Search tips
Search criteria

Results 1-25 (1459246)

Clipboard (0)

Related Articles

1.  Which preventive measures might protect health care workers from SARS? 
BMC Public Health  2009;9:81.
Despite the use of a series of preventive measures, a high incidence of severe acute respiratory syndrome (SARS) was observed among health care workers (HCWs) during the SARS epidemic. This study aimed to determine which preventive measures may have been effective in protecting HCWs from infection, and which were not effective.
A retrospective study was performed among 758 'frontline' health care workers who cared for SARS patients at the Second Affiliated Hospital and the Third Affiliated Hospital of Sun Yat-sen University. The HCWs with IgG against SARS and those without IgG against SARS were respectively defined as the "case group" and the "control group", and logistic regression was conducted to explore the risk factors for SARS infection in HCWs.
After adjusting for age, gender, marital status, educational level, professional title, and the department in which an individual worked, the results of a multivariate logistic regression analysis indicated that incidence of SARS among HCWs was significantly and positively associated with: performing tracheal intubations for SARS patients, methods used for air ventilation in wards, avoiding face-to-face interaction with SARS patients, the number of pairs of gloves worn by HCWs, and caring for serious SARS cases.
Some measures, particularly good air ventilation in SARS wards, may be effective in minimizing or preventing SARS transmission among HCWs in hospitals.
PMCID: PMC2666722  PMID: 19284644
2.  Human Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants 
PLoS Medicine  2006;3(7):e237.
Experimental animal data show that protection against severe acute respiratory syndrome coronavirus (SARS-CoV) infection with human monoclonal antibodies (mAbs) is feasible. For an effective immune prophylaxis in humans, broad coverage of different strains of SARS-CoV and control of potential neutralization escape variants will be required. Combinations of virus-neutralizing, noncompeting mAbs may have these properties.
Methods and Findings
Human mAb CR3014 has been shown to completely prevent lung pathology and abolish pharyngeal shedding of SARS-CoV in infected ferrets. We generated in vitro SARS-CoV variants escaping neutralization by CR3014, which all had a single P462L mutation in the glycoprotein spike (S) of the escape virus. In vitro experiments confirmed that binding of CR3014 to a recombinant S fragment (amino acid residues 318–510) harboring this mutation was abolished. We therefore screened an antibody-phage library derived from blood of a convalescent SARS patient for antibodies complementary to CR3014. A novel mAb, CR3022, was identified that neutralized CR3014 escape viruses, did not compete with CR3014 for binding to recombinant S1 fragments, and bound to S1 fragments derived from the civet cat SARS-CoV-like strain SZ3. No escape variants could be generated with CR3022. The mixture of both mAbs showed neutralization of SARS-CoV in a synergistic fashion by recognizing different epitopes on the receptor-binding domain. Dose reduction indices of 4.5 and 20.5 were observed for CR3014 and CR3022, respectively, at 100% neutralization. Because enhancement of SARS-CoV infection by subneutralizing antibody concentrations is of concern, we show here that anti-SARS-CoV antibodies do not convert the abortive infection of primary human macrophages by SARS-CoV into a productive one.
The combination of two noncompeting human mAbs CR3014 and CR3022 potentially controls immune escape and extends the breadth of protection. At the same time, synergy between CR3014 and CR3022 may allow for a lower total antibody dose to be administered for passive immune prophylaxis of SARS-CoV infection.
Editors' Summary
Late in 2002, severe acute respiratory syndrome (SARS) emerged in the Guangdong province of China. In February 2003, an infected doctor from the province carried this new viral threat to human health to Hong Kong. Here, people staying in the same hotel caught the disease and took it to other countries. SARS was on the move, hitching lifts with international travellers. Because the virus responsible for SARS—SARS-CoV—spread by close person-to-person contact and killed 10% of the people it infected, health experts feared a world-wide epidemic. This was avoided by the World Health Organization issuing a global alert and warning against unnecessary travel to affected areas and by public-health officials isolating patients and their close contacts. By July 2003, the first SARS epidemic was over. 8,098 people had been infected; 774 people had died. Since then, sporadic cases of SARS have been contained locally.
Why Was This Study Done?
The first epidemic of SARS was caused by an animal virus that became adapted to spread between people. There is no reason this process won't be repeated. If it is, stringent quarantine measures could again prevent a global epidemic, but at considerable economic cost. What is needed is a way to prevent SARS developing in healthy people who have been exposed to SARS-CoV and to treat sick people so that they are less infectious and can fight the virus. In this study, researchers have been investigating “passive immunization” as a way to limit SARS epidemics. In passive immunization, short-term protection against illness is achieved by injecting antibodies—proteins that recognize specific molecules (called antigens) on foreign organisms such as bacteria and viruses and prevent those organisms from causing disease. Antibodies for passive immunization can be isolated from blood taken from people who have had SARS, or they can be manufactured as so-called “human monoclonal antibodies” in a laboratory. One of these human monoclonal antibodies—CR3014—had been previously made and shown to prevent lung damage in ferrets infected with SARS-CoV and to stop the infected animals from infecting others. But for effective disease prevention in people, a single monoclonal antibody might not be enough. There are strains of SARS-CoV that CR3014 does not recognize and therefore cannot act against. Also, the virus can alter the antigen recognized by CR3014 when it is grown at a low antibody concentration, producing so-called escape variants; if this happens CR3014 can no longer prevent these escape variants from killing human cells.
What Did the Researchers Do and Find?
The researchers tested how well a combination of two monoclonal antibodies controlled SARS-CoV killing of human cells. First, they showed that CR3014 escape variants all had the same small change in a part of the virus surface that interacts with human cells. CR3014 blocked this interaction in the parent SARS-CoV strain but not in the escape variants. They then made a new monoclonal antibody—CR3022—that prevented both the parent SARS-CoV stain and the CR3014 escape viruses from killing human cells. The two antibodies bound to neighboring parts of the virus surface, and both of them could bind at the same time. CR3022 also bound to surfaces of SARS-CoV strains to which CR3014 does not bind. And when they tried, the researchers could not generate any viral escape variants to which CR3022 was unable to bind. Finally, the effect of the two antibodies together on inhibition of SARS-CoV killing of human cells was more than the sum of their individual effects.
What Do These Findings Mean?
A combination of two (or more) human monoclonal antibodies that recognize different parts of the SARS-CoV surface that interacts with human cells might be a good way to immunize people passively against SARS-CoV. It might minimize the possibility of escape variants arising, broaden the range of virus strains against which protection is provided, and reduce the amount of antibody needed for effective protection. Before the approach is tried in people, it will have to be tested in animals—results from experiments done on human cells in dishes are not always replicated in whole animals or people. If the approach passes further tests, the hope is that passive immunization of people with SARS and their close contacts might reduce disease severity in infected people and reduce viral spread as effectively as dramatic quarantine measures
Additional Information.
Please access these websites via the online version of this summary at
• Medline Plus pages on SARS
• US Centers for Disease Control and Prevention information on SARS
• US National Institute of Allergy and Infectious Diseases factsheet about research on SARS
• Wikipedia page on SARS and monoclonal antibodies (note: Wikipedia is a free online encyclopedia that anyone can edit)
Two human monoclonal antibodies that bind to different parts of the viral glycoprotein spike show synergistic effects in virus neutralization and suppress the emergence of resistant virus in vitro.
PMCID: PMC1483912  PMID: 16796401
3.  Factors associated with nosocomial SARS-CoV transmission among healthcare workers in Hanoi, Vietnam, 2003 
BMC Public Health  2006;6:207.
In March of 2003, an outbreak of Severe Acute Respiratory Syndrome (SARS) occurred in Northern Vietnam. This outbreak began when a traveler arriving from Hong Kong sought medical care at a small hospital (Hospital A) in Hanoi, initiating a serious and substantial transmission event within the hospital, and subsequent limited spread within the community.
We surveyed Hospital A personnel for exposure to the index patient and for symptoms of disease during the outbreak. Additionally, serum specimens were collected and assayed for antibody to SARS-associated coronavirus (SARS-CoV) antibody and job-specific attack rates were calculated. A nested case-control analysis was performed to assess risk factors for acquiring SARS-CoV infection.
