PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (287203)

Clipboard (0)
None

Related Articles

1.  Biophysical basis of the sound analog membrane potential that underlies coincidence detection in the barn owl 
Interaural time difference (ITD), or the difference in timing of a sound wave arriving at the two ears, is a fundamental cue for sound localization. A wide variety of animals have specialized neural circuits dedicated to the computation of ITDs. In the avian auditory brainstem, ITDs are encoded as the spike rates in the coincidence detector neurons of the nucleus laminaris (NL). NL neurons compare the binaural phase-locked inputs from the axons of ipsi- and contralateral nucleus magnocellularis (NM) neurons. Intracellular recordings from the barn owl's NL in vivo showed that tonal stimuli induce oscillations in the membrane potential. Since this oscillatory potential resembled the stimulus sound waveform, it was named the sound analog potential (Funabiki et al., 2011). Previous modeling studies suggested that a convergence of phase-locked spikes from NM leads to an oscillatory membrane potential in NL, but how presynaptic, synaptic, and postsynaptic factors affect the formation of the sound analog potential remains to be investigated. In the accompanying paper, we derive analytical relations between these parameters and the signal and noise components of the oscillation. In this paper, we focus on the effects of the number of presynaptic NM fibers, the mean firing rate of these fibers, their average degree of phase-locking, and the synaptic time scale. Theoretical analyses and numerical simulations show that, provided the total synaptic input is kept constant, changes in the number and spike rate of NM fibers alter the ITD-independent noise whereas the degree of phase-locking is linearly converted to the ITD-dependent signal component of the sound analog potential. The synaptic time constant affects the signal more prominently than the noise, making faster synaptic input more suitable for effective ITD computation.
doi:10.3389/fncom.2013.00102
PMCID: PMC3821004  PMID: 24265615
phase-locking; sound localization; auditory brainstem; periodic signals; oscillation; owl
2.  Detection of Interaural Time Differences in the Alligator 
The auditory systems of birds and mammals use timing information from each ear to detect interaural time difference (ITD). To determine whether the Jeffress-type algorithms that underlie sensitivity to ITD in birds are an evolutionarily stable strategy, we recorded from the auditory nuclei of crocodilians, who are the sister group to the birds. In alligators, precisely timed spikes in the first-order nucleus magnocellularis (NM) encode the timing of sounds, and NM neurons project to neurons in the nucleus laminaris (NL) that detect interaural time differences. In vivo recordings from NL neurons show that the arrival time of phase-locked spikes differs between the ipsilateral and contralateral inputs. When this disparity is nullified by their best ITD, the neurons respond maximally. Thus NL neurons act as coincidence detectors. A biologically detailed model of NL with alligator parameters discriminated ITDs up to 1 kHz. The range of best ITDs represented in NL was much larger than in birds, however, and extended from 0 to 1000 μs contralateral, with a median ITD of 450 μs. Thus, crocodilians and birds employ similar algorithms for ITD detection, although crocodilians have larger heads.
doi:10.1523/JNEUROSCI.6154-08.2009
PMCID: PMC3170862  PMID: 19553438
3.  Axonal branching patterns as sources of delay in the mammalian auditory brainstem: a reexamination 
In models of temporal processing, time delays incurred by axonal propagation of action potentials play a prominent role. A preeminent model of temporal processing in audition is the binaural model of Jeffress (1948), which has dominated theories regarding our acute sensitivity to interaural time differences (ITDs). In Jeffress’ model a binaural cell is maximally active when the ITD is compensated by an internal delay, which brings the inputs from left and right ears in coincidence, and which would arise from axonal branching patterns of monaural input fibers. By arranging these patterns in systematic and opposite ways for the ipsi- and contralateral inputs, a range of length differences, and thereby of internal delays, is created so that ITD is transformed into a spatial activation pattern along the binaural nucleus. We reanalyze single, labeled and physiologically characterized, axons of spherical bushy cells of the cat anteroventral cochlear nucleus (AVCN) which project to binaural coincidence detectors in the medial superior olive (MSO). The reconstructions largely confirm the observations of two previous reports, but several features are observed which are inconsistent with Jeffress’ model. We found that ipsilateral projections can also form a caudally-directed delay line pattern, which would counteract delays incurred by caudally-directed contralateral projections. Comparisons of estimated axonal delays with binaural physiological data indicate that the suggestive anatomical patterns cannot account for the frequency-dependent distribution of best delays in the cat. Surprisingly, the tonotopic distribution of the afferents endings indicate that low CFs are under- rather than overrepresented in the MSO.
