Search tips
Search criteria

Results 1-25 (401223)

Clipboard (0)

Related Articles

1.  Regulation of Peripheral Inflammation by Spinal p38 MAP Kinase in Rats 
PLoS Medicine  2006;3(9):e338.
Somatic afferent input to the spinal cord from a peripheral inflammatory site can modulate the peripheral response. However, the intracellular signaling mechanisms in the spinal cord that regulate this linkage have not been defined. Previous studies suggest spinal cord p38 mitogen-activated protein (MAP) kinase and cytokines participate in nociceptive behavior. We therefore determined whether these pathways also regulate peripheral inflammation in rat adjuvant arthritis, which is a model of rheumatoid arthritis.
Methods and Findings
Selective blockade of spinal cord p38 MAP kinase by administering the p38 inhibitor SB203580 via intrathecal (IT) catheters in rats with adjuvant arthritis markedly suppressed paw swelling, inhibited synovial inflammation, and decreased radiographic evidence of joint destruction. The same dose of SB203580 delivered systemically had no effect, indicating that the effect was mediated by local concentrations in the neural compartment. Evaluation of articular gene expression by quantitative real-time PCR showed that spinal p38 inhibition markedly decreased synovial interleukin-1 and −6 and matrix metalloproteinase (MMP3) gene expression. Activation of p38 required tumor necrosis factor α (TNFα) in the nervous system because IT etanercept (a TNF inhibitor) given during adjuvant arthritis blocked spinal p38 phosphorylation and reduced clinical signs of adjuvant arthritis.
These data suggest that peripheral inflammation is sensed by the central nervous system (CNS), which subsequently activates stress-induced kinases in the spinal cord via a TNFα-dependent mechanism. Intracellular p38 MAP kinase signaling processes this information and profoundly modulates somatic inflammatory responses. Characterization of this mechanism could have clinical and basic research implications by supporting development of new treatments for arthritis and clarifying how the CNS regulates peripheral immune responses.
Inhibition of p38 MAP kinase in the CNS reduces peripheral inflammation and joint destruction in arthritic rats.
Editors' Summary
Rheumatoid arthritis is a disease marked by chronic inflammation, leading to joint pain and destruction. Pain and inflammation in the joints as well as other locations in the body (i.e., the “periphery”) are constantly monitored by the central nervous system (i.e., the brain and spinal cord). Scientists have long suspected that the central nervous system (CNS) can regulate inflammation and immune responses, but little is known about how the CNS does this. One potential player is a protein called p38 that is involved in a number of cellular processes critical to the development of rheumatoid arthritis. Several substances that block the action of p38 are effective in animal models of arthritis and are currently being tested in clinical trials in patients with rheumatoid arthritis. Originally, p38 was considered as a drug target that should mainly be blocked in the joints. But recent work has shown that pain in the periphery can lead to activation of p38 in the spinal cord, and that blocking p38 in the spinal cord might reduce peripheral pain.
Why Was This Study Done?
Based on the observation that p38 is activated in the CNS in response to peripheral pain, the researchers who did this study wondered whether it might be involved in the interaction between inflammation in the joints and the CNS.
What Did the Researchers Do and Find?
They induced inflammation in the joints of rats and then looked for responses in the spinal cord. They found that p38 was indeed activated in the spinal cord of these rats. This activation depended on another protein, called TNFα, which is another major regulator of inflammation. The scientists then blocked either p38 or the TNFα with drugs directly delivered to the spinal cord of the arthritic rats, they could substantially reduce inflammation, arthritis, and destruction of the joints, compared with rats that had undergone the same treatment but received no active drug. Treatment of arthritic rats with the same amount of drugs given directly under the skin (this is called “systemic treatment”) did not have any effect on the joints.
What Do These Findings Mean?
Blocking p38 and TNFα by giving drugs systemically is known to have beneficial effects in animal models and human patients with rheumatoid arthritis. However, the drugs tested in patients to date also have side effects. Given that much lower doses were needed to achieve beneficial effects in the rats when the drugs were administered directly into the spinal cord, it is possible that spinal cord administration might reduce the side effects (and possibly the costs) of the drugs without compromising the benefits to the patients. If future studies confirm that the action of these drugs on the CNS is essential to achieve a response even when administered as a systemic treatment, designing drugs that get into the CNS easier might improve the effectiveness and/or make it possible to use lower doses systemically.
Additional Information.
Please access these Web sites via the online version of this summary at
MedlinePlus entry on rheumatoid arthritis
Rheumatoid arthritis pages from the US National Institute of Arthritis and Musculoskeletal and Skin Diseases
Rheumatoid Arthritis fact sheet from the American College of Rheumatology Description
Wikipedia entry on rheumatoid arthritis (note: Wikipedia is a free online encyclopedia that anyone can edit)
PMCID: PMC1560929  PMID: 16953659
2.  A Candidate Gene Approach Identifies the TRAF1/C5 Region as a Risk Factor for Rheumatoid Arthritis 
PLoS Medicine  2007;4(9):e278.
Rheumatoid arthritis (RA) is a chronic autoimmune disorder affecting ∼1% of the population. The disease results from the interplay between an individual's genetic background and unknown environmental triggers. Although human leukocyte antigens (HLAs) account for ∼30% of the heritable risk, the identities of non-HLA genes explaining the remainder of the genetic component are largely unknown. Based on functional data in mice, we hypothesized that the immune-related genes complement component 5 (C5) and/or TNF receptor-associated factor 1 (TRAF1), located on Chromosome 9q33–34, would represent relevant candidate genes for RA. We therefore aimed to investigate whether this locus would play a role in RA.
Methods and Findings
We performed a multitiered case-control study using 40 single-nucleotide polymorphisms (SNPs) from the TRAF1 and C5 (TRAF1/C5) region in a set of 290 RA patients and 254 unaffected participants (controls) of Dutch origin. Stepwise replication of significant SNPs was performed in three independent sample sets from the Netherlands (ncases/controls = 454/270), Sweden (ncases/controls = 1,500/1,000) and US (ncases/controls = 475/475). We observed a significant association (p < 0.05) of SNPs located in a haplotype block that encompasses a 65 kb region including the 3′ end of C5 as well as TRAF1. A sliding window analysis revealed an association peak at an intergenic region located ∼10 kb from both C5 and TRAF1. This peak, defined by SNP14/rs10818488, was confirmed in a total of 2,719 RA patients and 1,999 controls (odds ratiocommon = 1.28, 95% confidence interval 1.17–1.39, pcombined = 1.40 × 10−8) with a population-attributable risk of 6.1%. The A (minor susceptibility) allele of this SNP also significantly correlates with increased disease progression as determined by radiographic damage over time in RA patients (p = 0.008).
Using a candidate-gene approach we have identified a novel genetic risk factor for RA. Our findings indicate that a polymorphism in the TRAF1/C5 region increases the susceptibility to and severity of RA, possibly by influencing the structure, function, and/or expression levels of TRAF1 and/or C5.
Using a candidate-gene approach, Rene Toes and colleagues identified a novel genetic risk factor for rheumatoid arthritis in theTRAF1/C5 region.
Editors' Summary
Rheumatoid arthritis is a very common chronic illness that affects around 1% of people in developed countries. It is caused by an abnormal immune reaction to various tissues within the body; as well as affecting joints and causing an inflammatory arthritis, it can also affect many other organs of the body. Severe rheumatoid arthritis can be life-threatening, but even mild forms of the disease cause substantial illness and disability. Current treatments aim to give symptomatic relief with the use of simple analgesics, or anti-inflammatory drugs. In addition, most patients are also treated with what are known as disease-modifying agents, which aim to prevent joint damage. Rheumatoid arthritis is known to have a genetic component. For example, an association has been shown with the part of the genome that contains the human leukocyte antigens (HLAs), which are involved in the immune response. Information on other genes involved would be helpful both for understanding the underlying cause of the disease and possibly for the discovery of new treatments.
Why Was This Study Done?
Previous work in mice that have a disease similar to human rheumatoid arthritis has identified a number of possible candidate genes. One of these genes, complement component 5 (C5) is involved in the complement system—a primitive system within the body that is involved in the defense against foreign molecules. In humans the gene for C5 is located on Chromosome 9 close to another gene involved in the inflammatory response, TNF receptor-associated factor 1 (TRAF1). A preliminary study in humans of this region had shown some evidence, albeit weak, to suggest that this region might be associated with rheumatoid arthritis. The authors set out to look in more detail, and in a larger group of individuals, to see if they could prove this association.
What Did the Researchers Do and Find?
