Search tips
Search criteria

Results 1-25 (1522847)

Clipboard (0)

Related Articles

1.  Lipins, Lipinopathies, and the Modulation of Cellular Lipid Storage and Signaling 
Progress in lipid research  2013;52(3):10.1016/j.plipres.2013.04.001.
Members of the lipin protein family are phosphatidate phosphatase (PAP) enzymes, which catalyze the dephosphorylation of phosphatidic acid to diacylglycerol, the penultimate step in TAG synthesis. Lipins are unique among the glycerolipid biosynthetic enzymes in that they also promote fatty acid oxidation through their activity as co-regulators of gene expression by DNA-bound transcription factors. Lipin function has been evolutionarily conserved from a single ortholog in yeast to the mammalian family of three lipin proteins—lipin-1, lipin-2, and lipin-3. In mice and humans, the levels of lipin activity are a determinant of TAG storage in diverse cell types, and humans with deficiency in lipin-1 or lipin-2 have severe metabolic diseases. Recent work has highlighted the complex physiological interactions between members of the lipin protein family, which exhibit both overlapping and unique functions in specific tissues. The analysis of “lipinopathies” in mouse models and in humans has revealed an important role for lipin activity in the regulation of lipid intermediates (phosphatidate and diacylglycerol), which influence fundamental cellular processes including adipocyte and nerve cell differentiation, adipocyte lipolysis, and hepatic insulin signaling. The elucidation of lipin molecular and physiological functions could lead to novel approaches to modulate cellular lipid storage and metabolic disease.
PMCID: PMC3830937  PMID: 23603613
2.  Lipin-1 and lipin-3 together determine adiposity in vivo☆ 
Molecular Metabolism  2013;3(2):145-154.
The lipin protein family of phosphatidate phosphatases has an established role in triacylglycerol synthesis and storage. Physiological roles for lipin-1 and lipin-2 have been identified, but the role of lipin-3 has remained mysterious. Using lipin single- and double-knockout models we identified a cooperative relationship between lipin-3 and lipin-1 that influences adipogenesis in vitro and adiposity in vivo. Furthermore, natural genetic variations in Lpin1 and Lpin3 expression levels across 100 mouse strains correlate with adiposity. Analysis of PAP activity in additional metabolic tissues from lipin single- and double-knockout mice also revealed roles for lipin-1 and lipin-3 in spleen, kidney, and liver, for lipin-1 alone in heart and skeletal muscle, and for lipin-1 and lipin-2 in lung and brain. Our findings establish that lipin-1 and lipin-3 cooperate in vivo to determine adipose tissue PAP activity and adiposity, and may have implications in understanding the protection of lipin-1-deficient humans from overt lipodystrophy.
PMCID: PMC3953701  PMID: 24634820
Gene family; Knockout mouse; Adipogenesis; Triacylglycerol; Glycerolipid biosynthesis
3.  Inactivation of the Host Lipin Gene Accelerates RNA Virus Replication through Viral Exploitation of the Expanded Endoplasmic Reticulum Membrane 
PLoS Pathogens  2014;10(2):e1003944.
RNA viruses take advantage of cellular resources, such as membranes and lipids, to assemble viral replicase complexes (VRCs) that drive viral replication. The host lipins (phosphatidate phosphatases) are particularly interesting because these proteins play key roles in cellular decisions about membrane biogenesis versus lipid storage. Therefore, we examined the relationship between host lipins and tombusviruses, based on yeast model host. We show that deletion of PAH1 (phosphatidic acid phosphohydrolase), which is the single yeast homolog of the lipin gene family of phosphatidate phosphatases, whose inactivation is responsible for proliferation and expansion of the endoplasmic reticulum (ER) membrane, facilitates robust RNA virus replication in yeast. We document increased tombusvirus replicase activity in pah1Δ yeast due to the efficient assembly of VRCs. We show that the ER membranes generated in pah1Δ yeast is efficiently subverted by this RNA virus, thus emphasizing the connection between host lipins and RNA viruses. Thus, instead of utilizing the peroxisomal membranes as observed in wt yeast and plants, TBSV readily switches to the vastly expanded ER membranes in lipin-deficient cells to build VRCs and support increased level of viral replication. Over-expression of the Arabidopsis Pah2p in Nicotiana benthamiana decreased tombusvirus accumulation, validating that our findings are also relevant in a plant host. Over-expression of AtPah2p also inhibited the ER-based replication of another plant RNA virus, suggesting that the role of lipins in RNA virus replication might include several more eukaryotic viruses.
Author Summary
Genetic diseases alter cellular pathways and they likely influence pathogen-host interactions as well. To test the relationship between a key cellular gene, whose mutation causes genetic diseases, and a pathogen, the authors have chosen the cellular lipins. Lipins are involved in a key cellular decision on using lipids for membrane biogenesis or for storage. Spontaneous mutations in the LIPIN1 gene in mammals, which cause impaired lipin-1 function, contribute to common metabolic dysregulation and several major diseases, such as obesity, hyperinsulinemia, type 2 diabetes, fatty liver distrophy and hypertension. In this work, the authors tested if tomato bushy stunt virus (TBSV), which, similar to many (+)RNA viruses, depends on host membrane biogenesis, is affected by deletion of the single lipin gene (PAH1) in yeast model host. They show that pah1Δ yeast supports increased replication of TBSV. They demonstrate that TBSV takes advantage of the expanded ER membranes in lipin-deficient yeast to efficiently assemble viral replicase complexes. Their findings suggest possible positive effect of a genetic disease caused by mutation on the replication of an infectious agent.