doi:10.1523/JNEUROSCI.5175-10.2011
PMCID: PMC3157295  PMID: 21414923
4.  Topography and Morphology of the Inhibitory Projection From Superior Olivary Nucleus to Nucleus Laminaris in Chickens (Gallus gallus) 
The avian nucleus laminaris (NL) is involved in computation of interaural time differences (ITDs) that encode the azimuthal position of a sound source. Neurons in NL are bipolar, with dorsal and ventral dendritic arbors receiving input from separate ears. NL neurons act as coincidence detectors that respond maximally when input from each ear arrives at the two dendritic arbors simultaneously. Computational and physiological studies demonstrated that the sensitivity of NL neurons to coincident inputs is modulated by an inhibitory feedback circuit via the superior olivary nucleus (SON). To understand the mechanism of this modulation, the topography of the projection from SON to NL was mapped, and the morphology of the axon terminals of SON neurons in NL was examined in chickens (Gallus gallus). In vivo injection of AlexaFluor 568 dextran amine into SON demonstrated a coarse topographic projection from SON to NL. Retrogradely labeled neurons in NL were located within the zone of anterogradely labeled terminals, suggesting a reciprocal projection from SON to NL. In vivo extracellular physiological recording further demonstrated that this topography is consistent with tonotopic maps in SON and NL. In addition, three-dimensional reconstruction of single SON axon branches within NL revealed that individual SON neurons innervate a large area of NL and terminate on both dorsal and ventral dendritic arbors of NL neurons. The organization of the projection from SON to NL supports its proposed functions of controlling the overall activity level of NL and enhancing the specificity of frequency mapping and ITD detection.
doi:10.1002/cne.22523
PMCID: PMC3299086  PMID: 21165979
auditory brainstem; axonal projection; γ-aminobutyric acid (GABA); interaural time difference (ITD); tonotopic organization
5.  Adaptation of spike timing precision controls the sensitivity to interaural time difference in the avian auditory brainstem 
While adaptation is widely thought to facilitate neural coding, the form of adaptation should depend on how the signals are encoded. Monaural neurons early in the interaural time difference (ITD) pathway encode the phase of sound input using spike timing rather than firing rate. Such neurons in chicken nucleus magnocellularis (NM) adapt to ongoing stimuli by increasing firing rate and decreasing spike timing precision. We measured NM neuron responses while adapting them to simulated physiological input, and used these responses to construct inputs to binaural coincidence detector neurons in nucleus laminaris (NL). Adaptation of spike timing in NM reduced ITD sensitivity in NL, demonstrating the dominant role of timing in the short-term plasticity as well as the immediate response of this sound localization circuit.
doi:10.1523/JNEUROSCI.1865-12.2012
PMCID: PMC3518488  PMID: 23115186
6.  Responses of Auditory Nerve and Anteroventral Cochlear Nucleus Fibers to Broadband and Narrowband Noise: Implications for the Sensitivity to Interaural Delays 
The quality of temporal coding of sound waveforms in the monaural afferents that converge on binaural neurons in the brainstem limits the sensitivity to temporal differences at the two ears. The anteroventral cochlear nucleus (AVCN) houses the cells that project to the binaural nuclei, which are known to have enhanced temporal coding of low-frequency sounds relative to auditory nerve (AN) fibers. We applied a coincidence analysis within the framework of detection theory to investigate the extent to which AVCN processing affects interaural time delay (ITD) sensitivity. Using monaural spike trains to a 1-s broadband or narrowband noise token, we emulated the binaural task of ITD discrimination and calculated just noticeable differences (jnds). The ITD jnds derived from AVCN neurons were lower than those derived from AN fibers, showing that the enhanced temporal coding in the AVCN improves binaural sensitivity to ITDs. AVCN processing also increased the dynamic range of ITD sensitivity and changed the shape of the frequency dependence of ITD sensitivity. Bandwidth dependence of ITD jnds from AN as well as AVCN fibers agreed with psychophysical data. These findings demonstrate that monaural preprocessing in the AVCN improves the temporal code in a way that is beneficial for binaural processing and may be crucial in achieving the exquisite sensitivity to ITDs observed in binaural pathways.