The researchers took 40 genetic markers, known as single-nucleotide polymorphisms (SNPs), from across the region that included the C5 and TRAF1 genes. SNPs have each been assigned a unique reference number that specifies a point in the human genome, and each is present in alternate forms so can be differentiated. They compared which of the alternate forms were present in 290 patients with rheumatoid arthritis and 254 unaffected participants of Dutch origin. They then repeated the study in three other groups of patients and controls of Dutch, Swedish, and US origin. They found a consistent association with rheumatoid arthritis of one region of 65 kilobases (a small distance in genetic terms) that included one end of the C5 gene as well as the TRAF1 gene. They could refine the area of interest to a piece marked by one particular SNP that lay between the genes. They went on to show that the genetic region in which these genes are located may be involved in the binding of a protein that modifies the transcription of genes, thus providing a possible explanation for the association. Furthermore, they showed that one of the alternate versions of the marker in this region was associated with more aggressive disease.
What Do These Findings Mean?
The finding of a genetic association is the first step in identifying a genetic component of a disease. The strength of this study is that a novel genetic susceptibility factor for RA has been identified and that the overall result is consistent in four different populations as well as being associated with disease severity. Further work will need to be done to confirm the association in other populations and then to identify the precise genetic change involved. Hopefully this work will lead to new avenues of investigation for therapy.
Additional Information.
Please access these Web sites via the online version of this summary at
• Medline Plus, the health information site for patients from the US National Library of Medicine, has a page of resources on rheumatoid arthritis
• The UK's National Health Service online information site has information on rheumatoid arthritis
• The Arthritis Research Campaign, a UK charity that funds research on all types of arthritis, has a booklet with information for patients on rheumatoid arthritis
• Reumafonds, a Dutch arthritis foundation, gives information on rheumatoid arthritis (in Dutch)
• Autocure is an initiative whose objective is to transform knowledge obtained from molecular research into a cure for an increasing number of patients suffering from inflammatory rheumatic diseases
• The European league against Rheumatism, an organisation which represents the patient, health professionals, and scientific societies of rheumatology of all European nations
PMCID: PMC1976626  PMID: 17880261
3.  Causal Modeling Using Network Ensemble Simulations of Genetic and Gene Expression Data Predicts Genes Involved in Rheumatoid Arthritis 
PLoS Computational Biology  2011;7(3):e1001105.
Tumor necrosis factor α (TNF-α) is a key regulator of inflammation and rheumatoid arthritis (RA). TNF-α blocker therapies can be very effective for a substantial number of patients, but fail to work in one third of patients who show no or minimal response. It is therefore necessary to discover new molecular intervention points involved in TNF-α blocker treatment of rheumatoid arthritis patients. We describe a data analysis strategy for predicting gene expression measures that are critical for rheumatoid arthritis using a combination of comprehensive genotyping, whole blood gene expression profiles and the component clinical measures of the arthritis Disease Activity Score 28 (DAS28) score. Two separate network ensembles, each comprised of 1024 networks, were built from molecular measures from subjects before and 14 weeks after treatment with TNF-α blocker. The network ensemble built from pre-treated data captures TNF-α dependent mechanistic information, while the ensemble built from data collected under TNF-α blocker treatment captures TNF-α independent mechanisms. In silico simulations of targeted, personalized perturbations of gene expression measures from both network ensembles identify transcripts in three broad categories. Firstly, 22 transcripts are identified to have new roles in modulating the DAS28 score; secondly, there are 6 transcripts that could be alternative targets to TNF-α blocker therapies, including CD86 - a component of the signaling axis targeted by Abatacept (CTLA4-Ig), and finally, 59 transcripts that are predicted to modulate the count of tender or swollen joints but not sufficiently enough to have a significant impact on DAS28.
Author Summary
The collection and analysis of clinical data has played a key role in providing insights into the diagnosis, prognosis and treatment of disease. However, it is imperative that molecular and genetic data also be collected and integrated into the creation of network models, which capture underlying mechanisms of disease and can be interrogated to elucidate previously unknown biology. Bringing data from the clinic to the bench completes the cycle of translational research, which we demonstrate with this work. We built disease models from genetics, whole blood gene expression profiles and the component clinical measures of rheumatoid arthritis using a data-driven approach that leverages supercomputing. Genetic factors can be utilized as a source of perturbation to the system such that causal connections between genetics, molecular entities and clinical outcomes can be inferred. The existing TNF-α blocker treatments for rheumatoid arthritis are only effective for approximately 2/3 of the affected population. We identified novel therapeutic intervention points that may lead to the development of alternatives to TNF-α blocker treatments. We believe this approach will provide improved drug discovery programs, new insights into disease progression, increased drug efficacy and novel biomarkers for chronic and complex diseases.
PMCID: PMC3053315  PMID: 21423713
4.  Use of supplementary phenotype to identify additional rheumatoid arthritis loci in a linkage analysis of 342 UK affected sibling pair families 
BMC Medical Genetics  2009;10:142.
Although rheumatoid arthritis has been shown to have moderately strong genetic component, both linked loci identified in linkage analyses and susceptibility variants from association studies are short of adequately accounting for a comprehensive catalogue of the molecular factors underlying this complex disease. The objective of this study was to use supplementary phenotype based on cumulative hazard of rheumatoid arthritis to identify linkage evidence for new and additional rheumatoid arthritis loci in a genome-wide linkage analysis of 342 affected sibling pair families from the United Kingdom.
Using proportional hazards model, we estimated cumulative hazard of rheumatoid arthritis and then used it as a quantitative trait in a non-parametric multipoint variance component linkage analysis with 353 microsatellite markers distributed across the 22 autosomal chromosomes.
We identified 3 new loci with genome-wide suggestive linkage evidence for rheumatoid arthritis on 9q21.13, 15p11.1 and 20q13.33. Our results also confirmed previously reported linkage evidence in the HLA-DRB1 region on chromosome 6 and on locus 1q32.1.
This study demonstrates the potential for information gain through the use of supplementary phenotypes in genetic study of complex diseases to identify new and additional potential linked loci that are not detected by linkage analysis of traditional phenotypes; and our results provide further evidence of the involvement of multiple loci in the genetic aetiology of rheumatoid arthritis.
PMCID: PMC2803785  PMID: 20025759
5.  Heterogeneous nuclear ribonucleoproteins C1/C2 identified as autoantigens by biochemical and mass spectrometric methods 
Arthritis Research  2000;2(5):407-414.
The antigenic specificity of an unusual antinuclear antibody pattern in three patient sera was identified after separating HeLa-cell nuclear extracts by two-dimensional (2D) gel electrophoresis and localizing the antigens by immunoblotting with patient serum. Protein spots were excised from the 2D gel and their contents were analyzed by matrix-assisted laser desorption-ionization (MALDI) or nanoelectrospray ionization time-of-flight (TOF) tandem mass spectrometry (MS) after in-gel digestion with trypsin. A database search identified the proteins as the C1 and C2 heterogeneous nuclear ribonucleoproteins. The clinical spectrum of patients with these autoantibodies includes arthritis, psoriasis, myositis, and scleroderma. None of 59 patients with rheumatoid arthritis, 19 with polymyositis, 33 with scleroderma, and 10 with psoriatic arthritis had similar antibodies. High-resolution protein-separation methods and mass-spectrometric peptide mapping in combination with database searches are powerful tools in the identification of novel autoantigen specificities.
The classification of antinuclear antibodies (ANAs) is important for diagnosis and prognosis and for understanding the molecular pathology of autoimmune disease. Many of the proteins that associate with RNA in the ribonucleoprotein (RNP) complexes of the spliceosome have been found to react with some types of ANA [1], including proteins of the heterogeneous nuclear RNP (hnRNP) complex that associate with newly transcribed pre-mRNA. Autoantibodies to the A2, B1, and B2 proteins of hnRNP found in some patients may be markers of several overlap syndromes [2]. However, ANAs with specificity for these proteins as well as for the D protein also appear to occur in many distinct connective-tissue diseases, although epitope specificities may differ [3]. ANAs with specificity for the C component of hnRNP (consisting of the C1 and C2 proteins) have to our knowledge so far been described in only one case [4]. We here describe the approach taken to unambiguously identify the C1/C2 proteins as ANA targets in the sera of some patients.
To determine the fine specificity of sera containing an unusual speckled ANA-staining pattern using a combination of 2D gel electrophoresis and MS.
Patient sera were screened for ANAs by indirect immunofluorescence microscopy on HEp-2 cells (cultured carcinoma cells). Sera with an unusual, very regular, speckled ANA pattern were tested for reactivity with components of nuclear extracts of HeLa cells that were separated by one-dimensional (1D) or 2D gel electrophoresis or by reversed-phase high-performance liquid chromatography (HPLC). IgG reactivity was assessed by immunoblotting. Reactive protein spots from 2D separations were excised from the gels and subjected to in-gel digestion with trypsin for subsequent peptide mapping, partial peptide sequencing, and protein identification by MS and tandem MS on a hybrid electrospray ionization/quadrupole/time-of-flight (ESI-Q-TOF) mass spectrometer [5,6,7].