One hundred and fifty-three of 193 (79.3%) clinical and non-clinical staff consented to participate. Excluding job categories with <3 workers, the highest SARS attack rates occurred among nurses who worked in the outpatient and inpatient general wards (57.1, 47.4%, respectively). Nurses assigned to the operating room/intensive care unit, experienced the lowest attack rates (7.1%) among all clinical staff. Serologic evidence of SARS-CoV infection was detected in 4 individuals, including 2 non-clinical workers, who had not previously been identified as SARS cases; none reported having had fever or cough. Entering the index patient's room and having seen (viewed) the patient were the behaviors associated with highest risk for infection by univariate analysis (odds ratios 20.0, 14.0; 95% confidence intervals 4.1–97.1, 3.6–55.3, respectively).
This study highlights job categories and activities associated with increased risk for SARS-CoV infection and demonstrates that a broad diversity of hospital workers may be vulnerable during an outbreak. These findings may help guide recommendations for the protection of vulnerable occupational groups and may have implications for other respiratory infections such as influenza.
PMCID: PMC1562405  PMID: 16907978
4.  Vaccine Efficacy in Senescent Mice Challenged with Recombinant SARS-CoV Bearing Epidemic and Zoonotic Spike Variants  
PLoS Medicine  2006;3(12):e525.
In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) was identified as the etiological agent of severe acute respiratory syndrome, a disease characterized by severe pneumonia that sometimes results in death. SARS-CoV is a zoonotic virus that crossed the species barrier, most likely originating from bats or from other species including civets, raccoon dogs, domestic cats, swine, and rodents. A SARS-CoV vaccine should confer long-term protection, especially in vulnerable senescent populations, against both the 2003 epidemic strains and zoonotic strains that may yet emerge from animal reservoirs. We report the comprehensive investigation of SARS vaccine efficacy in young and senescent mice following homologous and heterologous challenge.
Methods and Findings
Using Venezuelan equine encephalitis virus replicon particles (VRP) expressing the 2003 epidemic Urbani SARS-CoV strain spike (S) glycoprotein (VRP-S) or the nucleocapsid (N) protein from the same strain (VRP-N), we demonstrate that VRP-S, but not VRP-N vaccines provide complete short- and long-term protection against homologous strain challenge in young and senescent mice. To test VRP vaccine efficacy against a heterologous SARS-CoV, we used phylogenetic analyses, synthetic biology, and reverse genetics to construct a chimeric virus (icGDO3-S) encoding a synthetic S glycoprotein gene of the most genetically divergent human strain, GDO3, which clusters among the zoonotic SARS-CoV. icGD03-S replicated efficiently in human airway epithelial cells and in the lungs of young and senescent mice, and was highly resistant to neutralization with antisera directed against the Urbani strain. Although VRP-S vaccines provided complete short-term protection against heterologous icGD03-S challenge in young mice, only limited protection was seen in vaccinated senescent animals. VRP-N vaccines not only failed to protect from homologous or heterologous challenge, but resulted in enhanced immunopathology with eosinophilic infiltrates within the lungs of SARS-CoV–challenged mice. VRP-N–induced pathology presented at day 4, peaked around day 7, and persisted through day 14, and was likely mediated by cellular immune responses.
This study identifies gaps and challenges in vaccine design for controlling future SARS-CoV zoonosis, especially in vulnerable elderly populations. The availability of a SARS-CoV virus bearing heterologous S glycoproteins provides a robust challenge inoculum for evaluating vaccine efficacy against zoonotic strains, the most likely source of future outbreaks.
Experiments in mice suggest challenges in vaccine design for controlling future SARS-CoV zoonosis, especially in vulnerable elderly populations.
Editors' Summary
Severe acute respiratory syndrome (SARS) is a flu-like illness and was first recognized in China in 2002, after which the disease rapidly spread around the world. SARS was associated with high death rates, much higher than those for flu. Around 10% of people recognized as being infected with SARS died, and the death rate approached 50% among elderly people. The virus causing SARS was identified as a member of the coronavirus family; it is generally thought that this virus “jumped” to humans from bats, which harbor related viruses. Although SARS was declared eradicated by the World Health Organization in May 2005, there is still the possibility that similar viruses will again cross the species barrier and infect humans, with potentially serious consequences. As a result, many groups are working to develop vaccines that will protect against SARS infection.
Why Was This Study Done?
A SARS vaccine should be effective in people of all ages, including the elderly who are more likely to get seriously ill or die if they become infected. In addition, potential vaccines should protect against different variants of the virus, because there are different types of the virus that could potentially cross the species barrier from animals to humans. Of the different proteins that make up the SARS coronavirus, the spike glycoprotein is thought to elicit an immune response in humans that can protect against future infection. The researchers therefore examined vaccine candidates based on this particular protein (termed SARS-CoV S), as well as a second one called SARS-CoV N, in mice. Specifically, they tested whether the vaccines would protect against SARS infection in both young and older mice, and whether they would protect against infection by different strains of the SARS virus.
What Did the Researchers Do and Find?
The researchers created vaccines based on SARS-CoV S and SARS-CoV N by taking the genes coding for those proteins and inserting them into another type of virus particle that acted as a delivery vehicle. They injected mice with these vaccines and then tested whether the mice generated an immune response against the specific SARS proteins, which they did. The next step was to work out whether mice injected with the vaccines would be protected against later infection with SARS-CoV. The researchers found that mice injected with vaccine based on SARS-CoV S were protected against later infection with a standard SARS-CoV strain, both in the short term (eight weeks after vaccination) and the long term (54 weeks after vaccination). However, the vaccine based on SARS-CoV N did not seem to result in protection, and, worryingly, caused pathological changes in the lungs of mice following virus challenge. To find out if their candidate vaccines would protect against different strains of SARS, the researchers made a synthetic test virus that contained a mixture of genetic material from different natural variants of the virus. This test virus was used to “challenge” mice that had been immunized with the two different vaccines. The researchers found that the vaccine based on SARS-CoV S protected against infection by the test virus when mice were vaccinated young, but it failed to efficiently protect when administered to older mice.
What Do These Findings Mean?
The findings confirm others suggesting that vaccines based on the SARS-CoV S protein are more effective than those based on SARS-CoV N. They also suggest that the former can provide long-term protection in animals vaccinated young against closely related viruses. However, protection against more distantly related viruses remains a challenge, especially when vaccinating older animals. The differences seen between young and older mice suggest that older mice might provide a useful model for animal testing of candidate vaccines for diseases like SARS, flu, and West Nile virus that pose a particular threat to elderly people. Overall, these results provide useful lessons toward future SARS vaccine development in animals. The synthetic virus strain generated here, and others like it, are likely to be useful tools for such future studies.
Additional Information.
Please access these Web sites via the online version of this summary at
• The World Health Organization provides guidance, archives, and other information resources on SARS
• Information from the US Centers for Disease Control on SARS
• Wikipedia (an internet encyclopedia anyone can edit) has an entry on SARS
• Collected resources from MedLinePlus about SARS
PMCID: PMC1716185  PMID: 17194199
5.  Two-Way Antigenic Cross-Reactivity between Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Group 1 Animal CoVs Is Mediated through an Antigenic Site in the N-Terminal Region of the SARS-CoV Nucleoprotein▿  
Journal of Virology  2007;81(24):13365-13377.
In 2002, severe acute respiratory syndrome-associated coronavirus (SARS-CoV) emerged in humans, causing a global epidemic. By phylogenetic analysis, SARS-CoV is distinct from known CoVs and most closely related to group 2 CoVs. However, no antigenic cross-reactivity between SARS-CoV and known CoVs was conclusively and consistently demonstrated except for group 1 animal CoVs. We analyzed this cross-reactivity by an enzyme-linked immunosorbent assay (ELISA) and Western blot analysis using specific antisera to animal CoVs and SARS-CoV and SARS patient convalescent-phase or negative sera. Moderate two-way cross-reactivity between SARS-CoV and porcine CoVs (transmissible gastroenteritis CoV [TGEV] and porcine respiratory CoV [PRCV]) was mediated through the N but not the spike protein, whereas weaker cross-reactivity occurred with feline (feline infectious peritonitis virus) and canine CoVs. Using Escherichia coli-expressed recombinant SARS-CoV N protein and fragments, the cross-reactive region was localized between amino acids (aa) 120 to 208. The N-protein fragments comprising aa 360 to 412 and aa 1 to 213 reacted specifically with SARS convalescent-phase sera but not with negative human sera in ELISA; the fragment comprising aa 1 to 213 cross-reacted with antisera to animal CoVs, whereas the fragment comprising aa 360 to 412 did not cross-react and could be a potential candidate for SARS diagnosis. Particularly noteworthy, a single substitution at aa 120 of PRCV N protein diminished the cross-reactivity. We also demonstrated that the cross-reactivity is not universal for all group 1 CoVs, because HCoV-NL63 did not cross-react with SARS-CoV. One-way cross-reactivity of HCoV-NL63 with group 1 CoVs was localized to aa 1 to 39 and at least one other antigenic site in the N-protein C terminus, differing from the cross-reactive region identified in SARS-CoV N protein. The observed cross-reactivity is not a consequence of a higher level of amino acid identity between SARS-CoV and porcine CoV nucleoproteins, because sequence comparisons indicated that SARS-CoV N protein has amino acid identity similar to that of infectious bronchitis virus N protein and shares a higher level of identity with bovine CoV N protein within the cross-reactive region. The TGEV and SARS-CoV N proteins are RNA chaperons with long disordered regions. We speculate that during natural infection, antibodies target similar short antigenic sites within the N proteins of SARS-CoV and porcine group 1 CoVs that are exposed to an immune response. Identification of the cross-reactive and non-cross-reactive N-protein regions allows development of SARS-CoV-specific antibody assays for screening animal and human sera.