doi:10.1007/s10162-011-0268-1
PMCID: PMC3123442  PMID: 21567250
coincidence detection; interaural time difference; discrimination; binaural; sound localization
7.  Responses of Auditory Nerve and Anteroventral Cochlear Nucleus Fibers to Broadband and Narrowband Noise: Implications for the Sensitivity to Interaural Delays 
The quality of temporal coding of sound waveforms in the monaural afferents that converge on binaural neurons in the brainstem limits the sensitivity to temporal differences at the two ears. The anteroventral cochlear nucleus (AVCN) houses the cells that project to the binaural nuclei, which are known to have enhanced temporal coding of low-frequency sounds relative to auditory nerve (AN) fibers. We applied a coincidence analysis within the framework of detection theory to investigate the extent to which AVCN processing affects interaural time delay (ITD) sensitivity. Using monaural spike trains to a 1-s broadband or narrowband noise token, we emulated the binaural task of ITD discrimination and calculated just noticeable differences (jnds). The ITD jnds derived from AVCN neurons were lower than those derived from AN fibers, showing that the enhanced temporal coding in the AVCN improves binaural sensitivity to ITDs. AVCN processing also increased the dynamic range of ITD sensitivity and changed the shape of the frequency dependence of ITD sensitivity. Bandwidth dependence of ITD jnds from AN as well as AVCN fibers agreed with psychophysical data. These findings demonstrate that monaural preprocessing in the AVCN improves the temporal code in a way that is beneficial for binaural processing and may be crucial in achieving the exquisite sensitivity to ITDs observed in binaural pathways.
doi:10.1007/s10162-011-0268-1
PMCID: PMC3123442  PMID: 21567250
coincidence detection; interaural time difference; discrimination; binaural; sound localization
8.  The analysis of interaural time differences in the chick brain stem 
Physiology & behavior  2005;86(3):297-305.
The brain stem auditory system of the chick has proven to be a useful model system for analyzing how the brain encodes temporal information. This paper reviews some of the work on a circuit in the brain stem that compares the timing of information coming from the two ears to determine the location of a sound source. The contralateral projection from the cochlear nucleus, nucleus magnocellularis (NM), to nucleus laminaris (NL) forms a delay line as it proceeds from medial to lateral across NL. NL neurons function like coincidence detectors in that they respond maximally when input from the two ears arrive simultaneously. This arrangement may allow NL to code sound space by the relative level of activity across the nucleus. The head anatomy of the chick allows for enhancement of the functional interaural time differences. Comparing the functional interaural time differences to the length of the neural delay line suggests that each NL can encode approximately one hemifield of sound space. Finally it is suggested that inhibitory input into the NM–NL circuit may provide a means to dynamically adjust the gain of the circuit to allow accurate coding of sound location despite changes in overall sound intensity.
doi:10.1016/j.physbeh.2005.08.003
PMCID: PMC1847356  PMID: 16202434
Auditory system; Sound localization; Nucleus magnocellularis; Nucleus laminaris; Coincidence detection; Interaural canal; GABA
9.  Interaural timing difference circuits in the auditory brainstem of the emu (Dromaius novaehollandiae) 
In the auditory system, precise encoding of temporal information is critical for sound localization, a task with direct behavioral relevance. Interaural timing differences are computed using axonal delay lines and cellular coincidence detectors in nucleus laminaris (NL). We present morphological and physiological data on the timing circuits in the emu, Dromaius novaehollandiae, and compare these results with those from the barn owl (Tyto alba) and the domestic chick (Gallus gallus). Emu NL was composed of a compact monolayer of bitufted neurons whose two thick primary dendrites were oriented dorsoventrally. They showed a gradient in dendritic length along the presumed tonotopic axis. The NL and nucleus magnocellularis (NM) neurons were strongly immunoreactive for parvalbumin, a calcium-binding protein. Antibodies against synaptic vesicle protein 2 and glutamic acid decarboxlyase revealed that excitatory synapses terminated heavily on the dendritic tufts, while inhibitory terminals were distributed more uniformly. Physiological recordings from brainstem slices demonstrated contralateral delay lines from NM to NL. During whole-cell patch-clamp recordings, NM and NL neurons fired single spikes and were doubly-rectifying. NL and NM neurons had input resistances of 30.0 ± 19.9 MΩ and 49.0 ± 25.6 MΩ, respectively, and membrane time constants of 12.8 ± 3.8 ms and 3.9 ± 0.2 ms. These results provide further support for the Jeffress model for sound localization in birds. The emu timing circuits showed the ancestral (plesiomorphic) pattern in their anatomy and physiology, while differences in dendritic structure compared to chick and owl may indicate specialization for encoding ITDs at low best frequencies.