We observed a strong nuclear staining pattern (titer >1280) with the characteristic even-sized coarse speckles and no staining of nucleoli in sera from three patients. On immunoblots of nuclear extracts from HeLa cells, these sera stained two distinct bands, at Mr 42 000 and 41 000. There activity strongly resembled that of the patient originally described by Stanek et al [4]. The antigens were enriched by fractionating the extract using reversed-phase HPLC on a C4 column, and the two reactive spots on 2D separations were excised for identification. The two components appeared to be of approximately the same isoelectric points, although their molecular masses differed by approximately 2000. Peptide-mass mapping was performed by matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) MS on the tryptic peptide mixture generated by digestion of the two excised proteins. The database search suggested that the two proteins were C1/C2 hnRNPs (Swissprot accession number P07910). The identity of the proteins was further confirmed by tandem MS using an ESI-Q-TOF instrument. One peptide carrying two positive charges (m/z 580.32 Da), corresponding to a peptide mass of 1158.7 Da, was selected as a precursor ion and partially sequenced by collisional fragmentation. The fragmented peptide was found to represent the tryptic fragment VDSLLENLEK, ie amino acids 207-216 (C2 protein numbering). Four other peptides were partially sequenced and all of them matched the human C1/C2 hnRNP sequence. The theoretical masses of C1 and C2 are 32.0 and 33.3 kDa, respectively. The difference between the two sequences is a 13-amino-acid insert in C2 between positions 107 and 108 of C1. The presence of a specific tryptic fragment in the MALDI-TOF peptide-mass map from the higher-molecular-mass spot containing a 13-amino-acid insert that was not present in the lower-molecular-mass spot, further demonstrated that the two components represented the two isoforms of the C class of hnRNPs.
The patient whose case prompted us to investigate the specificities of these antibodies was a 72-year-old man who had arthralgias and oligoarthritis but did not fulfill the criteria for rheumatoid arthritis and did not have dermatological complaints. The reactivity of various patient groups to the C1/C2 hnRNP autoantigens was subsequently tested by immunoblotting of HeLa-cell nuclear extracts. Of 59 patients with rheumatoid arthritis, 19 with polymyositis, 33 with scleroderma, and 10 with psoriatic arthritis, none had IgG antibodies reacting with the two bands. Of sera from 139 consecutive patients who had moderately to strongly positive speckled ANA patterns shown by indirect immunofluorescence on HEp-2 cells, only two reacted with the C1/C2 hnRNP bands in immunoblotting. One of these was from a young woman (22 years old) whose complaints of muscle tenderness were not explained by objective findings or abnormal laboratory test results. The third patient that we identified through ANA screening followed by immunoblotting was a 54-year-old male who was being treated with methotrexate for long-standing polymyositis in addition to psoriasis and possible osteoporosis.
The results confirm the existence of anti-C1/C2 antibodies in some patients with speckled ANAs. The antigens were identified through the use of biochemical methods using high-resolution separation techniques combined with mass-spectrometry peptide mapping and database searches. As a general approach, this is a powerful way to identify new antigens using small amounts of material without the need for conventional protein sequencing. The approach does require, however, that the proteins can be found in databases, that they are not extensively post-translationally modified, that they can be digested enzymatically, and that they can be isolated in appropriately pure form by the separation technique used.
It is not known at present if the C1/C2 antibodies may have pathogenic relevance and/or relate to specific diagnoses or subsets within the group of connective-tissue diseases. It does appear that the reactivity is quite rare among ANA-positive patients, and therefore many patients will have to be examined to determine these issues. The fact that the antibodies to the C1/C2 hnRNPs are revealed by indirect immunofluorescence would indicate that the epitopes are accessible in intact, fixed HEp-2 cells and thus probably reside outside the nucleic-acid-binding domains that would be expected to be covered by RNA.
PMCID: PMC17817  PMID: 11056675
antinuclear antibodies; autoantibodies; heterogeneous nuclear ribonucleoproteins C1/C2; mass spectrometry
6.  A New Arthritis Therapy with Oxidative Burst Inducers 
PLoS Medicine  2006;3(9):e348.
Despite recent successes with biological agents as therapy for autoimmune inflammatory diseases such as rheumatoid arthritis (RA), many patients fail to respond adequately to these treatments, making a continued search for new therapies extremely important. Recently, the prevailing hypothesis that reactive oxygen species (ROS) promote inflammation was challenged when polymorphisms in Ncf1, that decrease oxidative burst, were shown to increase disease severity in mouse and rat arthritis models. Based on these findings we developed a new therapy for arthritis using oxidative burst-inducing substances.
Methods and Findings
Treatment of rats with phytol (3,7,11,15-tetramethyl-2-hexadecene-1-ol) increased oxidative burst in vivo and thereby corrected the effect of the genetic polymorphism in arthritis-prone Ncf1DA rats. Importantly, phytol treatment also decreased the autoimmune response and ameliorated both the acute and chronic phases of arthritis. When compared to standard therapies for RA, anti-tumour necrosis factor-α and methotrexate, phytol showed equally good or better therapeutic properties. Finally, phytol mediated its effect within hours of administration and involved modulation of T cell activation, as injection prevented adoptive transfer of disease with arthritogenic T cells.
Treatment of arthritis with ROS-promoting substances such as phytol targets a newly discovered pathway leading to autoimmune inflammatory disease and introduces a novel class of therapeutics for treatment of RA and possibly other chronic inflammatory diseases.
Treatment of arthritis in rats with phytol, a reactive oxygen species promoting substance, suggests a novel pathway of autoimmune inflammatory disease and possibly a novel therapeutic strategy.
Editors' Summary
Rheumatoid arthritis (RA) is a chronic illness that affects between 0.3% and 1% of people worldwide, causing pain and swelling in joints, tendons, and other tissues, and frequently leading to permanent deformity and disability. RA involves an abnormal attack by cells of the immune system against the body's own connective tissues (so-called autoimmunity). Current drugs for RA work by counteracting the molecules that cause the pain and swelling (inflammation). By reducing the severity of autoimmune inflammation, these drugs may also reduce the disease's long-term damage to joints.
Inflammation is not always abnormal, but in fact plays an important part in the body's defense against infection. As part of their activity against disease-causing bacteria, the white blood cells known as granulocytes generate reactive oxygen species (ROS), sometimes known as “free radicals.” After engulfing invading bacteria, neutrophils release an “oxidative burst” of ROS—essentially the subcellular equivalent of pouring hydrogen peroxide on a wound to disinfect it. A complex of molecules known collectively as the NADPH oxidase complex has the specific function of generating ROS to fuel the oxidative burst. Interestingly, recent experiments in arthritis-prone rats found that animals with an altered form of one of the subunits of this complex, Ncf1, that decreased the production of ROS also had greater susceptibility to arthritis. This finding was surprising because free radicals have generally been associated with inflammation and long-term damage to cells, so that a reduction in ROS might have been expected to decrease susceptibility to an inflammatory disease like RA.
Why Was This Study Done?
Because many patients with autoimmune inflammatory illnesses like RA do not respond to currently available therapies, new approaches to treatment merit investigation. Based on the observed association between reduced ROS and increased susceptibility to arthritis, the researchers wanted to find out whether treatment with a compound that increases ROS production by the NADPH oxidase complex would cause an improvement in arthritis.
What Did the Researchers Do and Find?
The researchers tested a compound called phytol in arthritis-prone rats to see how it affected inflammation. It is known that arthritis can be induced in these rats by injecting them with an oil called pristane. The researchers found that phytol caused a strong oxidative burst in human granulocyte cells grown in the laboratory, but did not cause arthritis in rats; whereas pristane, which does cause arthritis, caused a lower oxidative burst in the granulocytes.
They then studied whether phytol prevented arthritis in rats. They found that rats injected with phytol were protected from arthritis following a later injection of pristane. Given this result, they wanted to know if phytol increased ROS in the rats as it did in laboratory cell cultures. Studying granulocytes taken from rats that had been treated with phytol, they found that the oxidative burst of these cells was indeed increased, and remained increased for several weeks after treatment. They went on to test phytol as a treatment for active arthritis, and found that it dramatically reduced swollen joints and destruction of cartilage when given to rats with acute pristane-induced arthritis.
The beneficial effects of phytol were seen not only in rats bred with a form of Ncf1 that produces abnormally low amounts of ROS, but also in rats whose granulocytes produce normal oxidative bursts. When compared (in rats) to drugs licensed for RA (etanercept and methotrexate), phytol appeared to be at least as effective. The activity of phytol against arthritis was shown to involve T lymphocytes, as injection of phytol inhibited transfer of pristane-induced arthritis with these cells.
What Do These Findings Mean?
