PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (640749)

Clipboard (0)
None

Related Articles

1.  Chemical Decontamination with N-Acetyl-l-Cysteine–Sodium Hydroxide Improves Recovery of Viable Mycobacterium avium subsp. paratuberculosis Organisms from Cultured Milk 
Journal of Clinical Microbiology  2013;51(7):2139-2146.
Mycobacterium avium subsp. paratuberculosis is shed into the milk and feces of cows with advanced Johne's disease, allowing the transmission of M. avium subsp. paratuberculosis between animals. The objective of this study was to formulate an optimized protocol for the isolation of M. avium subsp. paratuberculosis in milk. The parameters investigated included chemical decontamination with N-acetyl-l-cysteine–sodium hydroxide (NALC-NaOH), alone and in combination with antibiotics (vancomycin, amphotericin B, and nalidixic acid), and the efficacy of solid (Herrold's egg yolk medium [HEY]) and liquid (Bactec 12B and para-JEM) culture media. For each experiment, raw milk samples from a known noninfected cow were inoculated with 102 to 108 CFU/ml of live M. avium subsp. paratuberculosis organisms. The results indicate that an increased length of exposure to NALC-NaOH from 5 to 30 min and an increased concentration of NaOH from 0.5 to 2.0% did not affect the viability of M. avium subsp. paratuberculosis. Additional treatment of milk samples with the antibiotics following NALC-NaOH treatment decreased the recovery of viable M. avium subsp. paratuberculosis cells more than treatment with NALC-NaOH alone. The Bactec 12B medium was the superior medium of the three evaluated for the isolation of M. avium subsp. paratuberculosis from milk, as it achieved the lowest threshold of detection. The optimal conditions for NALC-NaOH decontamination were determined to be exposure to 1.50% NaOH for 15 min followed by culture in Bactec 12B medium. This study demonstrates that chemical decontamination with NALC-NaOH resulted in a greater recovery of viable M. avium subsp. paratuberculosis cells from milk than from samples treated with hexadecylpyridinium chloride (HPC). Therefore, it is important to optimize milk decontamination protocols to ensure that low concentrations of M. avium subsp. paratuberculosis can be detected.
doi:10.1128/JCM.00508-13
PMCID: PMC3697694  PMID: 23637290
2.  High-Throughput Direct Fecal PCR Assay for Detection of Mycobacterium avium subsp. paratuberculosis in Sheep and Cattle 
Journal of Clinical Microbiology  2014;52(3):745-757.
Johne's disease (JD) is a chronic enteric disease caused by Mycobacterium avium subsp. paratuberculosis that affects ruminants. Transmission occurs by the fecal-oral route. A commonly used antemortem diagnostic test for the detection of M. avium subsp. paratuberculosis in feces is liquid culture; however, a major constraint is the 2- to 3-month incubation period needed for this method. Rapid methods for the detection of M. avium subsp. paratuberculosis based on PCR have been reported, but comprehensive validation data are lacking. We describe here a new test, the high-throughput-Johnes (HT-J), to detect M. avium subsp. paratuberculosis in feces. Its diagnostic accuracy was compared with that of liquid radiometric (Bactec) fecal culture using samples from cattle (1,330 samples from 23 herds) and sheep (596 samples from 16 flocks). The multistage protocol involves the recovery of M. avium subsp. paratuberculosis cells from a fecal suspension, cell rupture by bead beating, extraction of DNA using magnetic beads, and IS900 quantitative PCR. The limit of detection of the assay was 0.0005 pg, and the limit of quantification was 0.005 pg M. avium subsp. paratuberculosis genomic DNA. Only M. avium subsp. paratuberculosis was detected from a panel of 51 mycobacterial isolates, including 10 with IS900-like sequences. Of the 549 culture-negative fecal samples from unexposed herds and flocks, 99% were negative in the HT-J test, while 60% of the bovine- and 84% of the ovine-culture-positive samples were positive in the HT-J test. As similar total numbers of samples from M. avium subsp. paratuberculosis-exposed animals were positive in culture and HT-J tests in both species, and as the results of a McNemar's test were not significant, these methods probably have similar sensitivities, but the true diagnostic sensitivities of these tests are unknown. These validation data meet the consensus-based reporting standards for diagnostic test accuracy studies for paratuberculosis and the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines (S. A. Bustin et al., Clin. Chem. 55:611–622, 2009, doi:10.1373/clinchem.2008.112797). The HT-J assay has been approved for use in JD control programs in Australia and New Zealand.
doi:10.1128/JCM.03233-13
PMCID: PMC3957769  PMID: 24352996
3.  Peptide aMptD-Mediated Capture PCR for Detection of Mycobacterium avium subsp. paratuberculosis in Bulk Milk Samples 
A peptide-mediated capture PCR for the detection of Mycobacterium avium subsp. paratuberculosis in bulk milk samples was developed and characterized. Capture of the organism was performed using peptide aMptD, which had been shown to bind to the M. avium subsp. paratuberculosis MptD protein (J. Stratmann, B. Strommenger, R. Goethe, K. Dohmann, G. F. Gerlach, K. Stevenson, L. L. Li, Q. Zhang, V. Kapur, and T. J. Bull, Infect. Immun. 72:1265-1274, 2004). Consistent expression of the MptD receptor protein and binding of the aMptD ligand were demonstrated by capturing different Mycobacterium avium subsp. paratuberculosis type I and type II strains and subsequent PCR analysis using ISMav2-based primers. The analytical sensitivity of the method was determined to be 5 × 102 CFU ml−1 for artificially contaminated milk. The specificity of aMptD binding was confirmed by culture and competitive capture assays, showing selective enrichment of M. avium subsp. paratuberculosis (at a concentration of 5 × 102 CFU ml−1) from samples containing 100- and 1,000-fold excesses of other mycobacterial species, including M. avium subsp. avium and M. avium subsp. hominissuis. The aMptD-mediated capture of M. avium subsp. paratuberculosis using paramagnetic beads, followed by culture, demonstrated the ability of this approach to capture viable target cells present in artificially contaminated milk. Surface plasmon resonance experiments revealed that the aMptD peptide is a high-affinity ligand with a calculated association rate constant of 9.28 × 103 and an association constant of 1.33 × 109. The potential use of the method on untreated raw milk in the field was investigated by testing 423 bulk milk samples obtained from different dairy farms in Germany, 23 of which tested positive. Taken together, the results imply that the peptide-mediated capture PCR might present a suitable test for paratuberculosis screening of dairy herds, as it has an analytical sensitivity sufficient for detection of M. avium subsp. paratuberculosis in bulk milk samples under field conditions, relies on a defined and validated ligand-receptor interaction, and is adaptable to routine diagnostic laboratory automation.
doi:10.1128/AEM.00590-06
PMCID: PMC1538760  PMID: 16885259
4.  A Novel Enzyme-Linked Immunosorbent Assay for Diagnosis of Mycobacterium avium subsp. paratuberculosis Infections (Johne's Disease) in Cattle 
Clinical and Vaccine Immunology  2006;13(5):535-540.
