporter assay was used to evaluate the NCI Open Repository of marine invertebrates and algae lipid extracts for HIF-1 inhibitory activity. Bioassay-guided fractionation and isolation of an active extract from Axinella sp. yielded seven new sodwanone triterpenoids [3-epi-sodwanone K (1), 3-epi-sodwanone K 3-acetate (2), 10,11-dihydrosodwanone B (4), sodwanones T–W (3, 7, 8, 9), the new yardenone triterpene 12R-hydroxyyardenone (10), and the previously reported compounds sodwanone A (5), sodwanone B (6), and yardenone (11). The structures and relative configurations of these Axinella metabolites were determined spectroscopically. The absolute configuration of 1 was determined by the modified Mosher ester procedure. Sodwanone V (8) inhibited both hypoxia-induced and iron chelator (1,10-phenanthroline)-induced HIF-1 activation in T47D breast tumor cells (IC50 15 μM) and 8 was the only sodwanone that inhibited HIF-1 activation in PC-3 prostate tumor cells (IC50 15 μM). Compounds 1, 3, 4, and 5 inhibited hypoxia-induced HIF-1 activation in T47D cells (IC50 values 20-25 μM). Compound 2 was cytotoxic to T47D cells (IC50 22 μM) and 8 showed cytotoxicity to MDA-MB-231 breast tumor cells (IC50 23 μM).
doi:10.1021/np060278q
PMCID: PMC2908379  PMID: 17190448
21.  Histone Deacetylase Inhibitors Induce VHL and Ubiquitin-Independent Proteasomal Degradation of Hypoxia-Inducible Factor 1α 
Molecular and Cellular Biology  2006;26(6):2019-2028.
Adaptation to hypoxic microenvironment is critical for tumor survival and metastatic spread. Hypoxia-inducible factor 1α (HIF-1α) plays a key role in this adaptation by stimulating the production of proangiogenic factors and inducing enzymes necessary for anaerobic metabolism. Histone deacetylase inhibitors (HDACIs) produce a marked inhibition of HIF-1α expression and are currently in clinical trials partly based on their potent antiangiogenic effects. Although it has been postulated that HDACIs affect HIF-1α expression by enhancing its interactions with VHL (von Hippel Lindau), thus promoting its ubiquitination and degradation, the actual mechanisms by which HDACIs decrease HIF-1α levels are not clear. Here, we present data indicating that HDACIs induce the proteasomal degradation of HIF-1α by a mechanism that is independent of VHL and p53 and does not require the ubiquitin system. This degradation pathway involves the enhanced interaction of HIF-1α with HSP70 and is secondary to a disruption of the HSP70/HSP90 axis function that appears mediated by the activity of HDAC-6.
doi:10.1128/MCB.26.6.2019-2028.2006
PMCID: PMC1430285  PMID: 16507982
22.  Inhibition of SIRT1 Impairs the Accumulation and Transcriptional Activity of HIF-1α Protein under Hypoxic Conditions 
PLoS ONE  2012;7(3):e33433.
Sirtuins and hypoxia-inducible transcription factors (HIF) have well-established roles in regulating cellular responses to metabolic and oxidative stress. Recent reports have linked these two protein families by demonstrating that sirtuins can regulate the activity of HIF-1 and HIF-2. Here we investigated the role of SIRT1, a NAD+-dependent deacetylase, in the regulation of HIF-1 activity in hypoxic conditions. Our results show that in hepatocellular carcinoma (HCC) cell lines, hypoxia did not alter SIRT1 mRNA or protein expression, whereas it predictably led to the accumulation of HIF-1α and the up-regulation of its target genes. In hypoxic models in vitro and in in vivo models of systemic hypoxia and xenograft tumor growth, knockdown of SIRT1 protein with shRNA or inhibition of its activity with small molecule inhibitors impaired the accumulation of HIF-1α protein and the transcriptional increase of its target genes. In addition, endogenous SIRT1 and HIF-1α proteins co-immunoprecipitated and loss of SIRT1 activity led to a hyperacetylation of HIF-1α. Taken together, our data suggest that HIF-1α and SIRT1 proteins interact in HCC cells and that HIF-1α is a target of SIRT1 deacetylase activity. Moreover, SIRT1 is necessary for HIF-1α protein accumulation and activation of HIF-1 target genes under hypoxic conditions.
doi:10.1371/journal.pone.0033433
PMCID: PMC3316573  PMID: 22479397
23.  Molecular-Targeted Antitumor Agents 19 
Journal of natural products  2008;71(11):1854-1860.
