Search tips
Search criteria

Results 1-25 (677586)

Clipboard (0)

Related Articles

1.  Field Emission and Radial Distribution Function Studies of Fractal-like Amorphous Carbon Nanotips 
Nanoscale Research Letters  2009;4(5):431-436.
The short-range order of individual fractal-like amorphous carbon nanotips was investigated by means of energy-filtered electron diffraction in a transmission electron microscope (TEM). The nanostructures were grown in porous silicon substrates in situ within the TEM by the electron beam-induced deposition method. The structure factorS(k) and the reduced radial distribution functionG(r) were calculated. From these calculations a bond angle of 124° was obtained which suggests a distorted graphitic structure. Field emission was obtained from individual nanostructures using two micromanipulators with sub-nanometer positioning resolution. A theoretical three-stage model that accounts for the geometry of the nanostructures provides a value for the field enhancement factor close to the one obtained experimentally from the Fowler-Nordheim law.
PMCID: PMC2894329  PMID: 20596340
Carbon nanotips; Graphite-like a-C; EELS; EFED; Field emission
2.  Fabrication and characterization of well-aligned and ultra-sharp silicon nanotip array 
Nanoscale Research Letters  2012;7(1):120.
Well-defined, uniform, and large-area nanoscaled tips are of great interest for scanning probe microscopy and high-efficiency field emission. An ultra-sharp nanotip causes higher electrical field and, hence, improves the emission current. In this paper, a large-area and well-aligned ultra-sharp nanotip arrays by reactive ion etching and oxidation techniques are fabricated. The apex of nanotips can be further sharpened to reach 3-nm radius by subsequent oxidation and etching process. A schematic model to explain the formation of nanotip array is proposed. When increasing the etching time, the photoresist on top of the nanotip is also consumed, and the exposed silicon substrate is etched away to form the nanotip. At the end, the photoresist is consumed completely and a nanotip with pyramid-like shape is developed. The field emission property was measured, and the turn-on field and work function of the ultra-sharp nanotip was about 5.37 V/μm and 4.59 eV, respectively. A nanotip with an oxide layer capped on the sidewall is also fabricated in this paper. Comparing to the uncapped nanotip, the oxide-capped sample exhibits stable and excellent field emission property against environmental disturbance.
PMCID: PMC3292956  PMID: 22330967
silicon nanotip; well-aligned; field emission; Fowler-Nordheim; oxide-capped
3.  Effect of Purity and Substrate on Field Emission Properties of Multi-walled Carbon Nanotubes 
Nanoscale Research Letters  2007;2(7):331-336.
Multi-walled carbon nanotubes (MWNT) have been synthesized by chemical vapour decomposition (CVD) of acetylene over Rare Earth (RE) based AB2(DyNi2) alloy hydride catalyst. The as-grown carbon nanotubes were purified by acid and heat treatments and characterized using powder X-ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Thermo Gravimetric Analysis and Raman Spectroscopy. Fully carbon based field emitters have been fabricated by spin coating a solutions of both as-grown and purified MWNT and dichloro ethane (DCE) over carbon paper with and without graphitized layer. The use of graphitized carbon paper as substrate opens several new possibilities for carbon nanotube (CNT) field emitters, as the presence of the graphitic layer provides strong adhesion between the nanotubes and carbon paper and reduces contact resistance. The field emission characteristics have been studied using an indigenously fabricated set up and the results are discussed. CNT field emitter prepared by spin coating of the purified MWNT–DCE solution over graphitized carbon paper shows excellent emission properties with a fairly stable emission current over a period of 4 h. Analysis of the field emission characteristics based on the Fowler–Nordheim (FN) theory reveals current saturation effects at high applied fields for all the samples.
PMCID: PMC3246377  PMID: 21798103
Multi-walled carbon nanotubes; DyNi2alloy hydride; Spin coating; Dichloro ethane; Graphitized carbon paper; CNT field emitter; Fowler–Nordheim theory
4.  Electrolyte-free Amperometric Immunosensor using a Dendritic Nanotip† 
RSC advances  2013;3(13):4281-4287.