doi:10.1002/cne.20862
PMCID: PMC2948976  PMID: 16435285
avian; nucleus laminaris; nucleus magnocellularis; dendrite; coincidence detection; sound localization
10.  Cross-Correlation in the Auditory Coincidence Detectors of Owls 
Interaural time difference (ITD) plays a central role in many auditory functions, most importantly in sound localization. The classic model for how ITD is computed was put forth by Jeffress (1948). One of the predictions of the Jeffress model is that the neurons that compute ITD should behave as cross-correlators. Whereas cross-correlation-like properties of the ITD-computing neurons have been reported, attempts to show that the shape of the ITD response function is determined by the spectral tuning of the neuron, a core prediction of cross-correlation, have been unsuccessful. Using reverse correlation analysis, we demonstrate in the barn owl that the relationship between the spectral tuning and the ITD response of the ITD-computing neurons is that predicted by cross-correlation. Moreover, we show that a model of coincidence detector responses derived from responses to binaurally uncorrelated noise is consistent with binaural interaction based on cross-correlation. These results are thus consistent with one of the key tenets of the Jeffress model. Our work sets forth both the methodology to answer whether cross-correlation describes coincidence detector responses and a demonstration that in the barn owl, the result is that expected by theory.
doi:10.1523/JNEUROSCI.1969-08.2008
PMCID: PMC2637928  PMID: 18685035
barn owl; interaural time difference; cross-correlation; coincidence detection; sound localization; nucleus laminaris
11.  Modeling coincidence detection in nucleus laminaris 
Biological Cybernetics  2003;89(5):388-396.
A biologically detailed model of the binaural avian nucleus laminaris is constructed, as a two-dimensional array of multicompartment, conductance-based neurons, along tonotopic and interaural time delay (ITD) axes. The model is based primarily on data from chick nucleus laminaris. Typical chick-like parameters perform ITD discrimination up to 2 kHz, and enhancements for barn owl perform ITD discrimination up to 6 kHz. The dendritic length gradient of NL is explained concisely. The response to binaural out-of-phase input is suppressed well below the response to monaural input (without any spontaneous activity on the opposite side), implicating active potassium channels as crucial to good ITD discrimination.
doi:10.1007/s00422-003-0444-4
PMCID: PMC3269635  PMID: 14669019
12.  Theoretical foundations of the sound analog membrane potential that underlies coincidence detection in the barn owl 
A wide variety of neurons encode temporal information via phase-locked spikes. In the avian auditory brainstem, neurons in the cochlear nucleus magnocellularis (NM) send phase-locked synaptic inputs to coincidence detector neurons in the nucleus laminaris (NL) that mediate sound localization. Previous modeling studies suggested that converging phase-locked synaptic inputs may give rise to a periodic oscillation in the membrane potential of their target neuron. Recent physiological recordings in vivo revealed that owl NL neurons changed their spike rates almost linearly with the amplitude of this oscillatory potential. The oscillatory potential was termed the sound analog potential, because of its resemblance to the waveform of the stimulus tone. The amplitude of the sound analog potential recorded in NL varied systematically with the interaural time difference (ITD), which is one of the most important cues for sound localization. In order to investigate the mechanisms underlying ITD computation in the NM-NL circuit, we provide detailed theoretical descriptions of how phase-locked inputs form oscillating membrane potentials. We derive analytical expressions that relate presynaptic, synaptic, and postsynaptic factors to the signal and noise components of the oscillation in both the synaptic conductance and the membrane potential. Numerical simulations demonstrate the validity of the theoretical formulations for the entire frequency ranges tested (1–8 kHz) and potential effects of higher harmonics on NL neurons with low best frequencies (<2 kHz).
doi:10.3389/fncom.2013.00151
PMCID: PMC3821005  PMID: 24265616
phase-locking; sound localization; auditory brainstem; periodic signals; oscillation; owl
13.  Formation and Maturation of the Calyx of Held 
Hearing research  2010;276(1-2):70-78.
