Search tips
Search criteria

Results 1-25 (1489451)

Clipboard (0)

Related Articles

1.  Global Transcript Profiles of Fat in Monozygotic Twins Discordant for BMI: Pathways behind Acquired Obesity  
PLoS Medicine  2008;5(3):e51.
The acquired component of complex traits is difficult to dissect in humans. Obesity represents such a trait, in which the metabolic and molecular consequences emerge from complex interactions of genes and environment. With the substantial morbidity associated with obesity, a deeper understanding of the concurrent metabolic changes is of considerable importance. The goal of this study was to investigate this important acquired component and expose obesity-induced changes in biological pathways in an identical genetic background.
Methods and Findings
We used a special study design of “clonal controls,” rare monozygotic twins discordant for obesity identified through a national registry of 2,453 young, healthy twin pairs. A total of 14 pairs were studied (eight male, six female; white), with a mean ± standard deviation (SD) age 25.8 ± 1.4 y and a body mass index (BMI) difference 5.2 ± 1.8 kg/m2. Sequence analyses of mitochondrial DNA (mtDNA) in subcutaneous fat and peripheral leukocytes revealed no aberrant heteroplasmy between the co-twins. However, mtDNA copy number was reduced by 47% in the obese co-twin's fat. In addition, novel pathway analyses of the adipose tissue transcription profiles exposed significant down-regulation of mitochondrial branched-chain amino acid (BCAA) catabolism (p < 0.0001). In line with this finding, serum levels of insulin secretion-enhancing BCAAs were increased in obese male co-twins (9% increase, p = 0.025). Lending clinical relevance to the findings, in both sexes the observed aberrations in mitochondrial amino acid metabolism pathways in fat correlated closely with liver fat accumulation, insulin resistance, and hyperinsulinemia, early aberrations of acquired obesity in these healthy young adults.
Our findings emphasize a substantial role of mitochondrial energy- and amino acid metabolism in obesity and development of insulin resistance.
Leena Peltonen and colleagues uncover the metabolic changes that result from obesity through an analysis of genetically identical twin pairs in which one was obese and the other was not.
Editors' Summary
Around the world, the proportion of people who are obese (people with an unhealthy amount of body fat) is increasing. In the US, for example, 1 adult in 7 was obese in the mid 1970s. That is, their body mass index (BMI)—their weight in kilograms divided by their height in meters squared—was more than 30. Nowadays, 1 US adult in 3 has a BMI this high and, by 2025, it is predicted that 1 in 2 will be obese. This obesity epidemic is being driven by lifestyle changes that encourage the over-consumption of energy-rich foods and discourage regular physical activity. The resultant energy imbalance leads to weight gain (the excess energy is stored as body fat or adipose tissue) and also triggers numerous metabolic changes, alterations in the chemical processes that convert food into the energy and various substances needed to support life. These obesity-related metabolic changes increase a person's risk of developing adverse health conditions such as diabetes, a condition in which dangerously high levels of sugar from food accumulate in the blood.
Why Was This Study Done?
The changes in human fat in obesity have not been completely understood, although the abnormal metabolism of adipose tissue is increasingly seen as playing a critical part in excessive weight gain. It has been very difficult to decipher which molecular and metabolic changes associated with obesity are the result of becoming obese, and which might contribute towards the acquisition of obesity in humans in the first place. To discover more about the influence of environment on obesity-induced metabolic changes, the researchers in this study have investigated these changes in pairs of genetically identical twins.
What Did the Researchers Do and Find?
The researchers recruited 14 pairs of genetically identical Finnish twins born between 1975 and 1979 who were “obesity discordant”—that is, one twin of each pair had a BMI of about 25 (not obese); the other had a BMI of about 30 (obese). The researchers took fat and blood samples from each twin, determined the insulin sensitivity of each, and measured the body composition and various fat stores of each. They found that the obese twins had more subcutaneous, intra-abdominal, and liver fat and were less insulin sensitive than the non-obese twins. Insulin sensitivity correlated with the amount of liver fat. Analysis of gene expression in the fat samples showed that 19 gene pathways (mainly inflammatory pathways) were expressed more strongly (up-regulated) in the obese twins than the non-obese twins, whereas seven pathways were down-regulated. The most highly down-regulated pathway was a mitochondrial pathway involved in amino acid breakdown, but mitochondrial energy metabolism pathways were also down-regulated. Finally, mitochondrial DNA copy number in fat was reduced in the obese twins by nearly half, a novel observation that could partly account for the obesity-induced metabolic defects of these individuals.
What Do These Findings Mean?
These and other findings identify several pathways that are involved in the development of obesity and insulin resistance. In particular, they suggest that changes in mitochondrial energy production pathways and in mitochondrial amino acid metabolism pathways could play important roles in the development of obesity and of insulin resistance and in the accumulation of liver fat even in young obese people. The study design involving identical twins has here produced some evidence for aberrations in molecules critical for acquired obesity. The results suggest that careful management of obesity by lifestyle changes has the potential to correct the obesity-related metabolic changes in fat that would otherwise lead to diabetes and other adverse health conditions in obese individuals. In addition, they suggest that the development of therapies designed to correct mitochondrial metabolism might help to reduce the illnesses associated with obesity.
Additional Information.
Please access these Web sites via the online version of this summary at
The MedlinePlus encyclopedia has pages on obesity and diabetes (in English and Spanish)
The US Centers for Disease Control and Prevention provides information on all aspects of obesity (in English and Spanish)
The UK National Health Service's health Web site (NHS Direct) provides information about obesity
The International Obesity Taskforce provides information about preventing obesity and on diabetes and obesity
The UK Foods Standards Agency and the United States Department of Agriculture provide online tools and useful advice about healthy eating for adults and children
Information is available for patients and carers from the US National Diabetes Information Clearinghouse on diabetes, including information on insulin resistance
PMCID: PMC2265758  PMID: 18336063
2.  Genome wide association study identifies KCNMA1 contributing to human obesity 
BMC Medical Genomics  2011;4:51.
Recent genome-wide association (GWA) analyses have identified common single nucleotide polymorphisms (SNPs) that are associated with obesity. However, the reported genetic variation in obesity explains only a minor fraction of the total genetic variation expected to be present in the population. Thus many genetic variants controlling obesity remain to be identified. The aim of this study was to use GWA followed by multiple stepwise validations to identify additional genes associated with obesity.
We performed a GWA analysis in 164 morbidly obese subjects (BMI:body mass index > 40 kg/m2) and 163 Swedish subjects (> 45 years) who had always been lean. The 700 SNPs displaying the strongest association with obesity in the GWA were analyzed in a second cohort comprising 460 morbidly obese subjects and 247 consistently lean Swedish adults. 23 SNPs remained significantly associated with obesity (nominal P< 0.05) and were in a step-wise manner followed up in five additional cohorts from Sweden, France, and Germany together comprising 4214 obese and 5417 lean or population-based control individuals. Three samples, n = 4133, were used to investigate the population-based associations with BMI. Gene expression in abdominal subcutaneous adipose tissue in relation to obesity was investigated for14 adults.
Potassium channel, calcium activated, large conductance, subfamily M, alpha member (KCNMA1) rs2116830*G and BDNF rs988712*G were associated with obesity in five of six investigated case-control cohorts. In meta-analysis of 4838 obese and 5827 control subjects we obtained genome-wide significant allelic association with obesity for KCNMA1 rs2116830*G with P = 2.82 × 10-10 and an odds ratio (OR) based on cases vs controls of 1.26 [95% C.I. 1.12-1.41] and for BDNF rs988712*G with P = 5.2 × 10-17and an OR of 1.36 [95% C.I. 1.20-1.55]. KCNMA1 rs2116830*G was not associated with BMI in the population-based samples. Adipose tissue (P = 0.0001) and fat cell (P = 0.04) expression of KCNMA1 was increased in obesity.
We have identified KCNMA1 as a new susceptibility locus for obesity, and confirmed the association of the BDNF locus at the genome-wide significant level.
PMCID: PMC3148553  PMID: 21708048
3.  Association of Lipidome Remodeling in the Adipocyte Membrane with Acquired Obesity in Humans 
PLoS Biology  2011;9(6):e1000623.
The authors describe a new approach to studying cellular lipid profiles and propose a compensatory mechanism that may help maintain the normal membrane function of adipocytes in the context of obesity.
Identification of early mechanisms that may lead from obesity towards complications such as metabolic syndrome is of great interest. Here we performed lipidomic analyses of adipose tissue in twin pairs discordant for obesity but still metabolically compensated. In parallel we studied more evolved states of obesity by investigating a separated set of individuals considered to be morbidly obese. Despite lower dietary polyunsaturated fatty acid intake, the obese twin individuals had increased proportions of palmitoleic and arachidonic acids in their adipose tissue, including increased levels of ethanolamine plasmalogens containing arachidonic acid. Information gathered from these experimental groups was used for molecular dynamics simulations of lipid bilayers combined with dependency network analysis of combined clinical, lipidomics, and gene expression data. The simulations suggested that the observed lipid remodeling maintains the biophysical properties of lipid membranes, at the price, however, of increasing their vulnerability to inflammation. Conversely, in morbidly obese subjects, the proportion of plasmalogens containing arachidonic acid in the adipose tissue was markedly decreased. We also show by in vitro Elovl6 knockdown that the lipid network regulating the observed remodeling may be amenable to genetic modulation. Together, our novel approach suggests a physiological mechanism by which adaptation of adipocyte membranes to adipose tissue expansion associates with positive energy balance, potentially leading to higher vulnerability to inflammation in acquired obesity. Further studies will be needed to determine the cause of this effect.
Author Summary
Obesity is characterized by excess body fat, which is predominantly stored in the adipose tissue. When adipose tissue expands too much it stops storing lipid appropriately. The excess lipid accumulates in organs such as muscle, liver, and pancreas, causing metabolic disease. In this study, we aim to identify factors that cause adipose tissue to malfunction when it reaches its limit of expansion. We performed lipidomic analyses of human adipose tissue in twin pairs discordant for obesity—that is, one of the twins was lean and one was obese—but still metabolically healthy. We identified multiple changes in membrane phospholipids. Using computer modeling, we show that “lean” and “obese” membrane lipid compositions have the same physical properties despite their different compositions. We hypothesize that this represents allostasis—changes in lipid membrane composition in obesity occur to protect the physical properties of the membranes. However, protective changes cannot occur without a cost, and accordingly we demonstrate that switching to the “obese” lipid composition is associated with higher levels of adipose tissue inflammation. In a separate group of metabolically unhealthy obese individuals we investigated how the processes that regulate the “lean” and “obese” lipid profiles are changed. To determine how these lipid membrane changes are regulated we constructed an in silico network model that identified key control points and potential molecular players. We validated this network by performing genetic manipulations in cell models. Therapeutic targeting of this network may open new opportunities for the prevention or treatment of obesity-related metabolic complications.
