PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (645391)

Clipboard (0)
None

Related Articles

1.  Differential co-expression analysis of obesity-associated networks in human subcutaneous adipose tissue 
Objective
To use a unique obesity-discordant sib-pair study design to combine differential expression analysis, expression quantitative trait loci (eQTLs) mapping, and a co-expression regulatory network approach in subcutaneous human adipose tissue to identify genes relevant to the obese state.
Study design
Genome-wide transcript expression in subcutaneous human adipose tissue was measured using Affymetrix U133+2.0 microarrays and genomewide genotyping data was obtained using an Applied Biosystems SNPlex linkage panel.
Subjects
154 Swedish families ascertained through an obese proband (Body Mass Index >30kg/m2) with a discordant sibling (BMI>10kg/m2 less than proband).
Results
Approximately one-third of the transcripts were differentially expressed between lean and obese siblings. The cellular adhesion molecules (CAMs) KEGG grouping contained the largest number of differentially expressed genes under cis-acting genetic control. By using a novel approach to contrast CAMs co-expression networks between lean and obese siblings, a subset of differentially regulated genes was identified, with the previously GWAS obesity-associated NEGR1 as a central hub. Independent analysis using mouse data demonstrated that this finding for NEGR1 is conserved across species.
Conclusion
Our data suggests that, in addition to its reported role in the brain, NEGR1 is also expressed in subcutaneous adipose tissue and acts as a central “hub” in an obesity-related transcript network.
doi:10.1038/ijo.2011.22
PMCID: PMC3160485  PMID: 21427694
Gene Expression; network; eQTL; sibpair; linkage; adipose tissue
2.  Genome-Wide DNA Methylation and Gene Expression Analyses of Monozygotic Twins Discordant for Intelligence Levels 
PLoS ONE  2012;7(10):e47081.
Human intelligence, as measured by intelligence quotient (IQ) tests, demonstrates one of the highest heritabilities among human quantitative traits. Nevertheless, studies to identify quantitative trait loci responsible for intelligence face challenges because of the small effect sizes of individual genes. Phenotypically discordant monozygotic (MZ) twins provide a feasible way to minimize the effects of irrelevant genetic and environmental factors, and should yield more interpretable results by finding epigenetic or gene expression differences between twins. Here we conducted array-based genome-wide DNA methylation and gene expression analyses using 17 pairs of healthy MZ twins discordant intelligently. ARHGAP18, related to Rho GTPase, was identified in pair-wise methylation status analysis and validated via direct bisulfite sequencing and quantitative RT-PCR. To perform expression profile analysis, gene set enrichment analysis (GSEA) between the groups of twins with higher IQ and their co-twins revealed up-regulated expression of several ribosome-related genes and DNA replication-related genes in the group with higher IQ. To focus more on individual pairs, we conducted pair-wise GSEA and leading edge analysis, which indicated up-regulated expression of several ion channel-related genes in twins with lower IQ. Our findings implied that these groups of genes may be related to IQ and should shed light on the mechanism underlying human intelligence.
doi:10.1371/journal.pone.0047081
PMCID: PMC3474830  PMID: 23082141
3.  Genetic Control of Obesity and Gut Microbiota Composition in Response to High-Fat, High-Sucrose Diet in Mice 
Cell metabolism  2013;17(1):141-152.
SUMMARY
Obesity is a highly heritable disease driven by complex interactions between genetic and environmental factors. Human genome-wide association studies (GWAS) have identified a number of loci contributing to obesity; however, a major limitation of these studies is the inability to assess environmental interactions common to obesity. Using a systems genetics approach, we measured obesity traits, global gene expression, and gut microbiota composition in response to a high-fat/high-sucrose (HF/HS) diet of more than 100 inbred strains of mice. Here we show that HF/HS feeding promotes robust, strain-specific changes in obesity that is not accounted for by food intake and provide evidence for a genetically determined set-point for obesity. GWAS analysis identified 11 genome-wide significant loci associated with obesity traits, several of which overlap with loci identified in human studies. We also show strong relationships between genotype and gut microbiota plasticity during HF/HS feeding and identify gut microbial phylotypes associated with obesity.
doi:10.1016/j.cmet.2012.12.007
PMCID: PMC3545283  PMID: 23312289
4.  An Integration of Genome-Wide Association Study and Gene Expression Profiling to Prioritize the Discovery of Novel Susceptibility Loci for Osteoporosis-Related Traits 
PLoS Genetics  2010;6(6):e1000977.
Osteoporosis is a complex disorder and commonly leads to fractures in elderly persons. Genome-wide association studies (GWAS) have become an unbiased approach to identify variations in the genome that potentially affect health. However, the genetic variants identified so far only explain a small proportion of the heritability for complex traits. Due to the modest genetic effect size and inadequate power, true association signals may not be revealed based on a stringent genome-wide significance threshold. Here, we take advantage of SNP and transcript arrays and integrate GWAS and expression signature profiling relevant to the skeletal system in cellular and animal models to prioritize the discovery of novel candidate genes for osteoporosis-related traits, including bone mineral density (BMD) at the lumbar spine (LS) and femoral neck (FN), as well as geometric indices of the hip (femoral neck-shaft angle, NSA; femoral neck length, NL; and narrow-neck width, NW). A two-stage meta-analysis of GWAS from 7,633 Caucasian women and 3,657 men, revealed three novel loci associated with osteoporosis-related traits, including chromosome 1p13.2 (RAP1A, p = 3.6×10−8), 2q11.2 (TBC1D8), and 18q11.2 (OSBPL1A), and confirmed a previously reported region near TNFRSF11B/OPG gene. We also prioritized 16 suggestive genome-wide significant candidate genes based on their potential involvement in skeletal metabolism. Among them, 3 candidate genes were associated with BMD in women. Notably, 2 out of these 3 genes (GPR177, p = 2.6×10−13; SOX6, p = 6.4×10−10) associated with BMD in women have been successfully replicated in a large-scale meta-analysis of BMD, but none of the non-prioritized candidates (associated with BMD) did. Our results support the concept of our prioritization strategy. In the absence of direct biological support for identified genes, we highlighted the efficiency of subsequent functional characterization using publicly available expression profiling relevant to the skeletal system in cellular or whole animal models to prioritize candidate genes for further functional validation.
