PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (931666)

Clipboard (0)
None

Related Articles

1.  The Effect of Iron Oxide Magnetic Nanoparticles on Smooth Muscle Cells 
Nanoscale Research Letters  2008;4(1):70-77.
Recently, magnetic nanoparticles of iron oxide (Fe3O4, γ-Fe2O3) have shown an increasing number of applications in the field of biomedicine, but some questions have been raised about the potential impact of these nanoparticles on the environment and human health. In this work, the three types of magnetic nanoparticles (DMSA-Fe2O3, APTS-Fe2O3, and GLU-Fe2O3) with the same crystal structure, magnetic properties, and size distribution was designed, prepared, and characterized by transmission electronic microscopy, powder X-ray diffraction, zeta potential analyzer, vibrating sample magnetometer, and Fourier transform Infrared spectroscopy. Then, we have investigated the effect of the three types of magnetic nanoparticles (DMSA-Fe2O3, APTS-Fe2O3, and GLU-Fe2O3) on smooth muscle cells (SMCs). Cellular uptake of nanoparticles by SMC displays the dose, the incubation time and surface property dependent patterns. Through the thin section TEM images, we observe that DMSA-Fe2O3is incorporated into the lysosome of SMCs. The magnetic nanoparticles have no inflammation impact, but decrease the viability of SMCs. The other questions about metabolism and other impacts will be the next subject of further studies.
doi:10.1007/s11671-008-9204-7
PMCID: PMC2894190
Magnetic nanoparticles; Iron oxide; Smooth muscle cells; Cellular uptake; Viability
2.  Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers 
Background
Superparamagnetic iron oxide nanoparticles are attractive materials that have been widely used in medicine for drug delivery, diagnostic imaging, and therapeutic applications. In our study, superparamagnetic iron oxide nanoparticles and the anticancer drug, doxorubicin hydrochloride, were encapsulated into poly (D, L-lactic-co-glycolic acid) poly (ethylene glycol) (PLGA-PEG) nanoparticles for local treatment. The magnetic properties conferred by superparamagnetic iron oxide nanoparticles could help to maintain the nanoparticles in the joint with an external magnet.
Methods
A series of PLGA:PEG triblock copolymers were synthesized by ring-opening polymerization of D, L-lactide and glycolide with different molecular weights of polyethylene glycol (PEG2000, PEG3000, and PEG4000) as an initiator. The bulk properties of these copolymers were characterized using 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy, and differential scanning calorimetry. In addition, the resulting particles were characterized by x-ray powder diffraction, scanning electron microscopy, and vibrating sample magnetometry.
Results
The doxorubicin encapsulation amount was reduced for PLGA:PEG2000 and PLGA:PEG3000 triblock copolymers, but increased to a great extent for PLGA:PEG4000 triblock copolymer. This is due to the increased water uptake capacity of the blended triblock copolymer, which encapsulated more doxorubicin molecules into a swollen copolymer matrix. The drug encapsulation efficiency achieved for Fe3O4 magnetic nanoparticles modified with PLGA:PEG2000, PLGA:PEG3000, and PLGA:PEG4000 copolymers was 69.5%, 73%, and 78%, respectively, and the release kinetics were controlled. The in vitro cytotoxicity test showed that the Fe3O4-PLGA:PEG4000 magnetic nanoparticles had no cytotoxicity and were biocompatible.
Conclusion
There is potential for use of these nanoparticles for biomedical application. Future work includes in vivo investigation of the targeting capability and effectiveness of these nanoparticles in the treatment of lung cancer.
doi:10.2147/IJN.S24326
PMCID: PMC3273983  PMID: 22334781
superparamagnetic iron oxide nanoparticles; triblock copolymer; doxorubicin encapsulation; water uptake; drug encapsulation efficiency
3.  Enhanced and selective delivery of enzyme therapy to 9L-glioma tumor via magnetic targeting of PEG-modified, β-glucosidase-conjugated iron oxide nanoparticles 
The stability of enzyme-conjugated magnetic iron oxide nanoparticles in plasma is of great importance for in vivo delivery of the conjugated enzyme. In this study, β-glucosidase was conjugated on aminated magnetic iron oxide nanoparticles using the glutaraldehyde method (β-Glu-MNP), and further PEGylated via N-hydroxysuccinimide chemistry. The PEG-modified, β-glucosidase-immobilized magnetic iron oxide nanoparticles (PEG-β-Glu-MNPs) were characterized by hydrodynamic diameter distribution, zeta potential, Fourier transform infrared spectroscopy, transmission electron microscopy, and a superconducting quantum interference device. The results showed that the multidomain structure and magnetization properties of these nanoparticles were conserved well throughout the synthesis steps, with an expected diameter increase and zeta potential shifts. The Michaelis constant was calculated to evaluate the activity of conjugated β-glucosidase on the magnetic iron oxide nanoparticles, indicating 73.0% and 65.4% of enzyme activity remaining for β-Glu-MNP and PEG-β-Glu-MNP, respectively. Both magnetophoretic mobility analysis and pharmacokinetics showed improved in vitro/in vivo stability of PEG-β-Glu-MNP compared with β-Glu-MNP. In vivo magnetic targeting of PEG-β-Glu-MNP was confirmed by magnetic resonance imaging and electron spin resonance analysis in a mouse model of subcutaneous 9L-glioma. Satisfactory accumulation of PEG-β-Glu-MNP in tumor tissue was successfully achieved, with an iron content of 627±45 nmol Fe/g tissue and β-glucosidase activity of 32.2±8.0 mU/g tissue.
doi:10.2147/IJN.S59556
PMCID: PMC4061166  PMID: 24959078
β-glucosidase; enzyme/prodrug therapy; magnetic nanoparticles; magnetic targeting; 9L-glioma
4.  Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method 
Background
Nickel ferrite, a kind of soft magnetic materials is one of the most attracting class of materials due to its interesting and important properties and has many technical applications, such as in catalysis, sensors and so on. In this paper the synthesis of NiFe2O4 nanoparticles by the hydrothermal method is reported and the inhibition of surfactant (Glycerol or Sodium dodecyl sulfate) on the particles growth is investigated.