PMCID: PMC3110175  PMID: 21666801
4.  Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups 
PLoS Genetics  2010;6(4):e1000916.
Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85×10−8 in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84×10−7), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at ∼1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults.
Author Summary
Genome-wide association studies (GWAS) have successfully contributed to the detection of genetic variants involved in body-weight regulation. We jointly analysed two GWAS for early-onset extreme obesity in 2,258 individuals of European origin and followed-up the findings in 3,141 individuals. Evidence for association of markers in two new genetic loci was shown (SDCCAG8 on chromosome 1q43–q44 and between TNKS/MSRA on chromosome 8p23.1). We also re-identified variants in or near FTO, MC4R, and TMEM18 to be associated with extreme obesity. In addition, we assessed the effect of the markers in 31,182 obese, lean, normal weight, and unselected individuals from population-based samples and showed that the variants near FTO, MC4R, TMEM18, and SDCCAG8 were consistently associated with obesity. For variants of TNKS/MSRA, the obesity association was limited to children and adolescents. In summary, we detected two new obesity loci and confirmed that the currently known major common variants related to obesity overlap to a substantial degree between children and adults.
PMCID: PMC2858696  PMID: 20421936
5.  Physical Activity Attenuates the Genetic Predisposition to Obesity in 20,000 Men and Women from EPIC-Norfolk Prospective Population Study 
PLoS Medicine  2010;7(8):e1000332.
Shengxu Li and colleagues use data from a large prospective observational cohort to examine the extent to which a genetic predisposition toward obesity may be modified by living a physically active lifestyle.
We have previously shown that multiple genetic loci identified by genome-wide association studies (GWAS) increase the susceptibility to obesity in a cumulative manner. It is, however, not known whether and to what extent this genetic susceptibility may be attenuated by a physically active lifestyle. We aimed to assess the influence of a physically active lifestyle on the genetic predisposition to obesity in a large population-based study.
Methods and Findings
We genotyped 12 SNPs in obesity-susceptibility loci in a population-based sample of 20,430 individuals (aged 39–79 y) from the European Prospective Investigation of Cancer (EPIC)-Norfolk cohort with an average follow-up period of 3.6 y. A genetic predisposition score was calculated for each individual by adding the body mass index (BMI)-increasing alleles across the 12 SNPs. Physical activity was assessed using a self-administered questionnaire. Linear and logistic regression models were used to examine main effects of the genetic predisposition score and its interaction with physical activity on BMI/obesity risk and BMI change over time, assuming an additive effect for each additional BMI-increasing allele carried. Each additional BMI-increasing allele was associated with 0.154 (standard error [SE] 0.012) kg/m2 (p = 6.73×10−37) increase in BMI (equivalent to 445 g in body weight for a person 1.70 m tall). This association was significantly (pinteraction = 0.005) more pronounced in inactive people (0.205 [SE 0.024] kg/m2 [p = 3.62×10−18; 592 g in weight]) than in active people (0.131 [SE 0.014] kg/m2 [p = 7.97×10−21; 379 g in weight]). Similarly, each additional BMI-increasing allele increased the risk of obesity 1.116-fold (95% confidence interval [CI] 1.093–1.139, p = 3.37×10−26) in the whole population, but significantly (pinteraction = 0.015) more in inactive individuals (odds ratio [OR] = 1.158 [95% CI 1.118–1.199; p = 1.93×10−16]) than in active individuals (OR = 1.095 (95% CI 1.068–1.123; p = 1.15×10−12]). Consistent with the cross-sectional observations, physical activity modified the association between the genetic predisposition score and change in BMI during follow-up (pinteraction = 0.028).
Our study shows that living a physically active lifestyle is associated with a 40% reduction in the genetic predisposition to common obesity, as estimated by the number of risk alleles carried for any of the 12 recently GWAS-identified loci.
Please see later in the article for the Editors' Summary
Editors' Summary
In the past few decades, the global incidence of obesity—defined as a body mass index (BMI, a simple index of weight-for-height that uses the weight in kilograms divided by the square of the height in meters) of 30 and over, has increased so much that this growing public health concern is now commonly referred to as the “obesity epidemic.” Once considered prevalent only in high-income countries, obesity is an increasing health problem in low- and middle-income countries, particularly in urban settings. In 2005, at least 400 million adults world-wide were obese, and the projected figure for 2015 is a substantial increase of 300 million to around 700 million. Childhood obesity is also a growing concern. Contributing factors to the obesity epidemic are a shift in diet to an increased intake of energy-dense foods that are high in fat and sugars and a trend towards decreased physical activity due to increasingly sedentary lifestyles.
However, genetics are also thought to play a critical role as genetically predisposed individuals may be more prone to obesity if they live in an environment that has abundant access to energy-dense food and labor-saving devices.
Why Was This Study Done?
Although recent genetic studies (genome-wide association studies) have identified 12 alleles (a DNA variant that is located at a specific position on a specific chromosome) associated with increased BMI, there has been no convincing evidence of the interaction between genetics and lifestyle. In this study the researchers examined the possibility of such an interaction by assessing whether individuals with a genetic predisposition to increased obesity risk could modify this risk by increasing their daily physical activity.
What Did the Researchers Do and Find?
The researchers used a population-based cohort study of 25,631 people living in Norwich, UK (The EPIC-Norfolk study) and identified individuals who were 39 to 79 years old during a health check between 1993 and 1997. The researchers invited these people to a second health examination. In total, 20,430 individuals had baseline data available, of which 11,936 had BMI data at the second health check. The researchers used genotyping methods and then calculated a genetic predisposition score for each individual and their occupational and leisure-time physical activities were assessed by using a validated self-administered questionnaire. Then, the researchers used modeling techniques to examine the main effects of the genetic predisposition score and its interaction with physical activity on BMI/obesity risk and BMI change over time. The researchers found that each additional BMI-increasing allele was associated with an increase in BMI equivalent to 445 g in body weight for a person 1.70 m tall and that the size of this effect was greater in inactive people than in active people. In individuals who have a physically active lifestyle, this increase was only 379 g/allele, or 36% lower than in physically inactive individuals in whom the increase was 592 g/allele. Furthermore, in the total sample each additional obesity-susceptibility allele increased the odds of obesity by 1.116-fold. However, the increased odds per allele for obesity risk were 40% lower in physically active individuals (1.095 odds/allele) compared to physically inactive individuals (1.158 odds/allele).
What Do These Findings Mean?
The findings of this study indicate that the genetic predisposition to obesity can be reduced by approximately 40% by having a physically active lifestyle. The findings of this study suggest that, while the whole population benefits from increased physical activity levels, individuals who are genetically predisposed to obesity would benefit more than genetically protected individuals. Furthermore, these findings challenge the deterministic view of the genetic predisposition to obesity that is often held by the public, as they show that even the most genetically predisposed individuals will benefit from adopting a healthy lifestyle. The results are limited by participants self-reporting their physical activity levels, which is less accurate than objective measures of physical activity.
Additional Information
Please access these Web sites via the online version of this summary at
This study relies on the results of previous genome-wide association studies The National Human Genome Research Institute provides an easy-to-follow guide to understanding such studies
The International Association for the Study of Obesity aims to improve global health by promoting the understanding of obesity and weight-related diseases through scientific research and dialogue
The International Obesity Taskforce is the research-led think tank and advocacy arm of the International Association for the Study of Obesity
The Global Alliance for the Prevention of Obesity and Related Chronic Disease is a global action program that addresses the issues surrounding the prevention of obesity
The National Institutes of Health has its own obesity task force, which includes 26 institutes
PMCID: PMC2930873  PMID: 20824172
6.  The Role of Adiposity in Cardiometabolic Traits: A Mendelian Randomization Analysis 
Fall, Tove | Hägg, Sara | Mägi, Reedik | Ploner, Alexander | Fischer, Krista | Horikoshi, Momoko | Sarin, Antti-Pekka | Thorleifsson, Gudmar | Ladenvall, Claes | Kals, Mart | Kuningas, Maris | Draisma, Harmen H. M. | Ried, Janina S. | van Zuydam, Natalie R. | Huikari, Ville | Mangino, Massimo | Sonestedt, Emily | Benyamin, Beben | Nelson, Christopher P. | Rivera, Natalia V. | Kristiansson, Kati | Shen, Huei-yi | Havulinna, Aki S. | Dehghan, Abbas | Donnelly, Louise A. | Kaakinen, Marika | Nuotio, Marja-Liisa | Robertson, Neil | de Bruijn, Renée F. A. G. | Ikram, M. Arfan | Amin, Najaf | Balmforth, Anthony J. | Braund, Peter S. | Doney, Alexander S. F. | Döring, Angela | Elliott, Paul | Esko, Tõnu | Franco, Oscar H. | Gretarsdottir, Solveig | Hartikainen, Anna-Liisa | Heikkilä, Kauko | Herzig, Karl-Heinz | Holm, Hilma | Hottenga, Jouke Jan | Hyppönen, Elina | Illig, Thomas | Isaacs, Aaron | Isomaa, Bo | Karssen, Lennart C. | Kettunen, Johannes | Koenig, Wolfgang | Kuulasmaa, Kari | Laatikainen, Tiina | Laitinen, Jaana | Lindgren, Cecilia | Lyssenko, Valeriya | Läärä, Esa | Rayner, Nigel W. | Männistö, Satu | Pouta, Anneli | Rathmann, Wolfgang | Rivadeneira, Fernando | Ruokonen, Aimo | Savolainen, Markku J. | Sijbrands, Eric J. G. | Small, Kerrin S. | Smit, Jan H. | Steinthorsdottir, Valgerdur | Syvänen, Ann-Christine | Taanila, Anja | Tobin, Martin D. | Uitterlinden, Andre G. | Willems, Sara M. | Willemsen, Gonneke | Witteman, Jacqueline | Perola, Markus | Evans, Alun | Ferrières, Jean | Virtamo, Jarmo | Kee, Frank | Tregouet, David-Alexandre | Arveiler, Dominique | Amouyel, Philippe | Ferrario, Marco M. | Brambilla, Paolo | Hall, Alistair S. | Heath, Andrew C. | Madden, Pamela A. F. | Martin, Nicholas G. | Montgomery, Grant W. | Whitfield, John B. | Jula, Antti | Knekt, Paul | Oostra, Ben | van Duijn, Cornelia M. | Penninx, Brenda W. J. H. | Davey Smith, George | Kaprio, Jaakko | Samani, Nilesh J. | Gieger, Christian | Peters, Annette | Wichmann, H.-Erich | Boomsma, Dorret I. | de Geus, Eco J. C. | Tuomi, TiinaMaija | Power, Chris | Hammond, Christopher J. | Spector, Tim D. | Lind, Lars | Orho-Melander, Marju | Palmer, Colin Neil Alexander | Morris, Andrew D. | Groop, Leif | Järvelin, Marjo-Riitta | Salomaa, Veikko | Vartiainen, Erkki | Hofman, Albert | Ripatti, Samuli | Metspalu, Andres | Thorsteinsdottir, Unnur | Stefansson, Kari | Pedersen, Nancy L. | McCarthy, Mark I. | Ingelsson, Erik | Prokopenko, Inga
PLoS Medicine  2013;10(6):e1001474.