PMCID: PMC3930575  PMID: 24586157
4.  Lipin Is a Central Regulator of Adipose Tissue Development and Function in Drosophila melanogaster ▿  
Molecular and Cellular Biology  2011;31(8):1646-1656.
Lipins are evolutionarily conserved proteins found from yeasts to humans. Mammalian and yeast lipin proteins have been shown to control gene expression and to enzymatically convert phosphatidate to diacylglycerol, an essential precursor in triacylglcerol (TAG) and phospholipid synthesis. Loss of lipin 1 in the mouse, but not in humans, leads to lipodystrophy and fatty liver disease. Here we show that the single lipin orthologue of Drosophila melanogaster (dLipin) is essential for normal adipose tissue (fat body) development and TAG storage. dLipin mutants are characterized by reductions in larval fat body mass, whole-animal TAG content, and lipid droplet size. Individual cells of the underdeveloped fat body are characterized by increased size and ultrastructural defects affecting cell nuclei, mitochondria, and autophagosomes. Under starvation conditions, dLipin is transcriptionally upregulated and functions to promote survival. Together, these data show that dLipin is a central player in lipid and energy metabolism, and they establish Drosophila as a genetic model for further studies of conserved functions of the lipin family of metabolic regulators.
PMCID: PMC3126333  PMID: 21300783
5.  The lipin protein family: dual roles in lipid biosynthesis and gene expression 
FEBS letters  2007;582(1):90-96.
The prevalence of obesity in the western world has focused attention on factors that influence triglyceride biosynthesis, storage, and utilization. Members of the lipin protein family have a newly discovered enzymatic role in triglyceride and phospholipid biosynthesis as a phosphatidate phosphatase, and also act as an inducible transcriptional coactivator in conjunction with PGC-1α and PPARα. Through these activities, the founding member of the family, lipin-1, influences lipid metabolism and glucose homeostasis in diverse tissues including adipose tissue, skeletal muscle, and liver. The physiological roles of lipin-2 and lipin-3 are less well defined, but are likely to carry out similar functions in glycerolipid biosynthesis and gene expression in a distinct tissue distribution.
PMCID: PMC2848953  PMID: 18023282
adipose tissue; ipodystrophy; obesity; triaclyglycerol; phosphatidate phosphatase; transcriptional coactivator
6.  A Phosphatidic Acid Binding/Nuclear Localization Motif Determines Lipin1 Function in Lipid Metabolism and Adipogenesis 
Molecular Biology of the Cell  2010;21(18):3171-3181.
A polybasic motif in the metabolic regulator lipin1 is both a membrane anchor and a nuclear localization sequence required for lipin1 function in phospholipid metabolism and adipogenesis.
Lipins are phosphatidic acid phosphatases with a pivotal role in regulation of triglyceride and glycerophospholipid metabolism. Lipin1 is also an amplifier of PGC-1α, a nuclear coactivator of PPAR-α responsive gene transcription. Lipins do not contain recognized membrane-association domains, but interaction of these enzymes with cellular membranes is necessary for access to their phospholipid substrate. We identified a role for a conserved polybasic amino acid motif in an N-terminal domain previously implicated as a determinant of nuclear localization in selective binding of lipin1β to phosphatidic acid, using blot overlay assays and model bilayer membranes. Studies using lipin1β polybasic motif variants establish that this region is also critical for nuclear import and raise the possibility that nuclear/cytoplasmic shuttling of lipin1β is regulated by PA. We used pharmacological agents and lipin1β polybasic motif mutants to explore the role of PA-mediated membrane association and nuclear localization on lipin1β function in phospholipid metabolism and adipogenic differentiation. We identify a role for the lipin1 polybasic motif as both a lipid binding motif and a primary nuclear localization sequence. These two functions are necessary for full expression of the biological activity of the protein in intracellular lipid metabolism and transcriptional control of adipogenesis.