PMCID: PMC2168854  PMID: 17913799
6.  SARS: Systematic Review of Treatment Effects 
PLoS Medicine  2006;3(9):e343.
The SARS outbreak of 2002–2003 presented clinicians with a new, life-threatening disease for which they had no experience in treating and no research on the effectiveness of treatment options. The World Health Organization (WHO) expert panel on SARS treatment requested a systematic review and comprehensive summary of treatments used for SARS-infected patients in order to guide future treatment and identify priorities for research.
Methods and Findings
In response to the WHO request we conducted a systematic review of the published literature on ribavirin, corticosteroids, lopinavir and ritonavir (LPV/r), type I interferon (IFN), intravenous immunoglobulin (IVIG), and SARS convalescent plasma from both in vitro studies and in SARS patients. We also searched for clinical trial evidence of treatment for acute respiratory distress syndrome. Sources of data were the literature databases MEDLINE, EMBASE, BIOSIS, and the Cochrane Central Register of Controlled Trials (CENTRAL) up to February 2005. Data from publications were extracted and evidence within studies was classified using predefined criteria. In total, 54 SARS treatment studies, 15 in vitro studies, and three acute respiratory distress syndrome studies met our inclusion criteria. Within in vitro studies, ribavirin, lopinavir, and type I IFN showed inhibition of SARS-CoV in tissue culture. In SARS-infected patient reports on ribavirin, 26 studies were classified as inconclusive, and four showed possible harm. Seven studies of convalescent plasma or IVIG, three of IFN type I, and two of LPV/r were inconclusive. In 29 studies of steroid use, 25 were inconclusive and four were classified as causing possible harm.
Despite an extensive literature reporting on SARS treatments, it was not possible to determine whether treatments benefited patients during the SARS outbreak. Some may have been harmful. Clinical trials should be designed to validate a standard protocol for dosage and timing, and to accrue data in real time during future outbreaks to monitor specific adverse effects and help inform treatment.
A systematic review and comprehensive summary of reported treatments of SARS-infected patients, requested by the WHO expert panel on SARS, could not determine whether any treatments benefited patients.
Editors' Summary
Severe acute respiratory syndrome (SARS) is caused by a virus; the main symptoms are pneumonia and fever. The virus is usually passed on when people sneeze or cough. SARS became a much-talked about disease in 2003, when over 8,000 cases and 774 deaths occurred worldwide. The situation was alarming, because the first-ever cases had only just appeared in 2002, in China, so the best way to treat this new disease was unknown. Not many drugs are effective against viruses, and all doctors can usually do with a viral disease is to treat specific symptoms (e.g., fever and inflammation) and rely on the body's own immune system to fight off the virus itself. However, in recent years a number of antiviral drugs have been developed (for example, several are in use against HIV/AIDS), so there was hope that some of them might be active against SARS. Steroids were also often used in SARS treatment to try to reduce the inflammation of the lungs. In order to find out which, if any, of the potential treatments for SARS were effective, a number of research studies were carried out, both during and since the recent outbreak.
Why Was This Study Done?
Health care decisions should be based on all the information that is available. It is important to try to bring together all the reliable evidence that exists on each possible treatment for a disease. The process of doing so is called a systematic review. In October 2003 the World Health Organization (WHO) established an International SARS Treatment Study Group, consisting of experts experienced in treating patients with SARS. The group recommended a systematic review of potential treatments for SARS. In particular, it was considered important to summarise the available evidence on the use of certain antiviral drugs (ribavirin, lopinavir, and ritonavir), steroids, and proteins called immunoglobulins, which are found naturally in human blood. The WHO group wanted to know how these treatments affected the virus outside the body (“in vitro”) and whether it helped the condition of patients and reduced the death rate, particularly in those patients who developed the dangerous complication called acute respiratory distress syndrome (ARDS). This study is a systematic review conducted in response to the WHO request.
What Did the Researchers Do and Find?
They did no new work with patients or in the laboratory. Instead they conducted a comprehensive search of the scientific and medical literature for published studies that fitted their carefully predefined selection criteria. They found 54 SARS treatment studies, 15 in vitro studies, and three ARDS studies that met these criteria. Some of the in vitro studies with the antiviral drugs found that a particular drug reduced the reproduction rate of the viruses, but most of the studies of these drugs in patients were inconclusive. Of 29 studies on steroid use, 25 were inconclusive and four found that the treatment caused possible harm.
What Do These Findings Mean?
From the published studies, it is not possible to say whether any of the treatments used against SARS were effective. No cases of SARS have been reported since 2004 but it is always possible that the same or a similar virus might cause outbreaks in the future. It is disappointing that none of the research on SARS is likely to be useful in helping to decide on the best treatments to use in such an outbreak. The authors discuss the weaknesses of the studies they found and urge that more effective methods of research be applied, in a timely fashion, in any similar outbreaks in the future. While the systematic review suggests that we do not know which if any of the potential treatments against SARS are effective, its recommendations mean that researchers should at least be better prepared to learn from potential future outbreaks.
Additional Information.
Please access these Web sites via the online version of this summary at
Wikipedia entry on SARS (Wikipedia is a free online encyclopedia that anyone can edit)
MedlinePlus pages on SARS
Wikipedia entry on systematic reviews, which includes links to other Web sites where more detailed information may be found
PMCID: PMC1564166  PMID: 16968120
7.  Evaluation of Inapparent Nosocomial Severe Acute Respiratory Syndrome Coronavirus Infection in Vietnam by Use of Highly Specific Recombinant Truncated Nucleocapsid Protein-Based Enzyme-Linked Immunosorbent Assay 
Severe acute respiratory syndrome (SARS) is a recently emerged human disease associated with pneumonia. Inapparent infection with SARS coronavirus (CoV) is not well characterized. To develop a safe, simple, and reliable screening method for SARS diagnosis and epidemiological study, two recombinant SARS-CoV nucleocapsid proteins (N′ protein and NΔ121 protein) were expressed in Escherichia coli, purified by affinity chromatography, and used as antigens for indirect, immunoglobulin G enzyme-linked immunosorbent assays (ELISA). Serum samples collected from healthy volunteers and SARS patients in Vietnam were used to evaluate the newly developed methods. The N′ protein-based ELISA showed a highly nonspecific reaction. The NΔ121 protein-based ELISA, with a nonspecific reaction drastically reduced compared to that of the nearly-whole-length N′ protein-based ELISA, resulted in higher rates of positive reactions, higher titers, and earlier detection than the SARS-CoV-infected cell lysate-based ELISA. These results indicate that our newly developed SARS-CoV NΔ121 protein-based ELISA is not only safe but also a more specific and more sensitive method to diagnose SARS-CoV infection and hence a useful tool for large-scale epidemiological studies. To identify inapparent SARS-CoV infections, serum samples collected from health care workers (HCWs) in Vietnam were screened by the NΔ121 protein-based ELISA, and positive samples were confirmed by a virus neutralization test. Four out of 149 HCWs were identified to have inapparent SARS-CoV infection in Vietnam, indicating that subclinical SARS-CoV infection in Vietnam is rare but does exist.
PMCID: PMC1182204  PMID: 16002634
8.  Interpretation of diagnostic laboratory tests for severe acute respiratory syndrome: the Toronto experience 
An outbreak of severe acute respiratory syndrome (SARS) began in Canada in February 2003. The initial diagnosis of SARS was based on clinical and epidemiological criteria. During the outbreak, molecular and serologic tests for the SARS-associated coronavirus (SARS-CoV) became available. However, without a “gold standard,” it was impossible to determine the usefulness of these tests. We describe how these tests were used during the first phase of the SARS outbreak in Toronto and offer some recommendations that may be useful if SARS returns.