Methods
For investigation of the inhibition effect of surfactant on NiFe2O4 particles growth, the samples were prepared in presence of Glycerol and Sodium dodecyl sulfate. The X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM) and inductively coupled plasma atomic emission spectrometer (ICP-AES) techniques were used to characterize the samples.
Results
The results of XRD and ICP-AES show that the products were pure NiFe2O4 and also nanoparticles grow with increasing the temperature, while surfactant prevents the particle growth under the same condition. The average particle size was determined from the Scherrer's equation and TEM micrographs and found to be in the range of 50-60 nm that decreased up to 10-15 nm in presence of surfactant. The FT-IR results show two absorption bands near to 603 and 490 cm-1 for the tetrahedral and octahedral sites respectively. Furthermore, the saturated magnetization and coercivity of NiFe2O4 nanoparticles were in the range of 39.60 emu/g and 15.67 Qe that decreased for samples prepared in presence of surfactant. As well as, the nanoparticles exhibited a superparamagnetic behavior at room temperature.
Conclusions
Nanosized nickel ferrite particles were synthesized with and without surfactant assisted hydrothermal methods. The results show that with increasing of temperature, the crystallinity of nanoparticles is increased. In the presence of surfactants, the crystallinity of NiFe2O4 nanoparticles decreased in comparison with surfactant- free prepared samples. All of the nickel ferrite nanoparticles were superparamagnetic at room temperature.
Graphical abstract
doi:10.1186/1752-153X-6-23
PMCID: PMC3348867  PMID: 22462726
Oxides; Magnetic properties; Surfactants; Nanostructures
5.  Facile synthesis of folate-conjugated magnetic/fluorescent bifunctional microspheres 
Nanoscale Research Letters  2014;9(1):558.
In this paper, we investigated the functional imaging properties of magnetic microspheres composed of magnetic core and CdTe quantum dots in the silica shell functionalized with folic acid (FA). The preparation procedure included the preparation of chitosan-coated Fe3O4 nanoparticles (CS-coated Fe3O4 NPs) prepared by a one-pot solvothermal method, the reaction between carboxylic and amino groups under activation of NHS and EDC in order to obtain the CdTe-CS-coated Fe3O4 NPs, and finally the growth of SiO2 shell vent the photoluminescence (PL) quenching via a Stöber method (Fe3O4-CdTe@SiO2). Moreover, in order to have a specific targeting capacity, the magnetic and fluorescent bifunctional microspheres were synthesized by bonding of SiO2 shell with FA molecules via amide reaction (Fe3O4-CdTe@SiO2-FA). The morphology, size, chemical components, and magnetic property of as-prepared composite nanoparticles were characterized by ultraviolet-visible spectroscopy, fluorescent spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning transmission electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM), respectively. The results show that the magnetic and fluorescent bifunctional microspheres have strong luminescent which will be employed for immuno-labeling and fluorescent imaging of HeLa cells.
doi:10.1186/1556-276X-9-558
PMCID: PMC4199784  PMID: 25328504
Magnetic nanoparticles; Chitosan; Solvothermal; Fluorescent
6.  Investigation of magnetically controlled water intake behavior of Iron Oxide Impregnated Superparamagnetic Casein Nanoparticles (IOICNPs) 
Iron oxide impregnated casein nanoparticles (IOICNPs) were prepared by in-situ precipitation of iron oxide within the casein matrix. The resulting iron oxide impregnated casein nanoparticles (IOICNPs) were characterized by Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), Vibrating sample magnetometer (VSM) and Raman spectroscopy. The FTIR analysis confirmed the impregnation of iron oxide into the casein matrix whereas XPS analysis indicated for complete oxidation of iron (II) to iron(III) as evident from the presence of the observed representative peaks of iron oxide. The nanoparticles were allowed to swell in phosphate buffer saline (PBS) and the influence of factors such as chemical composition of nanoparticles, pH and temperature of the swelling bath, and applied magnetic field was investigated on the water intake capacity of the nanoparticles. The prepared nanoparticles showed potential to function as a nanocarrier for possible applications in magnetically targeted delivery of anticancer drugs.
doi:10.1186/s12951-014-0038-4
PMCID: PMC4189755  PMID: 25277602
Casein; IOICNPs; Swelling behaviour; pH sensitive; Magnetic drug targeting
7.  Use of Magnetic Folate-Dextran-Retinoic Acid Micelles for Dual Targeting of Doxorubicin in Breast Cancer 
BioMed Research International  2013;2013:680712.