A natural product chemistry-based approach was employed to discover small molecule inhibitors of the important tumor-selective molecular target hypoxia-inducible factor-1 (HIF-1). Bioassay-guided isolation of an active lipid extract of a Saipan collection of the marine sponge Lendenfeldia sp. afforded the terpene-derived furanolipid furospongolide as the primary inhibitor of hypoxia-induced HIF-1 activation (IC50 2.9 μM, T47D breast tumor cells). The active component of the extract also contained one new cytotoxic scalarane sesterterpene and two previously reported scalaranes. Furospongolide blocked the induction of the downstream HIF-1 target secreted vascular endothelial growth factor (VEGF) and was shown to suppress HIF-1 activation by inhibiting the hypoxic induction of HIF-1α protein. Mechanistic studies indicate that furospongolide inhibits HIF-1 activity primarily by suppressing tumor cell respiration via the blockade of NADH-ubiquinone oxidoreductase (complex I)-mediated mitochondrial electron transfer.
doi:10.1021/np800342s
PMCID: PMC2893247  PMID: 18989978
24.  Pharmacologically Increased Tumor Hypoxia Can Be Measured by 18F-Fluoroazomycin Arabinoside Positron Emission Tomography and Enhances Tumor Response to Hypoxic Cytotoxin PR-104 
Purpose
Solid tumors contain microenvironmental regions of hypoxia that present a barrier to traditional radiotherapy and chemotherapy, and this work describes a novel approach to circumvent hypoxia. We propose to overcome hypoxia by augmenting the effectiveness of drugs that are designed to specifically kill hypoxic tumor cells.
Experimental Design
We have constructed RKO colorectal tumor cells that express a small RNA hairpin that specifically knocks down the hypoxia-inducible factor 1a (HIF1a) transcription factor. We have used these cells in vitro to determine the effect of HIF1 on cellular sensitivity to the hypoxic cytotoxin PR-104, and its role in cellular oxygen consumption in response to the pyruvate dehydrogenase kinase inhibitor dichloroacetate (DCA). We have further used these cells in vivo in xenografted tumors to determine the role of HIF1 in regulating tumor hypoxia in response to DCA using 18F-fluoroazomycin arabinoside positron emission tomography, and its role in regulating tumor sensitivity to the combination of DCA and PR-104.
Results
HIF1 does not affect cellular sensitivity to PR-104 in vitro. DCA transiently increases cellular oxygen consumption in vitro and increases the extent of tumor hypoxia in vivo as measured with 18F-fluoroazomycin arabinoside positron emission tomography. Furthermore, we show that DCA-dependent alterations in hypoxia increase the antitumor activity of the next-generation hypoxic cytotoxin PR-104.
Conclusions
DCA interferes with the HIF-dependent “adaptive response,” which limits mitochondrial oxygen consumption. This approach transiently increases tumor hypoxia and represents an important method to improve antitumor efficacy of hypoxia-targeted agents, without increasing toxicity to oxygenated normal tissue.
doi:10.1158/1078-0432.CCR-09-1676
PMCID: PMC2810128  PMID: 19920111
25.  The Hypoxia-Associated Factor Switches Cells from HIF-1α– to HIF-2α–Dependent Signaling Promoting Stem Cell Characteristics, Aggressive Tumor Growth and Invasion 
Cancer Research  2011;71(11):4015-4027.
Most solid tumors and their metastases experience periods of low oxygen or hypoxia, which is of major clinical significance as it promotes both tumor progression and resistance to therapy. Critical mediators of the hypoxic response are the hypoxia-inducible factors HIF-1α and HIF-2α. The HIFs are nonredundant and regulate both overlapping and unique downstream target genes. Here, we describe a novel mechanism for the switch between HIF-1α– and HIF-2α–dependent transcription during tumor hypoxia caused by the hypoxia associated factor (HAF). HAF is overexpressed in a variety of tumors and its levels are decreased during acute hypoxia, but increased following prolonged hypoxia. We have previously identified HAF as an E3 ubiquitin ligase that binds and ubiquitinates HIF-1α by an oxygen and pVHL-independent mechanism, thus targeting HIF-1α for proteasomal degradation. Here, we show that HAF also binds to HIF-2α, but at a different site than HIF-1α, and increases HIF-2α transactivation without causing its degradation. HAF, thus, switches the hypoxic response of the cancer cell from HIF-1α–dependent to HIF-2α–dependent transcription and activates genes involved in invasion such as MMP9, PAI-1, and the stem cell factor OCT-3/4. The switch to HIF-2α–dependent gene expression caused by HAF also promotes an enriched tumor stem cell population, resulting in highly aggressive tumors in vivo. Thus, HAF, by causing a switch from a HIF-1α– to HIF-2α–dependent response to hypoxia, provides a mechanism for more aggressive growth of tumors under prolonged hypoxia.
doi:10.1158/0008-5472.CAN-10-4142
PMCID: PMC3268651  PMID: 21512133

Results 1-25 (803758)