We examined the results of all diagnostic laboratory tests used in 117 patients admitted to hospitals in Toronto who met the Health Canada criteria for suspect or probable SARS. Focusing on tests for SARS-CoV, we attempted to determine the optimal specimen types and timing of specimen collection.
Diagnostic test results for SARS-CoV were available for 110 of the 117 patients. SARS-CoV was detected by means of reverse-transcriptase polymerase chain reaction (RT-PCR) in at least one specimen in 59 (54.1%) of 109 patients. Serologic test results of convalescent samples were positive in 50 (96.2%) of 52 patients for whom paired serum samples were collected during the acute and convalescent phases of the illness. Of the 110 patients, 78 (70.9%) had specimens that tested positive by means of RT-PCR, serologic testing or both methods. The proportion of RT-PCR test results that were positive was similar between patients who met the criteria for suspect SARS (50.8%, 95% confidence interval [CI] 38.4%–63.2%) and those who met the criteria for probable SARS (58.0%, 95% CI 44.2%–70.7%). SARS-CoV was detected in nasopharyngeal swabs in 33 (32.4%) of 102 patients, in stool specimens in 19 (63.3%) of 30 patients, and in specimens from the lower respiratory tract in 10 (58.8%) of 17 patients.
These findings suggest that the rapid diagnostic tests in use at the time of the initial outbreak lack sufficient sensitivity to be used clinically to rule out SARS. As tests for SARS-CoV continue to be optimized, evaluation of the clinical presentation and elucidation of a contact history must remain the cornerstone of SARS diagnosis. In patients with SARS, specimens taken from the lower respiratory tract and stool samples test positive by means of RT-PCR more often than do samples taken from other areas.
PMCID: PMC305313  PMID: 14707219
9.  Mutational dynamics of the SARS coronavirus in cell culture and human populations isolated in 2003 
The SARS coronavirus is the etiologic agent for the epidemic of the Severe Acute Respiratory Syndrome. The recent emergence of this new pathogen, the careful tracing of its transmission patterns, and the ability to propagate in culture allows the exploration of the mutational dynamics of the SARS-CoV in human populations.
We sequenced complete SARS-CoV genomes taken from primary human tissues (SIN3408, SIN3725V, SIN3765V), cultured isolates (SIN848, SIN846, SIN842, SIN845, SIN847, SIN849, SIN850, SIN852, SIN3408L), and five consecutive Vero cell passages (SIN2774_P1, SIN2774_P2, SIN2774_P3, SIN2774_P4, SIN2774_P5) arising from SIN2774 isolate. These represented individual patient samples, serial in vitro passages in cell culture, and paired human and cell culture isolates. Employing a refined mutation filtering scheme and constant mutation rate model, the mutation rates were estimated and the possible date of emergence was calculated. Phylogenetic analysis was used to uncover molecular relationships between the isolates.
Close examination of whole genome sequence of 54 SARS-CoV isolates identified before 14th October 2003, including 22 from patients in Singapore, revealed the mutations engendered during human-to-Vero and Vero-to-human transmission as well as in multiple Vero cell passages in order to refine our analysis of human-to-human transmission. Though co-infection by different quasipecies in individual tissue samples is observed, the in vitro mutation rate of the SARS-CoV in Vero cell passage is negligible. The in vivo mutation rate, however, is consistent with estimates of other RNA viruses at approximately 5.7 × 10-6 nucleotide substitutions per site per day (0.17 mutations per genome per day), or two mutations per human passage (adjusted R-square = 0.4014). Using the immediate Hotel M contact isolates as roots, we observed that the SARS epidemic has generated four major genetic groups that are geographically associated: two Singapore isolates, one Taiwan isolate, and one North China isolate which appears most closely related to the putative SARS-CoV isolated from a palm civet. Non-synonymous mutations are centered in non-essential ORFs especially in structural and antigenic genes such as the S and M proteins, but these mutations did not distinguish the geographical groupings. However, no non-synonymous mutations were found in the 3CLpro and the polymerase genes.
Our results show that the SARS-CoV is well adapted to growth in culture and did not appear to undergo specific selection in human populations. We further assessed that the putative origin of the SARS epidemic was in late October 2002 which is consistent with a recent estimate using cases from China. The greater sequence divergence in the structural and antigenic proteins and consistent deletions in the 3' – most portion of the viral genome suggest that certain selection pressures are interacting with the functional nature of these validated and putative ORFs.
PMCID: PMC517714  PMID: 15347429
10.  The Effects of Influenza Vaccination of Health Care Workers in Nursing Homes: Insights from a Mathematical Model 
PLoS Medicine  2008;5(10):e200.
Annual influenza vaccination of institutional health care workers (HCWs) is advised in most Western countries, but adherence to this recommendation is generally low. Although protective effects of this intervention for nursing home patients have been demonstrated in some clinical trials, the exact relationship between increased vaccine uptake among HCWs and protection of patients remains unknown owing to variations between study designs, settings, intensity of influenza seasons, and failure to control all effect modifiers. Therefore, we use a mathematical model to estimate the effects of HCW vaccination in different scenarios and to identify a herd immunity threshold in a nursing home department.
Methods and Findings
We use a stochastic individual-based model with discrete time intervals to simulate influenza virus transmission in a 30-bed long-term care nursing home department. We simulate different levels of HCW vaccine uptake and study the effect on influenza virus attack rates among patients for different institutional and seasonal scenarios. Our model reveals a robust linear relationship between the number of HCWs vaccinated and the expected number of influenza virus infections among patients. In a realistic scenario, approximately 60% of influenza virus infections among patients can be prevented when the HCW vaccination rate increases from 0 to 1. A threshold for herd immunity is not detected. Due to stochastic variations, the differences in patient attack rates between departments are high and large outbreaks can occur for every level of HCW vaccine uptake.
The absence of herd immunity in nursing homes implies that vaccination of every additional HCW protects an additional fraction of patients. Because of large stochastic variations, results of small-sized clinical trials on the effects of HCW vaccination should be interpreted with great care. Moreover, the large variations in attack rates should be taken into account when designing future studies.
Using a mathematical model to simulate influenza transmission in nursing homes, Carline van den Dool and colleagues find that each additional staff member vaccinated further reduces the risk to patients.
Editors' Summary
Every winter, millions of people catch influenza, a contagious viral disease of the nose, throat, and airways. Most people recover completely from influenza within a week or two but some develop life-threatening complications such as bacterial pneumonia. As a result, influenza outbreaks kill about half a million people—mainly infants, elderly people, and chronically ill individuals—each year. To minimize influenza-related deaths, the World Health Organization recommends that vulnerable people be vaccinated against influenza every autumn. Annual vaccination is necessary because flu viruses continually make small changes to the viral proteins (antigens) that the immune system recognizes. This means that an immune response produced one year provides only partial protection against influenza the next year. To provide maximum protection against influenza, each year's vaccine contains disabled versions of the major circulating strains of influenza viruses.
Why Was This Study Done?
Most Western countries also recommend annual flu vaccination for health care workers (HCWs) in hospitals and other institutions to reduce the transmission of influenza to vulnerable patients. However, many HCWs don't get a regular flu shot, so should efforts be made to increase their rate of vaccine uptake? To answer this question, public-health experts need to know more about the relationship between vaccine uptake among HCWs and patient protection. In particular, they need to know whether a high rate of vaccine uptake by HCWs will provide “herd immunity.” Herd immunity occurs because, when a sufficient fraction of a population is immune to a disease that passes from person to person, infected people rarely come into contact with susceptible people, which means that both vaccinated and unvaccinated people are protected from the disease. In this study, the researchers develop a mathematical model to investigate the relationship between vaccine uptake among HCWs and patient protection in a nursing home department.
What Did the Researchers Do and Find?
To predict influenza virus attack rates (the number of patient infections divided by the number of patients in a nursing home department during an influenza season) at different levels of HCW vaccine uptake, the researchers develop a stochastic transmission model to simulate epidemics on a computer. This model predicts that as the HCW vaccination rate increases from 0 (no HCWs vaccinated) to 1 (all the HCWs vaccinated), the expected average influenza virus attack rate decreases at a constant rate. In the researchers' baseline scenario—a nursing home department with 30 beds where patients come into contact with other patients, HCWs, and visitors—the model predicts that about 60% of the patients who would have been infected if no HCWs had been vaccinated are protected when all the HCWs are vaccinated, and that seven HCWs would have to be vaccinated to protect one patient. This last figure does not change with increasing vaccine uptake, which indicates that there is no level of HCW vaccination that completely stops the spread of influenza among the patients; that is, there is no herd immunity. Finally, the researchers show that large influenza outbreaks can happen by chance at every level of HCW vaccine uptake.