Amphiphilic copolymer of folate-conjugated dextran/retinoic acid (FA/DEX-RA) was self-assembled into micelles by direct dissolution method. Magnetic iron oxide nanoparticles (MNPs) coated with oleic acid (OA) were prepared by hydrothermal method and encapsulated within the micelles. Doxorubicin HCl was loaded in the magnetic micelles. The characteristics of the magnetic micelles were determined by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM). The crystalline state of OA-coated MNPs and their heat capacity were analyzed by X-ray diffraction (XRD) and differential scanning calorimetry (DSC) methods, respectively. The iron content of magnetic micelles was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Bovine serum albumin (BSA) was used to test the protein binding of magnetic micelles. The cytotoxicity of doxorubicin loaded magnetic micelles was studied on MCF-7 and MDA-MB-468 cells using MTT assay and their quantitative cellular uptake by fluorimetry method. TEM results showed the MNPs in the hydrophobic core of the micelles. TGA results confirmed the presence of OA and FA/DEX-RA copolymer on the surface of MNPs and micelles, respectively. The magnetic micelles showed no significant protein bonding and reduced the IC50 of the drug to about 10 times lower than the free drug.
doi:10.1155/2013/680712
PMCID: PMC3870081  PMID: 24381941
8.  Preparation and assessment of chitosan-coated superparamagnetic Fe3O4 nanoparticles for controlled delivery of methotrexate 
In this study, Fe3O4 superparamagnetic nanoparticles were synthesized and stabilized by chitosan. Then the nanoparticles were characterized by Fourier transform infrared spectroscopy and transmission electron microscopy (TEM). Particle size distribution and Zeta potential of the particles also was assessed using Malvern Zetasizer. The paramagnetic behaviors of the uncoated and chitosan coated nanoparticles were measured using vibrating scanning magnetometry Particles morphology and size ranges of uncoated iron oxide nanoparticles were evaluated by TEM, showing uniform and narrow size distribution about 10 nm. After coating nanoparticles with chitosan and loading of methotrexate (MTX), the change in size was assessed using Zetasizer. Considerable increase in size was observed following the coating of the particles with chitosan and loading with MTX (the average size was 152 nm). Paramagnetic properties of the uncoated and chitosan-coated particles were assessed showing significant decrease in paramagnetic behavior after coating with chitosan, but it was enough to respond to the magnetic field. Finally loading efficiency, release rate and cytotoxicity of MTX were assessed indicating slow release behavior with the same levels of cell toxicity in SK-BR-3 cell lines, suggesting this formulation as a good candidate for the controlled delivery of MTX.
PMCID: PMC3895297  PMID: 24459473
Superparamagnetic; Fe3O4; Nanoparticles; Chitosan; Magnetic targeting drug delivery; Methotrexate
9.  Multifunctional polymeric nanoparticles doubly loaded with SPION and ceftiofur retain their physical and biological properties 
Background
Advances in nanostructure materials are leading to novel strategies for drug delivery and targeting, contrast media for magnetic resonance imaging (MRI), agents for hyperthermia and nanocarriers. Superparamagnetic iron oxide nanoparticles (SPIONs) are useful for all of these applications, and in drug-release systems, SPIONs allow for the localization, direction and concentration of drugs, providing a broad range of therapeutic applications. In this work, we developed and characterized polymeric nanoparticles based on poly (3-hydroxybutyric acid-co-hydroxyvaleric acid) (PHBV) functionalized with SPIONs and/or the antibiotic ceftiofur. These nanoparticles can be used in multiple biomedical applications, and the hybrid SPION–ceftiofur nanoparticles (PHBV/SPION/CEF) can serve as a multifunctional platform for the diagnosis and treatment of cancer and its associated bacterial infections.
Results
Morphological examination using transmission electron microscopy (TEM) showed nanoparticles with a spherical shape and a core-shell structure. The particle size was evaluated using dynamic light scattering (DLS), which revealed a diameter of 243.0 ± 17 nm. The efficiency of encapsulation (45.5 ± 0.6% w/v) of these polymeric nanoparticles was high, and their components were evaluated using spectroscopy. UV–VIS, FTIR and DSC showed that all of the nanoparticles contained the desired components, and these compounds interacted to form a nanocomposite. Using the agar diffusion method and live/dead bacterial viability assays, we demonstrated that these nanoparticles have antimicrobial properties against Escherichia coli, and they retain their magnetic properties as measured using a vibrating sample magnetometer (VSM). Cytotoxicity was assessed in HepG2 cells using live/dead viability assays and MTS, and these assays showed low cytotoxicity with IC50 > 10 mg/mL nanoparticles.
Conclusions
Our results indicate that hybrid and multifunctional PHBV/SPION/CEF nanoparticles are suitable as a superparamagnetic drug delivery system that can guide, concentrate and site–specifically release drugs with antibacterial activity.
Electronic supplementary material
The online version of this article (doi:10.1186/s12951-015-0077-5) contains supplementary material, which is available to authorized users.
doi:10.1186/s12951-015-0077-5
PMCID: PMC4334767
PHBV; SPION; Ceftiofur; Polymeric nanoparticles; Drug delivery; Superparamagnetic nanoparticles
10.  Bi-Functional Silica Nanoparticles Doped with Iron Oxide and CdTe Prepared by a Facile Method 
Nanoscale Research Letters  2009;4(7):640-645.