Author Summary
BMD and hip geometry are two major predictors of osteoporotic fractures, the most severe consequence of osteoporosis in elderly persons. We performed sex-specific genome-wide association studies (GWAS) for BMD at the lumbar spine and femor neck skeletal sites as well as hip geometric indices (NSA, NL, and NW) in the Framingham Osteoporosis Study and then replicated the top findings in two independent studies. Three novel loci were significant: in women, including chromosome 1p13.2 (RAP1A) for NW; in men, 2q11.2 (TBC1D8) for NSA and 18q11.2 (OSBPL1A) for NW. We confirmed a previously reported region on 8q24.12 (TNFRSF11B/OPG) for lumbar spine BMD in women. In addition, we integrated GWAS signals with eQTL in several tissues and publicly available expression signature profiling in cellular and whole-animal models, and prioritized 16 candidate genes/loci based on their potential involvement in skeletal metabolism. Among three prioritized loci (GPR177, SOX6, and CASR genes) associated with BMD in women, GPR177 and SOX6 have been successfully replicated later in a large-scale meta-analysis, but none of the non-prioritized candidates (associated with BMD) did. Our results support the concept of using expression profiling to support the candidacy of suggestive GWAS signals that may contain important genes of interest.
doi:10.1371/journal.pgen.1000977
PMCID: PMC2883588  PMID: 20548944
5.  Variations in genome-wide gene expression in identical twins – a study of primary osteoblast-like culture from female twins discordant for osteoporosis 
BMC Genetics  2004;5:14.
Background
Monozygotic twin pairs who are genetically identical would be potentially useful in gene expression study for specific traits as cases and controls, because there would be much less gene expression variation within pairs compared to two unrelated individuals. However the twin pair has to be discordant for the particular trait or phenotype excluding those resulting from known confounders. Such discordant monozygotic twin pairs are rare and very few studies have explored the potential usefulness of this approach.
Results
We studied genome-wide gene expression in primary osteoblast-like culture from marrow aspirates obtained from three pairs of monozygotic twins. We used the latest Affymetrix microchip contains probe sets for more than 20,000 genes. Two pairs were discordant for bone mineral density at the hip by more than one standard deviation, and the third pair was unrelated concordant and used as control. Only 1.5% on average of genes showed variation in expression within pairs as compared to 5% between pairs or over 15% from the literature. Importantly we identified several groups of genes showing variations within the discordant pairs and not within the concordant pair such as chondroitin beta 1,4 N-acetylgalactosaminyltransferase, inhibin beta A, interleukin 1 beta and colony stimulating factor 1 macrophage. These genes are known to have potential roles in bone physiology relating to bone density, osteoporosis and osteoarthritis.
Conclusion
Using the example of osteoblast-like cells in our monozygotic discordant twins for osteoporosis, we identified genes showing differential expression. Although without further experiment, we cannot confirm or conclude these are genes definitely related to bone physiology, we believe we have shown the potential and cost-effectiveness of further gene expression studies in discordant monozygotic twin pairs. A replication study for confirmation is essential.
doi:10.1186/1471-2156-5-14
PMCID: PMC436052  PMID: 15176972
6.  Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits 
Molecular Psychiatry  2013;19(4):495-503.
Autism spectrum disorder (ASD) defines a group of common, complex neurodevelopmental disorders. Although the aetiology of ASD has a strong genetic component, there is considerable monozygotic (MZ) twin discordance indicating a role for non-genetic factors. Because MZ twins share an identical DNA sequence, disease-discordant MZ twin pairs provide an ideal model for examining the contribution of environmentally driven epigenetic factors in disease. We performed a genome-wide analysis of DNA methylation in a sample of 50 MZ twin pairs (100 individuals) sampled from a representative population cohort that included twins discordant and concordant for ASD, ASD-associated traits and no autistic phenotype. Within-twin and between-group analyses identified numerous differentially methylated regions associated with ASD. In addition, we report significant correlations between DNA methylation and quantitatively measured autistic trait scores across our sample cohort. This study represents the first systematic epigenomic analyses of MZ twins discordant for ASD and implicates a role for altered DNA methylation in autism.
doi:10.1038/mp.2013.41
PMCID: PMC3906213  PMID: 23608919
ASD; autism; copy-number variation; DNA methylation; epigenetics; monozygotic twins
7.  Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits 
Molecular psychiatry  2013;19(4):495-503.