What Do These Findings Mean?
As with all mathematical models, the accuracy of these predictions may depend on the specific assumptions built into the model. Therefore the researchers verified that their findings hold for a wide range of plausible assumptions. These findings have two important practical implications. First, the direct relationship between HCW vaccination and patient protection and the lack of any herd immunity suggest that any increase in HCW vaccine uptake will be beneficial to patients in nursing homes. That is, increasing the HCW vaccination rate from 80% to 90% is likely to be as important as increasing it from 10% to 20%. Second, even 100% HCW vaccination cannot guarantee that influenza outbreaks will not occasionally occur in nursing homes. Because of the large variation in attack rates, the results of small clinical trials on the effects of HCW vaccination may be inaccurate and future studies will need to be very large if they are to provide reliable estimates of the amount of protection that HCW vaccination provides to vulnerable patients.
Additional Information.
Please access these Web sites via the online version of this summary at
Read the related PLoSMedicine Perspective by Cécile Viboud and Mark Miller
A related PLoSMedicine Research Article by Jeffrey Kwong and colleagues is also available
The World Health Organization provides information on influenza and on influenza vaccines (in several languages)
The US Centers for Disease Control and Prevention provide information for patients and professionals on all aspects of influenza (in English and Spanish)
The UK Health Protection Agency also provides information on influenza
MedlinePlus provides a list of links to other information about influenza (in English and Spanish)
The UK National Health Service provides information about herd immunity, including a simple explanatory animation
The European Centre for Disease Prevention and Control provides an overview on the types of influenza
PMCID: PMC2573905  PMID: 18959470
11.  SARS-associated Coronavirus Transmission, United States 
Emerging Infectious Diseases  2004;10(2):225-231.
To better assess the risk for transmission of the severe acute respiratory syndrome–associated coronavirus (SARS-CoV), we obtained serial specimens and clinical and exposure data from seven confirmed U.S. SARS patients and their 10 household contacts. SARS-CoV was detected in a day-14 sputum specimen from one case-patient and in five stool specimens from two case-patients. In one case-patient, SARS-CoV persisted in stool for at least 26 days after symptom onset. The highest amounts of virus were in the day-14 sputum sample and a day-14 stool sample. Residual respiratory symptoms were still present in recovered SARS case-patients 2 months after illness onset. Possible transmission of SARS-CoV occurred in one household contact, but this person had also traveled to a SARS-affected area. The data suggest that SARS-CoV is not always transmitted efficiently. Laboratory diagnosis of SARS-CoV infection is difficult; thus, sputum and stool specimens should be included in the diagnostic work-up for SARS-CoV infection.
PMCID: PMC3322913  PMID: 15030687
severe acute respiratory syndrome (SARS); outbreak; SARS-associated coronavirus; epidemiology; transmission; natural history
12.  Risk of ruling out severe acute respiratory syndrome by ruling in another diagnosis: Variable incidence of atypical bacteria coinfection based on diagnostic assays 
Severe acute respiratory syndrome (SARS) caused the first epidemic of the 21st century and continues to threaten the global community.
To assess the incidence of coinfection in patients confirmed to have SARS-associated coronavirus (SARS-CoV) infection, and thus, to determine the risk of ruling out SARS by ruling in another diagnosis.
The present report is a retrospective study evaluating the incidence and impact of laboratory-confirmed SARS-CoV and other pulmonary pathogens in 117 patients. These patients were evaluated in a Toronto, Ontario, community hospital identified as the epicentre for the second SARS outbreak.
Coinfection with other pulmonary pathogens occured in patients with SARS. Seventy-three per cent of the patient population evaluated had laboratory-confirmed SARS-CoV infection. Serology showing acute or recent Chlamydophila pneumoniae or Mycoplasma pneumoniae infection revealed an incidence of 30% and 9%, respectively, in those with SARS. These rates are similar to previously published studies on coinfection in pneumonia. All nucleic acid diagnostic assays were negative for C pneumoniae and M pneumoniae in respiratory samples from patients with SARS having serological evidence for these atypical pathogens.
Diagnostic assays for well-recognized pulmonary pathogens have limitations, and ruling out SARS-CoV by ruling in another pulmonary pathogen carries significant risk. Despite positive serology for atypical pathogens, in a setting where clinical suspicion for SARS is high, specific tests for SARS should be performed to confirm or exclude a diagnosis.
PMCID: PMC2539008  PMID: 16470249
Coinfection; Coronavirus; Epidemic; Pneumonia; SARS
13.  Epidemiological and Genetic Correlates of Severe Acute Respiratory Syndrome Coronavirus Infection in the Hospital with the Highest Nosocomial Infection Rate in Taiwan in 2003†  
Journal of Clinical Microbiology  2006;44(2):359-365.
Taiwan experienced a series of outbreaks of nosocomial severe acute respiratory syndrome (SARS) infections in 2003. Two months after the final outbreak, we recruited 658 employees from the hospital that suffered the first and most severe SARS infections to help us investigate epidemiological and genetic factors associated with the SARS coronavirus (SARS-CoV). SARS-CoV infections were detected by using enzyme immunoassays and confirmed by a combination of Western blot assays, neutralizing antibody tests, and commercial SARS tests. Risk factors were analyzed via questionnaire responses and sequence-specific oligonucleotide probes of human leukocyte antigen (HLA) alleles. Our results indicate that 3% (20/658) of the study participants were seropositive, with one female nurse identified as a subclinical case. Identified SARS-CoV infection risk factors include working in the same building as the hospital's emergency room and infection ward, providing direct care to SARS patients, and carrying a Cw*0801 HLA allele. The odds ratio for contracting a SARS-CoV infection among persons with either a homozygous or a heterozygous Cw*0801 genotype was 4.4 (95% confidence interval, 1.5 to 12.9; P = 0.007).
PMCID: PMC1392693  PMID: 16455884
14.  Aerosol Generating Procedures and Risk of Transmission of Acute Respiratory Infections to Healthcare Workers: A Systematic Review 
PLoS ONE  2012;7(4):e35797.
Aerosol generating procedures (AGPs) may expose health care workers (HCWs) to pathogens causing acute respiratory infections (ARIs), but the risk of transmission of ARIs from AGPs is not fully known. We sought to determine the clinical evidence for the risk of transmission of ARIs to HCWs caring for patients undergoing AGPs compared with the risk of transmission to HCWs caring for patients not undergoing AGPs. We searched PubMed, EMBASE, MEDLINE, CINAHL, the Cochrane Library, University of York CRD databases, EuroScan, LILACS, Indian Medlars, Index Medicus for SE Asia, international health technology agencies and the Internet in all languages for articles from 01/01/1990 to 22/10/2010. Independent reviewers screened abstracts using pre-defined criteria, obtained full-text articles, selected relevant studies, and abstracted data. Disagreements were resolved by consensus. The outcome of interest was risk of ARI transmission. The quality of evidence was rated using the GRADE system. We identified 5 case-control and 5 retrospective cohort studies which evaluated transmission of SARS to HCWs. Procedures reported to present an increased risk of transmission included [n; pooled OR(95%CI)] tracheal intubation [n = 4 cohort; 6.6 (2.3, 18.9), and n = 4 case-control; 6.6 (4.1, 10.6)], non-invasive ventilation [n = 2 cohort; OR 3.1(1.4, 6.8)], tracheotomy [n = 1 case-control; 4.2 (1.5, 11.5)] and manual ventilation before intubation [n = 1 cohort; OR 2.8 (1.3, 6.4)]. Other intubation associated procedures, endotracheal aspiration, suction of body fluids, bronchoscopy, nebulizer treatment, administration of O2, high flow O2, manipulation of O2 mask or BiPAP mask, defibrillation, chest compressions, insertion of nasogastric tube, and collection of sputum were not significant. Our findings suggest that some procedures potentially capable of generating aerosols have been associated with increased risk of SARS transmission to HCWs or were a risk factor for transmission, with the most consistent association across multiple studies identified with tracheal intubation.
PMCID: PMC3338532  PMID: 22563403
15.  Lessons from SARS: A retrospective study of outpatient care during an infectious disease outbreak 
BMC Pediatrics  2010;10:51.