Cadmium telluride (CdTe) and iron oxide nanoparticles doped silica nanospheres were prepared by a multistep method. Iron oxide nanoparticles were first coated with silica and then modified with amino group. Thereafter, CdTe nanoparticles were assembled on the particle surfaces by their strong interaction with amino group. Finally, an outer silica shell was deposited. The final products were characterized by X-ray powder diffraction, transmission electron microscopy, vibration sample magnetometer, photoluminescence spectra, Fourier transform infrared spectra (FT-IR), and fluorescent microscopy. The characterization results showed that the final nanomaterial possessed a saturation magnetization of about 5.8 emu g−1 and an emission peak at 588 nm when the excitation wavelength fixed at 380 nm.
doi:10.1007/s11671-009-9295-9
PMCID: PMC2893697  PMID: 20596493
Iron oxide nanoparticles; CdTe; Fluorescent; Magnetic; Preparation
11.  Bi-Functional Silica Nanoparticles Doped with Iron Oxide and CdTe Prepared by a Facile Method 
Nanoscale Research Letters  2009;4(7):640-645.
Cadmium telluride (CdTe) and iron oxide nanoparticles doped silica nanospheres were prepared by a multistep method. Iron oxide nanoparticles were first coated with silica and then modified with amino group. Thereafter, CdTe nanoparticles were assembled on the particle surfaces by their strong interaction with amino group. Finally, an outer silica shell was deposited. The final products were characterized by X-ray powder diffraction, transmission electron microscopy, vibration sample magnetometer, photoluminescence spectra, Fourier transform infrared spectra (FT-IR), and fluorescent microscopy. The characterization results showed that the final nanomaterial possessed a saturation magnetization of about 5.8 emu g−1and an emission peak at 588 nm when the excitation wavelength fixed at 380 nm.
doi:10.1007/s11671-009-9295-9
PMCID: PMC2893697  PMID: 20596493
Iron oxide nanoparticles; CdTe; Fluorescent; Magnetic; Preparation
12.  Sustained Release of Prindopril Erbumine from Its Chitosan-Coated Magnetic Nanoparticles for Biomedical Applications 
The preparation of magnetic nanoparticles coated with chitosan-prindopril erbumine was accomplished and confirmed by X-ray diffraction, TEM, magnetic measurements, thermal analysis and infrared spectroscopic studies. X-ray diffraction and TEM results demonstrated that the magnetic nanoparticles were pure iron oxide phase, having a spherical shape with a mean diameter of 6 nm, compared to 15 nm after coating with chitosan-prindopril erbumine (FCPE). Fourier transform infrared spectroscopy study shows that the coating of iron oxide nanoparticles takes place due to the presence of some bands that were emerging after the coating process, which belong to the prindopril erbumine (PE). The thermal stability of the PE in an FCPE nanocomposite was remarkably enhanced. The release study showed that around 89% of PE could be released within about 93 hours by a phosphate buffer solution at pH 7.4, which was found to be of sustained manner governed by first order kinetic. Compared to the control (untreated), cell viability study in 3T3 cells at 72 h post exposure to both the nanoparticles and the pure drug was found to be sustained above 80% using different doses.
doi:10.3390/ijms141223639
PMCID: PMC3876068  PMID: 24300098
superparamagnetic nanoparticles; chitosan; prindopril erbumine; drug delivery
13.  Synthesis of Organic Dye-Impregnated Silica Shell-Coated Iron Oxide Nanoparticles by a New Method 
Nanoscale Research Letters  2008;3(12):496-501.
A new method for preparing magnetic iron oxide nanoparticles coated by organic dye-doped silica shell was developed in this article. Iron oxide nanoparticles were first coated with dye-impregnated silica shell by the hydrolysis of hexadecyltrimethoxysilane (HTMOS) which produced a hydrophobic core for the entrapment of organic dye molecules. Then, the particles were coated with a hydrophilic shell by the hydrolysis of tetraethylorthosilicate (TEOS), which enabled water dispersal of the resulting nanoparticles. The final product was characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, photoluminescence spectroscopy, and vibration sample magnetometer. All the characterization results proved the final samples possessed magnetic and fluorescent properties simultaneously. And this new multifunctional nanomaterial possessed high photostability and minimal dye leakage.
doi:10.1007/s11671-008-9186-5
PMCID: PMC2893840  PMID: 20596479
Fluorescent; Magnetic; Nanostructure; Synthesis; Hydrophobic silane
14.  Synthesis of Organic Dye-Impregnated Silica Shell-Coated Iron Oxide Nanoparticles by a New Method 
Nanoscale Research Letters  2008;3(12):496-501.
A new method for preparing magnetic iron oxide nanoparticles coated by organic dye-doped silica shell was developed in this article. Iron oxide nanoparticles were first coated with dye-impregnated silica shell by the hydrolysis of hexadecyltrimethoxysilane (HTMOS) which produced a hydrophobic core for the entrapment of organic dye molecules. Then, the particles were coated with a hydrophilic shell by the hydrolysis of tetraethylorthosilicate (TEOS), which enabled water dispersal of the resulting nanoparticles. The final product was characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, photoluminescence spectroscopy, and vibration sample magnetometer. All the characterization results proved the final samples possessed magnetic and fluorescent properties simultaneously. And this new multifunctional nanomaterial possessed high photostability and minimal dye leakage.