PMCID: PMC2938383  PMID: 20660155
7.  Cardiac lipin 1 expression is regulated by the peroxisome proliferator activated receptor γ coactivator 1α/estrogen related receptor axis 
Lipin family proteins (lipin 1, 2, and 3) are bifunctional intracellular proteins that regulate metabolism by acting as coregulators of DNA-bound transcription factors and also dephosphorylate phosphatidate to form diacylglycerol [phosphatidate phosphohydrolase activity] in the triglyceride synthesis pathway. Herein, we report that lipin 1 is enriched in heart and that hearts of mice lacking lipin 1 (fld mice) exhibit accumulation of phosphatidate. We also demonstrate that the expression of the gene encoding lipin 1 (Lpin1) is under the control of the estrogen-related receptors (ERRs) and their coactivator the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). PGC-1α, ERRα, or ERRγ overexpression increased Lpin1 transcription in cultured ventricular myocytes and the ERRs were associated with response elements in the first intron of the Lpin1 gene. Concomitant RNAi-mediated knockdown of ERRα and ERRγ abrogated the induction of lipin 1 expression by PGC-1α overexpression. Consistent with these data, 3-fold overexpression of PGC-1α in intact myocardium of transgenic mice increased cardiac lipin 1 and ERRα/γ expression. Similarly, injection of the β2-adrenergic agonist clenbuterol induced PGC-1α and lipin 1 expression, and the induction in lipin 1 after clenbuterol occurred in a PGC-1α-dependent manner. In contrast, expression of PGC-1α, ERRα, ERRγ, and lipin 1 was down-regulated in failing heart. Cardiac phosphatidic acid phosphohydrolase activity was also diminished, while cardiac phosphatidate content was increased, in failing heart. Collectively, these data suggest that lipin 1 is the principal lipin protein in the myocardium and is regulated in response to physiologic and pathologic stimuli that impact cardiac metabolism.
PMCID: PMC3104300  PMID: 21549711
lipin; PGC-1α; metabolism; heart failure
8.  Combination of lipid metabolism alterations and their sensitivity to inflammatory cytokines in human lipin-1-deficient myoblasts 
Biochimica et biophysica acta  2013;1832(12):2103-2114.
Lipin-1 deficiency is associated with massive rhabdomyolysis episodes in humans, precipitated by febrile illnesses. Despite well-known roles of lipin-1 in lipid biosynthesis and transcriptional regulation, the pathogenic mechanisms leading to rhabdomyolysis remain unknown. Here we show that primary myoblasts from lipin-1-deficient patients exhibit a dramatic decrease in LPIN1 expression and phosphatidic acid phosphatase 1 activity, and a significant accumulation of lipid droplets (LD). The expression levels of LPIN1-target genes [peroxisome proliferator-activated receptors delta and alpha (PPARδ, PPARα), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), acyl-coenzyme A dehydrogenase, very long (ACADVL), carnitine palmitoyltransferase IB and 2 (CPT1B and CPT2)] were not affected while lipin-2 protein level, a closely related member of the family, was increased. Microarray analysis of patients’ myotubes identified 19 down-regulated and 51 up-regulated genes, indicating pleiotropic effects of lipin-1 deficiency. Special attention was paid to the up-regulated ACACB (acetyl-CoA carboxylase beta), a key enzyme in the fatty acid synthesis/oxidation balance. We demonstrated that overexpression of ACACB was associated with free fatty acid accumulation in patients’ myoblasts whereas malonyl-carnitine (as a measure of malonyl-CoA) and CPT1 activity were in the normal range in basal conditions accordingly to the normal daily activity reported by the patients. Remarkably ACACB invalidation in patients’ myoblasts decreased LD number and size while LPIN1 invalidation in controls induced LD accumulation. Further, pro-inflammatory treatments tumor necrosis factor alpha + Interleukin-1beta(TNF1α + IL-1β) designed to mimic febrile illness, resulted in increased malonyl-carnitine levels, reduced CPT1 activity and enhanced LD accumulation, a phenomenon reversed by dexamethasone and TNFα or IL-1β inhibitors. Our data suggest that the pathogenic mechanism of rhabdomyolysis in lipin-1-deficient patients combines the predisposing constitutive impairment of lipid metabolism and its exacerbation by pro-inflammatory cytokines.
PMCID: PMC4007099  PMID: 23928362
Rhabdomyolysis; Lipin-1; PAP1; ACACB; Lipid droplet; Inflammation
9.  Dietary Cholesterol Reduces Plasma Triacylglycerol in Apolipoprotein E-Null Mice: Suppression of Lipin-1 and -2 in the Glycerol-3-Phosphate Pathway 
PLoS ONE  2011;6(8):e22917.
Cholesterol metabolism is tightly regulated by both cholesterol and its metabolites in the mammalian liver, but the regulatory mechanism of triacylglycerol (TG) synthesis remains to be elucidated. Lipin, which catalyzes the conversion of phosphatidate to diacylglycerol, is a key enzyme involved in de novo TG synthesis in the liver via the glycerol-3-phosphate (G3P) pathway. However, the regulatory mechanisms for the expression of lipin in the liver are not well understood.
Methodology/Principal Findings
Apolipoprotein E-knock out (apoE-KO) mice were fed a chow supplemented with 1.25% cholesterol (high-Chol diet). Cholesterol and bile acids were highly increased in the liver within a week. However, the amount of TG in very low-density lipoprotein (VLDL), but not in the liver, was reduced by 78%. The epididymal adipose tissue was almost eradicated in the long term. DNA microarray and real-time RT-PCR analyses revealed that the mRNA expression of all the genes in the G3P pathway in the liver was suppressed in the high-Chol diet apoE-KO mice. In particular, the mRNA and protein expression of lipin-1 and lipin-2 was markedly decreased, and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), which up-regulates the transcription of lipin-1, was also suppressed. In vitro analysis using HepG2 cells revealed that the protein expression of lipin-2 was suppressed by treatment with taurocholic acid.