Electric detection using a nanocomponent may lead to platforms for rapid and simple biosensing. Sensors composed of nanotips or nanodots have been described for highly sensitive amperometry enabled by confined geometry. However, both fabrication and use of nanostructured sensors remain challenging. This paper describes a dendritic nanotip used as an amperometric biosensor for highly sensitive detection of target bacteria. A dendritic nanotip is structured by Si nanowires coated with single-walled carbon nanotubes (SWCNTs) for generation of a high electric field. For reliable measurement using the dendritic structure, Si nanowires were uniformly fabricated by ultraviolet (UV) lithography and etching. The dendritic structure effectively increased the electric current density near the terminal end of the nanotip according to numerical computation. The electrical characteristics of a dendritic nanotip with additional protein layers was studied by cyclic voltammetry and I–V measurement in deionized (DI) water. When the target bacteria dielectrophoretically captured onto a nanotip were bound with fluorescence antibodies, the electric current through DI water decreased. Measurement results were consistent with fluorescence- and electron microscopy. The sensitivity of the amperometry was 10 cfu/sample volume (103 cfu/mL), which was equivalent to the more laborious fluorescence measurement method. The simple configuration of a dendritic nanotip can potentially offer an electrolyte-free detection platform for sensitive and rapid biosensors.
PMCID: PMC3622275  PMID: 23585927
5.  Growth of GeSi nanoislands on nanotip-patterned Si (100) substrates with a stress-induced self-limiting interdiffusion 
Nanoscale Research Letters  2012;7(1):346.
GeSi nanoislands grown on nanotip pre-patterned Si substrates at various temperatures are investigated. Nanoislands with a high density and narrow size distribution can be obtained within an intermediate temperature range, and the Ge atom diffusion length is comparable to half of the average distance of the Si nanotips. The Ge concentration distributions at the center and edge of the GeSi nanoislands are measured by scanning transmission electron microscopy. The results reveal that there is a Si core at the center of the GeSi nanoisland, but the Ge concentration presents a layered distribution above the Si nanotips. The radial component of the stress field in Ge layer near the Ge/Si interface on the planar, and the nanotip regions is qualitatively discussed. The difference of the stress field reveals that the experimentally observed concentration profile can be ascribed to the stress-induced interdiffusion self-limiting effect of the Si nanotips.
PMCID: PMC3442980  PMID: 22734613
GeSi nanoislands; Nanotip pre-patterned Si substrates; Ge concentration distribution; Stress-induced interdiffusion self-limiting effect; PACS; 68.35.Gy; 61.46.-w; 66.30.Pa
6.  Paradox of low field enhancement factor for field emission nanodiodes in relation to quantum screening effects 
Nanoscale Research Letters  2012;7(1):125.
We put forward the quantum screening effect in field emission [FE] nanodiodes, explaining relatively low field enhancement factors due to the increased potential barrier that impedes the electron Fowler-Nordheim tunneling, which is usually observed in nanoscale FE experiments. We illustratively show this effect from the energy band diagram and experimentally verify it by performing the nanomanipulation FE measurement for a single P-silicon nanotip emitter (Φ = 4.94eV), with a scanning tungsten-probe anode (work function, Φ = 4.5eV) that constitutes a 75-nm vacuum nanogap. A macroscopic FE measurement for the arrays of emitters with a 17-μm vacuum microgap was also performed for a fair comparison.
PMCID: PMC3292933  PMID: 22333408
quantum screening effects; field emission; vacuum electronics; Fowler-Nordheim tunneling; silicon nanostructures
7.  Enhanced Ethanol Gas Sensing Properties of SnO2-Core/ZnO-Shell Nanostructures 
Sensors (Basel, Switzerland)  2014;14(8):14586-14600.
An inexpensive single-step carbon-assisted thermal evaporation method for the growth of SnO2-core/ZnO-shell nanostructures is described, and the ethanol sensing properties are presented. The structure and phases of the grown nanostructures are investigated by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. XRD analysis indicates that the core-shell nanostructures have good crystallinity. At a lower growth duration of 15 min, only SnO2 nanowires with a rectangular cross-section are observed, while the ZnO shell is observed when the growth time is increased to 30 min. Core-shell hierarchical nanostructures are present for a growth time exceeding 60 min. The growth mechanism for SnO2-core/ZnO-shell nanowires and hierarchical nanostructures are also discussed. The sensitivity of the synthesized SnO2-core/ZnO-shell nanostructures towards ethanol sensing is investigated. Results show that the SnO2-core/ZnO-shell nanostructures deposited at 90 min exhibit enhanced sensitivity to ethanol. The sensitivity of SnO2-core/ZnO-shell nanostructures towards 20 ppm ethanol gas at 400 °C is about ∼5-times that of SnO2 nanowires. This improvement in ethanol gas response is attributed to high active sensing sites and the synergistic effect of the encapsulation of SnO2 by ZnO nanostructures.