Autism spectrum disorder (ASD) defines a group of common, complex neurodevelopmental disorders. Although the aetiology of ASD has a strong genetic component, there is considerable monozygotic (MZ) twin discordance indicating a role for non-genetic factors. Because MZ twins share an identical DNA sequence, disease-discordant MZ twin pairs provide an ideal model for examining the contribution of environmentally driven epigenetic factors in disease. We performed a genome-wide analysis of DNA methylation in a sample of 50 MZ twin pairs (100 individuals) sampled from a representative population cohort that included twins discordant and concordant for ASD, ASD-associated traits and no autistic phenotype. Within-twin and between-group analyses identified numerous differentially methylated regions associated with ASD. In addition, we report significant correlations between DNA methylation and quantitatively measured autistic trait scores across our sample cohort. This study represents the first systematic epigenomic analyses of MZ twins discordant for ASD and implicates a role for altered DNA methylation in autism.
doi:10.1038/mp.2013.41
PMCID: PMC3906213  PMID: 23608919
ASD; autism; copy-number variation; DNA methylation; epigenetics; monozygotic twins
8.  An estimate of amyotrophic lateral sclerosis heritability using twin data 
Background
Causative gene mutations have been identified in about 2% of those with amyotrophic lateral sclerosis (ALS), often, but not always, when there is a strong family history. There is an assumption that there is a genetic component to all ALS, but genome-wide association studies have yet to produce a robustly replicated result. A definitive estimate of ALS heritability is therefore required to determine whether ongoing efforts to find susceptibility genes are worth while.
Methods
The authors performed two twin studies, one population- and one clinic-based. The authors used structural equation modelling to perform a meta-analysis of data from these studies and an existing twin study to estimate ALS heritability, and identified 171 twin pairs in which at least one twin had ALS.
Results and discussion
Five monozygotic twin pairs were concordant-affected, and 44 discordant-affected. No dizygotic twin pairs were concordant-affected, and 122 discordant-affected. The heritability of sporadic ALS was estimated as 0.61 (0.38 to 0.78) with the unshared environmental component 0.39 (0.22 to 0.62). ALS has a high heritability, and efforts to find causative genes should continue.
doi:10.1136/jnnp.2010.207464
PMCID: PMC2988617  PMID: 20861059
Twin study; amyotrophic lateral sclerosis; genetics; heritability; frontotemporal dementia; ALS; genetics; motor neuron disease
9.  A twin approach to unraveling epigenetics 
Trends in Genetics  2011;27(3):116-125.
The regulation of gene expression plays a pivotal role in complex phenotypes, and epigenetic mechanisms such as DNA methylation are essential to this process. The availability of next-generation sequencing technologies allows us to study epigenetic variation at an unprecedented level of resolution. Even so, our understanding of the underlying sources of epigenetic variability remains limited. Twin studies have played an essential role in estimating phenotypic heritability, and these now offer an opportunity to study epigenetic variation as a dynamic quantitative trait. High monozygotic twin discordance rates for common diseases suggest that unexplained environmental or epigenetic factors could be involved. Recent genome-wide epigenetic studies in disease-discordant monozygotic twins emphasize the power of this design to successfully identify epigenetic changes associated with complex traits. We describe how large-scale epigenetic studies of twins can improve our understanding of how genetic, environmental and stochastic factors impact upon epigenetics, and how such studies can provide a comprehensive understanding of how epigenetic variation affects complex traits.
doi:10.1016/j.tig.2010.12.005
PMCID: PMC3063335  PMID: 21257220
10.  Nutritional regulation of genome-wide association obesity genes in a tissue-dependent manner 
Background
Genome-wide association studies (GWAS) have recently identified several new genetic variants associated with obesity. The majority of the variants are within introns or between genes, suggesting they affect gene expression, although it is not clear which of the nearby genes they affect. Understanding the regulation of these genes will be key to determining the role of these variants in the development of obesity and will provide support for a role of these genes in the development of obesity.
Methods
We examined the expression of 19 GWAS obesity genes in the brain and specifically the hypothalamus, adipose tissue and liver of mice by real-time quantitative PCR. To determine whether these genes are nutritionally regulated, as may be expected for genes affecting obesity, we compared tissues from fasting and non-fasting animals and tissues from mice consuming a high fat high sucrose diet in comparison to standard rodent chow.
Results
We found complex, tissue-dependent patterns of nutritional regulation of most of these genes. For example, Bat2 expression was increased ~10-fold in the brain of fed mice but was lower or unchanged in the hypothalamus and adipose tissue. Kctd15 expression was upregulated in the hypothalamus, brain and adipose tissue of fed mice and downregulated by high fat feeding in liver, adipose tissue and the hypothalamus but not the remainder of the brain. Sh2b1 expression in the brain and Faim2 expression in adipose tissue were specifically increased >20-fold in fed mice. Tmem18 expression in adipose tissue but not the brain was reduced 80% by high fat feeding. Few changes in the expression of these genes were observed in liver.
Conclusions
These data show nutritional regulation of nearly all these GWAS obesity genes, particularly in the brain and adipose tissue, and provide support for their role in the development of obesity. The complex patterns of nutritional and tissue-dependent regulation also highlight the difficulty that may be encountered in determining how the GWAS genetic variants affect gene expression and consequent obesity risk in humans where access to tissues is constrained.