These data using apoE-KO mice indicate that cholesterol and its metabolites are involved in regulating TG metabolism through a suppression of lipin-1 and lipin-2 in the liver. This research provides evidence for the mechanism of lipin expression in the liver.
PMCID: PMC3153461  PMID: 21857965
10.  Lipins: Multifunctional Lipid Metabolism Proteins 
Annual review of nutrition  2010;30:257-272.
The lipin proteins are evolutionarily conserved proteins with roles in lipid metabolism and disease. There are three lipin protein family members in mammals and one or two orthologs in plants, invertebrates, and single-celled eukaryotes. Studies in yeast and mouse led to the identification of two distinct molecular functions of lipin proteins. Lipin proteins have phosphatidate phosphatase activity and catalyze the formation of diacylglycerol in the glycerol-3-phosphate pathway, implicating them in the regulation of triglyceride and phospholipid biosynthesis. Mammalian lipin proteins also possess transcriptional coactivator activity and have been implicated in the regulation of metabolic gene expression. Here we review key findings in the field that demonstrate roles for lipin family members in metabolic homeostasis and in rare human diseases, and we examine evidence implicating genetic variations in lipin genes in common metabolic dysregulation such as obesity, hyperinsulinemia, hypertension, and type 2 diabetes.
PMCID: PMC3738581  PMID: 20645851
triglyceride; obesity; insulin resistance; phosphatidate phosphatase; transcriptional coactivator
11.  Alterations in Hepatic Metabolism in fld Mice Reveal a Role for Lipin 1 in Regulating VLDL-Triacylglyceride Secretion 
Lipin 1 controls fatty acid metabolism in the nucleus as a transcriptional regulator and in the cytosol as an enzyme catalyzing the penultimate step in phosphoglycerol triacylglyceride (TAG) synthesis. We sought to evaluate the effects of lipin 1 on hepatic TAG synthesis and secretion by gain-of-function and loss-of-function approaches.
Methods and Results
Rates of TAG synthesis were not impaired in hepatocytes isolated from adult lipin 1—deficient (fld) mice and were actually increased in 14-day-old fld mice. Additionally, compared to littermate controls, VLDL-TAG secretion rates were markedly increased in fld mice of both ages. Lipin 1 overexpression did not alter TAG synthesis rates but significantly suppressed VLDL-TAG secretion. The lipin 1-mediated suppression of VLDL-TAG secretion was linked to the peptide motif mediating its transcriptional-regulatory effects. However, the expression of candidate genes required for VLDL assembly and secretion was unaltered by lipin 1 activation or deficiency. Finally, the hepatic expression of lipin 1 was diminished in obese insulin-resistant mice, whereas adenoviral-mediated overexpression of lipin 1 in liver of these mice inhibits VLDL-TAG secretion and improves hepatic insulin signaling.
Collectively, these studies reveal new and unexpected effects of lipin 1 on hepatic TAG metabolism and obesity-related hepatic insulin resistance.
PMCID: PMC2655237  PMID: 18669885
lipin 1; liver; triglyceride; VLDL secretion; dyslipidemia
12.  Endoplasmic Reticulum Stress Promotes LIPIN2-Dependent Hepatic Insulin Resistance 
Diabetes  2011;60(4):1072-1081.
Diet-induced obesity (DIO) is linked to peripheral insulin resistance—a major predicament in type 2 diabetes. This study aims to identify the molecular mechanism by which DIO-triggered endoplasmic reticulum (ER) stress promotes hepatic insulin resistance in mouse models.
C57BL/6 mice and primary hepatocytes were used to evaluate the role of LIPIN2 in ER stress-induced hepatic insulin resistance. Tunicamycin, thapsigargin, and lipopolysaccharide were used to invoke acute ER stress conditions. To promote chronic ER stress, mice were fed with a high-fat diet for 8–12 weeks. To verify the role of LIPIN2 in hepatic insulin signaling, adenoviruses expressing wild-type or mutant LIPIN2, and shRNA for LIPIN2 were used in animal studies. Plasma glucose, insulin levels as well as hepatic free fatty acids, diacylglycerol (DAG), and triacylglycerol were assessed. Additionally, glucose tolerance, insulin tolerance, and pyruvate tolerance tests were performed to evaluate the metabolic phenotype of these mice.
LIPIN2 expression was enhanced in mouse livers by acute ER stress–inducers or by high-fat feeding. Transcriptional activation of LIPIN2 by ER stress is mediated by activating transcription factor 4, as demonstrated by LIPIN2 promoter assays, Western blot analyses, and chromatin immunoprecipitation assays. Knockdown of hepatic LIPIN2 in DIO mice reduced fasting hyperglycemia and improved hepatic insulin signaling. Conversely, overexpression of LIPIN2 impaired hepatic insulin signaling in a phosphatidic acid phosphatase activity–dependent manner.
These results demonstrate that ER stress–induced LIPIN2 would contribute to the perturbation of hepatic insulin signaling via a DAG-protein kinase C ε–dependent manner in DIO mice.
PMCID: PMC3064081  PMID: 21357464
13.  Evaluating the Role of LPIN1 Variation in Insulin Resistance, Body Weight, and Human Lipodystrophy in U.K. Populations 
Diabetes  2008;57(9):2527-2533.