During severe acute respiratory syndrome (SARS) outbreak in Toronto, outpatient clinics at SickKids Hospital were closed to prevent further disease transmission. In response, a decision was made by the neonatal neuro-developmental follow up (NNFU) clinic staff to select patients with scheduled appointments to have a mail/telephone assessment using Ages and Stages Questionnaire (ASQ) or to postpone/skip their visit. The objective of this study was to compare the developmental assessment and its outcome in two groups of NNFU clinic patients, SARS versus non-SARS, over three standard clinic appointments.
We compared the diagnostic accuracy (identification of developmental delay), and patient management (referral for therapy or communication of a new diagnosis) of the strategies used during SARS, April/May 2003, to the standard assessment methods used for patients seen in April/May 2005 (non-SARS). In all cases data were obtained for 3 patient visits: before, during and after these 2 months and were compared using descriptive statistics.
There were 95 patients in the SARS group and 99 non-SARS patients. The gestational age, sex, entry diagnosis and age at the clinic visit was not different between the groups. The NNFU clinic staff mailed ASQ to 27 families during SARS, 17 (63%) were returned, and 8 of the 17 were then contacted by telephone. Criteria used to identify infants at risk selected for either mailed ASQ or phone interviews were not clearly defined in the patients' charts. There was a significant under identification of developmental delay during SARS (18% versus 45%). Of those who responded to the mailed questionnaire, referrals for therapy rates were similar to non-SARS group. The lost to follow up rate was 24% for the SARS group compared with 7% for non-SARS. There was no difference in the overall rate of developmental delay in the two groups as identified at the 'after' visit.
Poor advanced planning led to a haphazard assessment of patients during this infectious disease outbreak. Future pandemic plans should consider planning for outpatient care as well as in hospital management of patients.
PMCID: PMC2914048  PMID: 20646293
16.  Novel Immunofluorescence Assay Using Recombinant Nucleocapsid-Spike Fusion Protein as Antigen To Detect Antibodies against Severe Acute Respiratory Syndrome Coronavirus 
Severe acute respiratory syndrome (SARS) is caused by a novel and highly infectious virus named SARS coronavirus (SARS-CoV). Among the serological tests currently available for the detection of SARS-CoV, a whole-virus-based immunofluorescence assay (IFA) was considered one of the most sensitive assays and served as a “gold standard” during the SARS epidemic in Singapore in 2003. However, the need to manipulate live SARS-CoV in the traditional IFA limits its wide application due to the requirement for a biosafety level 3 laboratory and the risk of laboratory infection. Previously, we have identified two immunodominant epitopes, named N195 and Sc, in the two major structural proteins, the N and S proteins, of SARS-CoV (Q. He, K. H. Chong, H. H. Chng, B. Leung, A. E. Ling, T. Wei, S. W. Chan, E. E. Ooi, and J. Kwang, Clin. Diagn. Lab. Immunol., 11:417-422, 2004; L. Lu, I. Manopo, B. P. Leung, H. H. Chng, A. E. Ling, L. L. Chee, E. E. Ooi, S. W. Chan, and J. Kwang, J. Clin. Microbiol. 42:1570-1576, 2004). In the present study, the N195-Sc fusion protein was highly expressed in insect (Sf9) cells infected with a recombinant baculovirus bearing the hybrid gene under the control of a polyhedrin promoter. An IFA based on Sf9 cells producing the fusion protein was standardized with 23 serum samples from patients with SARS, 20 serum samples from patients with autoimmune diseases, and 43 serum samples from healthy blood donors. The detection rates were comparable to those obtained with a commercial SARS-CoV IFA kit (EUROIMMUN, Gross Groenau, Germany) and a conventional IFA performed at the Singapore General Hospital. Our data showed that the newly developed IFA could detect SARS-CoV in 22 of the 23 SARS-CoV-positive serum samples and gave no false-positive results when the sera from patients with autoimmune diseases and healthy individuals were tested. The detection rate was identical to those of the two whole-virus-based IFAs. Thus, the novel N-S fusion antigen-based IFA could be an attractive alternative to present whole-virus-based IFAs for the diagnosis of SARS-CoV infection.
PMCID: PMC549298  PMID: 15699428
17.  Tuberculosis among Health-Care Workers in Low- and Middle-Income Countries: A Systematic Review 
PLoS Medicine  2006;3(12):e494.
The risk of transmission of Mycobacterium tuberculosis from patients to health-care workers (HCWs) is a neglected problem in many low- and middle-income countries (LMICs). Most health-care facilities in these countries lack resources to prevent nosocomial transmission of tuberculosis (TB).
Methods and Findings
We conducted a systematic review to summarize the evidence on the incidence and prevalence of latent TB infection (LTBI) and disease among HCWs in LMICs, and to evaluate the impact of various preventive strategies that have been attempted. To identify relevant studies, we searched electronic databases and journals, and contacted experts in the field. We identified 42 articles, consisting of 51 studies, and extracted data on incidence, prevalence, and risk factors for LTBI and disease among HCWs. The prevalence of LTBI among HCWs was, on average, 54% (range 33% to 79%). Estimates of the annual risk of LTBI ranged from 0.5% to 14.3%, and the annual incidence of TB disease in HCWs ranged from 69 to 5,780 per 100,000. The attributable risk for TB disease in HCWs, compared to the risk in the general population, ranged from 25 to 5,361 per 100,000 per year. A higher risk of acquiring TB disease was associated with certain work locations (inpatient TB facility, laboratory, internal medicine, and emergency facilities) and occupational categories (radiology technicians, patient attendants, nurses, ward attendants, paramedics, and clinical officers).
In summary, our review demonstrates that TB is a significant occupational problem among HCWs in LMICs. Available evidence reinforces the need to design and implement simple, effective, and affordable TB infection-control programs in health-care facilities in these countries.
A systematic review demonstrates that tuberculosis is an important occupational problem among health care workers in low and middle-income countries.
Editors' Summary
One third of the world's population is infected with Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB). In many people, the bug causes no health problems—it remains latent. But about 10% of infected people develop active, potentially fatal TB, often in their lungs. People with active pulmonary TB readily spread the infection to other people, including health-care workers (HCWs), in small airborne droplets produced when they cough or sneeze. In high-income countries such as the US, guidelines are in place to minimize the transmission of TB in health-care facilities. Administrative controls (for example, standard treatment plans for people with suspected or confirmed TB) aim to reduce the exposure of HCWs to people with TB. Environmental controls (for example, the use of special isolation rooms) aim to prevent the spread and to reduce the concentration of infectious droplets in the air. Finally, respiratory-protection controls (for example, personal respirators for nursing staff) aim to reduce the risk of infection when exposure to M. tuberculosis is unavoidably high. Together, these three layers of control have reduced the incidence of TB in HCWs (the number who catch TB annually) in high-income countries.
Why Was This Study Done?
But what about low- and middle-income countries (LMICs) where more than 90% of the world's cases of TB occur? Here, there is little money available to implement even low-cost strategies to reduce TB transmission in health-care facilities—so how important an occupational disease is TB in HCWs in these countries? In this study, the researchers have systematically reviewed published papers to find out the incidence and prevalence (how many people in a population have a specific disease) of active TB and latent TB infections (LTBIs) in HCWs in LMICs. They have also investigated whether any of the preventative strategies used in high-income countries have been shown to reduce the TB burden in HCWs in poorer countries.
What Did the Researchers Do and Find?
To identify studies on TB transmission to HCWs in LMICs, the researchers searched electronic databases and journals, and also contacted experts on TB transmission. They then extracted and analyzed the relevant data on TB incidence, prevalence, risk factors, and control measures. Averaged-out over the 51 identified studies, 54% of HCWs had LTBI. In most of the studies, increasing age and duration of employment in health-care facilities, indicating a longer cumulative exposure to infection, was associated with a higher prevalence of LTBI. The same trend was seen in a subgroup of medical and nursing students. After accounting for the incidence of TB in the relevant general population, the excess incidence of TB in the different studies that was attributable to being a HCW ranged from 25 to 5,361 cases per 100, 000 people per year. In addition, a higher risk of acquiring TB was associated with working in specific locations (for example, inpatient TB facilities or diagnostic laboratories) and with specific occupations, including nurses and radiology attendants; most of the health-care facilities examined in the published studies had no specific TB infection-control programs in place.
What Do These Findings Mean?