doi:10.1186/1743-7075-9-65
PMCID: PMC3537611  PMID: 22781276
Obesity genes; Genome-wide association; Gene expression; High fat diet; Feeding and fasting; Gene-diet interaction; Adipose tissue; Brain
11.  SEARCH FOR GENOMIC ALTERATIONS IN MONOZYGOTIC TWINS DISCORDANT FOR CLEFT LIP AND/OR PALATE 
Phenotypically discordant monozygotic twins offer the possibility of gene discovery through delineation of molecular abnormalities in one member of the twin pair. One proposed mechanism of discordance is postzygotically occurring genomic alterations resulting from mitotic recombination and other somatic changes. Detection of altered genomic fragments can reveal candidate gene loci that can be verified through additional analyses. We investigated this hypothesis using array comparative genomic hybridization; the 50K and 250K Affymetrix GeneChip® SNP arrays and an Illumina custom array consisting of 1,536 SNPs, to scan for genomic alterations in a sample of monozygotic twin pairs with discordant cleft lip and/or palate phenotypes. Paired analysis for deletions, amplifications and loss of heterozygosity, along with sequence verification of SNPs with discordant genotype calls did not reveal any genomic discordance between twin pairs in lymphocyte DNA samples. Our results demonstrate that postzygotic genomic alterations are not a common cause of monozygotic twin discordance for isolated cleft lip and/or palate. However, rare or balanced genomic alterations, tissue-specific events and small aberrations beyond the detection level of our experimental approach cannot be ruled out. The stability of genomes we observed in our study samples also suggests that detection of discordant events in other monozygotic twin pairs would be remarkable and of potential disease significance.
doi:10.1375/twin.12.5.462
PMCID: PMC2893889  PMID: 19803774
Monozygotic twins; discordant; cleft lip and palate; genome-wide
12.  Ontogenetic De Novo Copy Number Variations (CNVs) as a Source of Genetic Individuality: Studies on Two Families with MZD Twins for Schizophrenia 
PLoS ONE  2011;6(3):e17125.
Genetic individuality is the foundation of personalized medicine, yet its determinants are currently poorly understood. One issue is the difference between monozygotic twins that are assumed identical and have been extensively used in genetic studies for decades [1]. Here, we report genome-wide alterations in two nuclear families each with a pair of monozygotic twins discordant for schizophrenia evaluated by the Affymetrix 6.0 human SNP array. The data analysis includes characterization of copy number variations (CNVs) and single nucleotide polymorphism (SNPs). The results have identified genomic differences between twin pairs and a set of new provisional schizophrenia genes. Samples were found to have between 35 and 65 CNVs per individual. The majority of CNVs (∼80%) represented gains. In addition, ∼10% of the CNVs were de novo (not present in parents), of these, 30% arose during parental meiosis and 70% arose during developmental mitosis. We also observed SNPs in the twins that were absent from both parents. These constituted 0.12% of all SNPs seen in the twins. In 65% of cases these SNPs arose during meiosis compared to 35% during mitosis. The developmental mitotic origin of most CNVs that may lead to MZ twin discordance may also cause tissue differences within individuals during a single pregnancy and generate a high frequency of mosaics in the population. The results argue for enduring genome-wide changes during cellular transmission, often ignored in most genetic analyses.
doi:10.1371/journal.pone.0017125
PMCID: PMC3047561  PMID: 21399695
13.  The combination of a genome-wide association study of lymphocyte count and analysis of gene expression data reveals novel asthma candidate genes 
Human Molecular Genetics  2012;21(9):2111-2123.
Recent genome-wide association studies (GWAS) have identified a number of novel genetic associations with complex human diseases. In spite of these successes, results from GWAS generally explain only a small proportion of disease heritability, an observation termed the ‘missing heritability problem’. Several sources for the missing heritability have been proposed, including the contribution of many common variants with small individual effect sizes, which cannot be reliably found using the standard GWAS approach. The goal of our study was to explore a complimentary approach, which combines GWAS results with functional data in order to identify novel genetic associations with small effect sizes. To do so, we conducted a GWAS for lymphocyte count, a physiologic quantitative trait associated with asthma, in 462 Hutterites. In parallel, we performed a genome-wide gene expression study in lymphoblastoid cell lines from 96 Hutterites. We found significant support for genetic associations using the GWAS data when we considered variants near the 193 genes whose expression levels across individuals were most correlated with lymphocyte counts. Interestingly, these variants are also enriched with signatures of an association with asthma susceptibility, an observation we were able to replicate. The associated loci include genes previously implicated in asthma susceptibility as well as novel candidate genes enriched for functions related to T cell receptor signaling and adenosine triphosphate synthesis. Our results, therefore, establish a new set of asthma susceptibility candidate genes. More generally, our observations support the notion that many loci of small effects influence variation in lymphocyte count and asthma susceptibility.
doi:10.1093/hmg/dds021
PMCID: PMC3315207  PMID: 22286170
14.  Comparison of Genomic and Epigenomic Expression in Monozygotic Twins Discordant for Rett Syndrome 
PLoS ONE  2013;8(6):e66729.
Monozygotic (identical) twins have been widely used in genetic studies to determine the relative contributions of heredity and the environment in human diseases. Discordance in disease manifestation between affected monozygotic twins has been attributed to either environmental factors or different patterns of X chromosome inactivation (XCI). However, recent studies have identified genetic and epigenetic differences between monozygotic twins, thereby challenging the accepted experimental model for distinguishing the effects of nature and nurture. Here, we report the genomic and epigenomic sequences in skin fibroblasts of a discordant monozygotic twin pair with Rett syndrome, an X-linked neurodevelopmental disorder characterized by autistic features, epileptic seizures, gait ataxia and stereotypical hand movements. The twins shared the same de novo mutation in exon 4 of the MECP2 gene (G269AfsX288), which was paternal in origin and occurred during spermatogenesis. The XCI patterns in the twins did not differ in lymphocytes, skin fibroblasts, and hair cells (which originate from ectoderm as does neuronal tissue). No reproducible differences were detected between the twins in single nucleotide polymorphisms (SNPs), insertion-deletion polymorphisms (indels), or copy number variations. Differences in DNA methylation between the twins were detected in fibroblasts in the upstream regions of genes involved in brain function and skeletal tissues such as Mohawk Homeobox (MKX), Brain-type Creatine Kinase (CKB), and FYN Tyrosine Kinase Protooncogene (FYN). The level of methylation in these upstream regions was inversely correlated with the level of gene expression. Thus, differences in DNA methylation patterns likely underlie the discordance in Rett phenotypes between the twins.
doi:10.1371/journal.pone.0066729
PMCID: PMC3689680  PMID: 23805272
15.  The human immunoglobulin V(H) gene repertoire is genetically controlled and unaltered by chronic autoimmune stimulation. 