Sound localization requires precise and specialized neural circuitry. A prominent and well-studied specialization is found in the mammalian auditory brainstem. Globular bushy cells of the ventral cochlear nucleus (VCN) project contralaterally to neurons of the medial nucleus of the trapezoid body (MNTB), where their large axons terminate on cell bodies of MNTB principal neurons, forming the calyces of Held. The VCN-MNTB pathway is necessary for the accurate computation of interaural intensity and time differences; MNTB neurons provide inhibitory input to the lateral superior olive, which compares levels of excitation from the ipsilateral ear to levels of tonotopically matched inhibition from the contralateral ear, and to the medial superior olive, where precise inhibition from MNTB neurons tunes the delays of binaural excitation. Here we review the morphological and physiological aspects of the development of the VCN-MNTB pathway and its calyceal termination, along with potential mechanisms that give rise to its precision. During embryonic development, VCN axons grow towards the midline, cross the midline into the region of the presumptive MNTB and then form collateral branches that will terminate in calyces of Held. In rodents, immature calyces of Held appear in MNTB during the first few days of postnatal life. These calyces mature morphologically and physiologically over the next three postnatal weeks, enabling fast, high fidelity transmission in the VCN-MNTB pathway.
doi:10.1016/j.heares.2010.11.004
PMCID: PMC3109188  PMID: 21093567
14.  Detection of Large Interaural Delays and Its Implication for Models of Binaural Interaction  
The interaural time difference (ITD) is a major cue to sound localization along the horizontal plane. The maximum natural ITD occurs when a sound source is positioned opposite to one ear. We examined the ability of owls and humans to detect large ITDs in sounds presented through headphones. Stimuli consisted of either broad or narrow bands of Gaussian noise, 100 ms in duration. Using headphones allowed presentation of ITDs that are greater than the maximum natural ITD. Owls were able to discriminate a sound leading to the left ear from one leading to the right ear, for ITDs that are 5 times the maximum natural delay. Neural recordings from optic-tectum neurons, however, show that best ITDs are usually well within the natural range and are never as large as ITDs that are behaviorally discriminable. A model of binaural cross-correlation with short delay lines is shown to explain behavioral detection of large ITDs. The model uses curved trajectories of a cross-correlation pattern as the basis for detection. These trajectories represent side peaks of neural ITD-tuning curves and successfully predict localization reversals by both owls and human subjects.
doi:10.1007/s101620020006
PMCID: PMC3202365  PMID: 12083726
interaural; binaural; owl; ITD
15.  Bilateral matching of frequency tuning in neural cross-correlators of the owl 
Biological cybernetics  2009;100(6):521-531.
Sound localization requires comparison between the inputs to the left and right ears. One important aspect of this comparison is the differences in arrival time to each side, also called interaural time difference (ITD).A prevalent model of ITD detection, consisting of delay lines and coincidence-detector neurons, was proposed by Jeffress (J Comp Physiol Psychol 41:35–39, 1948). As an extension of the Jeffress model, the process of detecting and encoding ITD has been compared to an effective cross-correlation between the input signals to the two ears. Because the cochlea performs a spectrotemporal decomposition of the input signal, this cross-correlation takes place over narrow frequency bands. Since the cochlear tonotopy is arranged in series, sounds of different frequencies will trigger neural activity with different temporal delays. Thus, the matching of the frequency tuning of the left and right inputs to the cross-correlator units becomes a ‘timing’ issue. These properties of auditory transduction gave theoretical support to an alternative model of ITD-detection based on a bilateral mismatch in frequency tuning, called the ‘stereausis’ model. Here we first review the current literature on the owl’s nucleus laminaris, the equivalent to the medial superior olive of mammals, which is the site where ITD is detected. Subsequently, we use reverse correlation analysis and stimulation with uncorrelated sounds to extract the effective monaural inputs to the cross-correlator neurons. We show that when the left and right inputs to the cross-correlators are defined in this manner, the computation performed by coincidence-detector neurons satisfies conditions of cross-correlation theory. We also show that the spectra of left and right inputs are matched, which is consistent with predictions made by the classic model put forth by Jeffress.
doi:10.1007/s00422-009-0312-y
PMCID: PMC2719282  PMID: 19396457
Barn owl; Interaural time difference; Cross-correlation; Coincidence detection; Cochlear delays; Sound localization; Nucleus laminaris; Stereausis
16.  Asymmetric Excitatory Synaptic Dynamics Underlie Interaural Time Difference Processing in the Auditory System 
PLoS Biology  2010;8(6):e1000406.
In order to localize sounds in the environment, the auditory system detects and encodes differences in signals between each ear. The exquisite sensitivity of auditory brain stem neurons to the differences in rise time of the excitation signals from the two ears allows for neuronal encoding of microsecond interaural time differences.