These experiments raise the intriguing possibility of an entirely new modality for treating autoimmune diseases; namely, through drugs designed to increase the production of ROS. This study raises a number of practical and scientific issues. For example, it is not known whether reduced capacity to produce ROS is a significant factor in human RA. Also, the connection between ROS production (by granulocytes) and autoimmune arthritis (which involves activity by T lymphocytes) remains to be clarified. Finally, the destructive effects typically associated with free radicals (such as damage to DNA and blockage of blood vessels) could complicate the use of this approach in humans, and like any new drugs, those that increase ROS production might have other, unanticipated side effects. Whatever the outcome of drug development efforts, however, this study is an excellent reminder that there are no “good” or “evil” biochemicals—in the intricacies of cellular metabolism, it's all a matter of balance.
Additional Information.
Please access these Web sites via the online version of this summary at
The Arthritis Foundation: Rheumatoid Arthritis pages
Medical Inflammation Research pages (R. Holmdahl research group)
Wikipedia chapter on Rheumatoid Arthritis (note: Wikipedia is a free Internet encyclopedia that anyone can edit)
Wikipedia chapter on Reactive Oxygen Species (note: Wikipedia is a free Internet encyclopedia that anyone can edit)
PMCID: PMC1564167  PMID: 16968121
7.  Coronary arterial calcification in rheumatoid arthritis: comparison with the Multi-Ethnic Study of Atherosclerosis 
Although cardiovascular morbidity and mortality are increased in rheumatoid arthritis, little is known about the burden of subclinical coronary atherosclerosis in these patients.
Using computed tomography, coronary artery calcification was measured in 195 men and women with rheumatoid arthritis aged 45 to 84 years without clinical cardiovascular disease and compared with 1,073 controls without rheumatoid arthritis enrolled in the Baltimore cohort of the Multi-Ethnic Study of Atherosclerosis.
The prevalence of coronary calcification (Agatston score > 0) was significantly higher in men, but not women, with rheumatoid arthritis after adjusting for sociodemographic and cardiovascular risk factors (prevalence ratio = 1.19; P = 0.012). Among participants with prevalent calcification, those with rheumatoid arthritis had adjusted mean Agatston scores 53 units higher than controls (P = 0.002); a difference greater for men than women (P for interaction = 0.017). In all analyses, serum IL-6 attenuated the association between rheumatoid arthritis and coronary calcification, suggesting its role as a potential mediator of enhanced atherosclerosis. Notably, increasing severity of rheumatoid arthritis was associated with a higher prevalence and extent of coronary calcification among both men and women with rheumatoid arthritis, and for all age categories. The largest percentage difference in coronary arterial calcification between rheumatoid arthritis patients and their nonrheumatoid arthritis counterparts was observed in the youngest age category.
Increasing rheumatoid arthritis disease severity was associated with a higher prevalence and greater extent of coronary artery calcification, potentially mediated through an atherogenic effect of chronic systemic inflammation. Gender and age differences in association with coronary calcification suggest that preventive measures should be emphasized in men with rheumatoid arthritis, and considered even in younger rheumatoid arthritis patients with low levels of traditional cardiovascular risk factors.
PMCID: PMC2688181  PMID: 19284547
8.  A Large-Scale Rheumatoid Arthritis Genetic Study Identifies Association at Chromosome 9q33.2 
PLoS Genetics  2008;4(6):e1000107.
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease affecting both joints and extra-articular tissues. Although some genetic risk factors for RA are well-established, most notably HLA-DRB1 and PTPN22, these markers do not fully account for the observed heritability. To identify additional susceptibility loci, we carried out a multi-tiered, case-control association study, genotyping 25,966 putative functional SNPs in 475 white North American RA patients and 475 matched controls. Significant markers were genotyped in two additional, independent, white case-control sample sets (661 cases/1322 controls from North America and 596 cases/705 controls from The Netherlands) identifying a SNP, rs1953126, on chromosome 9q33.2 that was significantly associated with RA (ORcommon = 1.28, trend Pcomb = 1.45E-06). Through a comprehensive fine-scale-mapping SNP-selection procedure, 137 additional SNPs in a 668 kb region from MEGF9 to STOM on 9q33.2 were chosen for follow-up genotyping in a staged-approach. Significant single marker results (Pcomb<0.01) spanned a large 525 kb region from FBXW2 to GSN. However, a variety of analyses identified SNPs in a 70 kb region extending from the third intron of PHF19 across TRAF1 into the TRAF1-C5 intergenic region, but excluding the C5 coding region, as the most interesting (trend Pcomb: 1.45E-06 → 5.41E-09). The observed association patterns for these SNPs had heightened statistical significance and a higher degree of consistency across sample sets. In addition, the allele frequencies for these SNPs displayed reduced variability between control groups when compared to other SNPs. Lastly, in combination with the other two known genetic risk factors, HLA-DRB1 and PTPN22, the variants reported here generate more than a 45-fold RA-risk differential.
Author Summary
Rheumatoid arthritis (RA), a chronic autoimmune disorder affecting ∼1% of the population, is characterized by immune-cell–mediated destruction of the joint architecture. Gene–environment interactions are thought to underlie RA etiology. Variants within HLA-DRB1 and the hematopoietic-specific phosphatase, PTPN22, are well established RA-susceptibility loci, and although other markers have been identified, they do not fully account for the disease heritability. To identify additional susceptibility alleles, we carried out a multi-tiered, case-control association study genotyping >25,000 putative functional SNPs; here we report our finding of RA-associated variants in chromosome 9q33.2. A detailed genetic analysis of this region, incorporating HapMap information, localizes the RA-susceptibility effects to a 70 kb region that includes a portion of PHF19, all of TRAF1, and the majority of the TRAF1-C5 intergenic region, but excludes the C5 coding region. In addition to providing new insights into underlying mechanism(s) of disease and suggesting novel therapeutic targets, these data provide the underpinnings of a genetic signature that may predict individuals at increased risk for developing RA. Indeed, initial analyses of three known genetic risk factors, HLA, PTPN22, and the chromosome 9q33.2 variants described here, suggest a >45-fold difference in RA risk depending on an individual's three-locus genotype.
PMCID: PMC2481282  PMID: 18648537
9.  Smoking–gender interaction and risk for rheumatoid arthritis 
Arthritis Research & Therapy  2003;5(3):R158-R162.
The present case–control study was conducted to investigate the relationship between smoking and rheumatoid arthritis, and to investigate formally the interaction between sex, smoking, and risk for developing rheumatoid arthritis. The study was performed in the Central District of Finland. Cases were patients with rheumatoid arthritis and the control group was a random sample of the general population. Logistic regression models were used to evaluate the effect of smoking on risk for rheumatoid arthritis, after adjusting for the effects of age, education, body mass index, and indices of general health and pain. Overall, 1095 patients with rheumatoid arthritis and 1530 control individuals were included. Patients were older, less well educated, more disabled, and had poorer levels of general health as compared with control individuals (all P < 0.01). Preliminary analyses revealed the presence of substantial statistical interaction between smoking and sex (P < 0.001). In separate multivariable analyses, past history of smoking was associated with increased risk for rheumatoid arthritis overall in men (odds ratio 2.0, 95% confidence interval 1.2–3.2) but not in women. Among men, this effect was seen only for rheumatoid factor-positive rheumatoid arthritis. There were significant interactions between smoking and age among women but not among men. We conclude that sex is a biologic effect modifier in the association between smoking and rheumatoid arthritis. The role of menopause in the etiology of rheumatoid arthritis merits further research.
PMCID: PMC165046  PMID: 12723987
etiology; interaction; risk; rheumatoid arthritis; sex; smoking
10.  Association analysis of anti-Epstein-Barr nuclear antigen-1 antibodies, anti-cyclic citrullinated peptide antibodies, the shared epitope and smoking status in Brazilian patients with rheumatoid arthritis 
Clinics  2011;66(8):1401-1406.
Epstein-Barr virus exposure appears to be an environmental trigger for rheumatoid arthritis that interacts with other risk factors. Relationships among anti-cyclic citrullinated peptide antibodies, the shared epitope, and smoking status have been observed in patients with rheumatoid arthritis from different populations.
To perform an association analysis of anti-Epstein-Barr nuclear antigen-1 antibodies, anti-cyclic citrullinated peptide antibodies, the shared epitope, and smoking status in Brazilian patients with rheumatoid arthritis.
In a case-control study, 140 rheumatoid arthritis patients and 143 healthy volunteers who were matched for age, sex, and ethnicity were recruited. Anti-Epstein-Barr nuclear antigen-1 antibodies and anti-cyclic citrullinated peptide antibodies were examined using an enzyme-linked immunosorbent assay, and shared epitope alleles were identified by genotyping. Smoking information was collected from all subjects. A comparative analysis of anti-Epstein-Barr nuclear antigen-1 antibodies, anti-cyclic citrullinated peptide antibodies, the shared epitope, and smoking status was performed in the patient group. Logistic regression analysis models were used to analyze the risk of rheumatoid arthritis.