PMCID: PMC4179074  PMID: 25116903
ethanol gas sensor; ZnO; SnO2; core-shell nanostructures; hierarchical nanostructures
8.  Thickness dependency of field emission in amorphous and nanostructured carbon thin films 
Nanoscale Research Letters  2012;7(1):286.
Thickness dependency of the field emission of amorphous and nanostructured carbon thin films has been studied. It is found that in amorphous and carbon films with nanometer-sized sp2 clusters, the emission does not depend on the film thickness. This further proves that the emission happens from the surface sp2 sites due to large enhancement of electric field on these sites. However, in the case of carbon films with nanocrystals of preferred orientation, the emission strongly depends on the film thickness. sp2-bonded nanocrystals have higher aspect ratio in thicker films which in turn results in higher field enhancement and hence easier electron emission.
PMCID: PMC3431989  PMID: 22655860
Carbon films; Preferred orientation; Field emission
9.  Morphology and Photoluminescence of HfO2 Obtained by Microwave-Hydrothermal 
Nanoscale Research Letters  2009;4(11):1371-1379.
In this letter, we report on the obtention of hafnium oxide (HfO2) nanostructures by the microwave-hydrothermal method. These nanostructures were analyzed by X-ray diffraction (XRD), field-emission gum scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDXS), ultraviolet–visible (UV–vis) spectroscopy, and photoluminescence (PL) measurements. XRD patterns confirmed that this material crystallizes in a monoclinic structure. FEG-SEM and TEM micrographs indicated that the rice-like morphologies were formed due to an increase in the effective collisions between the nanoparticles during the MH processing. The EDXS spectrum was used to verify the chemical compositional of this oxide. UV–vis spectrum revealed that this material have an indirect optical band gap. When excited with 488 nm wavelength at room temperature, the HfO2 nanostructures exhibited only one broad PL band with a maximum at around 548 nm (green emission).
PMCID: PMC2893942  PMID: 20628455
HfO2; Nanoparticles; Morphology; Optical band gap; Photoluminescence
10.  Morphology and Photoluminescence of HfO2Obtained by Microwave-Hydrothermal 
Nanoscale Research Letters  2009;4(11):1371-1379.
In this letter, we report on the obtention of hafnium oxide (HfO2) nanostructures by the microwave-hydrothermal method. These nanostructures were analyzed by X-ray diffraction (XRD), field-emission gum scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDXS), ultraviolet–visible (UV–vis) spectroscopy, and photoluminescence (PL) measurements. XRD patterns confirmed that this material crystallizes in a monoclinic structure. FEG-SEM and TEM micrographs indicated that the rice-like morphologies were formed due to an increase in the effective collisions between the nanoparticles during the MH processing. The EDXS spectrum was used to verify the chemical compositional of this oxide. UV–vis spectrum revealed that this material have an indirect optical band gap. When excited with 488 nm wavelength at room temperature, the HfO2nanostructures exhibited only one broad PL band with a maximum at around 548 nm (green emission).
PMCID: PMC2893942  PMID: 20628455
HfO2; Nanoparticles; Morphology; Optical band gap; Photoluminescence
11.  Field emission properties and growth mechanism of In2O3 nanostructures 
Nanoscale Research Letters  2014;9(1):111.
Four kinds of nanostructures, nanoneedles, nanohooks, nanorods, and nanotowers of In2O3, have been grown by the vapor transport process with Au catalysts or without any catalysts. The morphology and structure of the prepared nanostructures are determined on the basis of field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD), and transmission electron microscopy (TEM). The growth direction of the In2O3 nanoneedles is along the [001], and those of the other three nanostructures are along the [100]. The growth mechanism of the nanoneedles is the vapor-liquid–solid (VLS), and those of the other three nanostructures are the vapor-solid (VS) processes. The field emission properties of four kinds of In2O3 nanostructures have been investigated. Among them, the nanoneedles have the best field emission properties with the lowest turn-on field of 4.9 V/μm and the threshold field of 12 V/μm due to possessing the smallest emitter tip radius and the weakest screening effect.