Journal of Clinical Investigation  1996;98(12):2794-2800.
The factors controlling immunoglobulin (Ig) gene repertoire formation are poorly understood. Studies on monozygotic twins have helped discern the contributions of genetic versus environmental factors on expressed traits. In the present experiments, we applied a novel anchored PCR-ELISA system to compare the heavy chain V gene (V(H)) subgroup repertoires of mu and gamma expressing B lymphocytes from ten pairs of adult monozygotic twins, including eight pairs who are concordant or discordant for rheumatoid arthritis. The results disclosed that the relative expression of each Ig V(H) gene subgroup is not precisely proportional to its relative genomic size. The monozygotic twins had more similar IgM V(H) gene repertoires than did unrelated subjects. Moreover, monozygotic twins who are discordant for RA also use highly similar IgM V(H) gene-subgroup repertoires. Finally, the V(H) gene repertoire remained stable over time. Collectively, these data reveal that genetic factors predominantly control V(H) gene repertoire formation.
PMCID: PMC507745  PMID: 8981926
16.  Identification of Type 1 Diabetes–Associated DNA Methylation Variable Positions That Precede Disease Diagnosis 
PLoS Genetics  2011;7(9):e1002300.
Monozygotic (MZ) twin pair discordance for childhood-onset Type 1 Diabetes (T1D) is ∼50%, implicating roles for genetic and non-genetic factors in the aetiology of this complex autoimmune disease. Although significant progress has been made in elucidating the genetics of T1D in recent years, the non-genetic component has remained poorly defined. We hypothesized that epigenetic variation could underlie some of the non-genetic component of T1D aetiology and, thus, performed an epigenome-wide association study (EWAS) for this disease. We generated genome-wide DNA methylation profiles of purified CD14+ monocytes (an immune effector cell type relevant to T1D pathogenesis) from 15 T1D–discordant MZ twin pairs. This identified 132 different CpG sites at which the direction of the intra-MZ pair DNA methylation difference significantly correlated with the diabetic state, i.e. T1D–associated methylation variable positions (T1D–MVPs). We confirmed these T1D–MVPs display statistically significant intra-MZ pair DNA methylation differences in the expected direction in an independent set of T1D–discordant MZ pairs (P = 0.035). Then, to establish the temporal origins of the T1D–MVPs, we generated two further genome-wide datasets and established that, when compared with controls, T1D–MVPs are enriched in singletons both before (P = 0.001) and at (P = 0.015) disease diagnosis, and also in singletons positive for diabetes-associated autoantibodies but disease-free even after 12 years follow-up (P = 0.0023). Combined, these results suggest that T1D–MVPs arise very early in the etiological process that leads to overt T1D. Our EWAS of T1D represents an important contribution toward understanding the etiological role of epigenetic variation in type 1 diabetes, and it is also the first systematic analysis of the temporal origins of disease-associated epigenetic variation for any human complex disease.
Author Summary
Type 1 diabetes (T1D) is a complex autoimmune disease affecting >30 million people worldwide. It is caused by a combination of genetic and non-genetic factors, leading to destruction of insulin-secreting cells. Although significant progress has recently been made in elucidating the genetics of T1D, the non-genetic component has remained poorly defined. Epigenetic modifications, such as methylation of DNA, are indispensable for genomic processes such as transcriptional regulation and are frequently perturbed in human disease. We therefore hypothesized that epigenetic variation could underlie some of the non-genetic component of T1D aetiology, and we performed a genome-wide DNA methylation analysis of a specific subset of immune cells (monocytes) from monozygotic twins discordant for T1D. This revealed the presence of T1D–specific methylation variable positions (T1D–MVPs) in the T1D–affected co-twins. Since these T1D–MVPs were found in MZ twins, they cannot be due to genetic differences. Additional experiments revealed that some of these T1D–MVPs are found in individuals before T1D diagnosis, suggesting they arise very early in the process that leads to overt T1D and are not simply due to post-disease associated factors (e.g. medication or long-term metabolic changes). T1D–MVPs may thus potentially represent a previously unappreciated, and important, component of type 1 diabetes risk.
doi:10.1371/journal.pgen.1002300
PMCID: PMC3183089  PMID: 21980303
17.  Monozygotic twins affected with major depressive disorder have greater variance in methylation than their unaffected co-twin 
Translational Psychiatry  2013;3(6):e269-.