OBJECTIVE— Loss of lipin 1 activity causes lipodystrophy and insulin resistance in the fld mouse, and LPIN1 expression and common genetic variation were recently suggested to influence adiposity and insulin sensitivity in humans. We aimed to conduct a comprehensive association study to clarify the influence of common LPIN1 variation on adiposity and insulin sensitivity in U.K. populations and to examine the role of LPIN1 mutations in insulin resistance syndromes.
RESEARCH DESIGN AND METHOD— Twenty-two single nucleotide polymorphisms tagging common LPIN1 variation were genotyped in Medical Research Council (MRC) Ely (n = 1,709) and Hertfordshire (n = 2,901) population-based cohorts. LPIN1 exons, exon/intron boundaries, and 3′ untranslated region were sequenced in 158 patients with idiopathic severe insulin resistance (including 23 lipodystrophic patients) and 48 control subjects.
RESULTS— We found no association between LPIN1 single nucleotide polymorphisms and fasting insulin but report a nominal association between rs13412852 and BMI (P = 0.042) in a meta-analysis of 8,504 samples from in-house and publicly available studies. Three rare nonsynonymous variants (A353T, R552K, and G582R) were detected in severely insulin-resistant patients. However, these did not cosegregate with disease in affected families, and Lipin1 protein expression and phosphorylation in patients with variants were indistinguishable from those in control subjects.
CONCLUSIONS— Our data do not support a major effect of common LPIN1 variation on metabolic traits and suggest that mutations in LPIN1 are not a common cause of lipodystrophy in humans. The nominal associations with BMI and other metabolic traits in U.K. cohorts require replication in larger cohorts.
PMCID: PMC2518506  PMID: 18591397
14.  Temporal and Spatial Regulation of the Phosphatidate Phosphatases Lipin 1 and 2*S⃞ 
The Journal of Biological Chemistry  2008;283(43):29166-29174.
Lipins are the founding members of a novel family of Mg2+-dependent phosphatidate phosphatases (PAP1 enzymes) that play key roles in fat metabolism and lipid biosynthesis. Despite their importance, there is still little information on how their activity is regulated. Here we demonstrate that the functions of lipin 1 and 2 are evolutionarily conserved from unicellular eukaryotes to mammals. The two lipins display distinct intracellular localization in HeLa M cells, with a pool of lipin 2 exhibiting a tight membrane association. Small interfering RNA-mediated silencing of lipin 1 leads to a dramatic decrease of the cellular PAP1 activity in HeLa M cells, whereas silencing of lipin 2 leads to an increase of lipin 1 levels and PAP1 activity. Consistent with their distinct functions in HeLa M cells, lipin 1 and 2 exhibit reciprocal patterns of protein expression in differentiating 3T3-L1 adipocytes. Lipin 2 levels increase in lipin 1-depleted 3T3-L1 cells without rescuing the adipogenic defects, whereas depletion of lipin 2 does not inhibit adipogenesis. Finally, we show that the PAP1 activity of both lipins is inhibited by phosphorylation during mitosis, leading to a decrease in the cellular PAP1 activity during cell division. We propose that distinct and non-redundant functions of lipin 1 and 2 regulate lipid production during the cell cycle and adipocyte differentiation.
PMCID: PMC2570901  PMID: 18694939
15.  Distinct Roles of the Phosphatidate Phosphatases Lipin 1 and 2 during Adipogenesis and Lipid Droplet Biogenesis in 3T3-L1 Cells* 
The Journal of Biological Chemistry  2013;288(48):34502-34513.
Background: Lipins are phosphatidate phosphatases that generate diacylglycerol for lipid synthesis.
Results: Lipin 1 or lipin 2 depletion has distinct effects on differentiating adipocytes. Cells depleted of both lipins after initiation of adipogenesis accumulate triacylglycerol but display lipid droplet fragmentation.
Conclusion: Lipins have a role in lipid droplet biogenesis after initiation of adipogenesis.
Significance: Lipins play multiple roles during adipocyte differentiation.
Lipins are evolutionarily conserved Mg2+-dependent phosphatidate phosphatase (PAP) enzymes with essential roles in lipid biosynthesis. Mammals express three paralogues: lipins 1, 2, and 3. Loss of lipin 1 in mice inhibits adipogenesis at an early stage of differentiation and results in a lipodystrophic phenotype. The role of lipins at later stages of adipogenesis, when cells initiate the formation of lipid droplets, is less well characterized. We found that depletion of lipin 1, after the initiation of differentiation in 3T3-L1 cells but before the loading of lipid droplets with triacylglycerol, results in a reciprocal increase of lipin 2, but not lipin 3. We generated 3T3-L1 cells where total lipin protein and PAP activity levels are down-regulated by the combined depletion of lipins 1 and 2 at day 4 of differentiation. These cells still accumulated triacylglycerol but displayed a striking fragmentation of lipid droplets without significantly affecting their total volume per cell. This was due to the lack of the PAP activity of lipin 1 in adipocytes after day 4 of differentiation, whereas depletion of lipin 2 led to an increase of lipid droplet volume per cell. We propose that in addition to their roles during early adipogenesis, lipins also have a role in lipid droplet biogenesis.