Enzyme-linked immunosorbent assays (ELISAs) for the diagnosis of Johne's disease (JD), caused by Mycobacterium avium subsp. paratuberculosis, were developed using whole bacilli treated with formaldehyde (called WELISA) or surface antigens obtained by treatment of M. avium subsp. paratuberculosis bacilli with formaldehyde and then brief sonication (called SELISA). ELISA plates were coated with either whole bacilli or sonicated antigens and tested for reactivity against serum obtained from JD-positive and JD-negative cattle or from calves experimentally inoculated with M. avium subsp. paratuberculosis, Mycobacterium avium subsp. avium, or Mycobacterium bovis. Because the initial results obtained from the WELISA and SELISA were similar, most of the subsequent experiments reported herein were performed using the SELISA method. To optimize the SELISA test, various concentrations (3.7 to 37%) of formaldehyde and intervals of sonication (2 to 300 s) were tested. With an increase in formaldehyde concentration and a decreased interval of sonication, there was a concomitant decrease in nonspecific binding by the SELISA. SELISAs prepared by treating M. avium subsp. paratuberculosis with 37% formaldehyde and then a 2-s burst of sonication produced the greatest difference (7×) between M. avium subsp. paratuberculosis-negative and M. avium subsp. paratuberculosis-positive serum samples. The diagnostic sensitivity and specificity for JD by the SELISA were greater than 95%. The SELISA showed subspecies-specific detection of M. avium subsp. paratuberculosis infections in calves experimentally inoculated with M. avium subsp. paratuberculosis or other mycobacteria. Based on diagnostic sensitivity and specificity, the SELISA appears superior to the commercial ELISAs routinely used for the diagnosis of JD.
doi:10.1128/CVI.13.5.535-540.2006
PMCID: PMC1459654  PMID: 16682472
5.  Maximizing Capture Efficiency and Specificity of Magnetic Separation for Mycobacterium avium subsp. paratuberculosis Cells ▿  
Applied and Environmental Microbiology  2010;76(22):7550-7558.
In order to introduce specificity for Mycobacterium avium subsp. paratuberculosis prior to a phage amplification assay, various magnetic-separation approaches, involving either antibodies or peptides, were evaluated in terms of the efficiency of capture (expressed as a percentage) of M. avium subsp. paratuberculosis cells and the percentage of nonspecific binding by other Mycobacterium spp. A 50:50 mixture of MyOne Tosylactivated Dynabeads coated with the chemically synthesized M. avium subsp. paratuberculosis-specific peptides biotinylated aMp3 and biotinylated aMptD (i.e., peptide-mediated magnetic separation [PMS]) proved to be the best magnetic-separation approach for achieving 85 to 100% capture of M. avium subsp. paratuberculosis and minimal (<1%) nonspecific recovery of other Mycobacterium spp. (particularly if beads were blocked with 1% skim milk before use) from broth samples containing 103 to 104 CFU/ml. When PMS was coupled with a recently optimized phage amplification assay and used to detect M. avium subsp. paratuberculosis in 50-ml volumes of spiked milk, the mean 50% limit of detection (LOD50) was 14.4 PFU/50 ml of milk (equivalent to 0.3 PFU/ml). This PMS-phage assay represents a novel, rapid method for the detection and enumeration of viable M. avium subsp. paratuberculosis organisms in milk, and potentially other sample matrices, with results available within 48 h.
doi:10.1128/AEM.01432-10
PMCID: PMC2976214  PMID: 20851966
6.  Rapid and Sensitive Method To Identify Mycobacterium avium subsp. paratuberculosis in Cow's Milk by DNA Methylase Genotyping 
Paratuberculosis is an infectious, chronic, and incurable disease that affects ruminants, caused by Mycobacterium avium subsp. paratuberculosis. This bacterium is shed primarily through feces of infected cows but can be also excreted in colostrum and milk and might survive pasteurization. Since an association of genomic sequences of M. avium subsp. paratuberculosis in patients with Crohn's disease has been described; it is of interest to rapidly detect M. avium subsp. paratuberculosis in milk for human consumption. IS900 insertion is used as a target for PCR amplification to identify the presence of M. avium subsp. paratuberculosis in biological samples. Two target sequences were selected: IS1 (155 bp) and IS2 (94 bp). These fragments have a 100% identity among all M. avium subsp. paratuberculosis strains sequenced. M. avium subsp. paratuberculosis was specifically concentrated from milk samples by immunomagnetic separation prior to performing PCR. The amplicons were characterized using DNA methylase Genotyping, i.e., the amplicons were methylated with 6-methyl-adenine and digested with restriction enzymes to confirm their identity. The methylated amplicons from 100 CFU of M. avium subsp. paratuberculosis can be visualized in a Western blot format using an anti-6-methyl-adenine monoclonal antibody. The use of DNA methyltransferase genotyping coupled to a scintillation proximity assay allows for the detection of up to 10 CFU of M. avium subsp. paratuberculosis per ml of milk. This test is rapid and sensitive and allows for automation and thus multiple samples can be tested at the same time.