In this study, Prokopenko and colleagues provide novel evidence for causal relationship between adiposity and heart failure and increased liver enzymes using a Mendelian randomization study design.
Please see later in the article for the Editors' Summary
The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization approach.
Methods and Findings
We used the adiposity-associated variant rs9939609 at the FTO locus as an instrumental variable (IV) for body mass index (BMI) in a Mendelian randomization design. Thirty-six population-based studies of individuals of European descent contributed to the analyses.
Age- and sex-adjusted regression models were fitted to test for association between (i) rs9939609 and BMI (n = 198,502), (ii) rs9939609 and 24 traits, and (iii) BMI and 24 traits. The causal effect of BMI on the outcome measures was quantified by IV estimators. The estimators were compared to the BMI–trait associations derived from the same individuals. In the IV analysis, we demonstrated novel evidence for a causal relationship between adiposity and incident heart failure (hazard ratio, 1.19 per BMI-unit increase; 95% CI, 1.03–1.39) and replicated earlier reports of a causal association with type 2 diabetes, metabolic syndrome, dyslipidemia, and hypertension (odds ratio for IV estimator, 1.1–1.4; all p<0.05). For quantitative traits, our results provide novel evidence for a causal effect of adiposity on the liver enzymes alanine aminotransferase and gamma-glutamyl transferase and confirm previous reports of a causal effect of adiposity on systolic and diastolic blood pressure, fasting insulin, 2-h post-load glucose from the oral glucose tolerance test, C-reactive protein, triglycerides, and high-density lipoprotein cholesterol levels (all p<0.05). The estimated causal effects were in agreement with traditional observational measures in all instances except for type 2 diabetes, where the causal estimate was larger than the observational estimate (p = 0.001).
We provide novel evidence for a causal relationship between adiposity and heart failure as well as between adiposity and increased liver enzymes.
Please see later in the article for the Editors' Summary
Editors' Summary
Cardiovascular disease (CVD)—disease that affects the heart and/or the blood vessels—is a major cause of illness and death worldwide. In the US, for example, coronary heart disease—a CVD in which narrowing of the heart's blood vessels by fatty deposits slows the blood supply to the heart and may eventually cause a heart attack—is the leading cause of death, and stroke—a CVD in which the brain's blood supply is interrupted—is the fourth leading cause of death. Globally, both the incidence of CVD (the number of new cases in a population every year) and its prevalence (the proportion of the population with CVD) are increasing, particularly in low- and middle-income countries. This increasing burden of CVD is occurring in parallel with a global increase in the incidence and prevalence of obesity—having an unhealthy amount of body fat (adiposity)—and of metabolic diseases—conditions such as diabetes in which metabolism (the processes that the body uses to make energy from food) is disrupted, with resulting high blood sugar and damage to the blood vessels.
Why Was This Study Done?
Epidemiological studies—investigations that record the patterns and causes of disease in populations—have reported an association between adiposity (indicated by an increased body mass index [BMI], which is calculated by dividing body weight in kilograms by height in meters squared) and cardiometabolic traits such as coronary heart disease, stroke, heart failure (a condition in which the heart is incapable of pumping sufficient amounts of blood around the body), diabetes, high blood pressure (hypertension), and high blood cholesterol (dyslipidemia). However, observational studies cannot prove that adiposity causes any particular cardiometabolic trait because overweight individuals may share other characteristics (confounding factors) that are the real causes of both obesity and the cardiometabolic disease. Moreover, it is possible that having CVD or a metabolic disease causes obesity (reverse causation). For example, individuals with heart failure cannot do much exercise, so heart failure may cause obesity rather than vice versa. Here, the researchers use “Mendelian randomization” to examine whether adiposity is causally related to various cardiometabolic traits. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. It is known that a genetic variant (rs9939609) within the genome region that encodes the fat-mass- and obesity-associated gene (FTO) is associated with increased BMI. Thus, an investigation of the associations between rs9939609 and cardiometabolic traits can indicate whether obesity is causally related to these traits.
What Did the Researchers Do and Find?
The researchers analyzed the association between rs9939609 (the “instrumental variable,” or IV) and BMI, between rs9939609 and 24 cardiometabolic traits, and between BMI and the same traits using genetic and health data collected in 36 population-based studies of nearly 200,000 individuals of European descent. They then quantified the strength of the causal association between BMI and the cardiometabolic traits by calculating “IV estimators.” Higher BMI showed a causal relationship with heart failure, metabolic syndrome (a combination of medical disorders that increases the risk of developing CVD), type 2 diabetes, dyslipidemia, hypertension, increased blood levels of liver enzymes (an indicator of liver damage; some metabolic disorders involve liver damage), and several other cardiometabolic traits. All the IV estimators were similar to the BMI–cardiovascular trait associations (observational estimates) derived from the same individuals, with the exception of diabetes, where the causal estimate was higher than the observational estimate, probably because the observational estimate is based on a single BMI measurement, whereas the causal estimate considers lifetime changes in BMI.
What Do These Findings Mean?
Like all Mendelian randomization studies, the reliability of the causal associations reported here depends on several assumptions made by the researchers. Nevertheless, these findings provide support for many previously suspected and biologically plausible causal relationships, such as that between adiposity and hypertension. They also provide new insights into the causal effect of obesity on liver enzyme levels and on heart failure. In the latter case, these findings suggest that a one-unit increase in BMI might increase the incidence of heart failure by 17%. In the US, this corresponds to 113,000 additional cases of heart failure for every unit increase in BMI at the population level. Although additional studies are needed to confirm and extend these findings, these results suggest that global efforts to reduce the burden of obesity will likely also reduce the occurrence of CVD and metabolic disorders.
Additional Information
Please access these websites via the online version of this summary at
The American Heart Association provides information on all aspects of cardiovascular disease and tips on keeping the heart healthy, including weight management (in several languages); its website includes personal stories about stroke and heart attacks
The US Centers for Disease Control and Prevention has information on heart disease, stroke, and all aspects of overweight and obesity (in English and Spanish)
The UK National Health Service Choices website provides information about cardiovascular disease and obesity, including a personal story about losing weight
The World Health Organization provides information on obesity (in several languages)
The International Obesity Taskforce provides information about the global obesity epidemic
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
MedlinePlus provides links to other sources of information on heart disease, on vascular disease, on obesity, and on metabolic disorders (in English and Spanish)
The International Association for the Study of Obesity provides maps and information about obesity worldwide
The International Diabetes Federation has a web page that describes types, complications, and risk factors of diabetes
PMCID: PMC3692470  PMID: 23824655
7.  Coexpression Network Analysis in Abdominal and Gluteal Adipose Tissue Reveals Regulatory Genetic Loci for Metabolic Syndrome and Related Phenotypes 
PLoS Genetics  2012;8(2):e1002505.
Metabolic Syndrome (MetS) is highly prevalent and has considerable public health impact, but its underlying genetic factors remain elusive. To identify gene networks involved in MetS, we conducted whole-genome expression and genotype profiling on abdominal (ABD) and gluteal (GLU) adipose tissue, and whole blood (WB), from 29 MetS cases and 44 controls. Co-expression network analysis for each tissue independently identified nine, six, and zero MetS–associated modules of coexpressed genes in ABD, GLU, and WB, respectively. Of 8,992 probesets expressed in ABD or GLU, 685 (7.6%) were expressed in ABD and 51 (0.6%) in GLU only. Differential eigengene network analysis of 8,256 shared probesets detected 22 shared modules with high preservation across adipose depots (DABD-GLU = 0.89), seven of which were associated with MetS (FDR P<0.01). The strongest associated module, significantly enriched for immune response–related processes, contained 94/620 (15%) genes with inter-depot differences. In an independent cohort of 145/141 twins with ABD and WB longitudinal expression data, median variability in ABD due to familiality was greater for MetS–associated versus un-associated modules (ABD: 0.48 versus 0.18, P = 0.08; GLU: 0.54 versus 0.20, P = 7.8×10−4). Cis-eQTL analysis of probesets associated with MetS (FDR P<0.01) and/or inter-depot differences (FDR P<0.01) provided evidence for 32 eQTLs. Corresponding eSNPs were tested for association with MetS–related phenotypes in two GWAS of >100,000 individuals; rs10282458, affecting expression of RARRES2 (encoding chemerin), was associated with body mass index (BMI) (P = 6.0×10−4); and rs2395185, affecting inter-depot differences of HLA-DRB1 expression, was associated with high-density lipoprotein (P = 8.7×10−4) and BMI–adjusted waist-to-hip ratio (P = 2.4×10−4). Since many genes and their interactions influence complex traits such as MetS, integrated analysis of genotypes and coexpression networks across multiple tissues relevant to clinical traits is an efficient strategy to identify novel associations.
Author Summary
Metabolic Syndrome (MetS) is a highly prevalent disorder with considerable public health concern, but its underlying genetic factors remain elusive. Given that most cellular components exert their functions through interactions with other cellular components, even the largest of genome-wide association (GWA) studies may often not detect their effects, nor necessarily provide insight into the complex molecular mechanisms of the disease. Rather than focusing on individual genes, the analysis of coexpression networks can be used for finding clusters (modules) of correlated expression levels across samples. In this study, we used a gene network–based approach for integrating clinical MetS, genotypic, and gene expression data from abdominal and gluteal adipose tissue and whole blood. We identified modules of genes related to MetS significantly enriched for immune response and oxidative phosphorylation pathways. We tested SNPs for association with MetS–associated expression (eSNPs), and tested prioritised eSNPs for association with MetS–related phenotypes in two large-scale GWA datasets. We identified two loci, neither of which had reached genome-wide significance levels in GWAs, associated with expression levels of RARRES2 and HLA-DRB1 and with MetS–related phenotypes, demonstrating that the integrated analysis of genotype and expression data from relevant multiple tissues can identify novel associations with complex traits such as MetS.