PMCID: PMC3843065  PMID: 24133206
Adipocyte; Lipids; Mouse; Phosphatase; Phosphatidate; Triacylglycerol; Lipin
16.  Hepatic-Specific Lipin-1 Deficiency Exacerbates Experimental Alcohol-Induced Steatohepatitis in Mice 
Hepatology (Baltimore, Md.)  2013;58(6):10.1002/hep.26589.
Lipin-1 regulates lipid metabolism via its function as an enzyme in the triglyceride synthesis pathway and as a transcriptional co-regulatory protein and is highly up-regulated in alcoholic fatty liver disease. In the present study, using a liver specific lipin-1-deficient (lipin-1LKO) mouse model, we aimed to investigate the functional role of lipin-1 in the development of alcoholic steatohepatitis and explore the underlying mechanisms. Alcoholic liver injury was achieved by pair feeding wild-type (WT) and lipin-1LKO mice with modified Lieber-DeCarli ethanol-containing low fat diets for 4-wks. Surprisingly, chronically ethanol-fed lipin-1LKO mice showed markedly greater hepatic triglyceride and cholesterol accumulation, and augmented elevation of serum liver enzymes accompanied by increased hepatic pro-inflammatory cytokine expression. Our studies further revealed that hepatic removal of lipin-1 in mice augmented ethanol-induced impairment of hepatic fatty acid oxidation and lipoprotein production likely via deactivation of PGC-1α, a prominent transcriptional regulator of lipid metabolism. Our findings demonstrate that liver-specific lipin-1 deficiency in mice exacerbates the development and progression of experimental alcohol-induced steatohepatitis. Pharmacological or nutritional modulation of hepatic lipin-1 may be beneficial for the prevention or treatment of human alcoholic fatty liver disease.
PMCID: PMC3835749  PMID: 23787969
Alcoholic liver steatosis; Lipid metabolism; Inflammmation; Lipin-1; Signal transduction
17.  Regulation of Hepatic Lipin-1 by Ethanol: Role of AMPK-SREBP-1 Signaling 
Hepatology (Baltimore, Md.)  2011;55(2):437-446.
Lipin-1 is a protein that exhibits dual functions as a phosphatidic acid phosphohydrolase (PAP) enzyme in the triglyceride synthesis pathways and a transcriptional co-regulator. Our previous studies have shown that ethanol causes fatty liver by activation of sterol regulatory element-binding protein 1 (SREBP-1) and inhibition of hepatic AMP-activated kinase (AMPK) in mice. Here, we tested the hypothesis that AMPK-SREBP-1 signaling may be involved in ethanol-mediated up-regulation of lipin-1 gene expression. The effects of ethanol on lipin-1 were investigated in cultured hepatic cells and in the livers of chronic ethanol-fed mice. Ethanol exposure robustly induced activity of a mouse lipin-1 promoter, promoted cytoplasmic localization of lipin-1 and caused excess lipid accumulation both in cultured hepatic cells and in mouse livers. Mechanistic studies showed that ethanol-mediated induction of lipin-1 gene expression was inhibited by a known activator of AMPK or overexpression of a constitutively active form of AMPK. Importantly, overexpression of processed nuclear form of SREBP-1c (nSREBP-1c) abolished the ability of AICAR to suppress ethanol-mediated induction of lipin-1 gene expression level. Chromatin immunoprecipitation (ChIP) assays further revealed that ethanol exposure significantly increased association of acetylated Histone H3 at lysine 9 (Lys9) with the SRE-containing region in the promoter of the lipin-1 gene. In conclusion, ethanol-induced up-regulation of lipin-1 gene expression is mediated through inhibition of AMPK and activation of SREBP-1.
PMCID: PMC3253249  PMID: 21953514
Alcoholic fatty liver; signal transduction; lipid metabolism; acetylation; sumoylation
18.  Lipin-1 gamma isoform is a novel lipid droplet-associated protein highly expressed in the brain 
FEBS letters  2011;585(12):1979-1984.
Lipin-1 proteins are phosphatidic acid phosphatases catalyzing the conversion from phosphatidic acid to diacylglycerol. Two alternative splicing isoforms, lipin-1α and -1β, are localized at different subcellular compartments. A third splicing isoform, lipin-1γ was recently cloned and its subcellular localization is unknown. Here, we demonstrate that lipin-1γ is localized to lipid droplets, an association mediated by a hydrophobic, lipin-1γ-specific domain. Additional expression of lipin-1γ altered lipid droplet morphology without affecting the triacylglycerol level. In human tissues, lipin-1γ is the main lipin-1 isoform expressed in normal human brain, suggesting a specialized role in regulating brain lipid metabolism.
PMCID: PMC3117272  PMID: 21616074
Lipin; phosphatidic acid phosphatase; lipid droplets; brain
19.  Evaluating the role of LPIN1 variation on insulin resistance, body weight and human lipodystrophy in UK populations 
Diabetes  2008;57(9):2527-2533.