Our understanding of major depressive disorder (MDD) has focused on the influence of genetic variation and environmental risk factors. Growing evidence suggests the additional role of epigenetic mechanisms influencing susceptibility for complex traits. DNA sequence within discordant monozygotic twin (MZT) pairs is virtually identical; thus, they represent a powerful design for studying the contribution of epigenetic factors to disease liability. The aim of this study was to investigate whether specific methylation profiles in white blood cells could contribute to the aetiology of MDD. Participants were drawn from the Queensland Twin Registry and comprised 12 MZT pairs discordant for MDD and 12 MZT pairs concordant for no MDD and low neuroticism. Bisulphite treatment and genome-wide interrogation of differentially methylated CpG sites using the Illumina Human Methylation 450 BeadChip were performed in WBC-derived DNA. No overall difference in mean global methylation between cases and their unaffected co-twins was found; however, the differences in females was significant (P=0.005). The difference in variance across all probes between affected and unaffected twins was highly significant (P<2.2 × 10−16), with 52.4% of probes having higher variance in cases (binomial P-value<2.2 × 10−16). No significant differences in methylation were observed between discordant MZT pairs and their matched concordant MZT (permutation minimum P=0.11) at any individual probe. Larger samples are likely to be needed to identify true associations between methylation differences at specific CpG sites.
doi:10.1038/tp.2013.45
PMCID: PMC3693404  PMID: 23756378
depression; epigenetics; MDD; methylation; twins
18.  Structural Chromosome Abnormalities Associated with Obesity: Report of Four New subjects and Review of Literature 
Current Genomics  2011;12(3):190-203.
Obesity in humans is a complex polygenic trait with high inter-individual heritability estimated at 40–70%. Candidate gene, DNA linkage and genome-wide association studies (GWAS) have allowed for the identification of a large set of genes and genomic regions associated with obesity. Structural chromosome abnormalities usually result in congenital anomalies, growth retardation and developmental delay. Occasionally, they are associated with hyperphagia and obesity rather than growth delay. We report four new individuals with structural chromosome abnormalities involving 10q22.3-23.2, 16p11.2 and Xq27.1-q28 chromosomal regions with early childhood obesity and developmental delay. We also searched and summarized the literature for structural chromosome abnormalities reported in association with childhood obesity.
doi:10.2174/138920211795677930
PMCID: PMC3137004  PMID: 22043167
Obesity; aCGH; chromosome; deletion; duplication; translocation; fluorescent in situ hybridization; CNV.
19.  Genetic risk profiles for depression and anxiety in adult and elderly cohorts 
Molecular Psychiatry  2010;16(7):773-783.
The first generation of genome-wide association studies (GWA studies) for psychiatric disorders has led to new insights regarding the genetic architecture of these disorders. We now start to realize that a larger number of genes, each with a small contribution, are likely to explain the heritability of psychiatric diseases. The contribution of a large number of genes to complex traits can be analyzed with genome-wide profiling. In a discovery sample, a genetic risk profile for depression was defined based on a GWA study of 1738 adult cases and 1802 controls. The genetic risk scores were tested in two population-based samples of elderly participants. The genetic risk profiles were evaluated for depression and anxiety in the Rotterdam Study cohort and the Erasmus Rucphen Family (ERF) study. The genetic risk scores were significantly associated with different measures of depression and explained up to ∼0.7% of the variance in depression in Rotterdam Study and up to ∼1% in ERF study. The genetic score for depression was also significantly associated with anxiety explaining up to 2.1% in Rotterdam study. These findings suggest the presence of many genetic loci of small effect that influence both depression and anxiety. Remarkably, the predictive value of these profiles was as large in the sample of elderly participants as in the middle-aged samples.
doi:10.1038/mp.2010.65
PMCID: PMC3142964  PMID: 20567237
depression; anxiety; polygenic; genome-wide association; risk score
20.  Global Transcript Profiles of Fat in Monozygotic Twins Discordant for BMI: Pathways behind Acquired Obesity  
PLoS Medicine  2008;5(3):e51.
Background
The acquired component of complex traits is difficult to dissect in humans. Obesity represents such a trait, in which the metabolic and molecular consequences emerge from complex interactions of genes and environment. With the substantial morbidity associated with obesity, a deeper understanding of the concurrent metabolic changes is of considerable importance. The goal of this study was to investigate this important acquired component and expose obesity-induced changes in biological pathways in an identical genetic background.
Methods and Findings
We used a special study design of “clonal controls,” rare monozygotic twins discordant for obesity identified through a national registry of 2,453 young, healthy twin pairs. A total of 14 pairs were studied (eight male, six female; white), with a mean ± standard deviation (SD) age 25.8 ± 1.4 y and a body mass index (BMI) difference 5.2 ± 1.8 kg/m2. Sequence analyses of mitochondrial DNA (mtDNA) in subcutaneous fat and peripheral leukocytes revealed no aberrant heteroplasmy between the co-twins. However, mtDNA copy number was reduced by 47% in the obese co-twin's fat. In addition, novel pathway analyses of the adipose tissue transcription profiles exposed significant down-regulation of mitochondrial branched-chain amino acid (BCAA) catabolism (p < 0.0001). In line with this finding, serum levels of insulin secretion-enhancing BCAAs were increased in obese male co-twins (9% increase, p = 0.025). Lending clinical relevance to the findings, in both sexes the observed aberrations in mitochondrial amino acid metabolism pathways in fat correlated closely with liver fat accumulation, insulin resistance, and hyperinsulinemia, early aberrations of acquired obesity in these healthy young adults.
Conclusions
Our findings emphasize a substantial role of mitochondrial energy- and amino acid metabolism in obesity and development of insulin resistance.
Leena Peltonen and colleagues uncover the metabolic changes that result from obesity through an analysis of genetically identical twin pairs in which one was obese and the other was not.
Editors' Summary
Background.
Around the world, the proportion of people who are obese (people with an unhealthy amount of body fat) is increasing. In the US, for example, 1 adult in 7 was obese in the mid 1970s. That is, their body mass index (BMI)—their weight in kilograms divided by their height in meters squared—was more than 30. Nowadays, 1 US adult in 3 has a BMI this high and, by 2025, it is predicted that 1 in 2 will be obese. This obesity epidemic is being driven by lifestyle changes that encourage the over-consumption of energy-rich foods and discourage regular physical activity. The resultant energy imbalance leads to weight gain (the excess energy is stored as body fat or adipose tissue) and also triggers numerous metabolic changes, alterations in the chemical processes that convert food into the energy and various substances needed to support life. These obesity-related metabolic changes increase a person's risk of developing adverse health conditions such as diabetes, a condition in which dangerously high levels of sugar from food accumulate in the blood.