doi:10.1128/AEM.02719-12
PMCID: PMC3591958  PMID: 23275511
7.  Flow Cytometric Detection of Mycobacterium avium subsp. paratuberculosis-Specific Antibodies in Experimentally Infected and Naturally Exposed Calves 
A desirable test to diagnose infections with Mycobacterium avium subsp. paratuberculosis facilitates identification of infected cattle prior to the state of M. avium subsp. paratuberculosis shedding. This study aimed at adjusting a flow cytometry (FC)-based assay, using intact M. avium subsp. paratuberculosis bacteria as the antigen, for diagnosis of M. avium subsp. paratuberculosis infections in calves. Serum samples were collected from experimentally infected (n = 12) and naturally exposed (n = 32) calves. Samples from five calves from positive dams were analyzed to determine the dynamics of maternal antibodies. Samples from adult cattle with defined infection status served as the standard (18 M. avium subsp. paratuberculosis shedders, 22 M. avium subsp. paratuberculosis free). After preadsorption with Mycobacterium phlei, sera were incubated with M. avium subsp. paratuberculosis and M. avium subsp. avium bacterial suspensions, respectively, followed by the separate detection of bovine IgG, IgG1, IgG2, and IgM attached to the bacterial surface. M. avium subsp. paratuberculosis-specific sample/positive (S/P) ratios were compared to enzyme-linked immunosorbent assay (ELISA) S/P ratios. In adult cattle, the FC assay for IgG1 had a sensitivity of 78% at a specificity of 100%. Maternally acquired antibodies could be detected in calves up to 121 days of life. While all but two sera taken at day 100 ± 10 postnatum from naturally exposed calves tested negative, elevated S/P ratios (IgG and IgG1) became detectable from 44 and 46 weeks postinoculation onwards in two calves infected experimentally. Even with the optimized FC assay, M. avium subsp. paratuberculosis-specific antibodies can only occasionally be detected in infected calves less than 12 months of age. The failure to detect such antibodies apparently reflects the distinct immunobiology of M. avium subsp. paratuberculosis infections rather than methodological constraints.
doi:10.1128/CVI.00295-13
PMCID: PMC3889592  PMID: 23885032
8.  Development of an F57 Sequence-Based Real-Time PCR Assay for Detection of Mycobacterium avium subsp. paratuberculosis in Milk 
Applied and Environmental Microbiology  2005;71(10):5957-5968.
A light cycler-based real-time PCR (LC-PCR) assay that amplifies the F57 sequence of Mycobacterium avium subsp. paratuberculosis was developed. This assay also includes an internal amplification control template to monitor the amplification conditions in each reaction. The targeted F57 sequence element is unique for M.avium subsp. paratuberculosis and is not known to exist in any other bacterial species. The assay specificity was demonstrated by evaluation of 10 known M. avium subsp. paratuberculosis isolates and 33 other bacterial strains. The LC-PCR assay has a broad linear range (2 × 101 to 2 ×106 copies) for quantitative estimation of the number of M. avium subsp. paratuberculosis F57 target copies in positive samples. To maximize the assay's detection sensitivity, an efficient strategy for isolation of M. avium subsp. paratuberculosis DNA from spiked milk samples was also developed. The integrated procedure combining optimal M. avium subsp. paratuberculosis DNA isolation and real-time PCR detection had a reproducible detection limit of about 10 M. avium subsp. paratuberculosis cells per ml when a starting sample volume of 10 ml of M. avium subsp. paratuberculosis-spiked milk was analyzed. The entire process can be completed within a single working day and is suitable for routine monitoring of milk samples for M. avium subsp. paratuberculosis contamination. The applicability of this protocol for naturally contaminated milk was also demonstrated using milk samples from symptomatic M. avium subsp. paratuberculosis-infected cows, as well as pooled samples from a dairy herd with a confirmed history of paratuberculosis.
doi:10.1128/AEM.71.10.5957-5968.2005
PMCID: PMC1266021  PMID: 16204510
9.  Rapid Assessment of the Viability of Mycobacterium avium subsp. paratuberculosis Cells after Heat Treatment, Using an Optimized Phage Amplification Assay▿  
Thermal inactivation experiments were carried out to assess the utility of a recently optimized phage amplification assay to accurately enumerate viable Mycobacterium avium subsp. paratuberculosis cells in milk. Ultra-heat-treated (UHT) whole milk was spiked with large numbers of M. avium subsp. paratuberculosis organisms (106 to 107 CFU/ml) and dispensed in 100-μl aliquots in thin-walled 200-μl PCR tubes. A Primus 96 advanced thermal cycler (Peqlab, Erlangen, Germany) was used to achieve the following time and temperature treatments: (i) 63°C for 3, 6, and 9 min; (ii) 68°C for 20, 40, and 60 s; and (iii) 72°C for 5, 10, 15, and 25 s. After thermal stress, the number of surviving M. avium subsp. paratuberculosis cells was assessed by both phage amplification assay and culture on Herrold's egg yolk medium (HEYM). A high correlation between PFU/ml and CFU/ml counts was observed for both unheated (r2 = 0.943) and heated (r2 = 0.971) M. avium subsp. paratuberculosis cells. D and z values obtained using the two types of counts were not significantly different (P > 0.05). The D68°C, mean D63°C, and D72°C for four M. avium subsp. paratuberculosis strains were 81.8, 9.8, and 4.2 s, respectively, yielding a mean z value of 6.9°C. Complete inactivation of 106 to 107 CFU of M. avium subsp. paratuberculosis/ml milk was not observed for any of the time-temperature combinations studied; 5.2- to 6.6-log10 reductions in numbers were achieved depending on the temperature and time. Nonlinear thermal inactivation kinetics were consistently observed for this bacterium. This study confirms that the optimized phage assay can be employed in place of conventional culture on HEYM to speed up the acquisition of results (48 h instead of a minimum of 6 weeks) for inactivation experiments involving M. avium subsp. paratuberculosis-spiked samples.
doi:10.1128/AEM.02625-09
PMCID: PMC2837989  PMID: 20097817
10.  Optimization of a Phage Amplification Assay To Permit Accurate Enumeration of Viable Mycobacterium avium subsp. paratuberculosis Cells▿  
Applied and Environmental Microbiology  2009;75(12):3896-3902.