Anti-Epstein-Barr nuclear antigen-1 antibodies were not associated with anti-cyclic citrullinated peptide antibodies, shared epitope alleles, or smoking status. Anti-cyclic citrullinated peptide antibody positivity was significantly higher in smoking patients with shared epitope alleles (OR = 3.82). In a multivariate logistic regression analysis using stepwise selection, only anti-cyclic citrullinated peptide antibodies were found to be independently associated with rheumatoid arthritis (OR = 247.9).
Anti-Epstein-Barr nuclear antigen-1 antibodies did not increase the risk of rheumatoid arthritis and were not associated with the rheumatoid arthritis risk factors studied. Smoking and shared epitope alleles were correlated with anti-cyclic citrullinated peptide-antibody-positive rheumatoid arthritis. Of the risk factors, only anti-cyclic citrullinated peptides antibodies were independently associated with rheumatoid arthritis susceptibility.
PMCID: PMC3161219  PMID: 21915491
Rheumatoid arthritis; Risk factors; Epstein-Barr virus; Epstein-Barr virus nuclear antigens; Brazilians
11.  STAT4 and the Risk of Rheumatoid Arthritis and Systemic Lupus Erythematosus 
The New England journal of medicine  2007;357(10):977-986.
Rheumatoid arthritis is a chronic inflammatory disease with a substantial genetic component. Susceptibility to disease has been linked with a region on chromosome 2q.
We tested single-nucleotide polymorphisms (SNPs) in and around 13 candidate genes within the previously linked chromosome 2q region for association with rheumatoid arthritis. We then performed fine mapping of the STAT1-STAT4 region in a total of 1620 case patients with established rheumatoid arthritis and 2635 controls, all from North America. Implicated SNPs were further tested in an independent case-control series of 1529 patients with early rheumatoid arthritis and 881 controls, all from Sweden, and in a total of 1039 case patients and 1248 controls from three series of patients with systemic lupus erythematosus.
A SNP haplotype in the third intron of STAT4 was associated with susceptibility to both rheumatoid arthritis and systemic lupus erythematosus. The minor alleles of the haplotype-defining SNPs were present in 27% of chromosomes of patients with established rheumatoid arthritis, as compared with 22% of those of controls (for the SNP rs7574865, P = 2.81×10-7; odds ratio for having the risk allele in chromosomes of patients vs. those of controls, 1.32). The association was replicated in Swedish patients with recent-onset rheumatoid arthritis (P = 0.02) and matched controls. The haplotype marked by rs7574865 was strongly associated with lupus, being present on 31% of chromosomes of case patients and 22% of those of controls (P = 1.87×10-9; odds ratio for having the risk allele in chromosomes of patients vs. those of controls, 1.55). Homozygosity of the risk allele, as compared with absence of the allele, was associated with a more than doubled risk for lupus and a 60% increased risk for rheumatoid arthritis.
A haplotype of STAT4 is associated with increased risk for both rheumatoid arthritis and systemic lupus erythematosus, suggesting a shared pathway for these illnesses.
PMCID: PMC2630215  PMID: 17804842
12.  RNA-seq analysis of synovial fibroblasts brings new insights into rheumatoid arthritis 
Cell & Bioscience  2012;2:43.
Rheumatoid arthritis (RA) is a chronic autoimmune-disease of unknown origin that primarily affects the joints and ultimately leads to their destruction. Growing evidence suggests that synvovial fibroblasts play important roles in the initiation and the perpetuation of RA but underlying molecular mechanisms are not understood fully. In the present study, Illumina RNA sequencing was used to profile two human normal control and two rheumatoid arthritis synvovial fibroblasts (RASFs) transcriptomes to gain insights into the roles of synvovial fibroblasts in RA.
We found that besides known inflammatory and immune responses, other novel dysregulated networks and pathways such as Cell Morphology, Cell-To-Cell Signaling and Interaction, Cellular Movement, Cellular Growth and Proliferation, and Cellular Development, may all contribute to the pathogenesis of RA. Our study identified several new genes and isoforms not previously associated with rheumatoid arthritis. 122 genes were up-regulated and 155 genes were down-regulated by at least two-fold in RASFs compared to controls. Of note, 343 known isoforms and 561 novel isoforms were up-regulated and 262 known isoforms and 520 novel isoforms were down-regulated by at least two-fold. The magnitude of difference and the number of differentially expressed known and novel gene isoforms were not detected previously by DNA microarray.
Since the activation and proliferation of RASFs has been implicated in the pathogenesis of rheumatoid arthritis, further in-depth follow-up analysis of the transcriptional regulation reported in this study may shed light on molecular pathogenic mechanisms underlying synovial fibroblasts in arthritis and provide new leads of potential therapeutic targets.
PMCID: PMC3560277  PMID: 23259760
RNA-seq; Next generation sequencing; Rheumatoid arthritis; Synovial fibroblasts; Transcriptional regulation
13.  Pyridoxine supplementation corrects vitamin B6 deficiency but does not improve inflammation in patients with rheumatoid arthritis 
Arthritis Research & Therapy  2005;7(6):R1404-R1411.
Patients with rheumatoid arthritis have subnormal vitamin B6 status, both quantitatively and functionally. Abnormal vitamin B6 status in rheumatoid arthritis has been associated with spontaneous tumor necrosis factor (TNF)-α production and markers of inflammation, including C-reactive protein and erythrocyte sedimentation rate. Impaired vitamin B6 status could be a result of inflammation, and these patients may have higher demand for vitamin B6. The aim of this study was to determine if daily supplementation with 50 mg of pyridoxine for 30 days can correct the static and/or the functional abnormalities of vitamin B6 status seen in patients with rheumatoid arthritis, and further investigate if pyridoxine supplementation has any effects on the pro-inflammatory cytokine TNF-α or IL-6 production of arthritis. This was a double-blinded, placebo-controlled study involving patients with rheumatoid arthritis with plasma pyridoxal 5'-phosphate below the 25th percentile of the Framingham Heart Cohort Study. Vitamin B6 status was assessed via plasma and erythrocyte pyridoxal 5'-phosphate concentrations, the erythrocyte aspartate aminotransferase activity coefficient (αEAST), net homocysteine increase in response to a methionine load test (ΔtHcy), and 24 h urinary xanthurenic acid (XA) excretion in response to a tryptophan load test. Urinary 4-pyridoxic acid (4-PA) was measured to examine the impact of pyridoxine treatment on vitamin B6 excretion in these patients. Pro-inflammatory cytokine (TNF-α and IL-6) production, C-reactive protein levels and the erythrocyte sedimentation rate before and after supplementation were also examined. Pyridoxine supplementation significantly improved plasma and erythrocyte pyridoxal 5'-phosphate concentrations, erythrocyte αEAST, urinary 4-PA, and XA excretion. These improvements were apparent regardless of baseline B6 levels. Pyridoxine supplementation also showed a trend (p < 0.09) towards a reduction in post-methionine load ΔtHcy. Supplementation did not affect pro-inflammatory cytokine production. Although pyridoxine supplementation did not suppress pro-inflammatory cytokine production in patients with rheumatoid arthritis, the suboptimal vitamin B6 status seen in rheumatoid arthritis can be corrected by 50 mg pyridoxine supplementation for 30 days. Data from the present study suggest that patients with rheumatoid arthritis may have higher requirements for vitamin B6 than those in a normal healthy population.
PMCID: PMC1297588  PMID: 16277693
14.  Differential proteomic analysis of synovial fluid from rheumatoid arthritis and osteoarthritis patients 
Clinical proteomics  2014;11(1):1.
Rheumatoid arthritis and osteoarthritis are two common musculoskeletal disorders that affect the joints. Despite high prevalence rates, etiological factors involved in these disorders remain largely unknown. Dissecting the molecular aspects of these disorders will significantly contribute to improving their diagnosis and clinical management. In order to identify proteins that are differentially expressed between these two conditions, a quantitative proteomic profiling of synovial fluid obtained from rheumatoid arthritis and osteoarthritis patients was carried out by using iTRAQ labeling followed by high resolution mass spectrometry analysis.
We have identified 575 proteins out of which 135 proteins were found to be differentially expressed by ≥3-fold in the synovial fluid of rheumatoid arthritis and osteoarthritis patients. Proteins not previously reported to be associated with rheumatoid arthritis including, coronin-1A (CORO1A), fibrinogen like-2 (FGL2), and macrophage capping protein (CAPG) were found to be upregulated in rheumatoid arthritis. Proteins such as CD5 molecule-like protein (CD5L), soluble scavenger receptor cysteine-rich domain-containing protein (SSC5D), and TTK protein kinase (TTK) were found to be upregulated in the synovial fluid of osteoarthritis patients. We confirmed the upregulation of CAPG in rheumatoid arthritis synovial fluid by multiple reaction monitoring assay as well as by Western blot. Pathway analysis of differentially expressed proteins revealed a significant enrichment of genes involved in glycolytic pathway in rheumatoid arthritis.
We report here the largest identification of proteins from the synovial fluid of rheumatoid arthritis and osteoarthritis patients using a quantitative proteomics approach. The novel proteins identified from our study needs to be explored further for their role in the disease pathogenesis of rheumatoid arthritis and osteoarthritis.