PMCID: PMC3285582  PMID: 22383892
8.  Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics 
PLoS Genetics  2014;10(5):e1004383.
Genetic association studies, in particular the genome-wide association study (GWAS) design, have provided a wealth of novel insights into the aetiology of a wide range of human diseases and traits, in particular cardiovascular diseases and lipid biomarkers. The next challenge consists of understanding the molecular basis of these associations. The integration of multiple association datasets, including gene expression datasets, can contribute to this goal. We have developed a novel statistical methodology to assess whether two association signals are consistent with a shared causal variant. An application is the integration of disease scans with expression quantitative trait locus (eQTL) studies, but any pair of GWAS datasets can be integrated in this framework. We demonstrate the value of the approach by re-analysing a gene expression dataset in 966 liver samples with a published meta-analysis of lipid traits including >100,000 individuals of European ancestry. Combining all lipid biomarkers, our re-analysis supported 26 out of 38 reported colocalisation results with eQTLs and identified 14 new colocalisation results, hence highlighting the value of a formal statistical test. In three cases of reported eQTL-lipid pairs (SYPL2, IFT172, TBKBP1) for which our analysis suggests that the eQTL pattern is not consistent with the lipid association, we identify alternative colocalisation results with SORT1, GCKR, and KPNB1, indicating that these genes are more likely to be causal in these genomic intervals. A key feature of the method is the ability to derive the output statistics from single SNP summary statistics, hence making it possible to perform systematic meta-analysis type comparisons across multiple GWAS datasets (implemented online at Our methodology provides information about candidate causal genes in associated intervals and has direct implications for the understanding of complex diseases as well as the design of drugs to target disease pathways.
Author Summary
Genome-wide association studies (GWAS) have found a large number of genetic regions (“loci”) affecting clinical end-points and phenotypes, many outside coding intervals. One approach to understanding the biological basis of these associations has been to explore whether GWAS signals from intermediate cellular phenotypes, in particular gene expression, are located in the same loci (“colocalise”) and are potentially mediating the disease signals. However, it is not clear how to assess whether the same variants are responsible for the two GWAS signals or whether it is distinct causal variants close to each other. In this paper, we describe a statistical method that can use simply single variant summary statistics to test for colocalisation of GWAS signals. We describe one application of our method to a meta-analysis of blood lipids and liver expression, although any two datasets resulting from association studies can be used. Our method is able to detect the subset of GWAS signals explained by regulatory effects and identify candidate genes affected by the same GWAS variants. As summary GWAS data are increasingly available, applications of colocalisation methods to integrate the findings will be essential for functional follow-up, and will also be particularly useful to identify tissue specific signals in eQTL datasets.
PMCID: PMC4022491  PMID: 24830394
9.  A Stratified Transcriptomics Analysis of Polygenic Fat and Lean Mouse Adipose Tissues Identifies Novel Candidate Obesity Genes 
PLoS ONE  2011;6(9):e23944.
Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain.
To enrich for adipose tissue obesity genes a ‘snap-shot’ pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity.
A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity.
PMCID: PMC3168488  PMID: 21915269
10.  Nutritional regulation of genome-wide association obesity genes in a tissue-dependent manner 
Genome-wide association studies (GWAS) have recently identified several new genetic variants associated with obesity. The majority of the variants are within introns or between genes, suggesting they affect gene expression, although it is not clear which of the nearby genes they affect. Understanding the regulation of these genes will be key to determining the role of these variants in the development of obesity and will provide support for a role of these genes in the development of obesity.
We examined the expression of 19 GWAS obesity genes in the brain and specifically the hypothalamus, adipose tissue and liver of mice by real-time quantitative PCR. To determine whether these genes are nutritionally regulated, as may be expected for genes affecting obesity, we compared tissues from fasting and non-fasting animals and tissues from mice consuming a high fat high sucrose diet in comparison to standard rodent chow.
We found complex, tissue-dependent patterns of nutritional regulation of most of these genes. For example, Bat2 expression was increased ~10-fold in the brain of fed mice but was lower or unchanged in the hypothalamus and adipose tissue. Kctd15 expression was upregulated in the hypothalamus, brain and adipose tissue of fed mice and downregulated by high fat feeding in liver, adipose tissue and the hypothalamus but not the remainder of the brain. Sh2b1 expression in the brain and Faim2 expression in adipose tissue were specifically increased >20-fold in fed mice. Tmem18 expression in adipose tissue but not the brain was reduced 80% by high fat feeding. Few changes in the expression of these genes were observed in liver.
These data show nutritional regulation of nearly all these GWAS obesity genes, particularly in the brain and adipose tissue, and provide support for their role in the development of obesity. The complex patterns of nutritional and tissue-dependent regulation also highlight the difficulty that may be encountered in determining how the GWAS genetic variants affect gene expression and consequent obesity risk in humans where access to tissues is constrained.
PMCID: PMC3537611  PMID: 22781276
Obesity genes; Genome-wide association; Gene expression; High fat diet; Feeding and fasting; Gene-diet interaction; Adipose tissue; Brain
11.  Genome-Wide Association Scan Shows Genetic Variants in the FTO Gene Are Associated with Obesity-Related Traits 
PLoS Genetics  2007;3(7):e115.
The obesity epidemic is responsible for a substantial economic burden in developed countries and is a major risk factor for type 2 diabetes and cardiovascular disease. The disease is the result not only of several environmental risk factors, but also of genetic predisposition. To take advantage of recent advances in gene-mapping technology, we executed a genome-wide association scan to identify genetic variants associated with obesity-related quantitative traits in the genetically isolated population of Sardinia. Initial analysis suggested that several SNPs in the FTO and PFKP genes were associated with increased BMI, hip circumference, and weight. Within the FTO gene, rs9930506 showed the strongest association with BMI (p = 8.6 ×10−7), hip circumference (p = 3.4 × 10−8), and weight (p = 9.1 × 10−7). In Sardinia, homozygotes for the rare “G” allele of this SNP (minor allele frequency = 0.46) were 1.3 BMI units heavier than homozygotes for the common “A” allele. Within the PFKP gene, rs6602024 showed very strong association with BMI (p = 4.9 × 10−6). Homozygotes for the rare “A” allele of this SNP (minor allele frequency = 0.12) were 1.8 BMI units heavier than homozygotes for the common “G” allele. To replicate our findings, we genotyped these two SNPs in the GenNet study. In European Americans (N = 1,496) and in Hispanic Americans (N = 839), we replicated significant association between rs9930506 in the FTO gene and BMI (p-value for meta-analysis of European American and Hispanic American follow-up samples, p = 0.001), weight (p = 0.001), and hip circumference (p = 0.0005). We did not replicate association between rs6602024 and obesity-related traits in the GenNet sample, although we found that in European Americans, Hispanic Americans, and African Americans, homozygotes for the rare “A” allele were, on average, 1.0–3.0 BMI units heavier than homozygotes for the more common “G” allele. In summary, we have completed a whole genome–association scan for three obesity-related quantitative traits and report that common genetic variants in the FTO gene are associated with substantial changes in BMI, hip circumference, and body weight. These changes could have a significant impact on the risk of obesity-related morbidity in the general population.
Author Summary
Although twin and family studies have clearly shown that genes play a role in obesity, it has proven quite difficult to identify the specific genetic variants involved. Here, we take advantage of recent technical and methodological advances to examine the role of common genetic variants on several obesity-related traits. By examining >4,000 Sardinians, we show that a specific genetic variant, rs9930506, and other nearby variants on human Chromosome 16 are associated with body mass index, hip circumference, and total body weight. The variants overlap FTO, a gene with poorly understood function. Further studies of the region may implicate new biological pathways affecting susceptibility to obesity. We also show that the association is not restricted to Sardinia but is also seen in independent samples of European Americans and Hispanic Americans. This finding is particularly important because obesity is associated with increased risk of cardiovascular disease and diabetes.
PMCID: PMC1934391  PMID: 17658951
12.  Genetic Markers of Adult Obesity Risk Are Associated with Greater Early Infancy Weight Gain and Growth 
PLoS Medicine  2010;7(5):e1000284.
Ken Ong and colleagues genotyped children from the ALSPAC birth cohort and showed an association between greater early infancy gains in weight and length and genetic markers for adult obesity risk.
Genome-wide studies have identified several common genetic variants that are robustly associated with adult obesity risk. Exploration of these genotype associations in children may provide insights into the timing of weight changes leading to adult obesity.
Methods and Findings
Children from the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort were genotyped for ten genetic variants previously associated with adult BMI. Eight variants that showed individual associations with childhood BMI (in/near: FTO, MC4R, TMEM18, GNPDA2, KCTD15, NEGR1, BDNF, and ETV5) were used to derive an “obesity-risk-allele score” comprising the total number of risk alleles (range: 2–15 alleles) in each child with complete genotype data (n = 7,146). Repeated measurements of weight, length/height, and body mass index from birth to age 11 years were expressed as standard deviation scores (SDS). Early infancy was defined as birth to age 6 weeks, and early infancy failure to thrive was defined as weight gain between below the 5th centile, adjusted for birth weight. The obesity-risk-allele score showed little association with birth weight (regression coefficient: 0.01 SDS per allele; 95% CI 0.00–0.02), but had an apparently much larger positive effect on early infancy weight gain (0.119 SDS/allele/year; 0.023–0.216) than on subsequent childhood weight gain (0.004 SDS/allele/year; 0.004–0.005). The obesity-risk-allele score was also positively associated with early infancy length gain (0.158 SDS/allele/year; 0.032–0.284) and with reduced risk of early infancy failure to thrive (odds ratio  = 0.92 per allele; 0.86–0.98; p = 0.009).
The use of robust genetic markers identified greater early infancy gains in weight and length as being on the pathway to adult obesity risk in a contemporary birth cohort.
Please see later in the article for the Editors' Summary
Editors' Summary
The proportion of overweight and obese children is increasing across the globe. In the US, the Surgeon General estimates that, compared with 1980, twice as many children and three times the number of adolescents are now overweight. Worldwide, 22 million children under five years old are considered by the World Health Organization to be overweight.
Being overweight or obese in childhood is associated with poor physical and mental health. In addition, childhood obesity is considered a major risk factor for adult obesity, which is itself a major risk factor for cancer, heart disease, diabetes, osteoarthritis, and other chronic conditions.