doi:10.1007/s11671-008-9186-5
PMCID: PMC2893840  PMID: 20596479
Fluorescent; Magnetic; Nanostructure; Synthesis; Hydrophobic silane
15.  Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility 
The promising potential of superparamagnetic iron oxide nanoparticles (SPIONs) in various nanomedical applications has been frequently reported. However, although many different synthesis methods, coatings, and functionalization techniques have been described, not many core-shell SPION drug delivery systems are available for clinicians at the moment. Here, bovine serum albumin was adsorbed onto lauric acid-stabilized SPIONs. The agglomeration behavior, zeta potential, and their dependence on the synthesis conditions were characterized with dynamic light scattering. The existence and composition of the core-shell-matrix structure was investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. We showed that the iron oxide cores form agglomerates in the range of 80 nm. Moreover, despite their remarkably low tendency to aggregate even in a complex media like whole blood, the SPIONs still maintained their magnetic properties and were well attractable with a magnet. The magnetic properties were quantified by vibrating sample magnetometry and a superconducting quantum interference device. Using flow cytometry, we further investigated the effects of the different types of nanoparticle coating on morphology, viability, and DNA integrity of Jurkat cells. We showed that by addition of bovine serum albumin, the toxicity of nanoparticles is greatly reduced. We also investigated the effect of the particles on the growth of primary human endothelial cells to further demonstrate the biocompatibility of the particles. As proof of principle, we showed that the hybrid-coated particles are able to carry payloads of up to 800 μg/mL of the cytostatic drug mitoxantrone while still staying colloidally stable. The drug-loaded system exhibited excellent therapeutic potential in vitro, exceeding that of free mitoxantrone. In conclusion, we have synthesized a biocompatible ferrofluid that shows great potential for clinical application. The synthesis is straightforward and reproducible and thus easily translatable into a good manufacturing practice environment.
doi:10.2147/IJN.S68539
PMCID: PMC4211907  PMID: 25364244
iron oxide nanoparticles; drug delivery; protein corona; magnetic drug targeting; colloidal stability
16.  Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells 
Background
The objective of this study was to evaluate the synthesis and biocompatibility of Fe3O4 nanoparticles and investigate their therapeutic effects when combined with magnetic fluid hyperthermia on cultured MCF-7 cancer cells.
Methods
Magnetic Fe3O4 nanoparticles were prepared using a coprecipitation method. The appearance, structure, phase composition, functional groups, surface charge, magnetic susceptibility, and release in vitro were characterized by transmission electron microscopy, x-ray diffraction, scanning electron microscopy-energy dispersive x-ray spectroscopy, and a vibrating sample magnetometer. Blood toxicity, in vitro toxicity, and genotoxicity were investigated. Therapeutic effects were evaluated by MTT [3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide] and flow cytometry assays.
Results
Transmission electron microscopy revealed that the shapes of the Fe3O4 nanoparticles were approximately spherical, with diameters of about 26.1 ± 5.2 nm. Only the spinel phase was indicated in a comparison of the x-ray diffraction data with Joint Corporation of Powder Diffraction Standards (JCPDS) X-ray powder diffraction files. The O-to-Fe ratio of the Fe3O4 was determined by scanning electron microscopy-energy dispersive x-ray spectroscopy elemental analysis, and approximated pure Fe3O4. The vibrating sample magnetometer hysteresis loop suggested that the Fe3O4 nanoparticles were superparamagnetic at room temperature. MTT experiments showed that the toxicity of the material in mouse fibroblast (L-929) cell lines was between Grade 0 to Grade 1, and that the material lacked hemolysis activity. The acute toxicity (LD50) was 8.39 g/kg. Micronucleus testing showed no genotoxic effects. Pathomorphology and blood biochemistry testing demonstrated that the Fe3O4 nanoparticles had no effect on the main organs and blood biochemistry in a rabbit model. MTT and flow cytometry assays revealed that Fe3O4 nano magnetofluid thermotherapy inhibited MCF-7 cell proliferation, and its inhibitory effect was dose-dependent according to the Fe3O4 nano magnetofluid concentration.
Conclusion
The Fe3O4 nanoparticles prepared in this study have good biocompatibility and are suitable for further application in tumor hyperthermia.
doi:10.2147/IJN.S35140
PMCID: PMC3446860  PMID: 23028225
characterization; biocompatibility; Fe3O4; magnetic nanoparticles; hyperthermia
17.  Mouse lymphatic endothelial cell targeted probes: anti-LYVE-1 antibody-based magnetic nanoparticles 
Purpose
To investigate the specific targeting property of lymphatic vessel endothelial hyaluronan receptor-1 binding polyethylene glycol-coated ultrasmall superparamagnetic iron oxide (LYVE-1-PEG-USPIO) nanoparticles to mouse lymphatic endothelial cells (MLECs).
Methods
A ligand specific target to lymphatic vessels was selected by immunohistochemical staining on the sections of a Lewis subcutaneous transplanted tumor. The z-average hydrodynamic diameter (HD), zeta potential, and the relaxivity of PEG-USPIO and LYVE-1-PEG-USPIO nanoparticles were determined with a laser particle analyzer and magnetic resonance T2 spin echo sequence, respectively. Prussian blue staining and transmission electron microscopy (TEM) of nanoparticle labeled cells were performed to determine the nanoparticles’ binding form. Magnetic resonance imaging (MRI) was performed in vitro to evaluate the signal enhancement on the T2 spin echo sequence of the nanoparticle labeled cells. The iron content of the labeled cells after the Prussian blue staining and MRI scanning was determined by atomic absorption spectroscopy (AAS).