Sartaj Ahmad and Raja Sekhar Nirujogi contributed equally to this article.
PMCID: PMC3918105  PMID: 24393543
Arthritis; Joint inflammation; Cartilage degradation; Extracellular matrix
15.  Trans-heterodimer between two arthritis non-associated HLA alleles can predispose to arthritis 
Arthritis and rheumatism  2011;63(6):1552-1561.
Certain class II alleles are associated with susceptibility to develop arthritis. However, some individuals carrying non-RA associated alleles develop arthritis is still unexplained. An individual heterozygous for both the DQA1 and DQB1 genes, can express the DQ molecule in cis or trans heterodimers. In a cis-heterodimer the alpha chain interacts with the beta chain coded by the same chromosome, while in a trans-heterodimer it interacts with the beta chain on the other chromosome. In this study we tried to find out if trans-heterodimer of 2 non-associated alleles, DQB1*0601 and DQB1*0604, can predispose to arthritis using a humanized mouse model of arthritis.
DQB1*0601 and *0604 occur in linkage with DQA1*0103 and *0102 respectively. To understand the role of trans-heterodimer, we generated DQB1*0604/DQA1* 0103 transgenic mice lacking endogenous class II molecules.
The DQB1*0604/A1*0103 mice developed severe arthritis and in vitro generated antigen-specific response. The DQB1*0604/DQA1*0103 could present type II collagen (CII)-derived peptides that are not presented by arthritis- resistant DQB1*0601 allele, suggesting that trans-heterodimer molecules between two DQB1 and DQA1 molecules may result in presentation of unique antigens and susceptibility to develop arthritis. Molecular modeling of the CII peptides showed that DQB1*0604/DQA1*0103 shares p4 pocket with arthritis-susceptible DQB1*0302 allele and further a critical role of p4 and p9 pockets is suggested with susceptibility to arthritis.
The present data provides a possible explanation for the parental inheritance of non-susceptible alleles in some patients with rheumatoid arthritis and a mechanism by which they can predispose to develop arthritis.
PMCID: PMC3106136  PMID: 21305521
16.  Ectopic Lymphoid Structures Support Ongoing Production of Class-Switched Autoantibodies in Rheumatoid Synovium 
PLoS Medicine  2009;6(1):e1.
Follicular structures resembling germinal centres (GCs) that are characterized by follicular dendritic cell (FDC) networks have long been recognized in chronically inflamed tissues in autoimmune diseases, including the synovium of rheumatoid arthritis (RA). However, it is debated whether these ectopic structures promote autoimmunity and chronic inflammation driving the production of pathogenic autoantibodies. Anti-citrullinated protein/peptide antibodies (ACPA) are highly specific markers of RA, predict a poor prognosis, and have been suggested to be pathogenic. Therefore, the main study objectives were to determine whether ectopic lymphoid structures in RA synovium: (i) express activation-induced cytidine deaminase (AID), the enzyme required for somatic hypermutation and class-switch recombination (CSR) of Ig genes; (ii) support ongoing CSR and ACPA production; and (iii) remain functional in a RA/severe combined immunodeficiency (SCID) chimera model devoid of new immune cell influx into the synovium.
Methods and Findings
Using immunohistochemistry (IHC) and quantitative Taqman real-time PCR (QT-PCR) in synovial tissue from 55 patients with RA, we demonstrated that FDC+ structures invariably expressed AID with a distribution resembling secondary lymphoid organs. Further, AID+/CD21+ follicular structures were surrounded by ACPA+/CD138+ plasma cells, as demonstrated by immune reactivity to citrullinated fibrinogen. Moreover, we identified a novel subset of synovial AID+/CD20+ B cells outside GCs resembling interfollicular large B cells. In order to gain direct functional evidence that AID+ structures support CSR and in situ manufacturing of class-switched ACPA, 34 SCID mice were transplanted with RA synovium and humanely killed at 4 wk for harvesting of transplants and sera. Persistent expression of AID and Iγ-Cμ circular transcripts (identifying ongoing IgM-IgG class-switching) was observed in synovial grafts expressing FDCs/CD21L. Furthermore, synovial mRNA levels of AID were closely associated with circulating human IgG ACPA in mouse sera. Finally, the survival and proliferation of functional B cell niches was associated with persistent overexpression of genes regulating ectopic lymphoneogenesis.
Our demonstration that FDC+ follicular units invariably express AID and are surrounded by ACPA-producing plasma cells provides strong evidence that ectopic lymphoid structures in the RA synovium are functional and support autoantibody production. This concept is further confirmed by evidence of sustained AID expression, B cell proliferation, ongoing CSR, and production of human IgG ACPA from GC+ synovial tissue transplanted into SCID mice, independently of new B cell influx from the systemic circulation. These data identify AID as a potential therapeutic target in RA and suggest that survival of functional synovial B cell niches may profoundly influence chronic inflammation, autoimmunity, and response to B cell–depleting therapies.
Costantino Pitzalis and colleagues show that lymphoid structures in synovial tissue of patients with rheumatoid arthritis support production of anti-citrullinated peptide antibodies, which continues following transplantation into SCID mice.
Editors' Summary
More than 1 million people in the United States have rheumatoid arthritis, an “autoimmune” condition that affects the joints. Normally, the immune system provides protection against infection by responding to foreign antigens (molecules that are unique to invading organisms) while ignoring self-antigens present in the body's own tissues. In autoimmune diseases, this ability to discriminate between self and non-self fails for unknown reasons and the immune system begins to attack human tissues. In rheumatoid arthritis, the lining of the joints (the synovium) is attacked, it becomes inflamed and thickened, and chemicals are released that damage all the tissues in the joint. Eventually, the joint may become so scarred that movement is no longer possible. Rheumatoid arthritis usually starts in the small joints in the hands and feet, but larger joints and other tissues (including the heart and blood vessels) can be affected. Its symptoms, which tend to fluctuate, include early morning joint pain, swelling, and stiffness, and feeling generally unwell. Although the disease is not always easy to diagnose, the immune systems of many people with rheumatoid arthritis make “anti-citrullinated protein/peptide antibodies” (ACPA). These “autoantibodies” (which some experts believe can contribute to the joint damage in rheumatoid arthritis) recognize self-proteins that contain the unusual amino acid citrulline, and their detection on blood tests can help make the diagnosis. Although there is no cure for rheumatoid arthritis, the recently developed biologic drugs, often used together with the more traditional disease-modifying therapies, are able to halt its progression by specifically blocking the chemicals that cause joint damage. Painkillers and nonsteroidal anti-inflammatory drugs can reduce its symptoms, and badly damaged joints can sometimes be surgically replaced.
Why Was This Study Done?
Before scientists can develop a cure for rheumatoid arthritis, they need to know how and why autoantibodies are made that attack the joints in this common and disabling disease. B cells, the immune system cells that make antibodies, mature in structures known as “germinal centers” in the spleen and lymph nodes. In the germinal centers, immature B cells are exposed to antigens and undergo two genetic processes called “somatic hypermutation” and “class-switch recombination” that ensure that each B cell makes an antibody that sticks as tightly as possible to just one antigen. The B cells then multiply and enter the bloodstream where they help to deal with infections. Interestingly, the inflamed synovium of many patients with rheumatoid arthritis contains structures that resemble germinal centers. Could these ectopic (misplaced) lymphoid structures, which are characterized by networks of immune system cells called follicular dendritic cells (FDCs), promote autoimmunity and long-term inflammation by driving the production of autoantibodies within the joint itself? In this study, the researchers investigate this possibility.
What Did the Researchers Do and Find?
The researchers collected synovial tissue from 55 patients with rheumatoid arthritis and used two approaches, called immunohistochemistry and real-time PCR, to investigate whether FDC-containing structures in synovium expressed an enzyme called activation-induced cytidine deaminase (AID), which is needed for both somatic hypermutation and class-switch recombination. All the FDC-containing structures that the researchers found in their samples expressed AID. Furthermore, these AID-containing structures were surrounded by mature B cells making ACPAs. To test whether these B cells were derived from AID-expressing cells resident in the synovium rather than ACPA-expressing immune system cells coming into the synovium from elsewhere in the body, the researchers transplanted synovium from patients with rheumatoid arthritis under the skin of a special sort of mouse that largely lacks its own immune system. Four weeks later, the researchers found that the transplanted human lymphoid tissue was still making AID, that the level of AID expression correlated with the amount of human ACPA in the blood of the mice, and that the B cells in the transplant were proliferating.
What Do These Findings Mean?
These findings show that the ectopic lymphoid structures present in the synovium of some patients with rheumatoid arthritis are functional and are able to make ACPA. Because ACPA may be responsible for joint damage, the survival of these structures could, therefore, be involved in the development and progression of rheumatoid arthritis. More experiments are needed to confirm this idea, but these findings may explain why drugs that effectively clear B cells from the bloodstream do not always produce a marked clinical improvement in rheumatoid arthritis. Finally, they suggest that AID might provide a new target for the development of drugs to treat rheumatoid arthritis.