The most commonly used measure of whether an adult is a healthy weight is body mass index (BMI), defined as weight in kilograms/(height in metres)2. However, adult categories of obese (>30) and overweight (>25) BMI are not directly applicable to children, whose BMI naturally varies as they grow. BMI can be used to screen children for being overweight and or obese but a diagnosis requires further information.
Why Was This Study Done?
As the numbers of obese and overweight children increase, a corresponding rise in future numbers of overweight and obese adults is also expected. This in turn is expected to lead to an increasing incidence of poor health. As a result, there is great interest among health professionals in possible pathways between childhood and adult obesity. It has been proposed that certain periods in childhood may be critical for the development of obesity.
In the last few years, ten genetic variants have been found to be more common in overweight or obese adults. Eight of these have also been linked to childhood BMI and/or obesity. The authors wanted to identify the timing of childhood weight changes that may be associated with adult obesity. Knowledge of obesity risk genetic variants gave them an opportunity to do so now, without following a set of children to adulthood.
What Did the Researchers Do and Find?
The authors analysed data gathered from a subset of 7,146 singleton white European children enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC) study, which is investigating associations between genetics, lifestyle, and health outcomes for a group of children in Bristol whose due date of birth fell between April 1991 and December 1992. They used knowledge of the children's genetic makeup to find associations between an obesity risk allele score—a measure of how many of the obesity risk genetic variants a child possessed—and the children's weight, height, BMI, levels of body fat (at nine years old), and rate of weight gain, up to age 11 years.
They found that, at birth, children with a higher obesity risk allele score were not any heavier, but in the immediate postnatal period they were less likely to be in the bottom 5% of the population for weight gain (adjusted for birthweight), often termed “failure to thrive.” At six weeks of age, children with a higher obesity risk allele score tended to be longer and heavier, even allowing for weight at birth.
After six weeks of age, the obesity risk allele score was not associated with any further increase in length/height, but it was associated with a more rapid weight gain between birth and age 11 years. BMI is derived from height and weight measurements, and the association between the obesity risk allele score and BMI was weak between birth and age three-and-a-half years, but after that age the association with BMI increased rapidly. By age nine, children with a higher obesity risk allele score tended to be heavier and taller, with more fat on their bodies.
What Do These Findings Mean?
The combined obesity allele risk score is associated with higher rates of weight gain and adult obesity, and so the authors conclude that weight gain and growth even in the first few weeks after birth may be the beginning of a pathway of greater adult obesity risk.
A study that tracks a population over time can find associations but it cannot show cause and effect. In addition, only a relatively small proportion (1.7%) of the variation in BMI at nine years of age is explained by the obesity risk allele score.
The authors' method of finding associations between childhood events and adult outcomes via genetic markers of risk of disease as an adult has a significant advantage: the authors did not have to follow the children themselves to adulthood, so their findings are more likely to be relevant to current populations. Despite this, this research does not yield advice for parents how to reduce their children's obesity risk. It does suggest that “failure to thrive” in the first six weeks of life is not simply due to a lack of provision of food by the baby's caregiver but that genetic factors also contribute to early weight gain and growth.
The study looked at the combined obesity risk allele score and the authors did not attempt to identify which individual alleles have greater or weaker associations with weight gain and overweight or obesity. This would require further research based on far larger numbers of babies and children. The findings may also not be relevant to children in other types of setting because of the effects of different nutrition and lifestyles.
Additional Information
Please access these Web sites via the online version of this summary at
Further information is available on the ALSPAC study
The UK National Health Service and other partners provide guidance on establishing a healthy lifestyle for children and families in their Change4Life programme
The International Obesity Taskforce is a global network of expertise and the advocacy arm of the International Association for the Study of Obesity. It works with the World Health Organization, other NGOs, and stakeholders and provides information on overweight and obesity
The Centers for Disease Control and Prevention (CDC) in the US provide guidance and tips on maintaining a healthy weight, including BMI calculators in both metric and Imperial measurements for both adults and children. They also provide BMI growth charts for boys and girls showing how healthy ranges vary for each sex at with age
The Royal College of Paediatrics and Child Health provides growth charts for weight and length/height from birth to age 4 years that are based on WHO 2006 growth standards and have been adapted for use in the UK
The CDC Web site provides information on overweight and obesity in adults and children, including definitions, causes, and data
The CDC also provide information on the role of genes in causing obesity.
The World Health Organization publishes a fact sheet on obesity, overweight and weight management, including links to childhood overweight and obesity
Wikipedia includes an article on childhood obesity (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC2876048  PMID: 20520848
13.  Genome Wide Association (GWA) Study for Early Onset Extreme Obesity Supports the Role of Fat Mass and Obesity Associated Gene (FTO) Variants 
PLoS ONE  2007;2(12):e1361.
Obesity is a major health problem. Although heritability is substantial, genetic mechanisms predisposing to obesity are not very well understood. We have performed a genome wide association study (GWA) for early onset (extreme) obesity.
Methodology/Principal Findings
a) GWA (Genome-Wide Human SNP Array 5.0 comprising 440,794 single nucleotide polymorphisms) for early onset extreme obesity based on 487 extremely obese young German individuals and 442 healthy lean German controls; b) confirmatory analyses on 644 independent families with at least one obese offspring and both parents. We aimed to identify and subsequently confirm the 15 SNPs (minor allele frequency ≥10%) with the lowest p-values of the GWA by four genetic models: additive, recessive, dominant and allelic. Six single nucleotide polymorphisms (SNPs) in FTO (fat mass and obesity associated gene) within one linkage disequilibrium (LD) block including the GWA SNP rendering the lowest p-value (rs1121980; log-additive model: nominal p = 1.13×10−7, corrected p = 0.0494; odds ratio (OR)CT 1.67, 95% confidence interval (CI) 1.22–2.27; ORTT 2.76, 95% CI 1.88–4.03) belonged to the 15 SNPs showing the strongest evidence for association with obesity. For confirmation we genotyped 11 of these in the 644 independent families (of the six FTO SNPs we chose only two representing the LD bock). For both FTO SNPs the initial association was confirmed (both Bonferroni corrected p<0.01). However, none of the nine non-FTO SNPs revealed significant transmission disequilibrium.
Our GWA for extreme early onset obesity substantiates that variation in FTO strongly contributes to early onset obesity. This is a further proof of concept for GWA to detect genes relevant for highly complex phenotypes. We concurrently show that nine additional SNPs with initially low p-values in the GWA were not confirmed in our family study, thus suggesting that of the best 15 SNPs in the GWA only the FTO SNPs represent true positive findings.
PMCID: PMC2137937  PMID: 18159244
14.  Liver and Adipose Expression Associated SNPs Are Enriched for Association to Type 2 Diabetes 
PLoS Genetics  2010;6(5):e1000932.
Genome-wide association studies (GWAS) have demonstrated the ability to identify the strongest causal common variants in complex human diseases. However, to date, the massive data generated from GWAS have not been maximally explored to identify true associations that fail to meet the stringent level of association required to achieve genome-wide significance. Genetics of gene expression (GGE) studies have shown promise towards identifying DNA variations associated with disease and providing a path to functionally characterize findings from GWAS. Here, we present the first empiric study to systematically characterize the set of single nucleotide polymorphisms associated with expression (eSNPs) in liver, subcutaneous fat, and omental fat tissues, demonstrating these eSNPs are significantly more enriched for SNPs that associate with type 2 diabetes (T2D) in three large-scale GWAS than a matched set of randomly selected SNPs. This enrichment for T2D association increases as we restrict to eSNPs that correspond to genes comprising gene networks constructed from adipose gene expression data isolated from a mouse population segregating a T2D phenotype. Finally, by restricting to eSNPs corresponding to genes comprising an adipose subnetwork strongly predicted as causal for T2D, we dramatically increased the enrichment for SNPs associated with T2D and were able to identify a functionally related set of diabetes susceptibility genes. We identified and validated malic enzyme 1 (Me1) as a key regulator of this T2D subnetwork in mouse and provided support for the association of this gene to T2D in humans. This integration of eSNPs and networks provides a novel approach to identify disease susceptibility networks rather than the single SNPs or genes traditionally identified through GWAS, thereby extracting additional value from the wealth of data currently being generated by GWAS.
Author Summary
Genome-wide association studies (GWAS) seek to identify loci in which changes in DNA are correlated with disease. However, GWAS do not necessarily lead directly to genes associated with disease, and they do not typically inform the broader context in which disease genes operate, thereby providing limited insights into the mechanisms driving disease. One critical task to providing further insights into GWAS is developing an understanding of the genetics of gene expression (GGE). We present the first empiric study demonstrating that SNPs in human cohorts that associate with gene expression in liver and adipose tissues are enriched for associating with Type 2 Diabetes (T2D) in humans. By filtering “eSNPs” based on causal gene networks defined in an experimental cross population segregating T2D traits, we demonstrate a dramatically increased enrichment of T2D SNPs that enhance our ability to assess T2D risk. We demonstrate the utility of this approach by identifying malic enzyme 1 (ME1) as a novel T2D susceptibility gene in humans and then functionally validating the causal connection between ME1 and T2D in a mouse knockout model for Me1. This approach provides a path to identifying disease susceptibility networks rather than single SNPs or genes traditionally identified through GWAS.
PMCID: PMC2865508  PMID: 20463879
JAMA pediatrics  2014;168(4):338-344.
A better understanding of the etiology of obesity is a clinical priority. Obesity is highly heritable and specific genes are being identified. Discovering the mechanisms through which obesity-related genes influence weight would help pinpoint novel targets for intervention. One potential mechanism is satiety responsiveness. Lack of satiety characterizes many monogenic obesity disorders, and lower satiety responsiveness is linked with weight gain in population samples.
We tested the hypothesis that satiety responsiveness is an intermediate behavioral phenotype associated with genetic predisposition to obesity in children.
Cross-sectional observational study.
Population-based cohort of twins born 1994–1996 (Twins Early Development Study).
2258 unrelated children (53% female; mean age: 9.9 years, SD: 0.84); one randomly selected from each twin pair.
Genetic predisposition to obesity. We created a polygenic risk score (PRS) comprising 28 common obesity-related single nucleotide polymorphisms identified in a meta-analysis of obesity-related genome-wide association studies.
Satiety responsiveness was indexed with a standard psychometric scale (the Child Eating Behavior Questionnaire). BMI standard deviation scores (BMI-SDS) and waist-SDS, using 1990 UK reference data, were calculated from parent-reported anthropometric data for the child. Information on satiety responsiveness, anthropometrics and genotype were available for 2258 children. We examined associations between the PRS, adiposity and satiety responsiveness.