Loss of Lpin1 activity causes lipodystrophy and insulin resistance in the fld mouse, and LPIN1 expression and common genetic variation were recently suggested to influence adiposity and insulin sensitivity in humans. We aimed to conduct a comprehensive association study to clarify the influence of LPIN1 common variation on adiposity and insulin sensitivity in UK populations, and to examine the role of LPIN1 mutations in insulin resistance syndromes.
Twenty-two SNPs tagging LPIN1 common variation were genotyped in MRC Ely (N = 1709) and Hertfordshire (N = 2901) population-based cohorts. LPIN1 exons, exon/intron boundaries and 3′UTR were sequenced in 158 patients with idiopathic severe insulin resistance (including 23 lipodystrophic patients), and 48 controls.
We found no association between LPIN1 SNPs and fasting insulin, but report a nominal association between rs13412852 and BMI (P = 0.042) in a meta-analysis of 8504 samples from in-house and publicly available studies. Three rare nonsynonymous variants (A353T, R552K and G582R) were detected in severely insulin resistant patients. However, these did not co-segregate with disease in affected families and Lipin1 protein expression and phosphorylation in patients with variants was indistinguishable from controls.
Our data do not support a major effect of LPIN1 common variation on metabolic traits and suggest that mutations in LPIN1 are not a common cause of lipodystrophy in humans. The nominal associations with BMI and other metabolic traits in UK cohorts require replication in larger cohorts.
PMCID: PMC2518506  PMID: 18591397
20.  SRSF10 Regulates Alternative Splicing and Is Required for Adipocyte Differentiation 
Molecular and Cellular Biology  2014;34(12):2198-2207.
During adipocyte differentiation, significant alternative splicing changes occur in association with the adipogenic process. However, little is known about roles played by splicing factors in this process. We observed that mice deficient for the splicing factor SRSF10 exhibit severely impaired development of subcutaneous white adipose tissue (WAT) as a result of defects in adipogenic differentiation. To identify splicing events responsible for this, transcriptome sequencing (RNA-seq) analysis was performed using embryonic fibroblast cells. Several SRSF10-affected splicing events that are implicated in adipogenesis have been identified. Notably, lipin1, known as an important regulator during adipogenesis, was further investigated. While lipin1β is mainly involved in lipogenesis, its alternatively spliced isoform lipin1α, generated through the skipping of exon 7, is primarily required for initial adipocyte differentiation. Skipping of exon 7 is controlled by an SRSF10-regulated cis element located in the constitutive exon 8. The activity of this element depends on the binding of SRSF10 and correlates with the relative abundance of lipin1α mRNA. A series of experiments demonstrated that SRSF10 controls the production of lipin1α and thus promotes adipocyte differentiation. Indeed, lipin1α expression could rescue SRSF10-mediated adipogenic defects. Taken together, our results identify SRSF10 as an essential regulator for adipocyte differentiation and also provide new insights into splicing control by SRSF10 in lipin1 pre-mRNA splicing.
PMCID: PMC4054296  PMID: 24710272
21.  Lipin1 regulates PPARγ transcriptional activity 
The Biochemical journal  2013;453(1):49-60.
PPARγ (peroxisome proliferator-activated receptor-γ) is a master transcription factor involved in adipogenesis through regulating adipocyte-specific gene expression. Recently, lipin1 was found to act as a key factor for adipocyte maturation and maintenance by modulating the C/EBPα (CCAAT/enhancer-binding protein α) and PPARγ network; however, the precise mechanism by which lipin1 affects the transcriptional activity of PPARγ is largely unknown. The results of the present study show that lipin1 activates PPARγ by releasing co-repressors, NcoR1 (nuclear receptor co-repressor 1) and SMRT (silencing mediator of retinoid and thyroid hormone receptor), from PPARγ in the absence of the ligand rosiglitazone. We also identified a novel lipin1 TAD (transcriptional activation domain), between residues 217 and 399, which is critical for the activation of PPARγ, but not PPARα. Furthermore, this TAD is unique to lipin1 since this region does not show any homology with the other lipin isoforms, lipin2 and lipin3. The activity of the lipin1 TAD is enhanced by p300 and SRC-1 (steroid receptor co-activator 1), but not by PCAF (p300/CBP-associated factor) and PGC-1α (PPAR co-activator 1α). The physical interaction between lipin1 and PPARγ occurs at the lipin1 C-terminal region from residues 825 to 926, and the VXXLL motif at residue 885 is critical for binding with and the activation of PPARγ. The action of lipin1 as a co-activator of PPARγ enhanced adipocyte differentiation; the TAD and VXXLL motif played critical roles, but the catalytic activity of lipin1 was not directly involved. Collectively, these data suggest that lipin1 functions as a key regulator of PPARγ activity through its ability to release co-repressors and recruit co-activators via a mechanism other than PPARα activation.
PMCID: PMC3690191  PMID: 23627357
co-activator; co-repressor; lipin1; peroxisome proliferator-activated receptor (PPAR)
22.  Lipin 1 Represses NFATc4 Transcriptional Activity in Adipocytes To Inhibit Secretion of Inflammatory Factors ▿ †  
Molecular and Cellular Biology  2010;30(12):3126-3139.