PMCID: PMC3995944  PMID: 24612921
Thermal evaporation; Field emission; Crystal growth; Growth mechanism
12.  Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method 
We report the synthesis of Ag–ZnO hybrid plasmonic nanostructures with enhanced photocatalytic activity by a facile wet-chemical method. The structural, optical, plasmonic and photocatalytic properties of the Ag–ZnO hybrid nanostructures were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL) and UV–visible absorption spectroscopy. The effects of citrate concentration and Ag nanoparticle loading on the photocatalytic activity of Ag–ZnO hybrid nanostructures towards sun-light driven degradation of methylene blue (MB) have been investigated. Increase in citrate concentration has been found to result in the formation of nanodisk-like structures, due to citrate-assisted oriented attachment of ZnO nanoparticles. The decoration of ZnO nanostructures with Ag nanoparticles resulted in a significant enhancement of the photocatalytic degradation efficiency, which has been found to increase with the extent of Ag nanoparticle loading.
PMCID: PMC4077307  PMID: 24991500
Ag–ZnO; hybrid plasmonic nanostructures; photocatalysis
13.  Improved field emission stability from single-walled carbon nanotubes chemically attached to silicon 
Nanoscale Research Letters  2012;7(1):432.
Here, we demonstrate the simple fabrication of a single-walled carbon nanotube (SWCNT) field emission electrode which shows excellent field emission characteristics and remarkable field emission stability without requiring posttreatment. Chemically functionalized SWCNTs were chemically attached to a silicon substrate. The chemical attachment led to vertical alignment of SWCNTs on the surface. Field emission sweeps and Fowler-Nordheim plots showed that the Si-SWCNT electrodes field emit with a low turn-on electric field of 1.5 V μm−1 and high electric field enhancement factor of 3,965. The Si-SWCNT electrodes were shown to maintain a current density of >740 μA cm−2 for 15 h with negligible change in applied voltage. The results indicate that adhesion strength between the SWCNTs and substrate is a much greater factor in field emission stability than previously reported.
PMCID: PMC3492060  PMID: 22853557
Single-walled carbon nanotubes; Chemical attachment; Field emission; Field emission stability; Nanoelectronics
14.  Magnetically interacting low dimensional Ni-nanostructures within porous silicon 
Microelectronic Engineering  2012;90(C):83-87.
Graphical abstract
Electrodeposition of ferromagnetic metals, a common method to fabricate magnetic nanostructures, is used for the incorporation of Ni structures into the pores of porous silicon templates. The porous silicon is fabricated in various morphologies with average pore-diameters between 40 and 95 nm and concomitant pore-distances between 60 and 40 nm. The metal nanostructures are deposited with different geometries as spheres, ellipsoids or wires influenced by the deposition process parameters. Furthermore small Ni-particles with diameters between 3 and 6 nm can be deposited on the walls of the porous silicon template forming a metal tube. Analysis of this tube-like arrangement by transmission electron microscopy (TEM) shows that the distribution of the Ni-particles is quite narrow, which means that the distance between the particles is smaller than 10 nm. Such a close arrangement of the Ni-particles assures magnetic interactions between them. Due to their size these small Ni-particles are superparamagnetic but dipolar coupling between them results in a ferromagnetic behavior of the whole system. Thus a semiconducting/ferromagnetic hybrid material with a broad range of magnetic properties can be fabricated. Furthermore this composite is an interesting candidate for silicon based applications and the compatibility with today’s process technology.
PMCID: PMC3242907  PMID: 22308049
Porous silicon; Electrodeposition; Magnetic nanostructures; Ferromagnetism
15.  Hollow nitrogen-containing core/shell fibrous carbon nanomaterials as support to platinum nanocatalysts and their TEM tomography study 
Nanoscale Research Letters  2012;7(1):165.