The PRS was negatively related to satiety responsiveness (beta, −0.060; 95% CI, −0.019 to −0.101), and positively related to adiposity (BMI-SDS: beta, 0.177; 95% CI, 0.136 to 0.218; waist-SDS: beta, 0.167; 95% CI, 0.126 to 0.208), and more children in the top 25% of the PRS were overweight than in the lowest 25% (18.5% versus 7.2%, respectively; OR, 2.90; 95% CI, 1.98 to 4.25). Associations between the PRS and adiposity were significantly mediated by satiety responsiveness (BMI-SDS: P = 0.006; waist-SDS: P = 0.005).
These results support the hypothesis that low satiety responsiveness is one of the mechanisms through which genetic predisposition leads to weight gain in an environment rich with food. Strategies to enhance satiety responsiveness could help prevent weight gain in genetically at-risk children.
PMCID: PMC3981891  PMID: 24535189
Genetic; appetite; satiety; children; obesity; overweight; single nucleotide polymorphism
16.  Re-Ranking Sequencing Variants in the Post-GWAS Era for Accurate Causal Variant Identification 
PLoS Genetics  2013;9(8):e1003609.
Next generation sequencing has dramatically increased our ability to localize disease-causing variants by providing base-pair level information at costs increasingly feasible for the large sample sizes required to detect complex-trait associations. Yet, identification of causal variants within an established region of association remains a challenge. Counter-intuitively, certain factors that increase power to detect an associated region can decrease power to localize the causal variant. First, combining GWAS with imputation or low coverage sequencing to achieve the large sample sizes required for high power can have the unintended effect of producing differential genotyping error among SNPs. This tends to bias the relative evidence for association toward better genotyped SNPs. Second, re-use of GWAS data for fine-mapping exploits previous findings to ensure genome-wide significance in GWAS-associated regions. However, using GWAS findings to inform fine-mapping analysis can bias evidence away from the causal SNP toward the tag SNP and SNPs in high LD with the tag. Together these factors can reduce power to localize the causal SNP by more than half. Other strategies commonly employed to increase power to detect association, namely increasing sample size and using higher density genotyping arrays, can, in certain common scenarios, actually exacerbate these effects and further decrease power to localize causal variants. We develop a re-ranking procedure that accounts for these adverse effects and substantially improves the accuracy of causal SNP identification, often doubling the probability that the causal SNP is top-ranked. Application to the NCI BPC3 aggressive prostate cancer GWAS with imputation meta-analysis identified a new top SNP at 2 of 3 associated loci and several additional possible causal SNPs at these loci that may have otherwise been overlooked. This method is simple to implement using R scripts provided on the author's website.
Author Summary
As next-generation sequencing (NGS) costs continue to fall and genome-wide association study (GWAS) platform coverage improves, the human genetics community is positioned to identify potentially causal variants. However, current NGS or imputation-based studies of either the whole genome or regions previously identified by GWAS have not yet been very successful in identifying causal variants. A major hurdle is the development of methods to distinguish disease-causing variants from their highly-correlated proxies within an associated region. We show that various common factors, such as differential sequencing or imputation accuracy rates and linkage disequilibrium patterns, with or without GWAS-informed region selection, can substantially decrease the probability of identifying the correct causal SNP, often by more than half. We then describe a novel and easy-to-implement re-ranking procedure that can double the probability that the causal SNP is top-ranked in many settings. Application to the NCI Breast and Prostate Cancer (BPC3) Cohort Consortium aggressive prostate cancer data identified new top SNPs within two associated loci previously established via GWAS, as well as several additional possible causal SNPs that had been previously overlooked.
PMCID: PMC3738448  PMID: 23950724
17.  Physical Activity Attenuates the Influence of FTO Variants on Obesity Risk: A Meta-Analysis of 218,166 Adults and 19,268 Children 
Kilpeläinen, Tuomas O. | Qi, Lu | Brage, Soren | Sharp, Stephen J. | Sonestedt, Emily | Demerath, Ellen | Ahmad, Tariq | Mora, Samia | Kaakinen, Marika | Sandholt, Camilla Helene | Holzapfel, Christina | Autenrieth, Christine S. | Hyppönen, Elina | Cauchi, Stéphane | He, Meian | Kutalik, Zoltan | Kumari, Meena | Stančáková, Alena | Meidtner, Karina | Balkau, Beverley | Tan, Jonathan T. | Mangino, Massimo | Timpson, Nicholas J. | Song, Yiqing | Zillikens, M. Carola | Jablonski, Kathleen A. | Garcia, Melissa E. | Johansson, Stefan | Bragg-Gresham, Jennifer L. | Wu, Ying | van Vliet-Ostaptchouk, Jana V. | Onland-Moret, N. Charlotte | Zimmermann, Esther | Rivera, Natalia V. | Tanaka, Toshiko | Stringham, Heather M. | Silbernagel, Günther | Kanoni, Stavroula | Feitosa, Mary F. | Snitker, Soren | Ruiz, Jonatan R. | Metter, Jeffery | Larrad, Maria Teresa Martinez | Atalay, Mustafa | Hakanen, Maarit | Amin, Najaf | Cavalcanti-Proença, Christine | Grøntved, Anders | Hallmans, Göran | Jansson, John-Olov | Kuusisto, Johanna | Kähönen, Mika | Lutsey, Pamela L. | Nolan, John J. | Palla, Luigi | Pedersen, Oluf | Pérusse, Louis | Renström, Frida | Scott, Robert A. | Shungin, Dmitry | Sovio, Ulla | Tammelin, Tuija H. | Rönnemaa, Tapani | Lakka, Timo A. | Uusitupa, Matti | Rios, Manuel Serrano | Ferrucci, Luigi | Bouchard, Claude | Meirhaeghe, Aline | Fu, Mao | Walker, Mark | Borecki, Ingrid B. | Dedoussis, George V. | Fritsche, Andreas | Ohlsson, Claes | Boehnke, Michael | Bandinelli, Stefania | van Duijn, Cornelia M. | Ebrahim, Shah | Lawlor, Debbie A. | Gudnason, Vilmundur | Harris, Tamara B. | Sørensen, Thorkild I. A. | Mohlke, Karen L. | Hofman, Albert | Uitterlinden, André G. | Tuomilehto, Jaakko | Lehtimäki, Terho | Raitakari, Olli | Isomaa, Bo | Njølstad, Pål R. | Florez, Jose C. | Liu, Simin | Ness, Andy | Spector, Timothy D. | Tai, E. Shyong | Froguel, Philippe | Boeing, Heiner | Laakso, Markku | Marmot, Michael | Bergmann, Sven | Power, Chris | Khaw, Kay-Tee | Chasman, Daniel | Ridker, Paul | Hansen, Torben | Monda, Keri L. | Illig, Thomas | Järvelin, Marjo-Riitta | Wareham, Nicholas J. | Hu, Frank B. | Groop, Leif C. | Orho-Melander, Marju | Ekelund, Ulf | Franks, Paul W. | Loos, Ruth J. F.
PLoS Medicine  2011;8(11):e1001116.
Ruth Loos and colleagues report findings from a meta-analysis of multiple studies examining the extent to which physical activity attenuates effects of a specific gene variant, FTO, on obesity in adults and children. They report a fairly substantial attenuation by physical activity on the effects of this genetic variant on the risk of obesity in adults.
The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268).
Methods and Findings
All studies identified to have data on the FTO rs9939609 variant (or any proxy [r2>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A−) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20–1.26), but PA attenuated this effect (pinteraction  = 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio  = 1.22/allele, 95% CI 1.19–1.25) than in the inactive group (odds ratio  = 1.30/allele, 95% CI 1.24–1.36). No such interaction was found in children and adolescents.
The association of the FTO risk allele with the odds of obesity is attenuated by 27% in physically active adults, highlighting the importance of PA in particular in those genetically predisposed to obesity.
Please see later in the article for the Editors' Summary
Editors’ Summary
Two in three Americans are overweight, of whom half are obese, and the trend towards increasing obesity is now seen across developed and developing countries. There has long been interest in understanding the impact of genes and environment when it comes to apportioning responsibility for obesity. Carrying a change in the FTO gene is common (found in three-quarters of Europeans and North Americans) and is associated with a 20%–30% increased risk of obesity. Some overweight or obese individuals may feel that the dice are loaded and there is little point in fighting the fat; it has been reported that those made aware of their genetic susceptibility to obesity may still choose a poor diet. A similar fatalism may occur when overweight and obese people consider physical activity. But disentangling the influence of physical activity on those genetically susceptible to obesity from other factors that might impact weight is not straightforward, as it requires large sample sizes, could be subject to publication bias, and may rely on less than ideal self-reporting methods.
Why Was This Study Done?
The public health ramifications of understanding the interaction between genetic susceptibility to obesity and physical activity are considerable. Tackling the rising prevalence of obesity will inevitably include interventions principally aimed at changing dietary intake and/or increasing physical activity, but the evidence for these with regards to those genetically susceptible has been lacking to date. The authors of this paper set out to explore the interaction between the commonest genetic susceptibility trait and physical activity using a rigorous meta-analysis of a large number of studies.
What Did the Researchers Do and Find?
The authors were concerned that a meta-analysis of published studies would be limited both by the data available to them and by possible bias. Instead of this more widely used approach, they took the literature search as their starting point, identified other studies through their collaborators’ network, and then undertook a meta-analysis of all available studies using a new and standardized analysis plan. This entailed an extremely large number of authors mining their data afresh to extract the relevant data points to enable such a meta-analysis. Physical activity was identified in the original studies in many different ways, including by self-report or by using an external measure of activity or heart rate. In order to perform the meta-analysis, participants were labeled as physically active or inactive in each study. For studies that had used a continuous scale, the authors decided that the bottom 20% of the participants were inactive (10% for children and adolescents). Using data from over 218,000 adults, the authors found that carrying a copy of the susceptibility gene increased the odds of obesity by 1.23-fold. But the size of this influence was 27% less in the genetically susceptible adults who were physically active (1.22-fold) compared to those who were physically inactive (1.30-fold). In a smaller study of about 19,000 children, no such effect of physical activity was seen.
What Do these Findings Mean?
This study demonstrates that people who carry the susceptibility gene for obesity can benefit from physical activity. This should inform health care professionals and the wider public that the view of genetically determined obesity not being amenable to exercise is incorrect and should be challenged. Dissemination, implementation, and ensuring uptake of effective physical activity programs remains a challenge and deserves further consideration. That the researchers treated “physically active” as a yes/no category, and how they categorized individuals, could be criticized, but this was done for pragmatic reasons, as a variety of means of assessing physical activity were used across the studies. It is unlikely that the findings would have changed if the authors had used a different method of defining physically active. Most of the studies included in the meta-analysis looked at one time point only; information about the influence of physical activity on weight changes over time in genetically susceptible individuals is only beginning to emerge.