As with all systematic reviews, the accuracy of these findings may be limited by some aspects of the original studies, such as how the incidence of LTBI was measured. In addition, the possibility that the researchers missed some relevant published studies, or that only studies where there was a high incidence of TB in HCWs were published, may also affect the findings of this study. Nevertheless, they suggest that TB is an important occupational disease in HCWs in LMICs and that the HCWs most at risk of TB are those exposed to the most patients with TB. Reduction of that risk should be a high priority because occupational TB leads to the loss of essential, skilled HCWs. Unfortunately, there are few data available to indicate how this should be done. Thus, the researchers conclude, well-designed field studies are urgently needed to evaluate whether the TB-control measures that have reduced TB transmission to HCWs in high-income countries will work and be affordable in LMICs.
Additional Information.
Please access these Web sites via the online version of this summary at
• US National Institute of Allergy and Infectious Diseases patient fact sheet on tuberculosis
• US Centers for Disease Control and Prevention information for patients and professionals on tuberculosis
• MedlinePlus encyclopedia entry on tuberculosis
• NHS Direct Online, from the UK National Health Service, patient information on tuberculosis
• US National Institute for Occupational Health and Safety, information about tuberculosis for health-care workers
• American Lung Association information on tuberculosis and health-care workers
PMCID: PMC1716189  PMID: 17194191
18.  Identification and containment of an outbreak of SARS in a community hospital 
Severe acute respiratory syndrome (SARS) is continuing to spread around the world. All hospitals must be prepared to care for patients with SARS. Thus, it is important to understand the transmission of this disease in hospitals and to evaluate methods for its containment in health care institutions. We describe how we cared for the first 2 patients with SARS admitted to our 419-bed community hospital in Richmond Hill, Ont., and the response to a SARS outbreak within our institution.
We collected clinical and epidemiological data about patients and health care workers at our institution who during a 13-day period had a potential unprotected exposure to 2 patients whose signs and symptoms were subsequently identified as meeting the case definition for probable SARS. The index case at our hospital was a patient who was transferred to our intensive care unit (ICU) from a referral hospital on Mar. 16, 2003, where he had been in close proximity to the son of the individual with the first reported case of SARS in Toronto. After 13 days in the ICU, a diagnosis of probable SARS was reached for our index case. Immediately upon diagnosis of our index case, respiratory isolation and barrier precautions were instituted throughout our hospital and maintained for a period of 10 days, which is the estimated maximum incubation period reported for this disease. Aggressive surveillance measures among hospital staff, patients and visitors were also maintained during this time.
During the surveillance period, 15 individuals (10 hospital staff, 3 patients and 2 visitors) were identified as meeting the case definition for probable or suspected SARS, in addition to our index case. All but 1 individual had had direct contact with a symptomatic patient with SARS during the period of unprotected exposure. No additional cases were identified after infection control precautions had been implemented for 8 days. No cases of secondary transmission were identified in the 21 days following the implementation of these precautions at our institution.
SARS can easily be spread by direct personal contact in the hospital setting. We found that the implementation of aggressive infection control measures is effective in preventing further transmission of this disease.
PMCID: PMC155957  PMID: 12771070
19.  A rapid point of care immunoswab assay for SARS-CoV detection 
Journal of virological methods  2008;152(1-2):77-84.
The emergence of severe acute respiratory syndrome (SARS) resulted in several outbreaks worldwide. Early tests for diagnosis were not always conclusive in identifying a SARS suspected patient. Nucleocapsid protein (NP) is the most predominant virus derived structural protein which is shed in high amounts in serum and nasopharyngeal aspirate during the first week of infection. As part of such efforts, a simple, easy to use immunoswab method was developed by generating a panel of monoclonal antibodies (MAbs), Bispecific MAbs and chicken polyclonal IgY antibody against the SARS-CoV nucleocapsid protein (NP). Employing the MAb-based immunoswab, an NP concentration of 200 pg/mL in saline and pig nasopharyngeal aspirate, and 500 pg/mL in rabbit serum were detected. BsMAb-based immunoswabs detected an NP concentration of 20 pg/mL in saline, 500 pg/mL in rabbit serum and 20–200 pg/mL in pig nasopharyngeal aspirate. Polyclonal IgY-based immunoswabs detected an NP concentration of 10 pg/mL in pig nasopharyngeal aspirate providing the most sensitive SARS point of care assay. Results show that the robust immunoswab method of detecting SARS-CoV NP antigen can be developed into an easy and effective way of identifying SARS suspected individuals during a future SARS epidemic, thereby reducing and containing the transmission. The key feature of this simple immunoswab diagnostic assay is its ability to detect the presence of the SARS-CoV antigen within 45–60 min with the availability of the body fluid samples.
PMCID: PMC2678951  PMID: 18620761
Bispecific monoclonal antibody; SARS-CoV; Nucleocapsid protein; Immunoswab assay
20.  Functional Genomics Highlights Differential Induction of Antiviral Pathways in the Lungs of SARS-CoV–Infected Macaques 
PLoS Pathogens  2007;3(8):e112.
The pathogenesis of severe acute respiratory syndrome coronavirus (SARS-CoV) is likely mediated by disproportional immune responses and the ability of the virus to circumvent innate immunity. Using functional genomics, we analyzed early host responses to SARS-CoV infection in the lungs of adolescent cynomolgus macaques (Macaca fascicularis) that show lung pathology similar to that observed in human adults with SARS. Analysis of gene signatures revealed induction of a strong innate immune response characterized by the stimulation of various cytokine and chemokine genes, including interleukin (IL)-6, IL-8, and IP-10, which corresponds to the host response seen in acute respiratory distress syndrome. As opposed to many in vitro experiments, SARS-CoV induced a wide range of type I interferons (IFNs) and nuclear translocation of phosphorylated signal transducer and activator of transcription 1 in the lungs of macaques. Using immunohistochemistry, we revealed that these antiviral signaling pathways were differentially regulated in distinctive subsets of cells. Our studies emphasize that the induction of early IFN signaling may be critical to confer protection against SARS-CoV infection and highlight the strength of combining functional genomics with immunohistochemistry to further unravel the pathogenesis of SARS.
Author Summary
Severe acute respiratory syndrome coronavirus (SARS-CoV) infection causes a progressive atypical pneumonia. In typical cases, largely confined to adult and elderly individuals, acute respiratory distress syndrome develops, and admission to an intensive care unit is required. Although these complications can be fatal, most SARS patients recover, suggesting that protective immune responses are operational. In this study, we simultaneously examined virus replication and host–response gene expression profiles in macaque lungs during the acute phase of SARS to gain more insight into the early events that take place after SARS-CoV infection. We show that a strong host response is induced in the lungs of SARS-CoV–infected macaques, illustrated by the induction of several pathogenic cytokines and chemokines. Interestingly, antiviral pathways are activated as well, demonstrated by the presence of phosphorylated signal transducer and activator of transcription 1 (STAT1) transcription factors throughout the lung, but not in SARS-CoV–infected cells. A subset of cells was shown to produce interferon-β, a cytokine involved in the resistance to many viral infections and able to activate STAT1. Activation of this antiviral pathway upon SARS-CoV infection may be an important escape route of the host to withstand the devastating effects of SARS-CoV.
PMCID: PMC1941749  PMID: 17696609
21.  T-Cell Epitopes in Severe Acute Respiratory Syndrome (SARS) Coronavirus Spike Protein Elicit a Specific T-Cell Immune Response in Patients Who Recover from SARS 
Journal of Virology  2004;78(11):5612-5618.
The immunogenicity of HLA-A2-restricted T-cell epitopes in the S protein of the Severe acute respiratory syndrome coronavirus (SARS-CoV) and of human coronavirus strain 229e (HCoV-229e) was analyzed for the elicitation of a T-cell immune response in donors who had fully recovered from SARS-CoV infection. We employed online database analysis to compare the differences in the amino acid sequences of the homologous T epitopes of HCoV-229e and SARS-CoV. The identified T-cell epitope peptides were synthesized, and their binding affinities for HLA-A2 were validated and compared in the T2 cell system. The immunogenicity of all these peptides was assessed by using T cells obtained from donors who had fully recovered from SARS-CoV infection and from healthy donors with no history of SARS-CoV infection. HLA-A2 typing by indirect immunofluorescent antibody staining showed that 51.6% of SARS-CoV-infected patients were HLA-A2 positive. Online database analysis and the T2 cell binding test disclosed that the number of HLA-A2-restricted immunogenic epitopes of the S protein of SARS-CoV was decreased or even lost in comparison with the homologous sequences of the S protein of HCoV-229e. Among the peptides used in the study, the affinity of peptides from HCoV-229e (H77 and H881) and peptides from SARS-CoV (S978 and S1203) for binding to HLA-A2 was higher than that of other sequences. The gamma interferon (IFN-γ) release Elispot assay revealed that only SARS-CoV-specific peptides S1203 and S978 induced a high frequency of IFN-γ-secreting T-cell response in HLA-A2+ donors who had fully recovered from SARS-CoV infection; such a T-cell epitope-specific response was not observed in HLA-A2+ healthy donors or in HLA-A2− donors who had been infected with SARS-CoV after full recovery. Thus, T-cell epitopes S1203 and S978 are immunogenic and elicit an overt specific T-cell response in HLA-A2+ SARS-CoV-infected patients.