Lipin 1 is a bifunctional protein that regulates gene transcription and, as a Mg2+-dependent phosphatidic acid phosphatase (PAP), is a key enzyme in the biosynthesis of phospholipids and triacylglycerol. We describe here the functional interaction between lipin 1 and the nuclear factor of activated T cells c4 (NFATc4). Lipin 1 represses NFATc4 transcriptional activity through protein-protein interaction, and lipin 1 is present at the promoters of NFATc4 transcriptional targets in vivo. Catalytically active and inactive lipin 1 can suppress NFATc4 transcriptional activity, and this suppression may involve recruitment of histone deacetylases to target promoters. In fat pads from mice deficient for lipin 1 (fld mice) and in 3T3-L1 adipocytes depleted of lipin 1 there is increased expression of several NFAT target genes including tumor necrosis factor alpha, resistin, FABP4, and PPARγ. Finally, both lipin 1 protein and total PAP activity are decreased with increasing adiposity in the visceral, but not subcutaneous, fat pads of ob/ob mice. These observations place lipin 1 as a potentially important link between triacylglycerol synthesis and adipose tissue inflammation.
PMCID: PMC2876672  PMID: 20385772
23.  Complex Interplay between the Lipin 1 and the Hepatocyte Nuclear Factor 4 α (HNF4α) Pathways to Regulate Liver Lipid Metabolism 
PLoS ONE  2012;7(12):e51320.
Lipin 1 is a bifunctional protein that serves as a metabolic enzyme in the triglyceride synthesis pathway and regulates gene expression through direct protein-protein interactions with DNA-bound transcription factors in liver. Herein, we demonstrate that lipin 1 is a target gene of the hepatocyte nuclear factor 4α (HNF4α), which induces lipin 1 gene expression in cooperation with peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) through a nuclear receptor response element in the first intron of the lipin 1 gene. The results of a series of gain-of-function and loss-of-function studies demonstrate that lipin 1 coactivates HNF4α to activate the expression of a variety of genes encoding enzymes involved in fatty acid catabolism. In contrast, lipin 1 reduces the ability of HNF4α to induce the expression of genes encoding apoproteins A4 and C3. Although the ability of lipin to diminish HNF4α activity on these promoters required a direct physical interaction between the two proteins, lipin 1 did not occupy the promoters of the repressed genes and enhances the intrinsic activity of HNF4α in a promoter-independent context. Thus, the induction of lipin 1 by HNF4α may serve as a mechanism to affect promoter selection to direct HNF4α to promoters of genes encoding fatty acid oxidation enzymes.
PMCID: PMC3517414  PMID: 23236470
Biochemistry  2013;52(30):5092-5102.
Lipins are phosphatidic acid phosphatases involved in the biosynthesis of triacylglycerols and phospholipids. They are associated with the endoplasmic reticulum but can also travel into the nucleus and alter gene expression. Previous studies indicate lipins in solution form high molecular weight complexes, possibly tetramers. This study was undertaken to determine if lipins form complexes on membranes as well. Murine lipin 1b was applied to a supported bilayer of phosphatidylcholine, phosphatidylserine, and cholesterol and examined by atomic force microscopy (AFM) over time. Lipin on bare mica appeared as a symmetric particle with a volume consistent with the size of a monomer. On the bilayer lipin initially bound as asymmetric, curved particles which sometimes assembled into circular structures with an open center. Subsequently, lipin assemblies grew into large, symmetric particles with an average volume twelve times that of the monomer. Over time some of the lipin assemblies were removed from the bilayer by the AFM probe leaving behind “footprints” composed of complex patterns that may reflect the substructure of the lipin assemblies. The lipin complexes appeared very flat, with a diameter 20 times their height. The footprints had a similar diameter, providing confirmation of the extensive deformation of the protein under the AFM probe. The ability of lipin to form large complexes on membranes may have significant implications for the local concentrations of the product, diacylglycerol, formed during hydrolysis of phosphatidic acid and for cooperative hormonal regulation of lipin activity through phosphorylation of one or more monomers in the complexes.
PMCID: PMC4041088  PMID: 23862673
25.  The human lipodystrophy protein seipin is an ER membrane adaptor for the adipogenic PA phosphatase lipin 1 
Molecular Metabolism  2012;2(1):38-46.
Disruption of the gene BSCL2 causes a severe, generalised lipodystrophy, demonstrating the critical role of its protein product, seipin, in human adipose tissue development. Seipin is essential for adipocyte differentiation, whilst the study of seipin in non-adipose cells has suggested a role in lipid droplet formation. However, its precise molecular function remains poorly understood. Here we demonstrate that seipin can inducibly bind lipin 1, a phosphatidic acid (PA) phosphatase important for lipid synthesis and adipogenesis. Knockdown of seipin during early adipogenesis decreases the association of lipin 1 with membranes and increases the accumulation of its substrate PA. Conversely, PA levels are reduced in differentiating cells by overexpression of wild-type seipin but not by expression of a mutated seipin that is unable to bind lipin 1. Together our data identify lipin as the first example of a seipin-interacting protein and reveals a novel molecular function for seipin in developing adipocytes.
PMCID: PMC3757660  PMID: 24024128
Seipin; Adipogenesis; Lipodystrophy; Lipin; Endoplasmic reticulum

Results 1-25 (1522847)