Additional Information
Please access these websites via the online version of this summary at
This study is further discussed in a PLoS Medicine Perspective by Lennert Veerman
The US Centers for Disease Control and Prevention provides obesity-related statistics, details of prevention programs, and an overview on public health strategy in the United States
A more worldwide view is given by the World Health Organization
The UK National Health Service website gives information on physical activity guidelines for different age groups, while similar information can also be found from US sources
PMCID: PMC3206047  PMID: 22069379
18.  Differential co-expression analysis of obesity-associated networks in human subcutaneous adipose tissue 
To use a unique obesity-discordant sib-pair study design to combine differential expression analysis, expression quantitative trait loci (eQTLs) mapping, and a co-expression regulatory network approach in subcutaneous human adipose tissue to identify genes relevant to the obese state.
Study design
Genome-wide transcript expression in subcutaneous human adipose tissue was measured using Affymetrix U133+2.0 microarrays and genomewide genotyping data was obtained using an Applied Biosystems SNPlex linkage panel.
154 Swedish families ascertained through an obese proband (Body Mass Index >30kg/m2) with a discordant sibling (BMI>10kg/m2 less than proband).
Approximately one-third of the transcripts were differentially expressed between lean and obese siblings. The cellular adhesion molecules (CAMs) KEGG grouping contained the largest number of differentially expressed genes under cis-acting genetic control. By using a novel approach to contrast CAMs co-expression networks between lean and obese siblings, a subset of differentially regulated genes was identified, with the previously GWAS obesity-associated NEGR1 as a central hub. Independent analysis using mouse data demonstrated that this finding for NEGR1 is conserved across species.
Our data suggests that, in addition to its reported role in the brain, NEGR1 is also expressed in subcutaneous adipose tissue and acts as a central “hub” in an obesity-related transcript network.
PMCID: PMC3160485  PMID: 21427694
Gene Expression; network; eQTL; sibpair; linkage; adipose tissue
19.  Variations in genome-wide gene expression in identical twins – a study of primary osteoblast-like culture from female twins discordant for osteoporosis 
BMC Genetics  2004;5:14.
Monozygotic twin pairs who are genetically identical would be potentially useful in gene expression study for specific traits as cases and controls, because there would be much less gene expression variation within pairs compared to two unrelated individuals. However the twin pair has to be discordant for the particular trait or phenotype excluding those resulting from known confounders. Such discordant monozygotic twin pairs are rare and very few studies have explored the potential usefulness of this approach.
We studied genome-wide gene expression in primary osteoblast-like culture from marrow aspirates obtained from three pairs of monozygotic twins. We used the latest Affymetrix microchip contains probe sets for more than 20,000 genes. Two pairs were discordant for bone mineral density at the hip by more than one standard deviation, and the third pair was unrelated concordant and used as control. Only 1.5% on average of genes showed variation in expression within pairs as compared to 5% between pairs or over 15% from the literature. Importantly we identified several groups of genes showing variations within the discordant pairs and not within the concordant pair such as chondroitin beta 1,4 N-acetylgalactosaminyltransferase, inhibin beta A, interleukin 1 beta and colony stimulating factor 1 macrophage. These genes are known to have potential roles in bone physiology relating to bone density, osteoporosis and osteoarthritis.
Using the example of osteoblast-like cells in our monozygotic discordant twins for osteoporosis, we identified genes showing differential expression. Although without further experiment, we cannot confirm or conclude these are genes definitely related to bone physiology, we believe we have shown the potential and cost-effectiveness of further gene expression studies in discordant monozygotic twin pairs. A replication study for confirmation is essential.
PMCID: PMC436052  PMID: 15176972
20.  Obesity polymorphisms identified in genome-wide association studies interact with n-3 polyunsaturated fatty acid intake and modify the genetic association with adiposity phenotypes in Yup’ik people 
Genes & Nutrition  2013;8(5):495-505.
n-3 Polyunsaturated fatty acids (n-3 PUFAs) have anti-obesity effects that may modulate risk of obesity, in part, through interactions with genetic factors. Genome-wide association studies (GWAS) have identified genetic variants associated with body mass index (BMI); however, the extent to which these variants influence adiposity through interactions with n-3 PUFAs remains unknown. We evaluated 10 highly replicated obesity GWAS single nucleotide polymorphisms (SNPs) for individual and cumulative associations with adiposity phenotypes in a cross-sectional sample of Yup’ik people (n = 1,073) and evaluated whether genetic associations with obesity were modulated by n-3 PUFA intake. A genetic risk score (GRS) was calculated by adding the BMI-increasing alleles across all 10 SNPs. Dietary intake of n-3 PUFAs was estimated using nitrogen stable isotope ratio (δ15N) of red blood cells, and genotype–phenotype analyses were tested in linear models accounting for familial correlations. GRS was positively associated with BMI (p = 0.012), PBF (p = 0.022), ThC (p = 0.025), and waist circumference (p = 0.038). The variance in adiposity phenotypes explained by the GRS included BMI (0.7 %), PBF (0.3 %), ThC (0.7 %), and WC (0.5 %). GRS interactions with n-3 PUFAs modified the association with adiposity and accounted for more than twice the phenotypic variation (~1–2 %), relative to GRS associations alone. Obesity GWAS SNPs contribute to adiposity in this study population of Yup’ik people and interactions with n-3 PUFA intake potentiated the risk of fat accumulation among individuals with high obesity GRS. These data suggest the anti-obesity effects of n-3 PUFAs among Yup’ik people may, in part, be dependent upon an individual’s genetic predisposition to obesity.
Electronic supplementary material
The online version of this article (doi:10.1007/s12263-013-0340-z) contains supplementary material, which is available to authorized users.
PMCID: PMC3755132  PMID: 23526194
BMI; Adiposity; Alaska Native; SNP; δ15N; rs9939609; rs7647305; FTO; ETV5; Genetic risk score; CANHR; Gene-by-environment interactions
21.  A Genome-Wide Association Study on Obesity and Obesity-Related Traits 
PLoS ONE  2011;6(4):e18939.
Large-scale genome-wide association studies (GWAS) have identified many loci associated with body mass index (BMI), but few studies focused on obesity as a binary trait. Here we report the results of a GWAS and candidate SNP genotyping study of obesity, including extremely obese cases and never overweight controls as well as families segregating extreme obesity and thinness. We first performed a GWAS on 520 cases (BMI>35 kg/m2) and 540 control subjects (BMI<25 kg/m2), on measures of obesity and obesity-related traits. We subsequently followed up obesity-associated signals by genotyping the top ∼500 SNPs from GWAS in the combined sample of cases, controls and family members totaling 2,256 individuals. For the binary trait of obesity, we found 16 genome-wide significant signals within the FTO gene (strongest signal at rs17817449, P = 2.5×10−12). We next examined obesity-related quantitative traits (such as total body weight, waist circumference and waist to hip ratio), and detected genome-wide significant signals between waist to hip ratio and NRXN3 (rs11624704, P = 2.67×10−9), previously associated with body weight and fat distribution. Our study demonstrated how a relatively small sample ascertained through extreme phenotypes can detect genuine associations in a GWAS.
PMCID: PMC3084240  PMID: 21552555
22.  A mathematical model of weight loss under total starvation: evidence against the thrifty-gene hypothesis 
Disease Models & Mechanisms  2012;6(1):236-251.
The thrifty-gene hypothesis (TGH) posits that the modern genetic predisposition to obesity stems from a historical past where famine selected for genes that promote efficient fat deposition. It has been previously argued that such a scenario is unfeasible because under such strong selection any gene favouring fat deposition would rapidly move to fixation. Hence, we should all be predisposed to obesity: which we are not. The genetic architecture of obesity that has been revealed by genome-wide association studies (GWAS), however, calls into question such an argument. Obesity is caused by mutations in many hundreds (maybe thousands) of genes, each with a very minor, independent and additive impact. Selection on such genes would probably be very weak because the individual advantages they would confer would be very small. Hence, the genetic architecture of the epidemic may indeed be compatible with, and hence support, the TGH. To evaluate whether this is correct, it is necessary to know the likely effects of the identified GWAS alleles on survival during starvation. This would allow definition of their advantage in famine conditions, and hence the likely selection pressure for such alleles to have spread over the time course of human evolution. We constructed a mathematical model of weight loss under total starvation using the established principles of energy balance. Using the model, we found that fatter individuals would indeed survive longer and, at a given body weight, females would survive longer than males, when totally starved. An allele causing deposition of an extra 80 g of fat would result in an extension of life under total starvation by about 1.1–1.6% in an individual with 10 kg of fat and by 0.25–0.27% in an individual carrying 32 kg of fat. A mutation causing a per allele effect of 0.25% would become completely fixed in a population with an effective size of 5 million individuals in 6000 selection events. Because there have probably been about 24,000 famine events since the evolution of hominins 4 million years ago, there has been ample time even for genes with only very minor impacts on adiposity to move to fixation. The observed polymorphic variation in the genes causing the predisposition to obesity is incompatible with the TGH, unless all these single nucleotide polymorphisms (SNPs) arose in the last 900,000 years, a requirement we know is incorrect. The TGH is further weakened by the observation of no link between the effect size of these SNPs and their prevalence, which would be anticipated under the TGH model of selection if all the SNPs had arisen in the last 900,000 years.
PMCID: PMC3529354  PMID: 22864023
23.  Genome-Wide Association for Abdominal Subcutaneous and Visceral Adipose Reveals a Novel Locus for Visceral Fat in Women 
PLoS Genetics  2012;8(5):e1002695.