A commercially available phage amplification assay, FASTPlaqueTB (Biotec Laboratories, Ipswich, United Kingdom), when used according to the manufacturer's instructions, does not permit accurate enumeration of Mycobacterium avium subsp. paratuberculosis. The aim of this study was to optimize the phage amplification assay conditions to permit accurate quantification of viable M. avium subsp. paratuberculosis cells. The burst time for M. avium subsp. paratuberculosis was initially determined to inform decisions about optimal incubation time before plating, and then other test parameters were altered to evaluate how the correlation between plaque and colony counts was affected. The D29 mycobacteriophage replicates more slowly in M. avium subsp. paratuberculosis than in Mycobacterium smegmatis (used to optimize the commercial test originally), and the mean burst time for four M. avium subsp. paratuberulosis strains was 210 ± 36.8 min at 37°C compared to 63 ± 17.5 min for M. smegmatis mc2 155. To achieve 100% correlation between plaque and colony counts, the optimized phage assay includes the following: (i) resuspension of the samples to be tested in Middlebrook 7H9 broth containing 10% oleic acid-albumin-dextrose-catalase and 2 mM calcium chloride, followed by overnight incubation at 37°C before performance of the phage assay; (ii) a 2-h incubation of the sample with D29 mycobacteriophage before viricide treatment; and (iii) a further 90-min incubation after viricide treatment and neutralization up to the burst time (total incubation time, 210 min) before plating with M. smegmatis mc2 155 in 7H9 agar. The optimized phage amplification assay was able to detect 1 to 10 CFU/ml of M. avium subsp. paratuberculosis in spiked milk or broth within 48 h, as demonstrated by the results of several blind trials.
doi:10.1128/AEM.00294-09
PMCID: PMC2698332  PMID: 19395561
11.  Discovery of Stable and Variable Differences in the Mycobacterium avium subsp. paratuberculosis Type I, II, and III Genomes by Pan-Genome Microarray Analysis▿ †  
Mycobacterium avium subsp. paratuberculosis is an important animal pathogen widely disseminated in the environment that has also been associated with Crohn's disease in humans. Three M. avium subsp. paratuberculosis genomotypes are recognized, but genomic differences have not been fully described. To further investigate these potential differences, a 60-mer oligonucleotide microarray (designated the MAPAC array), based on the combined genomes of M. avium subsp. paratuberculosis (strain K-10) and Mycobacterium avium subsp. hominissuis (strain 104), was designed and validated. By use of a test panel of defined M. avium subsp. paratuberculosis strains, the MAPAC array was able to identify a set of large sequence polymorphisms (LSPs) diagnostic for each of the three major M. avium subsp. paratuberculosis types. M. avium subsp. paratuberculosis type II strains contained a smaller genomic complement than M. avium subsp. paratuberculosis type I and M. avium subsp. paratuberculosis type III genomotypes, which included a set of genomic regions also found in M. avium subsp. hominissuis 104. Specific PCRs for genes within LSPs that differentiated M. avium subsp. paratuberculosis types were devised and shown to accurately screen a panel (n = 78) of M. avium subsp. paratuberculosis strains. Analysis of insertion/deletion region INDEL12 showed deletion events causing a reduction in the complement of mycobacterial cell entry genes in M. avium subsp. paratuberculosis type II strains and significantly altering the coding of a major immunologic protein (MPT64) associated with persistence and granuloma formation. Analysis of MAPAC data also identified signal variations in several genomic regions, termed variable genomic islands (vGIs), suggestive of transient duplication/deletion events. vGIs contained significantly low GC% and were immediately flanked by insertion sequences, integrases, or short inverted repeat sequences. Quantitative PCR demonstrated that variation in vGI signals could be associated with colony growth rate and morphology.
doi:10.1128/AEM.01683-08
PMCID: PMC2632155  PMID: 19047395
12.  Impact of Protein Shedding on Detection of Mycobacterium avium subsp. paratuberculosis by a Whole-Cell Immunoassay Incorporating Surface-Enhanced Raman Scattering▿  
The etiological agent of Johne's disease is Mycobacterium avium subsp. paratuberculosis. Controlling the spread of this disease is hindered by the lack of sensitive, selective, and rapid detection methods for M. avium subsp. paratuberculosis. By using a recently optimized sandwich immunoassay (B. J. Yakes, R. J. Lipert, J. P. Bannantine, and M. D. Porter, Clin. Vaccine Immunol. 15:227-234, 2008), which incorporates a new monoclonal antibody for the selective capture and labeling of M. avium subsp. paratuberculosis and surface-enhanced Raman scattering for sensitive readout, detection limits of ∼630 and ∼740 M. avium subsp. paratuberculosis cells/ml are achieved in phosphate-buffered saline and whole milk samples, respectively, after spiking with heat-treated M. avium subsp. paratuberculosis. Surprisingly, these detection limits are 3 orders of magnitude lower than expected based on theoretical predictions. Experiments designed to determine the origin of the improvement revealed that the major membrane protein targeted by the monoclonal antibody was present in the sample suspensions as shed protein. This finding indicates that the capture and labeling of shed protein function as a facile amplification strategy for lowering the limit of detection for M. avium subsp. paratuberculosis that may also be applicable to the design of a wide range of highly sensitive assays for other cells and viruses.
doi:10.1128/CVI.00335-07
PMCID: PMC2238037  PMID: 18077615
13.  Development and Characterization of Monoclonal Antibodies and Aptamers against Major Antigens of Mycobacterium avium subsp. paratuberculosis▿  
Clinical and Vaccine Immunology  2007;14(5):518-526.
Specific antibodies, available in unlimited quantities, have not been produced against Mycobacterium avium subsp. paratuberculosis, the bacterium that causes Johne's disease (JD). To fill this gap in JD research, monoclonal antibodies (MAbs) against M. avium subsp. paratuberculosis were produced from BALB/c mice immunized with a whole-cell extract of M. avium subsp. paratuberculosis. A total of 10 hybridomas producing MAbs to proteins ranging from 25 to 85 kDa were obtained. All MAbs showed some degree of cross-reactivity when they were analyzed against a panel of whole-cell protein lysates comprising seven different mycobacterial species. The MAbs were characterized by several methods, which included isotype analysis, specificity analysis, epitope analysis, reactivity in immunoblot assays, and electron microscopy. The identities of the antigens that bound to two selected MAbs were determined by screening an M. avium subsp. paratuberculosis lambda phage expression library. This approach revealed that MAb 9G10 detects MAP1643 (isocitrate lyase) and that MAb 11G4 detects MAP3840 (a 70-kDa heat shock protein), two proteins present in high relative abundance in M. avium subsp. paratuberculosis. The epitopes for MAb 11G4 were mapped to the N-terminal half of MAP3840, whereas MAb 9G10 bound to the C-terminal half of MAP1643. Aptamers, nucleic acids that bind to specific protein sequences, against the hypothetical protein encoded by MAP0105c were also generated and tested for their binding to M. avium subsp. paratuberculosis as well as other mycobacteria. These detection reagents may be beneficial in many JD research applications.
doi:10.1128/CVI.00022-07
PMCID: PMC1865628  PMID: 17344350
14.  Detection and Verification of Mycobacterium avium subsp. paratuberculosis in Fresh Ileocolonic Mucosal Biopsy Specimens from Individuals with and without Crohn's Disease 
Journal of Clinical Microbiology  2003;41(7):2915-2923.