Low-frequency sound localization depends on the neural computation of interaural time differences (ITD) and relies on neurons in the auditory brain stem that integrate synaptic inputs delivered by the ipsi- and contralateral auditory pathways that start at the two ears. The first auditory neurons that respond selectively to ITD are found in the medial superior olivary nucleus (MSO). We identified a new mechanism for ITD coding using a brain slice preparation that preserves the binaural inputs to the MSO. There was an internal latency difference for the two excitatory pathways that would, if left uncompensated, position the ITD response function too far outside the physiological range to be useful for estimating ITD. We demonstrate, and support using a biophysically based computational model, that a bilateral asymmetry in excitatory post-synaptic potential (EPSP) slopes provides a robust compensatory delay mechanism due to differential activation of low threshold potassium conductance on these inputs and permits MSO neurons to encode physiological ITDs. We suggest, more generally, that the dependence of spike probability on rate of depolarization, as in these auditory neurons, provides a mechanism for temporal order discrimination between EPSPs.
Author Summary
Animals can locate the source of a sound by detecting microsecond differences in the arrival time of sound at the two ears. Neurons encoding these interaural time differences (ITDs) receive an excitatory synaptic input from each ear. They can perform a microsecond computation with excitatory synapses that have millisecond time scale because they are extremely sensitive to the input's “rise time,” the time taken to reach the peak of the synaptic input. Current theories assume that the biophysical properties of the two inputs are identical. We challenge this assumption by showing that the rise times of excitatory synaptic potentials driven by the ipsilateral ear are faster than those driven by the contralateral ear. Further, we present a computational model demonstrating that this disparity in rise times, together with the neurons' sensitivity to excitation's rise time, can endow ITD-encoding with microsecond resolution in the biologically relevant range. Our analysis also resolves a timing mismatch. The difference between contralateral and ipsilateral latencies is substantially larger than the relevant ITD range. We show how the rise time disparity compensates for this mismatch. Generalizing, we suggest that phasic-firing neurons—those that respond to rapidly, but not to slowly, changing stimuli—are selective to the temporal ordering of brief inputs. In a coincidence-detection computation the neuron will respond more robustly when a faster input leads a slower one, even if the inputs are brief and have similar amplitudes.
doi:10.1371/journal.pbio.1000406
PMCID: PMC2893945  PMID: 20613857
17.  Noise Reduction of Coincidence Detector Output by the Inferior Colliculus of the Barn Owl 
A recurring theme in theoretical work is that integration over populations of similarly tuned neurons can reduce neural noise. However, there are relatively few demonstrations of an explicit noise reduction mechanism in a neural network. Here we demonstrate that the brainstem of the barn owl includes a stage of processing apparently devoted to increasing the signal-to-noise ratio in the encoding of the interaural time difference (ITD), one of two primary binaural cues used to compute the position of a sound source in space. In the barn owl, the ITD is processed in a dedicated neural pathway that terminates at the core of the inferior colliculus (ICcc). The actual locus of the computation of the ITD is before ICcc in the nucleus laminaris (NL), and ICcc receives no inputs carrying information that did not originate in NL. Unlike in NL, the rate-ITD functions of ICcc neurons require as little as a single stimulus presentation per ITD to show coherent ITD tuning. ICcc neurons also displayed a greater dynamic range with a maximal difference in ITD response rates approximately double that seen in NL. These results indicate that ICcc neurons perform a computation functionally analogous to averaging across a population of similarly tuned NL neurons.
doi:10.1523/JNEUROSCI.0220-06.2006
PMCID: PMC2492673  PMID: 16738236
interaural time difference; sound localization; inferior colliculus; nucleus laminaris; barn owl; pooling
18.  Kcna1 gene deletion lowers the behavioral sensitivity of mice to small changes in sound location and increases asynchronous brainstem auditory evoked potentials, but does not affect hearing thresholds 
The Journal of Neuroscience  2012;32(7):2538-2543.
Sound localization along the azimuth depends on the sensitivity of binaural nuclei in the auditory brainstem to small differences in interaural level and timing occurring within a sub-millisecond epoch, and on monaural pathways that transmit level and timing cues with high temporal fidelity to insure their coincident arrival at the binaural targets. The soma and axons of these brainstem neurons are heavily invested with ion channels containing the low-threshold potassium channel subunit Kv1.1, which previous in-vitro and in-vivo studies suggest are important for regulating their high input-output correspondence and temporal synchrony. We compared awake Kcna1 null mutant (−/−) mice lacking Kv1.1 with +/+ mice to determine if Kv1.1 activity contributes to sound localization, and examined anesthetized mice for absolute hearing thresholds for suprathreshold differences that may be revealed in the waveforms of auditory brainstem response potentials. The awake −/− mice tested with reflex modification audiometry had reduced sensitivity to an abrupt change in the location of a broad band noise compared to +/+ mice, while anesthetized −/− mice had normal absolute thresholds for tone pips but a high level of stimulus-evoked but asynchronous background activity. Evoked potential waveforms had progressively earlier peaks and troughs in −/− mice but the amplitude excursions between adjacent features were identical in the two groups. Their greater excitability and asynchrony in suprathreshold evoked potentials coupled with their normal thresholds suggests that a disruption in central neural processing in −/− mice and not peripheral hearing loss is responsible for their poor sound localization.