Additional Information.
Please access these Web sites via the online version of this summary at
This study is further discussed in a PLoS Medicine Perspective by Rene Toes and Tom Huizinga
The MedlinePlus Encyclopedia has a page on rheumatoid arthritis (in English and Spanish). MedlinePlus provides links to other information on rheumatoid arthritis (in English and Spanish)
The UK National Health Service Choices information service has detailed information on rheumatoid arthritis
The US National Institute of Arthritis and Musculoskeletal and Skin Diseases provides Fast Facts, an easy to read publication for the public, and a more detailed Handbook on rheumatoid arthritis
The US Centers for Disease Control and Prevention has an overview on rheumatoid arthritis that includes statistics about this disease and its impact on daily life
PMCID: PMC2621263  PMID: 19143467
17.  Smoking is a risk factor for anti‐CCP antibodies only in rheumatoid arthritis patients who carry HLA‐DRB1 shared epitope alleles 
Annals of the Rheumatic Diseases  2005;65(3):366-371.
To study the gene–environment interaction of tobacco exposure and shared epitope on autoantibodies in patients with rheumatoid arthritis and undifferentiated arthritis.
From incident cases of arthritis (n = 1305), patients who did not fulfil any classification criteria (undifferentiated arthritis (n = 486)) and those who fulfilled the American College of Rheumatology criteria for rheumatoid arthritis (n = 407) were identified. IgM rheumatoid factor (RF), anti‐cyclic‐citrullinated peptide (CCP) antibodies, and HLA‐DRB1 alleles were determined.
In rheumatoid arthritis, an interaction was found between tobacco exposure and shared epitope for the presence of anti‐CCP antibodies, as the odds ratio for anti‐CCP antibodies in patients having both tobacco exposure (TE) and shared epitope (SE) was higher than the summed odds ratios of patients having only tobacco exposure or shared epitope (odds ratios: TE+/SE−, 1.07; TE−/SE+, 2.49; and TE+/SE+, 5.27—all relative to TE−/SE−). A similar effect was found for RF, but stratification showed that the interaction primarily associated with the anti‐CCP antibody response. In patients with undifferentiated arthritis at two weeks, or with persistent undifferentiated arthritis after one year, no interaction between tobacco exposure and shared epitope was observed for the presence of autoantibodies.
Tobacco exposure increases the risk factor for anti‐CCP antibodies only in shared epitope positive patients with rheumatoid arthritis. The gene–environment interaction between smoking and shared epitope leading to autoantibodies is specific for rheumatoid arthritis and is not observed in undifferentiated arthritis.
PMCID: PMC1798061  PMID: 16014670
rheumatoid arthritis; anti‐CCP antibodies; rheumatoid factor; smoking; shared epitope
18.  Antibodies against human 60 kDa heat shock protein are not associated with cardiovascular disease in patients with rheumatoid arthritis 
Annals of the Rheumatic Diseases  2005;65(5):590-594.
Rheumatoid arthritis is associated with an unexplained increased risk of cardiovascular disease (CVD). Antibodies against human 60 kDa heat shock protein (anti‐HSP60) are associated with the presence and severity of CVD.
To investigate whether anti‐HSP60 antibodies are associated with prevalent CVD in patients with rheumatoid arthritis.
In a nested case–control design, anti‐HSP60 antibody levels were measured in the serum samples of 192 rheumatoid patients. In a regression analysis the association between prevalent CVD and anti‐HSP60 antibodies was examined, along with the possible influence on this association of several demographic, rheumatoid arthritis, and CVD related variables.
In a random sample of 326 patients with rheumatoid arthritis, 48 cases were identified who also suffered from CVD. Three controls per case with rheumatoid arthritis but without CVD (n = 144) were matched for sex, age, disease duration, and smoking habits. A regression analysis showed no significant association between prevalent CVD and anti‐HSP60 antibodies (odds ratio = 1.00 (95% confidence interval, 0.997 to 1.004)). After correcting for possible confounding variables, still no association was found.
In contrast to the general population, anti‐HSP60 antibody titres are not associated with prevalent CVD in patients with rheumatoid arthritis. These findings could be the result of an altered immune response to HSP60 in rheumatoid arthritis.
PMCID: PMC1798122  PMID: 16249230
rheumatoid arthritis; cardiovascular disease; heat shock protein 60 antibodies
19.  DNA methylome signature in rheumatoid arthritis 
Annals of the rheumatic diseases  2012;72(1):110-117.
Epigenetics can influence disease susceptibility and severity. While DNA methylation of individual genes has been explored in autoimmunity, no unbiased systematic analyses have been reported. Therefore, a genome-wide evaluation of DNA methylation loci in fibroblast-like synoviocytes (FLS) isolated from the site of disease in rheumatoid arthritis (RA) was performed.
Genomic DNA was isolated from six RA and five osteoarthritis (OA) FLS lines and evaluated using the Illumina HumanMethylation450 chip. Cluster analysis of data was performed and corrected using Benjamini–Hochberg adjustment for multiple comparisons. Methylation was confirmed by pyrosequencing and gene expression was determined by qPCR. Pathway analysis was performed using the Kyoto Encyclopedia of Genes and Genomes.
RA and control FLS segregated based on DNA methylation, with 1859 differentially methylated loci. Hypomethylated loci were identified in key genes relevant to RA, such as CHI3L1, CASP1, STAT3, MAP3K5, MEFV and WISP3. Hypermethylation was also observed, including TGFBR2 and FOXO1. Hypomethylation of individual genes was associated with increased gene expression. Grouped analysis identified 207 hypermethylated or hypomethylated genes with multiple differentially methylated loci, including COL1A1, MEFV and TNF. Hypomethylation was increased in multiple pathways related to cell migration, including focal adhesion, cell adhesion, transendothelial migration and extracellular matrix interactions. Confirmatory studies with OA and normal FLS also demonstrated segregation of RA from control FLS based on methylation pattern.
Differentially methylated genes could alter FLS gene expression and contribute to the pathogenesis of RA. DNA methylation of critical genes suggests that RA FLS are imprinted and implicate epigenetic contributions to inflammatory arthritis.
PMCID: PMC3549371  PMID: 22736089
20.  Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitro study 
Rheumatoid arthritis (RA) is a chronic, inflammatory and systemic autoimmune disease that leads to progressive cartilage destruction. Advances in the treatment of RA-related destruction of cartilage require profound insights into the molecular mechanisms involved in cartilage degradation. Until now, comprehensive data about the molecular RA-related dysfunction of chondrocytes have been limited. Hence, the objective of this study was to establish a standardized in vitro model to profile the key regulatory molecules of RA-related destruction of cartilage that are expressed by human chondrocytes.
Human chondrocytes were cultured three-dimensionally for 14 days in alginate beads and subsequently stimulated for 48 hours with supernatants from SV40 T-antigen immortalized human synovial fibroblasts (SF) derived from a normal donor (NDSF) and from a patient with RA (RASF), respectively. To identify RA-related factors released from SF, supernatants of RASF and NDSF were analyzed with antibody-based protein membrane arrays. Stimulated cartilage-like cultures were used for subsequent gene expression profiling with oligonucleotide microarrays. Affymetrix GeneChip Operating Software and Robust Multi-array Analysis (RMA) were used to identify differentially expressed genes. Expression of selected genes was verified by real-time RT-PCR.
Antibody-based protein membrane arrays of synovial fibroblast supernatants identified RA-related soluble mediators (IL-6, CCL2, CXCL1–3, CXCL8) released from RASF. Genome-wide microarray analysis of RASF-stimulated chondrocytes disclosed a distinct expression profile related to cartilage destruction involving marker genes of inflammation (adenosine A2A receptor, cyclooxygenase-2), the NF-κB signaling pathway (toll-like receptor 2, spermine synthase, receptor-interacting serine-threonine kinase 2), cytokines/chemokines and receptors (CXCL1–3, CXCL8, CCL20, CXCR4, IL-1β, IL-6), cartilage degradation (matrix metalloproteinase (MMP)-10, MMP-12) and suppressed matrix synthesis (cartilage oligomeric matrix protein, chondroitin sulfate proteoglycan 2).
Differential transcriptome profiling of stimulated human chondrocytes revealed a disturbed catabolic–anabolic homeostasis of chondrocyte function and disclosed relevant pharmacological target genes of cartilage destruction. This study provides comprehensive insight into molecular regulatory processes induced in human chondrocytes during RA-related destruction of cartilage. The established model may serve as a human in vitro disease model of RA-related destruction of cartilage and may help to elucidate the molecular effects of anti-rheumatic drugs on human chondrocyte gene expression.