Core/shell nanostructured carbon materials with carbon nanofiber (CNF) as the core and a nitrogen (N)-doped graphitic layer as the shell were synthesized by pyrolysis of CNF/polyaniline (CNF/PANI) composites prepared by in situ polymerization of aniline on CNFs. High-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared and Raman analyses indicated that the PANI shell was carbonized at 900°C. Platinum (Pt) nanoparticles were reduced by formic acid with catalyst supports. Compared to the untreated CNF/PANI composites, the carbonized composites were proven to be better supporting materials for the Pt nanocatalysts and showed superior performance as catalyst supports for methanol electrochemical oxidation. The current density of methanol oxidation on the catalyst with the core/shell nanostructured carbon materials is approximately seven times of that on the catalyst with CNF/PANI support. TEM tomography revealed that some Pt nanoparticles were embedded in the PANI shells of the CNF/PANI composites, which might decrease the electrocatalyst activity. TEM-energy dispersive spectroscopy mapping confirmed that the Pt nanoparticles in the inner tube of N-doped hollow CNFs could be accessed by the Nafion ionomer electrolyte, contributing to the catalytic oxidation of methanol.
PMCID: PMC3311096  PMID: 22385930
carbon nanofiber; N-doping; core/shell; polyaniline; catalyst support; methanol oxidation; TEM tomography
16.  In Vitro Mineralization of Dense Collagen Substrates: A Biomimetic Approach Toward the Development of Bone-Graft Materials 
Acta Biomaterialia  2011;7(8):3158-3169.
Bone is an organic-inorganic composite which has hierarchical structuring that leads to high strength and toughness. The nanostructure of bone consists of nanocrystals of hydroxyapatite embedded and aligned within the interstices of collagen fibrils. This unique nanostructure leads to exceptional properties, both mechanical and biological, making it difficult to emulate bone properties without having a bone-like nanostructured material. A primary goal of our group’s work is to use biomimetic processing techniques that lead to bone-like structures.
In our prior studies, we demonstrated that intrafibrillar mineralization of porous collagen sponges, leading to a bone-like nanostructure, can be achieved using a polymer-induced liquid-precursor (PILP) mineralization process. The objective of this study was to investigate the use of this polymer-directed crystallization process to mineralize dense collagen substrates. To examine collagen scaffolds that truly represent the dense-packed matrix of bone, manatee bone was demineralized to isolate its collagen matrix, consisting of a dense, lamellar osteonal microstructure. This biogenic collagen scaffold was then remineralized using polyaspartate to direct the mineralization process through an amorphous precursor pathway.
Various conditions investigated included polymer molecular weight, substrate dimension and mineralization time. Mineral penetration depths of up to 100 μms were achieved using this PILP process, compared to no penetration with only surface precipitates observed for the conventional crystallization process. Electron microscopy, wide-angle X-ray diffraction, and thermal analysis were used to characterize the resulting hydroxyapatite/collagen composites. These studies demonstrate that the original interpenetrating bone nanostructure and osteonal microstructure could be recovered in a biogenic matrix using the PILP process.
PMCID: PMC3261505  PMID: 21550424
Biomineralization; bone; hydroxyapatite; amorphous calcium phosphate; biomimetic; collagen
17.  Synthesis and field emission properties of different ZnO nanostructure arrays 
Nanoscale Research Letters  2012;7(1):197.
In this article, zinc oxide (ZnO) nanostructures of different shapes were fabricated on silicon substrate. Well-aligned and long ZnO nanowire (NW) arrays, as well as leaf-like ZnO nanostructures (which consist of modulated and single-phase structures), were fabricated by a chemical vapor deposition (CVD) method without the assistance of a catalyst. On the other hand, needle-like ZnO NW arrays were first fabricated with the CVD process followed by chemical etching of the NW arrays. The use of chemical etching provides a low-cost and convenient method of obtaining the needle-like arrays. In addition, the field emission properties of the different ZnO NW arrays were also investigated where some differences in the turn-on field and the field-enhancement factors were observed for the ZnO nanostructures of different lengths and shapes. It was experimentally observed that the leaf-like ZnO nanostructure is most suitable for field emission due to its lowest turn-on and threshold field as well as its high field-enhancement factor among the different synthesized nanostructures.
PMCID: PMC3337273  PMID: 22444723
ZnO; Nanowires; Structure directing chemicals; Field emission properties
18.  The Effect of Sodium Dodecyl Sulfate (SDS) and Cetyltrimethylammonium Bromide (CTAB) on the Properties of ZnO Synthesized by Hydrothermal Method 
ZnO nanostructures were synthesized by hydrothermal method using different molar ratios of cetyltrimethylammonium bromide (CTAB) and Sodium dodecyl sulfate (SDS) as structure directing agents. The effect of surfactants on the morphology of the ZnO crystals was investigated by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. The results indicate that the mixture of cationic-anionic surfactants can significantly modify the shape and size of ZnO particles. Various structures such as flakes, sheets, rods, spheres, flowers and triangular-like particles sized from micro to nano were obtained. In order to examine the possible changes in other properties of ZnO, characterizations like powder X-ray diffraction (PXRD), thermogravimetric and differential thermogravimetric analysis (TGA-DTG), FTIR, surface area and porosity and UV-visible spectroscopy analysis were also studied and discussed.