Why Was This Study Done?
The changes in human fat in obesity have not been completely understood, although the abnormal metabolism of adipose tissue is increasingly seen as playing a critical part in excessive weight gain. It has been very difficult to decipher which molecular and metabolic changes associated with obesity are the result of becoming obese, and which might contribute towards the acquisition of obesity in humans in the first place. To discover more about the influence of environment on obesity-induced metabolic changes, the researchers in this study have investigated these changes in pairs of genetically identical twins.
What Did the Researchers Do and Find?
The researchers recruited 14 pairs of genetically identical Finnish twins born between 1975 and 1979 who were “obesity discordant”—that is, one twin of each pair had a BMI of about 25 (not obese); the other had a BMI of about 30 (obese). The researchers took fat and blood samples from each twin, determined the insulin sensitivity of each, and measured the body composition and various fat stores of each. They found that the obese twins had more subcutaneous, intra-abdominal, and liver fat and were less insulin sensitive than the non-obese twins. Insulin sensitivity correlated with the amount of liver fat. Analysis of gene expression in the fat samples showed that 19 gene pathways (mainly inflammatory pathways) were expressed more strongly (up-regulated) in the obese twins than the non-obese twins, whereas seven pathways were down-regulated. The most highly down-regulated pathway was a mitochondrial pathway involved in amino acid breakdown, but mitochondrial energy metabolism pathways were also down-regulated. Finally, mitochondrial DNA copy number in fat was reduced in the obese twins by nearly half, a novel observation that could partly account for the obesity-induced metabolic defects of these individuals.
What Do These Findings Mean?
These and other findings identify several pathways that are involved in the development of obesity and insulin resistance. In particular, they suggest that changes in mitochondrial energy production pathways and in mitochondrial amino acid metabolism pathways could play important roles in the development of obesity and of insulin resistance and in the accumulation of liver fat even in young obese people. The study design involving identical twins has here produced some evidence for aberrations in molecules critical for acquired obesity. The results suggest that careful management of obesity by lifestyle changes has the potential to correct the obesity-related metabolic changes in fat that would otherwise lead to diabetes and other adverse health conditions in obese individuals. In addition, they suggest that the development of therapies designed to correct mitochondrial metabolism might help to reduce the illnesses associated with obesity.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050051.
The MedlinePlus encyclopedia has pages on obesity and diabetes (in English and Spanish)
The US Centers for Disease Control and Prevention provides information on all aspects of obesity (in English and Spanish)
The UK National Health Service's health Web site (NHS Direct) provides information about obesity
The International Obesity Taskforce provides information about preventing obesity and on diabetes and obesity
The UK Foods Standards Agency and the United States Department of Agriculture provide online tools and useful advice about healthy eating for adults and children
Information is available for patients and carers from the US National Diabetes Information Clearinghouse on diabetes, including information on insulin resistance
doi:10.1371/journal.pmed.0050051
PMCID: PMC2265758  PMID: 18336063
21.  Causal Inference and Observational Research: The Utility of Twins 
Valid causal inference is central to progress in theoretical and applied psychology. Although the randomized experiment is widely considered the gold standard for determining whether a given exposure increases the likelihood of some specified outcome, experiments are not always feasible and in some cases can result in biased estimates of causal effects. Alternatively, standard observational approaches are limited by the possibility of confounding, reverse causation, and the nonrandom distribution of exposure (i.e., selection). We describe the counterfactual model of causation and apply it to the challenges of causal inference in observational research, with a particular focus on aging. We argue that the study of twin pairs discordant on exposure, and in particular discordant monozygotic twins, provides a useful analog to the idealized counterfactual design. A review of discordant-twin studies in aging reveals that they are consistent with, but do not unambiguously establish, a causal effect of lifestyle factors on important late-life outcomes. Nonetheless, the existing studies are few in number and have clear limitations that have not always been considered in interpreting their results. It is concluded that twin researchers could make greater use of the discordant-twin design as one approach to strengthen causal inferences in observational research.
doi:10.1177/1745691610383511
PMCID: PMC3094752  PMID: 21593989
discordant-twin design; causal inference; twin research; lifestyle influences in aging
22.  Genetics of Obesity: What have we Learned? 
Current Genomics  2011;12(3):169-179.
Candidate gene and genome-wide association studies have led to the discovery of nine loci involved in Mendelian forms of obesity and 58 loci contributing to polygenic obesity. These loci explain a small fraction of the heritability for obesity and many genes remain to be discovered. However, efforts in obesity gene identification greatly modified our understanding of this disorder. In this review, we propose an overlook of major lessons learned from 15 years of research in the field of genetics and obesity. We comment on the existence of the genetic continuum between monogenic and polygenic forms of obesity that pinpoints the role of genes involved in the central regulation of food intake and genetic predisposition to obesity. We explain how the identification of novel obesity predisposing genes has clarified unsuspected biological pathways involved in the control of energy balance that have helped to understand past human history and to explore causality in epidemiology. We provide evidence that obesity predisposing genes interact with the environment and influence the response to treatment relevant to disease prediction.
doi:10.2174/138920211795677895
PMCID: PMC3137002  PMID: 22043165
Biologic pathways; disease prediction; food intake; gene x environment interactions; genetic continuum; Mendelian randomization; obesity; positive selection.