Mycobacterium avium subsp. paratuberculosis is a robust and phenotypically versatile pathogen which causes chronic inflammation of the intestine in many species, including primates. M. avium subsp. paratuberculosis infection is widespread in domestic livestock and is present in retail pasteurized cows' milk in the United Kingdom and, potentially, elsewhere. Water supplies are also at risk. The involvement of M. avium subsp. paratuberculosis in Crohn's disease (CD) in humans has been uncertain because of the substantial difficulties in detecting this pathogen. In its Ziehl-Neelsen staining-negative form, M. avium subsp. paratuberculosis is highly resistant to chemical and enzymatic lysis. The present study describes the development of optimized sample processing and DNA extraction procedures with fresh human intestinal mucosal biopsy specimens which ensure access to M. avium subsp. paratuberculosis DNA and maximize detection of these low-abundance pathogens. Also described are two nested PCR methodologies targeted at IS900, designated IS900[L/AV] and IS900[TJ1-4], which are uniquely specific for IS900. Detection of M. avium subsp. paratuberculosis in mucosal biopsy specimens was also evaluated by using mycobacterial growth indicator tube (MGIT) cultures (Becton Dickinson). IS900[L/AV] PCR detected M. avium subsp. paratuberculosis in 34 of 37 (92%) patients with CD and in 9 of 34 (26%) controls without CD (noninflammatory bowel disease [nIBD] controls) (P = 0.0002; odds ratio = 3.47). M. avium subsp. paratuberculosis was detected by IS900[L/AV] PCR in MGIT cultures after 14 to 88 weeks of incubation in 14 of 33 (42%) CD patients and 3 of 33 (9%) nIBD controls (P = 0.0019; odds ratio = 4.66). Nine of 15 (60%) MGIT cultures of specimens from CD patients incubated for more than 38 weeks were positive for M. avium subsp. paratuberculosis. In each case the identity of IS900 from M. avium subsp. paratuberculosis was verified by amplicon sequencing. The rate of detection of M. avium subsp. paratuberculosis in individuals with CD is highly significant and implicates this chronic enteric pathogen in disease causation.
doi:10.1128/JCM.41.7.2915-2923.2003
PMCID: PMC165291  PMID: 12843021
15.  Gene encoded antimicrobial peptides, a template for the design of novel anti-mycobacterial drugs 
Bioengineered Bugs  2010;1(6):408-412.
Nisin A is the most widely characterized lantibiotic investigated to date. It represents one of the many antimicrobial peptides which have been the focus of much interest as potential therapeutic agents. This has resulted in the search for novel lantibiotics and more commonly, the engineering of novel variants from existing peptides with a view to increasing their activity, stability and solubility.
The aim of this study was to compare the activities of nisin A and novel bioengineered hinge derivatives, nisin S, nisin T and nisin V. The microtitre alamar blue assay (MABA) was employed to identify the enhanced activity of these novel variants against M. tuberculosis (H37Ra), M. kansasii (CIT11/06), M. avium subsp. hominissuis (CIT05/03) and M. avium subsp. paratuberculosis (MAP) (ATCC 19698). All variants displayed greater anti-mycobacterial activity than nisin A. Nisin S was the most potent variant against M. tuberculosis, M. kansasii and M. avium subsp. hominissuis, retarding growth by a maximum of 29% when compared with nisin A. Sub-species variations of inhibition were also observed with nisin S reducing growth of Mycobacterium avium subsp. hominissuis by 28% and Mycobacterium avium subsp. paratuberculosis by 19% and nisin T contrastingly reducing growth of MAP by 27% and MAC by 16%.
Nisin S, nisin T and nisin V are potent novel anti-mycobacterial compounds, which have the capacity to be further modified, potentially generating compounds with additional beneficial characteristics. This is the first report to demonstrate an enhancement of efficacy by any bioengineered bacteriocin against mycobacteria.
doi:10.4161/bbug.1.6.13642
PMCID: PMC3056091  PMID: 21468208
mycobacteria; nisin variants; alamar blue; peptide engineering; lantibiotic; bacteriocin
16.  Effect of Soil Slope on the Appearance of Mycobacterium avium subsp. paratuberculosis in Water Running off Grassland Soil after Application of Contaminated Slurry 
Applied and Environmental Microbiology  2013;79(12):3544-3552.
The study assessed the effect of soil slope on Mycobacterium avium subsp. paratuberculosis transport into rainwater runoff from agricultural soil after application of M. avium subsp. paratuberculosis-contaminated slurry. Under field conditions, 24 plots of undisturbed loamy soil 1 by 2 m2 were placed on platforms. Twelve plots were used for water runoff: 6 plots at a 3% slope and 6 plots at a 15% slope. Half of the plots of each slope were treated with M. avium subsp. paratuberculosis-contaminated slurry, and half were not treated. Using the same experimental design, 12 plots were established for soil sampling on a monthly basis using the same spiked slurry application and soil slopes. Runoff following natural rainfall was collected and analyzed for M. avium subsp. paratuberculosis, coliforms, and turbidity. M. avium subsp. paratuberculosis was detected in runoff from all plots treated with contaminated slurry and one control plot. A higher slope (15%) increased the likelihood of M. avium subsp. paratuberculosis detection but did not affect the likelihood of finding coliforms. Daily rainfall increased the likelihood that runoff would have coliforms and the coliform concentration, but it decreased the M. avium subsp. paratuberculosis concentration in the runoff. When there was no runoff, rain was associated with increased M. avium subsp. paratuberculosis concentrations. Coliform counts in runoff were related to runoff turbidity. M. avium subsp. paratuberculosis presence/absence, however, was related to turbidity. Study duration decreased bacterial detection and concentration. These findings demonstrate the high likelihood that M. avium subsp. paratuberculosis in slurry spread on pastures will contaminate water runoff, particularly during seasons with high rainfall. M. avium subsp. paratuberculosis contamination of water has potential consequences for both animal and human health.
doi:10.1128/AEM.00610-13
PMCID: PMC3675930  PMID: 23542616
17.  Development of Colorimetric Microtiter Plate Assay for Assessment of Antimicrobials against Acanthamoeba 
Journal of Clinical Microbiology  2005;43(2):629-634.