Results
The anti-LYVE-1 antibody was used as the specific ligand to synthesize the target probe to the MLECs. The mean z-average HDs of the LYVE-1-PEG-USPIO and PEG-USPIO nanoparticles were 57.42 ± 0.31 nm and 47.91 ± 0.73 nm, respectively, and the mean zeta potentials of the LYVE-1-PEG-USPIO and PEG-USPIO nanoparticles were 12.38 ± 4.87 mV and 2.57 ± 0.83 m V, respectively. The relaxivities of the LYVE-1-PEG-USPIO and PEG-USPIO nanoparticles were 185.48 mM−1s−1 and 608.32 mM−1s−1. Cells binding nanoparticles were visualized as blue granules in the Prussian blue staining. The TEM results of the labeled cells showed the specific localization of nanoparticles. The AAS results of labeled cells after the Prussian blue staining and MRI scanning showed that the LYVE-1-PEG-USPIO nanoparticles had good binding selectivity for MLECs. MRI results indicated that the PEG-USPIO and LYVE-1-PEG-USPIO nanoparticles could generate contrast on T2-weighted imaging, and the correlation between R2 and the iron content of the labeled cells was significantly positive.
Conclusion
This study demonstrated that LYVE-1-PEG-USPIO nanoparticles might potentially be used as an MRI contrast agent for targeting MLECs, and the magnetic properties of LYVE-1-PEG-USPIO nanoparticles were suitable for MRI.
doi:10.2147/IJN.S45817
PMCID: PMC3693816  PMID: 23818783
nanoparticles; lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1); ultrasmall superparamagnetic iron oxide (USPIO); mouse lymphatic endothelial cells (MLECs); magnetic resonance imaging (MRI)
18.  Synthesis route and three different core-shell impacts on magnetic characterization of gadolinium oxide-based nanoparticles as new contrast agents for molecular magnetic resonance imaging 
Nanoscale Research Letters  2012;7(1):549.
Despite its good resolution, magnetic resonance imaging intrinsically has low sensitivity. Recently, contrast agent nanoparticles have been used as sensitivity and contrast enhancer. The aim of this study was to investigate a new controlled synthesis method for gadolinium oxide-based nanoparticle preparation. For this purpose, diethyleneglycol coating of gadolinium oxide (Gd2O3-DEG) was performed using new supervised polyol route, and small particulate gadolinium oxide (SPGO) PEGylation was obtained with methoxy-polyethylene-glycol-silane (550 and 2,000 Da) coatings as SPGO-mPEG-silane550 and 2,000, respectively. Physicochemical characterization and magnetic properties of these three contrast agents in comparison with conventional Gd-DTPA were verified by dynamic light scattering transmission electron microscopy, Fourier transform infrared spectroscopy, inductively coupled plasma, X-ray diffraction, vibrating sample magnetometer, and the signal intensity and relaxivity measurements were performed using 1.5-T MRI scanner.
As a result, the nanoparticle sizes of Gd2O3-DEG, SPGO-mPEG-silane550, and SPGO-mPEG-silane2000 could be reached to 5.9, 51.3, 194.2 nm, respectively. The image signal intensity and longitudinal (r1) and transverse relaxivity (r2) measurements in different concentrations (0.3 to approximately 2.5 mM), revealed the r2/r1 ratios of 1.13, 0.89, 33.34, and 33.72 for Gd-DTPA, Gd2O3-DEG, SPGO-mPEG-silane550, and SPGO-mPEG-silane2000, respectively.
The achievement of new synthesis route of Gd2O3-DEG resulted in lower r2/r1 ratio for Gd2O3-DEG than Gd-DTPA and other previous synthesized methods by this and other groups. The smaller r2/r1 ratios of two PEGylated-SPGO contrast agents in our study in comparison with r2/r1 ratio of previous PEGylation (r2/r1 = 81.9 for mPEG-silane 6,000 MW) showed that these new three introduced contrast agents could potentially be proper contrast enhancers for cellular and molecular MR imaging.
doi:10.1186/1556-276X-7-549
PMCID: PMC3499173  PMID: 23033866
Nanomagnetic particle; Gadolinium-oxide; Relaxivity; DEG; mPEG-silane
19.  Self-aggregated nanoparticles based on amphiphilic poly(lactic acid)-grafted-chitosan copolymer for ocular delivery of amphotericin B 
Background
The purpose of this study was to develop a self-aggregated nanoparticulate vehicle using an amphiphilic poly(lactic acid)-grafted-chitosan (PLA-g-CS) copolymer and to evaluate its potential for ocular delivery of amphotericin B.
Methods
A PLA-g-CS copolymer was synthesized via a “protection-graft-deprotection” procedure and its structure was confirmed by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, and X-ray diffraction spectra. Amphotericin B-loaded nanoparticles based on PLA-g-CS (AmB/PLA-g-CS) were prepared by the dialysis method and characterized for particle size, zeta potential, and encapsulation efficiency. Studies of these AmB/PLA-g-CS nanoparticles, including their mucoadhesive strength, drug release properties, antifungal activity, ocular irritation, ocular pharmacokinetics, and corneal penetration were performed in vitro and in vivo.
Results
Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, and X-ray diffraction spectra showed that the PLA chains were successfully grafted onto chitosan molecules and that crystallization of chitosan was suppressed. The self-aggregated PLA-g-CS nanoparticles had a core-shell structure with an average particle size of approximately 200 nm and zeta potentials higher than 30 mV. Amphotericin B was incorporated into the hydrophobic core of the nanoparticles with high encapsulation efficiency. Sustained drug release from the nanoparticles was observed in vitro. The ocular irritation study showed no sign of irritation after instillation of the PLA-g-CS nanoparticles into rabbit eyes. The minimal inhibitory concentration of the AmB/PLA-g-CS nanoparticles showed antifungal activity similar to that of free amphotericin B against Candida albicans. The in vivo ocular pharmacokinetic study suggested that the PLA-g-CS nanoparticles have the advantage of prolonging residence time at the ocular surface. The corneal penetration study showed that the PLA-g-CS nanoparticles could penetrate into the cornea.