PMCID: PMC2374452  PMID: 18205922
21.  Left Ventricular Structure and Function by Cardiac Magnetic Resonance Imaging in Rheumatoid Arthritis 
Arthritis and rheumatism  2010;62(4):940-951.
Heart failure is a major contributor to cardiovascular morbidity and mortality in rheumatoid arthritis. However, little is known about myocardial structure and function in this population.
Using cardiac magnetic resonance imaging, measures of myocardial structure and function were assessed in men and women with rheumatoid arthritis enrolled in ESCAPE RA, a cohort study of subclinical cardiovascular disease in rheumatoid arthritis, and compared with controls without rheumatoid arthritis enrolled in the Baltimore cohort of the Multi-Ethnic Study of Atherosclerosis.
Myocardial measures were compared between 75 rheumatoid arthritis patients and 225 matched controls. After adjustment, mean left-ventricular mass was 26 grams lower for the RA group compared to controls (p<0.001), an 18% difference. After similar adjustment, mean left-ventricular ejection fraction, cardiac output, and stroke volume were modestly lower in the rheumatoid arthritis group vs. controls. Mean left-ventricular end-systolic and end-diastolic volumes did not differ by rheumatoid arthritis status. Within the rheumatoid arthritis group, higher levels of anti-CCP antibodies and current use of biologics, but not other disease activity or severity measures, were associated with significantly lower adjusted mean left-ventricular mass, end-diastolic volume, and stroke volume, but not ejection fraction. The combined associations of anti-CCP antibody level and biologic use on myocardial measures were additive, without evidence of interaction.
These findings suggest that the progression to heart failure in RA may occur through reduced myocardial mass rather than hypertrophy. Both modifiable and non-modifiable factors may contribute to lower levels of left-ventricular mass and volume.
PMCID: PMC3008503  PMID: 20131277
myocardial dysfunction; heart failure; inflammation; cardiac imaging
22.  Testing for the association of the KIAA1109/Tenr/IL2/IL21 gene region with rheumatoid arthritis in a European family-based study 
A candidate gene approach, in a large case–control association study in the Dutch population, has shown that a 480 kb block on chromosome 4q27 encompassing KIAA1109/Tenr/IL2/IL21 genes is associated with rheumatoid arthritis. Compared with case–control association studies, family-based studies have the added advantage of controlling potential differences in population structure. Therefore, our aim was to test this association in populations of European origin by using a family-based approach.
A total of 1,302 West European white individuals from 434 trio families were genotyped for the rs4505848, rs11732095, rs6822844, rs4492018 and rs1398553 polymorphisms using the TaqMan Allelic discrimination assay (Applied Biosystems). The genetic association analyses for each SNP and haplotype were performed using the Transmission Disequilibrium Test and the genotype relative risk.
We observed evidence for association of the heterozygous rs4505848-AG genotype with rheumatoid arthritis (P = 0.04); however, no significance was found after Bonferroni correction. In concordance with previous findings in the Dutch population, we observed a trend of undertransmission for the rs6822844-T allele and rs6822844-GT genotype to rheumatoid arthritis patients. We further investigated the five SNP haplotypes of the KIAA1109/Tenr/IL2/IL21 gene region. We observed, as described in the Dutch population, a nonsignificant undertransmission of the AATGG haplotype to rheumatoid arthritis patients.
Using a family-based study, we have provided a trend for the association of the KIAA1109/Tenr/IL2/IL21 gene region with rheumatoid arthritis in populations of European descent. Nevertheless, we failed to replicate a significant association of this region in our rheumatoid arthritis family sample. Further investigation of this region, including detection and testing of all variants, is required to confirm rheumatoid arthritis association.
PMCID: PMC2688193  PMID: 19302705
23.  Circulating and intra-articular immune complexes in patients with rheumatoid arthritis. Correlation of 125I-Clq binding activity with clinical and biological features of the disease. 
Journal of Clinical Investigation  1976;57(5):1308-1319.
The correlation between the incidence and level of immune complexes in serum and synovial fluid and the various clinical and biological manifestations of rheumatoid arthritis has been studied. Immune complexes were quantitated using a sensitive radioimmunoassay, the 125I-Clq binding test, in unheated native sera and synovial fluids from 50 patients with seropositive (RA +) and 45 with seronegative (RA -) rheumatoid arthritis, 17 with other inflammatory arthritis, and 37 with degenerative and post-traumatic joint disease. The following observations were made: (a) when compared to the results from patients with degenerative and post-traumatic joint diseases, the 125I-Clq binding activity (Clq-BA) in synovial fluid was found to be increased (by more than 2 SD) in most of the patients with RA + (80%) and RA - (71%) and in 29% of patients with other inflammatory arthritis; the serum Clq-BA was also frequently increased in both RA + (76%) and RA - (49%) patients, but only exceptionally in patients with other inflammatory arthritis (6%); (b) a significant negative correlation existed between the Clq-BA and the immunochemical C4 level in synovial fluids from patients with RA + and RA -; (c) neither the serum nor the synovial fluid Clq-BA in rheumatoid arthritis significantly correlated with the erythrocyte sedimentation rate, the clinical stage of the disease, or the IgM rheumatoid factor titer; and (d) the serum Clq-BA in patients with rheumatoid arthritis and extra-articular disease manifestations (40 +/- 34% in those with RA +,32 +/- 29% in those with RA -) was significantly increased as compared to the serum Clq-BA in patients with joint disease alone (24 +/- 30% in those with RA +, 10 +/- 13% in those with RA -). Experimental studies were carried out in order to characterize the Clq binding material in rheumatoid arthritis. This material had properties similar to immune complexes: it sedimented in a high molecular weight range on sucrose density gradients (10-30S) and lost the ability to bind Clq after reduction and alkylation, or after acid dissociation at pH 3.8, or after passage through an anti-IgG immunoabsorbant. DNase did not affect the Clq BA. These results support the hypothesis that circulating as well as intra-articular immune complexes may play an important role in some pathogenetic aspects of rheumatoid arthritis. The 125I-Clq binding test may also be of some practical clinical value in detecting patients who have a higher risk of developing vasculitis.
PMCID: PMC436784  PMID: 944196
The effect of highly purified rheumatoid factor on the precipitin reactions of various antigen-antibody systems was determined. The amount of nitrogen precipitated was increased over a broad range when the factor was added to ovalbumin, human albumin, or human gamma globulin, and the corresponding rabbit antibodies. In the zone of antigen excess, soluble antigen-antibody complexes were precipitated by rheumatoid factor. Soluble aggregates of human and rabbit gamma globulin, produced by heating at 63°C., treatment with urea plus mercaptoethanol or treatment with guanidine, also precipitated with rheumatoid factor. Ultracentrifugal analysis of dissolved specific precipitates showed the presence of aggregated gamma globulin. The sedimentation rate of reactive aggregates was greater than 20 S, and concentrated preparations free of the non-reactive 7 S gamma globulin could be prepared by various procedures of zone centrifugation. These aggregates showed a high inhibitory capacity in the sensitized sheep cell agglutination reaction. Solid gamma globulin, prepared by heat denaturation, also selectively adsorbed the rheumatoid factor, and removed or decreased the activity in the various precipitation and agglutination reactions. Elution of highly purified active preparations from the solid gamma globulin could be carried out with urea or acid buffers. Evidence for interaction between rheumatoid factor and low molecular weight gamma globulin without precipitation, was also obtained. This interaction appears to occur in the circulation of patients with rheumatoid arthritis. The question of whether the rheumatoid factor represents an antibody to gamma globulin was discussed. Points of similarity to the behavior of complement also were cited.
PMCID: PMC2136886  PMID: 13549644
25.  Serum calcium levels in rheumatoid arthritis. 
Annals of the Rheumatic Diseases  1981;40(6):580-583.
Total and corrected (for albumin) serum calcium levels were investigated in a cross-sectional study of 394 patients with rheumatoid arthritis, 4490 healthy subjects, and 2609 inpatients at a district general hospital. Patients with rheumatoid arthritis had lower mean clacium levels than the healthy subject (p less than 0.001), but had similar levels to inpatients at the district general hospital. Thirty-eight inpatients with rheumatoid arthritis at a hospital for rheumatic diseases had lower mean corrected and total calcium levels than all other groups (p less than 0.01). Corrected or total calcium levels higher than 2.60 mmol/l or corrected calcium levels lower than 2.20 mmol/l were uncommon in the patients with rheumatoid arthritis. A longitudinal study of serum calcium levels in 17 patients with rheumatoid arthritis over 6-48 months showed considerable temporal variation in total and corrected calcium levels. Transient hypercalcaemia and hypocalcaemia occurred occasionally, but for most of the time calcium levels were normal. Changes in calcium levels were not related to changes in clinical, haematological, or immunological parameters of disease activity. Mean serum calcium levels are lower in disease than health; this occurs in RA as well as other diseases.
PMCID: PMC1000835  PMID: 7332378

Results 1-25 (401223)