doi:10.1523/JNEUROSCI.1958-11.2012
PMCID: PMC3297021  PMID: 22396426
19.  Low-Frequency Envelope Sensitivity Produces Asymmetric Binaural Tuning Curves 
Journal of Neurophysiology  2008;100(4):2381-2396.
Neurons in the auditory midbrain are sensitive to differences in the timing of sounds at the two ears—an important sound localization cue. We used broadband noise stimuli to investigate the interaural-delay sensitivity of low-frequency neurons in two midbrain nuclei: the inferior colliculus (IC) and the dorsal nucleus of the lateral lemniscus. Noise-delay functions showed asymmetries not predicted from a linear dependence on interaural correlation: a stretching along the firing-rate dimension (rate asymmetry), and a skewing along the interaural-delay dimension (delay asymmetry). These asymmetries were produced by an envelope-sensitive component to the response that could not entirely be accounted for by monaural or binaural nonlinearities, instead indicating an enhancement of envelope sensitivity at or after the level of the superior olivary complex. In IC, the skew-like asymmetry was consistent with intermediate-type responses produced by the convergence of ipsilateral peak-type inputs and contralateral trough-type inputs. This suggests a stereotyped pattern of input to the IC. In the course of this analysis, we were also able to determine the contribution of time and phase components to neurons' internal delays. These findings have important consequences for the neural representation of interaural timing differences and interaural correlation—cues critical to the perception of acoustic space.
doi:10.1152/jn.90393.2008
PMCID: PMC2576218  PMID: 18753329
20.  Preservation of Spectrotemporal Tuning Between the Nucleus Laminaris and the Inferior Colliculus of the Barn Owl 
Journal of neurophysiology  2007;97(5):3544-3553.
Performing sound recognition is a task that requires an encoding of the time-varying spectral structure of the auditory stimulus. Similarly, computation of the interaural time difference (ITD) requires knowledge of the precise timing of the stimulus. Consistent with this, low-level nuclei of birds and mammals implicated in ITD processing encode the ongoing phase of a stimulus. However, the brain areas that follow the binaural convergence for the computation of ITD show a reduced capacity for phase locking. In addition, we have shown that in the barn owl there is a pooling of ITD-responsive neurons to improve the reliability of ITD coding. Here we demonstrate that despite two stages of convergence and an effective loss of phase information, the auditory system of the anesthetized barn owl displays a graceful transition to an envelope coding that preserves the spectrotemporal information throughout the ITD pathway to the neurons of the core of the central nucleus of the inferior colliculus.
doi:10.1152/jn.01162.2006
PMCID: PMC2532515  PMID: 17314241
21.  Developmental Changes Underlying the Formation of the Specialized Time Coding Circuits in Barn Owls (Tyto alba) 
The Journal of Neuroscience  2002;22(17):7671-7679.
Barn owls are capable of great accuracy in detecting the interaural time differences (ITDs) that underlie azimuthal sound localization. They compute ITDs in a circuit in nucleus laminaris (NL) that is reorganized with respect to birds like the chicken. The events that lead to the reorganization of the barn owl NL take place during embryonic development, shortly after the cochlear and laminaris nuclei have differentiated morphologically. At first the developing owl’s auditory brainstem exhibits morphology reminiscent of that of the developing chicken. Later, the two systems diverge, and the owl’s brainstem auditory nuclei undergo a secondary morphogenetic phase during which NL dendrites retract, the laminar organization is lost, and synapses are redistributed. These events lead to the restructuring of the ITD coding circuit and the consequent reorganization of the hindbrain map of ITDs and azimuthal space.
PMCID: PMC3260528  PMID: 12196590
avian development; morphogenesis; auditory; laminaris; evolution; interaural time difference
22.  Functional Delay of Myelination of Auditory Delay Lines in the Nucleus Laminaris of the Barn Owl 
Developmental Neurobiology  2007;67(14):1957-1974.