PMCID: PMC3497326  PMID: 23202952
zinc oxide; sodium dodecyl sulfate; cetyltrimethylammonium bromide; hydrothermal synthesis
19.  Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO 
The autocatalytic growth of arbitrarily shaped nanostructures fabricated by electron beam-induced deposition (EBID) and electron beam-induced surface activation (EBISA) is studied for two precursors: iron pentacarbonyl, Fe(CO)5, and cobalt tricarbonyl nitrosyl, Co(CO)3NO. Different deposits are prepared on silicon nitride membranes and silicon wafers under ultrahigh vacuum conditions, and are studied by scanning electron microscopy (SEM) and scanning transmission X-ray microscopy (STXM), including near edge X-ray absorption fine structure (NEXAFS) spectroscopy. It has previously been shown that Fe(CO)5 decomposes autocatalytically on Fe seed layers (EBID) and on certain electron beam-activated surfaces, yielding high purity, polycrystalline Fe nanostructures. In this contribution, we investigate the growth of structures from Co(CO)3NO and compare it to results obtained from Fe(CO)5. Co(CO)3NO exhibits autocatalytic growth on Co-containing seed layers prepared by EBID using the same precursor. The growth yields granular, oxygen-, carbon- and nitrogen-containing deposits. In contrast to Fe(CO)5 no decomposition on electron beam-activated surfaces is observed. In addition, we show that the autocatalytic growth of nanostructures from Co(CO)3NO can also be initiated by an Fe seed layer, which presents a novel approach to the fabrication of layered nanostructures.
PMCID: PMC4143096  PMID: 25161851
autocatalytic growth; cobalt tricarbonyl nitrosyl; electron-beam induced deposition; nanofabrication; scanning transmission X-ray microscopy
20.  Single Step In Situ Synthesis and Optical Properties of Polyaniline/ZnO Nanocomposites 
The Scientific World Journal  2014;2014:904513.
Polyaniline/ZnO nanocomposites were prepared by in situ oxidative polymerization of aniline monomer in the presence of different weight percentages of ZnO nanostructures. The steric stabilizer added to prevent the agglomeration of nanostructures in the polymer matrix was found to affect the final properties of the nanocomposite. ZnO nanostructures of various morphologies and sizes were prepared in the absence and presence of sodium lauryl sulphate (SLS) surfactant under different reaction conditions like in the presence of microwave radiation (microwave oven), under pressure (autoclave), under vacuum (vacuum oven), and at room temperature (ambient condition). The conductivity of these synthesized nanocomposites was evaluated using two-probe method and the effect of concentration of ZnO nanostructures on conductivity was observed. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-visible (UV-VIS) spectroscopy techniques were used to characterize nanocomposites. The optical energy band gap of the nanocomposites was calculated from absorption spectra and ranged between 1.5 and 3.21 eV. The reported values depicted the blue shift in nanocomposites as compared to the band gap energies of synthesized ZnO nanostructures. The present work focuses on the one-step synthesis and potential use of PANI/ZnO nanocomposite in molecular electronics as well as in optical devices.
PMCID: PMC3910262  PMID: 24523653
21.  Enhanced field electron emission properties of hierarchically structured MWCNT-based cold cathodes 
Hierarchically structured MWCNT (h-MWCNT)-based cold cathodes were successfully achieved by means of a relatively simple and highly effective approach consisting of the appropriate combination of KOH-based pyramidal texturing of Si (100) substrates and PECVD growth of vertically aligned MWCNTs. By controlling the aspect ratio (AR) of the Si pyramids, we were able to tune the field electron emission (FEE) properties of the h-MWCNT cathodes. Indeed, when the AR is increased from 0 (flat Si) to 0.6, not only the emitted current density was found to increase exponentially, but more importantly its associated threshold field (TF) was reduced from 3.52 V/μm to reach a value as low as 1.95 V/μm. The analysis of the J-E emission curves in the light of the conventional Fowler-Nordheim model revealed the existence of two distinct low-field (LF) and high-field (HF) FEE regimes. In both regimes, the hierarchical structuring was found to increase significantly the associated βLF and βHF field enhancement factors of the h-MWCNT cathodes (by a factor of 1.7 and 2.2, respectively). Pyramidal texturing of the cathodes is believed to favor vacuum space charge effects, which could be invoked to account for the significant enhancement of the FEE, particularly in the HF regime where a βHF as high as 6,980 was obtained for the highest AR value of 0.6.