We have developed and optimized a 96-well microtiter plate assay, based on the reduction of alamarBlue, to assess the efficacies of much needed new antimicrobials against Acanthamoeba species. This assay has been optimized for determination of drug efficacy against two potentially pathogenic species, Acanthamoeba castellanii and Acanthamoeba polyphaga, and has been validated by comparison of their relative susceptibilities to chlorhexidine, a drug widely used to treat Acanthamoeba keratitis. The results demonstrate that the assay is comparable to a manual counting assay and that A. polyphaga is more resistant to chlorhexidine than A. castellanii. Thus, by use of the manual counting assay, 3.125 μM chlorohexidine was almost completely effective against A. castellanii, whereas this concentration was less than 20% effective against A. polyphaga. Similar results were obtained by the alamarBlue assay. The new assay was used to determine the relative susceptibilities of A. castellanii and A. polyphaga to the alkylphosphocholines (APCs) hexadecylphosphocholine (hexadecyl-PC; miltefosine) and octadecylphosphocholine (octadecyl-PC) as well as an alkylgycerolphosphocholine, edelfosine. Both APCs studied were equally effective against A. castellanii, but octadecyl-PC was less effective than hexadecyl-PC against A. polyphaga. Both APCs were more effective than edelfosine against both Acanthamoeba species. A. polyphaga was found to be significantly less susceptible to each of the phosphocholine analogues. The newly described assay offers a number of advantages over those described previously. It is less labor-intensive than previously described assays and is sensitive and rapid, and the results can be read in a nonsubjective manner. As it is based on a standard 96-well, microtiter plate, it is amenable to automation and high throughput.
doi:10.1128/JCM.43.2.629-634.2005
PMCID: PMC548097  PMID: 15695656
18.  Results of Multiple Diagnostic Tests for Mycobacterium avium subsp. paratuberculosis in Patients with Inflammatory Bowel Disease and in Controls 
Journal of Clinical Microbiology  2000;38(12):4373-4381.
Mycobacterium avium subsp. paratuberculosis has been incriminated as a cause of Crohn's disease (CD); however, studies to date have been relatively small and generally only used a single diagnostic assay. The objective of the study was to reexamine the association of M. avium subsp. paratuberculosis and CD using multiple diagnostic tests. Five methods were used to detect M. avium subsp. paratuberculosis infections in 439 inflammatory bowel disease (IBD) patients and 324 control subjects in the United States and Denmark. Most assays were adaptations of diagnostic tests for this infection performed routinely on animals. PCR for IS900, a genetic element unique to M. avium subsp. paratuberculosis, was positive significantly more often on resected bowel and lymph node tissues from CD patients (19.0%) and ulcerative colitis (UC) patients (26.2%) than from controls (6.3%) (P < 0.05). Positive IS900 PCR results occurred more often in U.S. than in Danish IBD patients, 32.0 versus 13.3% (P = 0.025). The majority of Danish patients were bacillus Calmette-Guérin (Mycobacterium bovis BCG) vaccinated (CD, 77.5%; UC, 86.6%; controls, 83.0%) whereas none of the U.S. patients with IBD and only 2% of U.S. controls were vaccinated. Among Danish IBD patients, positive PCR findings were four times more common among subjects who were not BCG vaccinated (33.3%) than among BCG vaccinates (8.8%, P = 0.02). Culture of the same tissues tested by PCR using modified BACTEC 12B medium failed to grow M. avium subsp. paratuberculosis from patients or controls. U.S. CD patients had the highest serological evidence (enzyme-linked immunosorbent assay [ELISA] for serum antibodies) of M. avium subsp. paratuberculosis infection (20.7% of patients positive) which was higher than for all UC patients studied (6.1%) or healthy controls (3.8%, P < 0.005). Among Danish patients alone, however, no significant differences in rates of ELISA-positive results among CD, UC, or control patients were found. For 181 study subjects, both IS900 PCR and ELISA were performed. Although 11 were ELISA positive and 36 were PCR positive, in no instance was a patient positive by both tests, suggesting that these states are mutually exclusive. Evaluation of cytokine-mediated immune responses of IBD patients was complicated by the influence of immunosuppressive therapy given most IBD patients. Gamma interferon (IFN-γ) release by peripheral blood leukocytes after M. avium purified protein derivative PPD antigen stimulation showed significantly lower responses in CD patients than in UC patients or controls in both U.S. (by ex vivo assay) and Danish (by in vitro assay) populations (P < 0.05). Interleukin-5 responses were not different among CD, UC, or control groups. Collectively, the PCR, ELISA, and IFN-γ tests for M. avium subsp. paratuberculosis together with the unexpected observation that BCG vaccination influenced M. avium subsp. paratuberculosis detection, lead us to conclude that M. avium subsp. paratuberculosis, or some similarly fastidious mycobacterial species, infects at least a subset of IBD patients. Whether the infection is primary (causal) or secondary, it may contribute to the etiopathogenesis of IBD.
PMCID: PMC87608  PMID: 11101567
19.  Detection of Mycobacterium avium subsp. paratuberculosis by a Sonicate Immunoassay Based on Surface-Enhanced Raman Scattering▿  
A sandwich immunoassay for the rapid, low-level detection of Mycobacterium avium subsp. paratuberculosis has been developed. M. avium subsp. paratuberculosis is the causative agent of Johne's disease in cattle, and one of the major obstacles in controlling the spread of this disease is the inability to rapidly detect small amounts of bacteria or other diagnostic markers shed during the subclinical stage of infection. This paper details the development and performance of an assay for sonicated M. avium subsp. paratuberculosis lysate that is based on surface-enhanced Raman scattering (SERS). There are two key components of the assay: (i) an immobilized layer of monoclonal antibodies that target a surface protein on the microorganism; and (ii) extrinsic Raman labels (ERLs) that are designed to selectively bind to captured proteins and produce large SERS signals. By correlating the number of M. avium subsp. paratuberculosis bacilli present prior to sonication to the amount of total protein in the resulting sonicate, the detection limit determined for total protein can be translated to the microorganism concentration. These findings yield detection limits of 100 and 200 ng/ml (estimated to be 500 and 1,000 M. avium subsp. paratuberculosis bacilli/ml) for sonicate spiked in phosphate buffer and sonicate spiked in whole milk, respectively. Moreover, the time required to complete the assay, which includes sample preparation, antigen extraction, ERL incubation, and readout, is less than 24 h. The potential for incorporation of this novel assay into diagnostic laboratories is also briefly discussed.
doi:10.1128/CVI.00334-07
PMCID: PMC2238065  PMID: 18077613
20.  The Ability of Mycobacterium avium subsp. paratuberculosis To Enter Bovine Epithelial Cells Is Influenced by Preexposure to a Hyperosmolar Environment and Intracellular Passage in Bovine Mammary Epithelial Cells  
Infection and Immunity  2006;74(5):2849-2855.