Conclusion
Our results suggest that this nanoparticulate vehicle based on a PLA-g-CS copolymer might be a promising system for effective ocular delivery of amphotericin B.
doi:10.2147/IJN.S51186
PMCID: PMC3792006  PMID: 24106427
chitosan; poly(lactic acid); nanoparticles; amphotericin B
20.  Biocompatibility of chitosan-coated iron oxide nanoparticles with osteoblast cells 
Background:
Bone disorders (including osteoporosis, loosening of a prosthesis, and bone infections) are of great concern to the medical community and are difficult to cure. Therapies are available to treat such diseases, but all have drawbacks and are not specifically targeted to the site of disease. Chitosan is widely used in the biomedical community, including for orthopedic applications. The aim of the present study was to coat chitosan onto iron oxide nanoparticles and to determine its effect on the proliferation and differentiation of osteoblasts.
Methods:
Nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, x-ray diffraction, zeta potential, and vibrating sample magnetometry. Uptake of nanoparticles by osteoblasts was studied by transmission electron microscopy and Prussian blue staining. Viability and proliferation of osteoblasts were measured in the presence of uncoated iron oxide magnetic nanoparticles or those coated with chitosan. Lactate dehydrogenase, alkaline phosphatase, total protein synthesis, and extracellular calcium deposition was studied in the presence of the nanoparticles.
Results:
Chitosan-coated iron oxide nanoparticles enhanced osteoblast proliferation, decreased cell membrane damage, and promoted cell differentiation, as indicated by an increase in alkaline phosphatase and extracellular calcium deposition. Chitosan-coated iron oxide nanoparticles showed good compatibility with osteoblasts.
Conclusion:
Further research is necessary to optimize magnetic nanoparticles for the treatment of bone disease.
doi:10.2147/IJN.S34348
PMCID: PMC3484720  PMID: 23118539
chitosan-coated iron oxide; magnetic nanoparticles; osteoblasts
21.  The potential risks of nanomaterials: a review carried out for ECETOC 
During the last few years, research on toxicologically relevant properties of engineered nanoparticles has increased tremendously. A number of international research projects and additional activities are ongoing in the EU and the US, nourishing the expectation that more relevant technical and toxicological data will be published. Their widespread use allows for potential exposure to engineered nanoparticles during the whole lifecycle of a variety of products. When looking at possible exposure routes for manufactured Nanoparticles, inhalation, dermal and oral exposure are the most obvious, depending on the type of product in which Nanoparticles are used. This review shows that (1) Nanoparticles can deposit in the respiratory tract after inhalation. For a number of nanoparticles, oxidative stress-related inflammatory reactions have been observed. Tumour-related effects have only been observed in rats, and might be related to overload conditions. There are also a few reports that indicate uptake of nanoparticles in the brain via the olfactory epithelium. Nanoparticle translocation into the systemic circulation may occur after inhalation but conflicting evidence is present on the extent of translocation. These findings urge the need for additional studies to further elucidate these findings and to characterize the physiological impact. (2) There is currently little evidence from skin penetration studies that dermal applications of metal oxide nanoparticles used in sunscreens lead to systemic exposure. However, the question has been raised whether the usual testing with healthy, intact skin will be sufficient. (3) Uptake of nanoparticles in the gastrointestinal tract after oral uptake is a known phenomenon, of which use is intentionally made in the design of food and pharmacological components. Finally, this review indicates that only few specific nanoparticles have been investigated in a limited number of test systems and extrapolation of this data to other materials is not possible. Air pollution studies have generated indirect evidence for the role of combustion derived nanoparticles (CDNP) in driving adverse health effects in susceptible groups. Experimental studies with some bulk nanoparticles (carbon black, titanium dioxide, iron oxides) that have been used for decades suggest various adverse effects. However, engineered nanomaterials with new chemical and physical properties are being produced constantly and the toxicity of these is unknown. Therefore, despite the existing database on nanoparticles, no blanket statements about human toxicity can be given at this time. In addition, limited ecotoxicological data for nanomaterials precludes a systematic assessment of the impact of Nanoparticles on ecosystems.
doi:10.1186/1743-8977-3-11
PMCID: PMC1584248  PMID: 16907977
22.  Improving the Magnetic Resonance Imaging Contrast and Detection Methods with Engineered Magnetic Nanoparticles 
Theranostics  2012;2(1):86-102.
Engineering and functionalizing magnetic nanoparticles have been an area of the extensive research and development in the biomedical and nanomedicine fields. Because their biocompatibility and toxicity are well investigated and better understood, magnetic nanoparticles, especially iron oxide nanoparticles, are better suited materials as contrast agents for magnetic resonance imaging (MRI) and for image-directed delivery of therapeutics. Given tunable magnetic properties and various surface chemistries from the coating materials, most applications of engineered magnetic nanoparticles take advantages of their superb MRI contrast enhancing capability as well as surface functionalities. It has been found that MRI contrast enhancement by magnetic nanoparticles is highly dependent on the composition, size and surface properties as well as the degree of aggregation of the nanoparticles. Therefore, understanding the relationships between these intrinsic parameters and the relaxivities that contribute to MRI contrast can lead to establishing essential guidance that may direct the design of engineered magnetic nanoparticles for theranostics applications. On the other hand, new contrast mechanism and imaging strategy can be developed based on the novel properties of engineered magnetic nanoparticles. This review will focus on discussing the recent findings on some chemical and physical properties of engineered magnetic nanoparticles affecting the relaxivities as well as the impact on MRI contrast. Furthermore, MRI methods for imaging magnetic nanoparticles including several newly developed MRI approaches aiming at improving the detection and quantification of the engineered magnetic nanoparticles are described.