PMCID: PMC415819  PMID: 15140958
22.  Moderate mutation rate in the SARS coronavirus genome and its implications 
The outbreak of severe acute respiratory syndrome (SARS) caused a severe global epidemic in 2003 which led to hundreds of deaths and many thousands of hospitalizations. The virus causing SARS was identified as a novel coronavirus (SARS-CoV) and multiple genomic sequences have been revealed since mid-April, 2003. After a quiet summer and fall in 2003, the newly emerged SARS cases in Asia, particularly the latest cases in China, are reinforcing a wide-spread belief that the SARS epidemic would strike back. With the understanding that SARS-CoV might be with humans for years to come, knowledge of the evolutionary mechanism of the SARS-CoV, including its mutation rate and emergence time, is fundamental to battle this deadly pathogen. To date, the speed at which the deadly virus evolved in nature and the elapsed time before it was transmitted to humans remains poorly understood.
Sixteen complete genomic sequences with available clinical histories during the SARS outbreak were analyzed. After careful examination of multiple-sequence alignment, 114 single nucleotide variations were identified. To minimize the effects of sequencing errors and additional mutations during the cell culture, three strategies were applied to estimate the mutation rate by 1) using the closely related sequences as background controls; 2) adjusting the divergence time for cell culture; or 3) using the common variants only. The mutation rate in the SARS-CoV genome was estimated to be 0.80 – 2.38 × 10-3 nucleotide substitution per site per year which is in the same order of magnitude as other RNA viruses. The non-synonymous and synonymous substitution rates were estimated to be 1.16 – 3.30 × 10-3 and 1.67 – 4.67 × 10-3 per site per year, respectively. The most recent common ancestor of the 16 sequences was inferred to be present as early as the spring of 2002.
The estimated mutation rates in the SARS-CoV using multiple strategies were not unusual among coronaviruses and moderate compared to those in other RNA viruses. All estimates of mutation rates led to the inference that the SARS-CoV could have been with humans in the spring of 2002 without causing a severe epidemic.
PMCID: PMC446188  PMID: 15222897
23.  Lack of SARS Transmission among Healthcare Workers, United States 
Emerging Infectious Diseases  2004;10(2):217-224.
Healthcare workers accounted for a large proportion of persons with severe acute respiratory syndrome (SARS) during the worldwide epidemic of early 2003. We conducted an investigation of healthcare workers exposed to laboratory-confirmed SARS patients in the United States to evaluate infection-control practices and possible SARS-associated coronavirus (SARS-CoV) transmission. We identified 110 healthcare workers with exposure within droplet range (i.e., 3 feet) to six SARS-CoV–positive patients. Forty-five healthcare workers had exposure without any mask use, 72 had exposure without eye protection, and 40 reported direct skin-to-skin contact. Potential droplet- and aerosol-generating procedures were infrequent: 5% of healthcare workers manipulated a patient’s airway, and 4% administered aerosolized medication. Despite numerous unprotected exposures, there was no serologic evidence of healthcare-related SARS-CoV transmission. Lack of transmission in the United States may be related to the relative absence of high-risk procedures or patients, factors that may place healthcare workers at higher risk for infection.
PMCID: PMC3322937  PMID: 15030686
severe acute respiratory distress syndrome; healthcare workers; nosocomial; transmission
24.  Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Regulates Cell Stress Response and Apoptosis 
PLoS Pathogens  2011;7(10):e1002315.
Severe acute respiratory syndrome virus (SARS-CoV) that lacks the envelope (E) gene (rSARS-CoV-ΔE) is attenuated in vivo. To identify factors that contribute to rSARS-CoV-ΔE attenuation, gene expression in cells infected by SARS-CoV with or without E gene was compared. Twenty-five stress response genes were preferentially upregulated during infection in the absence of the E gene. In addition, genes involved in signal transduction, transcription, cell metabolism, immunoregulation, inflammation, apoptosis and cell cycle and differentiation were differentially regulated in cells infected with rSARS-CoV with or without the E gene. Administration of E protein in trans reduced the stress response in cells infected with rSARS-CoV-ΔE or with respiratory syncytial virus, or treated with drugs, such as tunicamycin and thapsigargin that elicit cell stress by different mechanisms. In addition, SARS-CoV E protein down-regulated the signaling pathway inositol-requiring enzyme 1 (IRE-1) of the unfolded protein response, but not the PKR-like ER kinase (PERK) or activating transcription factor 6 (ATF-6) pathways, and reduced cell apoptosis. Overall, the activation of the IRE-1 pathway was not able to restore cell homeostasis, and apoptosis was induced probably as a measure to protect the host by limiting virus production and dissemination. The expression of proinflammatory cytokines was reduced in rSARS-CoV-ΔE-infected cells compared to rSARS-CoV-infected cells, suggesting that the increase in stress responses and the reduction of inflammation in the absence of the E gene contributed to the attenuation of rSARS-CoV-ΔE.
Author Summary
To identify potential mechanisms mediating the in vivo attenuation of SARS-CoV lacking the E gene (rSARS-CoV-ΔE), the effect of the presence of the E gene on host gene expression was studied. In rSARS-CoV-ΔE-infected cells, the expression of at least 25 stress response genes was preferentially upregulated, compared to cells infected with rSARS-CoV. E protein supplied in trans reversed the increase in stress response genes observed in cells infected with rSARS-CoV-ΔE or with respiratory syncytial virus, and by treatment with drugs causing stress by different mechanisms. Furthermore, in the presence of the E protein a subset (IRE-1 pathway), but not two others (PERK and ATF-6), of the unfolded protein response was also reduced. Nevertheless, the activation of the unfolded protein response to control cell homeostasis was not sufficient to alleviate cell stress, and an increase in cell apoptosis in cells infected with the virus lacking E protein was observed. This apoptotic response was probably induced to protect the host by limiting virus production and dissemination. In cells infected with rSARS-CoV-ΔE, genes associated with the proinflammatory pathway were down-regulated compared to cells infected with virus expressing E protein, supporting the idea that a reduction in inflammation was also relevant in the attenuation of the virus deletion mutant.
PMCID: PMC3197621  PMID: 22028656
25.  SARS Transmission Pattern in Singapore Reassessed by Viral Sequence Variation Analysis 
PLoS Medicine  2005;2(2):e43.
Epidemiological investigations of infectious disease are mainly dependent on indirect contact information and only occasionally assisted by characterization of pathogen sequence variation from clinical isolates. Direct sequence analysis of the pathogen, particularly at a population level, is generally thought to be too cumbersome, technically difficult, and expensive. We present here a novel application of mass spectrometry (MS)–based technology in characterizing viral sequence variations that overcomes these problems, and we apply it retrospectively to the severe acute respiratory syndrome (SARS) outbreak in Singapore.
Methods and Findings
The success rate of the MS-based analysis for detecting SARS coronavirus (SARS-CoV) sequence variations was determined to be 95% with 75 copies of viral RNA per reaction, which is sufficient to directly analyze both clinical and cultured samples. Analysis of 13 SARS-CoV isolates from the different stages of the Singapore outbreak identified nine sequence variations that could define the molecular relationship between them and pointed to a new, previously unidentified, primary route of introduction of SARS-CoV into the Singapore population. Our direct determination of viral sequence variation from a clinical sample also clarified an unresolved epidemiological link regarding the acquisition of SARS in a German patient. We were also able to detect heterogeneous viral sequences in primary lung tissues, suggesting a possible coevolution of quasispecies of virus within a single host.
This study has further demonstrated the importance of improving clinical and epidemiological studies of pathogen transmission through the use of genetic analysis and has revealed the MS-based analysis to be a sensitive and accurate method for characterizing SARS-CoV genetic variations in clinical samples. We suggest that this approach should be used routinely during outbreaks of a wide variety of agents, in order to allow the most effective control.
Mass spectrometry-based sequence analysis provides a sensitive and accurate method to characterize genetic variation of the SARS coronavirus in clinical samples
PMCID: PMC549591  PMID: 15736999

Results 1-25 (1459246)