Mycobacterium avium subsp. paratuberculosis is the cause of Johne's disease in cattle and other ruminants. M. avium subsp. paratuberculosis infection of the bovine host is not well understood; however, it is assumed that crossing the bovine intestinal mucosa is important in order for M. avium subsp. paratuberculosis to establish infection. To examine the ability of M. avium subsp. paratuberculosis to infect bovine epithelial cells in vitro, Madin-Darby bovine kidney (MDBK) epithelial cells were exposed to M. avium subsp. paratuberculosis. It was observed that bacteria can establish infection and replicate within MDBK cells. M. avium subsp. paratuberculosis also has been reported to infect mammary tissue and milk, and we showed that M. avium subsp. paratuberculosis infects bovine mammary epithelial cells (MAC-T cell line). Using polarized MAC-T cell monolayers, it was also determined that M. avium subsp. paratuberculosis crosses apical and basolateral surfaces with approximately the same degree of efficiency. Because M. avium subsp. paratuberculosis can be delivered to the naïve host by milk, it was investigated whether incubation of M. avium subsp. paratuberculosis with milk has an effect on invasion of MDBK cells. M. avium subsp. paratuberculosis exposed to milk entered epithelial cells with greater efficiency than M. avium subsp. paratuberculosis exposed to broth medium or water (P < 0.01). Growth of M. avium subsp. paratuberculosis within MAC-T cells also resulted in augmented ability to subsequently infect bovine MDBK cells (P < 0.001). Microarray analysis of intracellular M. avium subsp. paratuberculosis RNA indicates the increased transcription of genes which might be associated with an invasive phenotype.
doi:10.1128/IAI.74.5.2849-2855.2006
PMCID: PMC1459753  PMID: 16622223
21.  Persistence of Mycobacterium avium subsp. paratuberculosis and Other Zoonotic Pathogens during Simulated Composting, Manure Packing, and Liquid Storage of Dairy Manure 
Livestock manures contain numerous microorganisms which can infect humans and/or animals, such as Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., and Mycobacterium avium subsp. paratuberculosis (Mycobacterium paratuberculosis). The effects of commonly used manure treatments on the persistence of these pathogens have rarely been compared. The objective of this study was to compare the persistence of artificially inoculated M. paratuberculosis, as well as other naturally occurring pathogens, during the treatment of dairy manure under conditions that simulate three commonly used manure management methods: thermophilic composting at 55°C, manure packing at 25°C (or low-temperature composting), and liquid lagoon storage. Straw and sawdust amendments used for composting and packing were also compared. Manure was obtained from a large Ohio free-stall dairy herd and was inoculated with M. paratuberculosis at 106 CFU/g in the final mixes. For compost and pack treatments, this manure was amended with sawdust or straw to provide an optimal moisture content (60%) for composting for 56 days. To simulate liquid storage, water was added to the manure (to simulate liquid flushing and storage) and the slurry was placed in triplicate covered 4-liter Erlenmeyer flasks, incubated under ambient conditions for 175 days. The treatments were sampled on days 0, 3, 7, 14, 28, and 56 for the detection of pathogens. The persistence of M. paratuberculosis was also assessed by a PCR hybridization assay. After 56 days of composting, from 45 to 60% of the carbon in the compost treatments was converted to CO2, while no significant change in carbon content was observed in the liquid slurry. Escherichia coli, Salmonella, and Listeria were all detected in the manure and all of the treatments on day 0. After 3 days of composting at 55°C, none of these organisms were detectable. In liquid manure and pack treatments, some of these microorganisms were detectable up to 28 days. M. paratuberculosis was detected by standard culture only on day 0 in all the treatments, but was undetectable in any treatment at 3 and 7 days. On days 14, 28, and 56, M. paratuberculosis was detected in the liquid storage treatment but remained undetectable in the compost and pack treatments. However, M. paratuberculosis DNA was detectable through day 56 in all treatments and up to day 175 in liquid storage treatments. Taken together, the results indicate that high-temperature composting is more effective than pack storage or liquid storage of manure in reducing these pathogens in dairy manure. Therefore, thermophilic composting is recommended for treatment of manures destined for pathogen-sensitive environments such as those for vegetable production, residential gardening, or application to rapidly draining fields.
doi:10.1128/AEM.72.1.565-574.2006
PMCID: PMC1352242  PMID: 16391093
22.  Application of a high throughput Alamar blue biofilm susceptibility assay to Staphylococcus aureus biofilms 
Background
Staphylococcus aureus and S. epidermidis biofilms differ in structure, growth and regulation, and thus the high-throughput method of evaluating biofilm susceptibility that has been published for S. epidermidis cannot be applied to S. aureus without first evaluating the assay's reproducibility and reliability with S. aureus biofilms.
Methods
Staphylococcus aureus biofilms were treated with eleven approved antibiotics, lysostaphin, or Conflikt®, exposed to the oxidation reduction indicator Alamar blue, and reduction relative to untreated controls was determined visually and spectrophotometrically. The minimum biofilm inhibitory concentration (MBIC) was defined as ≤ 50% Alamar blue reduction and a purple/blue well 60 min after the addition of Alamar blue. Because all of the approved antibiotics had MBICs >128 μg/ml (most >2048 μg/ml), lysostaphin and Conflikt®, with relatively low MBICs, were used to correlate Alamar blue reduction with 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction and viable counts (CFU/ml) for S. aureus ATCC 29213 and three clinical isolates. Alamar blue's stability and lack of toxicity allowed CFU/ml to be determined from the same wells as Alamar blue absorbances.
Results
Overall, Alamar blue reduction had excellent correlation with XTT reduction and with CFU/ml. For ATCC 29213 and two clinical isolates treated with lysostaphin or Conflikt®, Alamar blue reduction had excellent correlation with XTT reduction (r = 0.93-0.99) and with CFU/ml (r = 0.92-0.98). For one of the clinical isolates, the results were moderately correlated for Conflikt® (r = 0.76, Alamar blue vs. XTT; r = 0.81, Alamar blue vs. CFU/ml) and had excellent correlation for lysostaphin (r = 0.95, Alamar blue vs. XTT; r = 0.97, Alamar blue vs. CFU/ml).