PMCID: PMC3918447  PMID: 24484649
Vertically aligned carbon nanotubes; Plasma enhanced vacuum deposition; Hierarchical structuring; Field electron emission; Cold cathode
22.  Investigation of In Vitro Drug Release from Porous Hollow Silica Nanospheres Prepared of ZnS@SiO2 Core-Shell 
In this contribution, porous hollow silica nanoparticles using inorganic nanosized ZnS as a template were prepared. The hydrothermal method was used to synthesize pure ZnS nanospheres material. The ZnS@SiO2 core-shell nanocomposites were prepared using a simple sol-gel method successfully. The hollow silica nanostructures were achieved by selective removal of the ZnS core. The morphology, structure, and composition of the product were determined using powder X-ray diffraction (XRD), emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). The results demonstrated clearly that the pure ZnS nanoparticles are in a spherical form with the average size of 40 nm and correspond with zinc blend structure. The porous hollow silica nanoparticles obtained were exploited as drug carriers to investigate in vitro release behavior of amoxicillin in simulated body fluid (SBF). UV-visible spectrometry was carried out to determine the amount of amoxicillin entrapped in the carrier. Amoxicillin release profile from porous hollow silica nanoparticles followed a three-stage pattern and indicated a delayed release effect.
PMCID: PMC3792506  PMID: 24170995
23.  Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures 
Sensors (Basel, Switzerland)  2012;12(11):15424-15437.
In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples.
PMCID: PMC3522970  PMID: 23202217
honeycomb NiO nanostructures; potentiometric response; ion selective electrode; selectivity; selective ionophore
24.  EELS Analysis of Nylon 6 Nanofibers Reinforced with Nitroxide-Functionalized Graphene Oxide 
Carbon  2014;70:164-171.
A detailed analysis by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of nitroxide-functionalized graphene oxide layers (GOFT) dispersed in Nylon 6 nanofibers is reported herein. The functionalization and exfoliation process of graphite oxide to GOFT was confirmed by TEM using electron diffraction patterns (EDP), wherein 1 to 4 graphene layers of GOFT were observed. The distribution and alignment of GOFT layers within a sample of Nylon 6 nanofiber reveals that GOFT platelets are mainly within the fiber, but some were partially protruding from it. Furthermore, Nylon 6 nanofibers exhibit an average diameter of 225 nm with several microns in length. GOFT platelets embedded into the fiber, the pristine fiber, and amorphous carbon were analyzed by EELS where each spectra [corresponding to the carbon edge (C-K)] exhibited changes in the fine structure, allowing a clear distinction between: i) GOFT single-layers, ii) Nylon-6 nanofibers, and iii) the carbon substrate. EELS analysis is presented here for the first time as a powerful tool to identify functionalized graphene single-layers (< 4 layers of GOFT) into a Nylon 6 nanofiber composite.
PMCID: PMC3949993  PMID: 24634536
25.  Synthesis and Optical Enhancement of Amorphous Carbon Nanotubes/Silver Nanohybrids via Chemical Route at Low Temperature 
The Scientific World Journal  2014;2014:847806.
We report the synthesis of amorphous carbon nanotubes/silver (αCNTs/Ag) nanohybrids via simple chemical route without additional reactant and surfactant at low temperature. Field emission scanning microscope (FESEM) and transmission electron microscope (TEM) confirmed formation of CNTs. X-ray diffraction (XRD) pattern confirmed the amorphous phase of carbon and the formation of Ag nanoparticles crystalline phase. Raman spectra revealed the amorphous nature of αCNTs. UV-visible spectroscopy showed enhancement of optical properties of αCNTs/Ag nanohybrids.
PMCID: PMC4068040  PMID: 24995365

Results 1-25 (677586)