23.  Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics 
PLoS Genetics  2014;10(5):e1004383.
Genetic association studies, in particular the genome-wide association study (GWAS) design, have provided a wealth of novel insights into the aetiology of a wide range of human diseases and traits, in particular cardiovascular diseases and lipid biomarkers. The next challenge consists of understanding the molecular basis of these associations. The integration of multiple association datasets, including gene expression datasets, can contribute to this goal. We have developed a novel statistical methodology to assess whether two association signals are consistent with a shared causal variant. An application is the integration of disease scans with expression quantitative trait locus (eQTL) studies, but any pair of GWAS datasets can be integrated in this framework. We demonstrate the value of the approach by re-analysing a gene expression dataset in 966 liver samples with a published meta-analysis of lipid traits including >100,000 individuals of European ancestry. Combining all lipid biomarkers, our re-analysis supported 26 out of 38 reported colocalisation results with eQTLs and identified 14 new colocalisation results, hence highlighting the value of a formal statistical test. In three cases of reported eQTL-lipid pairs (SYPL2, IFT172, TBKBP1) for which our analysis suggests that the eQTL pattern is not consistent with the lipid association, we identify alternative colocalisation results with SORT1, GCKR, and KPNB1, indicating that these genes are more likely to be causal in these genomic intervals. A key feature of the method is the ability to derive the output statistics from single SNP summary statistics, hence making it possible to perform systematic meta-analysis type comparisons across multiple GWAS datasets (implemented online at http://coloc.cs.ucl.ac.uk/coloc/). Our methodology provides information about candidate causal genes in associated intervals and has direct implications for the understanding of complex diseases as well as the design of drugs to target disease pathways.
Author Summary
Genome-wide association studies (GWAS) have found a large number of genetic regions (“loci”) affecting clinical end-points and phenotypes, many outside coding intervals. One approach to understanding the biological basis of these associations has been to explore whether GWAS signals from intermediate cellular phenotypes, in particular gene expression, are located in the same loci (“colocalise”) and are potentially mediating the disease signals. However, it is not clear how to assess whether the same variants are responsible for the two GWAS signals or whether it is distinct causal variants close to each other. In this paper, we describe a statistical method that can use simply single variant summary statistics to test for colocalisation of GWAS signals. We describe one application of our method to a meta-analysis of blood lipids and liver expression, although any two datasets resulting from association studies can be used. Our method is able to detect the subset of GWAS signals explained by regulatory effects and identify candidate genes affected by the same GWAS variants. As summary GWAS data are increasingly available, applications of colocalisation methods to integrate the findings will be essential for functional follow-up, and will also be particularly useful to identify tissue specific signals in eQTL datasets.
doi:10.1371/journal.pgen.1004383
PMCID: PMC4022491  PMID: 24830394
24.  The Enigma of Genetics Etiology of Atherosclerosis in the Post-GWAS Era 
Current Atherosclerosis Reports  2012;14(4):295-299.
Coronary atherosclerosis is a complex heritable trait with an enigmatic genetic etiology. Genome-wide association studies (GWAS) have successfully led to identification of over 100 different loci for susceptibility to coronary atherosclerosis. Most identified single nucleotide polymorphisms (SNP)s and genes have not been previously implicated in the pathogenesis of atherosclerosis and hence, have modest biological plausibility. The novel discoveries, however, might provide the opportunity for identification of new pathways and consequently novel preventive and therapeutic targets. A notable outcome of GWAS is relatively modest effect sizes of the associated SNPs. Collectively, the identified SNPs account for a relatively small fraction of heritability of coronary atherosclerosis, which raises the question of “missing heritability”. Because GWAS test the common disease – comment variant hypothesis, a plausible explanation might be the presence of uncommon and rare variants in the genome that are untested in GWAS but that might exert large effect sizes on the risk of atherosclerosis. The latter, however, remains an empiric question pending validation through experimentation. Alternative mechanisms, such as transgenerational epigenetics including microRNAs, might in part account for the heritability of coronary atherosclerosis. Collectively, the recent findings are indicative of the etiological complexity of coronary atherosclerosis. Hence, it is expected that genetic etiology of coronary atherosclerosis will remain enigmatic in the foreseeable future.
doi:10.1007/s11883-012-0245-0
PMCID: PMC3389254  PMID: 22437283
Atherosclerosis; Coronary artery disease; Genetics; GWAS; Polymorphism
25.  Methods for Investigating Gene-Environment Interactions in Candidate Pathway and Genome-Wide Association Studies 
Despite the considerable enthusiasm about the yield of novel and replicated discoveries of genetic associations from the new generation of genome-wide association studies (GWAS), the proportion of the heritability of most complex diseases that have been studied to date remains small. Some of this “dark matter” could be due to gene-environment (G×E) interactions or more complex pathways involving multiple genes and exposures. We review the basic epidemiologic study design and statistical analysis approaches to studying G×E interactions individually and then consider more comprehensive approaches to studying entire pathways or GWAS data. In addition to the usual issues in genetic association studies, particular care is needed in exposure assessment and very large sample sizes are required. Although hypothesis-driven pathway-based and “agnostic” GWAS approaches are generally viewed as opposite poles, we suggest that the two can be usefully married using hierarchical modeling strategies that exploit external pathway knowledge in mining genome-wide data.
doi:10.1146/annurev.publhealth.012809.103619
PMCID: PMC2847610  PMID: 20070199
complex diseases; study design; hierarchical models; mechanistic models; synergism; Bayesian methods; exploratory methods for high-dimensional data

Results 1-25 (645391)