Conclusion
A reliable, reproducible method for evaluating biofilm susceptibility was successfully applied to S. aureus biofilms. The described method provides researchers with a simple, nontoxic, relatively inexpensive, high throughput measure of viability after drug treatment. A standardized biofilm Alamar blue assay should greatly increase the rate of discovery of S. aureus biofilm specific agents.
doi:10.1186/1476-0711-8-28
PMCID: PMC2773231  PMID: 19860905
23.  Novel Secreted Antigens of Mycobacterium paratuberculosis as Serodiagnostic Biomarkers for Johne's Disease in Cattle 
Clinical and Vaccine Immunology : CVI  2013;20(12):1783-1791.
Johne's disease is a chronic gastroenteritis of cattle caused by Mycobacterium avium subsp. paratuberculosis that afflicts 40% of dairy herds worldwide. M. avium subsp. paratuberculosis-infected cattle can remain asymptomatic for years while transmitting the pathogen via fecal contamination and milk. Current serodiagnosis with enzyme-linked immunosorbent assays (ELISAs) fails to detect asymptomatic M. avium subsp. paratuberculosis-infected cattle due to the use of poorly defined antigens and knowledge gaps in our understanding of M. avium subsp. paratuberculosis components eliciting pathogen-specific immune responses. We set out to (i) define a subset of proteins that contain putative antigenic targets and (ii) screen these antigen pools for immunogens relevant in detecting infection. To accomplish our first objective, we captured and resolved M. avium subsp. paratuberculosis-secreted proteins using a 2-step fractionation method and reverse-phase liquid chromatography to identify 162 unique proteins, of which 66 had not been previously observed in M. avium subsp. paratuberculosis culture filtrates. Subsequent screening of M. avium subsp. paratuberculosis-secreted proteins showed four antigens, of which one or more reacted on immunoblotting with individual serum samples from 35 M. avium subsp. paratuberculosis-infected cows. Moreover, these novel antigens reacted with sera from 6 low M. avium subsp. paratuberculosis shedders and 3 fecal-culture-positive cows labeled as ELISA seronegative. The specificity of these antigens was demonstrated using negative-control sera from uninfected calves (n = 5) and uninfected cows (n = 5), which did not react to any of these antigens in immunoblotting. As three of the four antigens are novel, their characterization and incorporation into an ELISA-based format will aid in detecting asymptomatic cattle in early or subclinical stages of disease.
doi:10.1128/CVI.00380-13
PMCID: PMC3889510  PMID: 24089453
24.  Profiling Bovine Antibody Responses to Mycobacterium avium subsp. paratuberculosis Infection by Using Protein Arrays▿ †  
Infection and Immunity  2007;76(2):739-749.
With the genome sequence of Mycobacterium avium subsp. paratuberculosis determined, technologies are now being developed for construction of protein arrays to detect the presence of antibodies against M. avium subsp. paratuberculosis in host serum. The power of this approach is that it enables a direct comparison of M. avium subsp. paratuberculosis proteins to each other in relation to their immunostimulatory capabilities. In this study, 93 recombinant proteins, produced in Escherichia coli, were arrayed and spotted onto nitrocellulose. These proteins include unknown hypothetical proteins and cell surface proteins as well as proteins encoded by large sequence polymorphisms present uniquely in M. avium subsp. paratuberculosis. Also included were previously reported or known M. avium subsp. paratuberculosis antigens to serve as a frame of reference. Sera from healthy control cattle (n = 3) and cattle infected with either M. avium subsp. avium and Mycobacterium bovis were exposed to the array to identify nonspecific or cross-reactive epitopes. These data demonstrated a degree of cross-reactivity with the M. avium subsp. avium proteins that was higher than the degree of cross-reactivity with the more distantly related M. bovis proteins. Finally, sera from naturally infected cattle (n = 3) as well as cattle experimentally infected with M. avium subsp. paratuberculosis (n = 3) were used to probe the array to identify antigens in the context of Johne's disease. Three membrane proteins were the most strongly detected in all serum samples, and they included an invasion protein, an ABC peptide transport permease, and a putative GTPase protein. This powerful combination of genomic information, molecular tools, and immunological assays has enabled the identification of previously unknown antigens of M. avium subsp. paratuberculosis.
doi:10.1128/IAI.00915-07
PMCID: PMC2223459  PMID: 18039835
25.  Differential Responses of Bovine Macrophages to Mycobacterium avium subsp. paratuberculosis and Mycobacterium avium subsp. avium  
Infection and Immunity  2002;70(10):5556-5561.
Mycobacterium avium subsp. paratuberculosis and Mycobacterium avium subsp. avium are antigenically and genetically similar organisms; however, they differ in their virulence for cattle. M. avium subsp. paratuberculosis causes a chronic intestinal infection leading to a chronic wasting disease termed paratuberculosis or Johne's disease, whereas M. avium subsp. avium causes only a transient infection. We compared the response of bovine monocyte-derived macrophages to ingestion of M. avium subsp. paratuberculosis and M. avium subsp. avium organisms by determining organism survival, superoxide and nitric oxide production, and expression of the cytokines tumor necrosis factor alpha (TNF-α), gamma interferon (IFN-γ), interleukin-8 (IL-8), IL-10, IL-12, and granulocyte-monocyte colony-stimulating factor (GM-CSF). Unlike M. avium subsp. paratuberculosis, macrophages were able to kill approximately half of the M. avium subsp. avium organisms after 96 h of incubation. This difference in killing efficiency was not related to differences in nitric oxide or superoxide production. Compared to macrophages activated with IFN-γ and lipopolysaccharide, macrophages incubated with M. avium subsp. paratuberculosis showed greater expression of IL-10 and GM-CSF (all time points) and IL-8 (72 h) and less expression of IL-12 (72 h), IFN-γ (6 h), and TNF-α (6 h). When cytokine expression by macrophages incubated with M. avium subsp. paratuberculosis was compared to those of macrophages incubated with M. avium subsp. avium, M. avium subsp. paratuberculosis-infected cells showed greater expression of IL-10 (6 and 24 h) and less expression of TNF-α (6 h). Therefore, the combination of inherent resistance to intracellular degradation and suppression of macrophage activation through oversecretion of IL-10 may contribute to the virulence of M. avium subsp. paratuberculosis in cattle.
doi:10.1128/IAI.70.10.5556-5561.2002
PMCID: PMC128321  PMID: 12228282

Results 1-25 (640749)