Body fat distribution, particularly centralized obesity, is associated with metabolic risk above and beyond total adiposity. We performed genome-wide association of abdominal adipose depots quantified using computed tomography (CT) to uncover novel loci for body fat distribution among participants of European ancestry. Subcutaneous and visceral fat were quantified in 5,560 women and 4,997 men from 4 population-based studies. Genome-wide genotyping was performed using standard arrays and imputed to ∼2.5 million Hapmap SNPs. Each study performed a genome-wide association analysis of subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), VAT adjusted for body mass index, and VAT/SAT ratio (a metric of the propensity to store fat viscerally as compared to subcutaneously) in the overall sample and in women and men separately. A weighted z-score meta-analysis was conducted. For the VAT/SAT ratio, our most significant p-value was rs11118316 at LYPLAL1 gene (p = 3.1×10E-09), previously identified in association with waist–hip ratio. For SAT, the most significant SNP was in the FTO gene (p = 5.9×10E-08). Given the known gender differences in body fat distribution, we performed sex-specific analyses. Our most significant finding was for VAT in women, rs1659258 near THNSL2 (p = 1.6×10-08), but not men (p = 0.75). Validation of this SNP in the GIANT consortium data demonstrated a similar sex-specific pattern, with observed significance in women (p = 0.006) but not men (p = 0.24) for BMI and waist circumference (p = 0.04 [women], p = 0.49 [men]). Finally, we interrogated our data for the 14 recently published loci for body fat distribution (measured by waist–hip ratio adjusted for BMI); associations were observed at 7 of these loci. In contrast, we observed associations at only 7/32 loci previously identified in association with BMI; the majority of overlap was observed with SAT. Genome-wide association for visceral and subcutaneous fat revealed a SNP for VAT in women. More refined phenotypes for body composition and fat distribution can detect new loci not previously uncovered in large-scale GWAS of anthropometric traits.
Author Summary
Body fat distribution, particularly centralized obesity, is associated with metabolic risk above and beyond total adiposity. We performed genome-wide association of abdominal adipose depots quantified using computed tomography (CT) to uncover novel loci for body fat distribution among participants of European ancestry. We quantified subcutaneous and visceral fat in more than 10,000 women and men who also had genome-wide association data available. Given the known gender differences in body fat distribution, we performed sex-specific analyses. Our most significant finding was for VAT in women, near the THNSL2 gene. These findings were not observed in men. We also interrogated our data for the 14 recently published loci for body fat distribution (measured by waist–hip ratio adjusted for BMI); associations were observed for 7 of these loci, most notably for VAT/SAT ratio. We conclude that genome-wide association for visceral and subcutaneous fat revealed a SNP for VAT in women. More refined phenotypes for body composition and fat distribution can detect new loci not uncovered in large-scale GWAS of anthropometric traits.
PMCID: PMC3349734  PMID: 22589738
24.  Causal Relationship between Obesity and Vitamin D Status: Bi-Directional Mendelian Randomization Analysis of Multiple Cohorts 
PLoS Medicine  2013;10(2):e1001383.
A mendelian randomization study based on data from multiple cohorts conducted by Karani Santhanakrishnan Vimaleswaran and colleagues re-examines the causal nature of the relationship between vitamin D levels and obesity.
Obesity is associated with vitamin D deficiency, and both are areas of active public health concern. We explored the causality and direction of the relationship between body mass index (BMI) and 25-hydroxyvitamin D [25(OH)D] using genetic markers as instrumental variables (IVs) in bi-directional Mendelian randomization (MR) analysis.
Methods and Findings
We used information from 21 adult cohorts (up to 42,024 participants) with 12 BMI-related SNPs (combined in an allelic score) to produce an instrument for BMI and four SNPs associated with 25(OH)D (combined in two allelic scores, separately for genes encoding its synthesis or metabolism) as an instrument for vitamin D. Regression estimates for the IVs (allele scores) were generated within-study and pooled by meta-analysis to generate summary effects.
Associations between vitamin D scores and BMI were confirmed in the Genetic Investigation of Anthropometric Traits (GIANT) consortium (n = 123,864). Each 1 kg/m2 higher BMI was associated with 1.15% lower 25(OH)D (p = 6.52×10−27). The BMI allele score was associated both with BMI (p = 6.30×10−62) and 25(OH)D (−0.06% [95% CI −0.10 to −0.02], p = 0.004) in the cohorts that underwent meta-analysis. The two vitamin D allele scores were strongly associated with 25(OH)D (p≤8.07×10−57 for both scores) but not with BMI (synthesis score, p = 0.88; metabolism score, p = 0.08) in the meta-analysis. A 10% higher genetically instrumented BMI was associated with 4.2% lower 25(OH)D concentrations (IV ratio: −4.2 [95% CI −7.1 to −1.3], p = 0.005). No association was seen for genetically instrumented 25(OH)D with BMI, a finding that was confirmed using data from the GIANT consortium (p≥0.57 for both vitamin D scores).
On the basis of a bi-directional genetic approach that limits confounding, our study suggests that a higher BMI leads to lower 25(OH)D, while any effects of lower 25(OH)D increasing BMI are likely to be small. Population level interventions to reduce BMI are expected to decrease the prevalence of vitamin D deficiency.
Please see later in the article for the Editors' Summary
Editors' Summary
Obesity—having an unhealthy amount of body fat—is increasing worldwide. In the US, for example, a third of the adult population is now obese. Obesity is defined as having a body mass index (BMI, an indicator of body fat calculated by dividing a person's weight in kilograms by their height in meters squared) of more than 30.0 kg/m2. Although there is a genetic contribution to obesity, people generally become obese by consuming food and drink that contains more energy than they need for their daily activities. Thus, obesity can be prevented by having a healthy diet and exercising regularly. Compared to people with a healthy weight, obese individuals have an increased risk of developing diabetes, heart disease and stroke, and tend to die younger. They also have a higher risk of vitamin D deficiency, another increasingly common public health concern. Vitamin D, which is essential for healthy bones as well as other functions, is made in the skin after exposure to sunlight but can also be obtained through the diet and through supplements.
Why Was This Study Done?
Observational studies cannot prove that obesity causes vitamin D deficiency because obese individuals may share other characteristics that reduce their circulating 25-hydroxy vitamin D [25(OH)D] levels (referred to as confounding). Moreover, observational studies cannot indicate whether the larger vitamin D storage capacity of obese individuals (vitamin D is stored in fatty tissues) lowers their 25(OH)D levels or whether 25(OH)D levels influence fat accumulation (reverse causation). If obesity causes vitamin D deficiency, monitoring and treating vitamin D deficiency might alleviate some of the adverse health effects of obesity. Conversely, if low vitamin D levels cause obesity, encouraging people to take vitamin D supplements might help to control the obesity epidemic. Here, the researchers use bi-directional “Mendelian randomization” to examine the direction and causality of the relationship between BMI and 25(OH)D. In Mendelian randomization, causality is inferred from associations between genetic variants that mimic the influence of a modifiable environmental exposure and the outcome of interest. Because gene variants do not change over time and are inherited randomly, they are not prone to confounding and are free from reverse causation. Thus, if a lower vitamin D status leads to obesity, genetic variants associated with lower 25(OH)D concentrations should be associated with higher BMI, and if obesity leads to a lower vitamin D status, then genetic variants associated with higher BMI should be associated with lower 25(OH)D concentrations.
What Did the Researchers Do and Find?
The researchers created a “BMI allele score” based on 12 BMI-related gene variants and two “25(OH)D allele scores,” which are based on gene variants that affect either 25(OH)D synthesis or breakdown. Using information on up to 42,024 participants from 21 studies, the researchers showed that the BMI allele score was associated with both BMI and with 25(OH)D levels among the study participants. Based on this information, they calculated that each 10% increase in BMI will lead to a 4.2% decrease in 25(OH)D concentrations. By contrast, although both 25(OH)D allele scores were strongly associated with 25(OH)D levels, neither score was associated with BMI. This lack of an association between 25(OH)D allele scores and obesity was confirmed using data from more than 100,000 individuals involved in 46 studies that has been collected by the GIANT (Genetic Investigation of Anthropometric Traits) consortium.
What Do These Findings Mean?
These findings suggest that a higher BMI leads to a lower vitamin D status whereas any effects of low vitamin D status on BMI are likely to be small. That is, these findings provide evidence for obesity as a causal factor in the development of vitamin D deficiency but not for vitamin D deficiency as a causal factor in the development of obesity. These findings suggest that population-level interventions to reduce obesity should lead to a reduction in the prevalence of vitamin D deficiency and highlight the importance of monitoring and treating vitamin D deficiency as a means of alleviating the adverse influences of obesity on health.
Additional Information
Please access these Web sites via the online version of this summary at
The US Centers for Disease Control and Prevention provides information on all aspects of overweight and obesity (in English and Spanish); a data brief provides information about the vitamin D status of the US population
The World Health Organization provides information on obesity (in several languages)
The UK National Health Service Choices website provides detailed information about obesity and a link to a personal story about losing weight; it also provides information about vitamin D
The International Obesity Taskforce provides information about the global obesity epidemic
The US Department of Agriculture's website provides a personal healthy eating plan; the Weight-control Information Network is an information service provided for the general public and health professionals by the US National Institute of Diabetes and Digestive and Kidney Diseases (in English and Spanish)
The US Office of Dietary Supplements provides information about vitamin D (in English and Spanish)
MedlinePlus has links to further information about obesity and about vitamin D (in English and Spanish)
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
Overview and details of the collaborative large-scale genetic association study (D-CarDia) provide information about vitamin D and the risk of cardiovascular disease, diabetes and related traits
PMCID: PMC3564800  PMID: 23393431
25.  DNA Methylation of the LY86 Gene is Associated With Obesity, Insulin Resistance, and Inflammation 
Previous genome-wide association studies (GWAS) have identified a large number of genetic variants for obesity and its related traits, representing a group of potential key genes in the etiology of obesity. Emerging evidence suggests that epigenetics may play an important role in obesity. It has not been explored whether the GWAS-identified loci contribute to obesity through epigenetics (e.g., DNA (deoxyribonucleic acid) methylation) in addition to genetics.
A multi-stage cross-sectional study was designed. We did a literature search and identified 117 genes discovered by GWAS for obesity and its related traits. Then we analyzed whether the methylation levels of these genes were also associated with obesity in two genome-wide methylation panels. We examined an initial panel of seven adolescent obese cases and seven age-matched lean controls, followed by a second panel of 48 adolescent obese cases and 48 age- and gender-matched lean controls. The validated CpG sites were further replicated in two independent replication panels of youth (46 vs. 46 and 230 cases vs. 413 controls, respectively) and a general population of youth, including 703 healthy subjects.
One CpG site in the lymphocyte antigen 86 (LY86) gene, which showed higher methylation in the obese in both the initial (p = .009) and second genome-wide DNA methylation panel (p = .008), was further validated in both replication panels (meta p = .00016). Moreover, in the general population of youth, the methylation levels of this region were significantly correlated with adiposity indices (p ≤.02), insulin resistance (p = .001), and inflammatory markers (p < .001).
By focusing on recent GWAS findings in genome-wide methylation profiles, we identified a solid association between LY86 gene DNA methylation and obesity.
PMCID: PMC4090018  PMID: 24735745
DNA methylation; obesity; GWAS; insulin resistance; inflammation

Results 1-25 (1489451)