doi:10.7150/thno.4006
PMCID: PMC3263519  PMID: 22272222
magnetic nanoparticles; engineering; functionalizing; magnetic resonance imaging
23.  The synthesis and characterization of monodispersed chitosan-coated Fe3O4 nanoparticles via a facile one-step solvothermal process for adsorption of bovine serum albumin 
Nanoscale Research Letters  2014;9(1):296.
Preparation of magnetic nanoparticles coated with chitosan (CS-coated Fe3O4 NPs) in one step by the solvothermal method in the presence of different amounts of added chitosan is reported here. The magnetic property of the obtained magnetic composite nanoparticles was confirmed by X-ray diffraction (XRD) and magnetic measurements (VSM). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) allowed the identification of spherical nanoparticles with about 150 nm in average diameter. Characterization of the products by Fourier transform infrared spectroscopy (FTIR) demonstrated that CS-coated Fe3O4 NPs were obtained. Chitosan content in the obtained nanocomposites was estimated by thermogravimetric analysis (TGA). The adsorption properties of the CS-coated Fe3O4 NPs for bovine serum albumin (BSA) were investigated under different concentrations of BSA. Compared with naked Fe3O4 nanoparticles, the CS-coated Fe3O4 NPs showed a higher BSA adsorption capacity (96.5 mg/g) and a fast adsorption rate (45 min) in aqueous solutions. This work demonstrates that the prepared magnetic nanoparticles have promising applications in enzyme and protein immobilization.
doi:10.1186/1556-276X-9-296
PMCID: PMC4070400  PMID: 24994954
Magnetic nanoparticles; Chitosan; Solvothermal; BSA adsorption
24.  Preparation and Cytotoxic Evaluation of Magnetite (Fe3O4) Nanoparticles on Breast Cancer Cells and its Combinatory Effects with Doxorubicin used in Hyperthermia 
Background
Magnetic nanoparticles in a variable magnetic field are able to produce heat. This heat (42-45°C) has more selective effect on fast dividing cancer cells than normal tissues.
Methods
In this work magnetite nanoparticles have been prepared via co-precipitation and phase identification was performed by powder x-ray diffraction (XRD). Magnetic parameters of the prepared nanoparticles were measured by a Vibrating Sample Magnetometer (VSM). A sensitive thermometer has been used to measure the increase of temperature in the presence of an alternating magnetic field. To evaluate the cytotoxicity of nanoparticles, the suspended magnetite nanoparticles in liquid paraffin, doxorubicin and a mixture of both were added to the MDA-MB-468 cells in separate 15 ml tubes and left either in the RT or in the magnetic field for 30 min. Cell survival was measured by trypan blue exclusion assay and flow cytometer. Particle size distribution of the nanoparticles was homogeneous with a mean particles size of 10 nm. A 15°C temperature increase was achieved in presence of an AC magnetic field after 15 min irradiation.
Results
Biological results showed that magnetite nanoparticles alone were not cytotoxic at RT, while in the alternative magnetic filed more than 50% of cells were dead. Doxorubicin alone was not cytotoxic during 30 min, but in combination with magnetite more than 80% of the cells were killed.
Conclusion
It could be concluded that doxorubicin and magnetite nanoparticles in an AC magnetic field had combinatory effects against cells.
PMCID: PMC3689562  PMID: 23799178
Doxorubicin; Flow cytometry; Hyperthermia; Magnetite nanoparticles
25.  The Artificial Peroxidase Activity of Magnetic Iron Oxide Nanoparticles and its Application to Glucose Detection 
Biomaterials  2009;30(27):4716-4722.
Aside from their superparamagnetic properties exploited in clinical magnetic resonance imaging (MRI), it was recently discovered that magnetic, iron oxide nanoparticles could function as an artificial, inorganic peroxidase. In this paper, we studied the impact of coating on the peroxidase activity of these nanoparticles. Nanoparticles with six different coating structures were synthesized and characterized by FTIR, TGA, TEM, size, zeta potential, and SQUID; and evaluated for peroxidase activity. Catalysis was found to follow Michaelis-Menten kinetics and peroxidase activity varied with respect to electrostatic affinity between nanoparticles and substrates, evidenced by differences in determined kinetic parameters. Glucose detection was selected as a model system because glucose could be indirectly measured from the release of hydrogen peroxide after its oxidation. Nanoparticles with high peroxidase activity exhibited higher sensitivity toward glucose, showing a larger linear slope when compared with those of low activity. A significantly improved linear correlation and detection limit of measured glucose could be readily obtained by manipulating the nanoparticle coating. Our findings suggest that iron oxide nanoparticles can be tailor-made to possess improved peroxidase-like activity. Such enhancements could further widen nanoparticle scope in glucose detection and extend its peroxidase functionality to other biomedical applications.
doi:10.1016/j.biomaterials.2009.05.005
PMCID: PMC3252767  PMID: 19515418
Superparamagnetic nanoparticle; Iron oxide; Peroxidase; Glucose Detection

Results 1-25 (931666)