In the barn owl, maps of interaural time difference (ITD) are created in the nucleus laminaris (NL) by interdigitating axons that act as delay lines. Adult delay line axons are myelinated, and this myelination is timely, coinciding with the attainment of adult head size, and stable ITD cues. The proximal portions of the axons become myelinated in late embryonic life, but the delay line portions of the axon in NL remain unmyelinated until the first postnatal week. Myelination of the delay lines peaks at the third week posthatch, and myelinating oligodendrocyte density approaches adult levels by one month, when the head reaches its adult width. Migration of oligodendrocyte progenitors into NL and the subsequent onset of myelination may be restricted by a glial barrier in late embryonic stages and the first posthatch week, since the loss of tenascin-C immunoreactivity in NL is correlated with oligodendrocyte progenitor migration into NL.
doi:10.1002/dneu.20541
PMCID: PMC3269634  PMID: 17918244
auditory delay lines; nucleus laminaris; myelination; oligodendrocyte progenitor migration; tenascin-C
23.  Anatomical limits on interaural time differences: an ecological perspective 
Human listeners, and other animals too, use interaural time differences (ITD) to localize sounds. If the sounds are pure tones, a simple frequency factor relates the ITD to the interaural phase difference (IPD), for which there are known iso-IPD boundaries, 90°, 180°… defining regions of spatial perception. In this article, iso-IPD boundaries for humans are translated into azimuths using a spherical head model (SHM), and the calculations are checked by free-field measurements. The translated boundaries provide quantitative tests of an ecological interpretation for the dramatic onset of ITD insensitivity at high frequencies. According to this interpretation, the insensitivity serves as a defense against misinformation and can be attributed to limits on binaural processing in the brainstem. Calculations show that the ecological explanation passes the tests only if the binaural brainstem properties evolved or developed consistent with heads that are 50% smaller than current adult heads. Measurements on more realistic head shapes relax that requirement only slightly. The problem posed by the discrepancy between the current head size and a smaller, ideal head size was apparently solved by the evolution or development of central processes that discount large IPDs in favor of interaural level differences. The latter become more important with increasing head size.
doi:10.3389/fnins.2014.00034
PMCID: PMC3937989  PMID: 24592209
brainstem; evolution; binaural; sound localization; interaural time difference; spherical head model; rotation-azimuth transform
24.  Astrocyte-Secreted Factors Modulate a Gradient of Primary Dendritic Arbors in Nucleus Laminaris of the Avian Auditory Brainstem 
PLoS ONE  2011;6(11):e27383.
Neurons in nucleus laminaris (NL) receive binaural, tonotopically matched input from nucleus magnocelluaris (NM) onto bitufted dendrites that display a gradient of dendritic arbor size. These features improve computation of interaural time differences, which are used to determine the locations of sound sources. The dendritic gradient emerges following a period of significant reorganization at embryonic day 15 (E15), which coincides with the emergence of astrocytes that express glial fibrillary acidic protein (GFAP) in the auditory brainstem. The major changes include a loss of total dendritic length, a systematic loss of primary dendrites along the tonotopic axis, and lengthening of primary dendrites on caudolateral NL neurons. Here we have tested whether astrocyte-derived molecules contribute to these changes in dendritic morphology. We used an organotypic brainstem slice preparation to perform repeated imaging of individual dye-filled NL neurons to determine the effects of astrocyte-conditioned medium (ACM) on dendritic morphology. We found that treatment with ACM induced a decrease in the number of primary dendrites in a tonotopically graded manner similar to that observed during normal development. Our data introduce a new interaction between astrocytes and neurons in the auditory brainstem and suggest that these astrocytes influence multiple aspects of auditory brainstem maturation.
doi:10.1371/journal.pone.0027383
PMCID: PMC3210166  PMID: 22087304
25.  Sound localization: Jeffress and beyond 
Current opinion in neurobiology  2011;21(5):745-751.
Many animals use the interaural time differences (ITDs) to locate the source of low frequency sounds. The place coding theory proposed by Jeffress has long been a dominant model to account for the neural mechanisms of ITD detection. Recent research, however, suggests a wider range of strategies for ITD coding in the binaural auditory brainstem. We discuss how ITD is coded in avian, mammalian, and reptilian nervous systems, and review underlying synaptic and cellular properties that enable precise temporal computation. The latest advances in recording and analysis techniques provide powerful tools for both overcoming and utilizing the large field potentials in these nuclei.
doi:10.1016/j.conb.2011.05.008
PMCID: PMC3192259  PMID: 21646012

Results 1-25 (287203)