PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (865485)

Clipboard (0)
None

Related Articles

1.  Association of STAT4 with Rheumatoid Arthritis in the Korean Population 
Molecular Medicine  2007;13(9-10):455-460.
A recent study in the North American White population has documented the association of a common STAT4 haplotype (tagged by rs7574865) with risk for rheumatoid arthritis (RA) and systemic lupus erythematosus. To replicate this finding in the Korean population, we performed a case-control association study. We genotyped 67 single nucleotide polymorphisms (SNPs) within the STAT1 and STAT4 regions in 1123 Korean patients with RA and 1008 ethnicity-matched controls. The most significant four risk SNPs (rs11889341, rs7574865, rs8179673, and rs10181656 located within the third intron of STAT4) among 67 SNPs are identical with those in the North American study. All four SNPs have modest risk for RA susceptibility (odds ratio 1.21–1.27). A common haplotype defined by these markers (TTCG) carries significant risk for RA in Koreans [34 percent versus 28 percent, P = 0.0027, OR (95 percent CI) = 1.33 (1.10–1.60)]. By logistic regression analysis, this haplotype is an independent risk factor in addition to the classical shared epitope alleles at the HLA-DRB1 locus. There were no significant associations with age of disease onset, radiographic progression, or serologic status using either allelic or haplotypic analysis. Unlike several other risk genes for RA such as PTPN22, PADI4, and FCRL3, a haplotype of the STAT4 gene shows consistent association with RA susceptibility across Whites and Asians, suggesting that this risk haplotype predates the divergence of the major racial groups.
doi:10.2119/2007-00072.Lee
PMCID: PMC2014726  PMID: 17932559
2.  Association of STAT4 Polymorphisms with Susceptibility to Type-1 Autoimmune Hepatitis in the Japanese Population 
PLoS ONE  2013;8(8):e71382.
Background/Aims
Recent studies demonstrated an association of STAT4 polymorphisms with autoimmune diseases including systemic lupus erythematosus and rheumatoid arthritis, indicating multiple autoimmune diseases share common susceptibility genes. We therefore investigated the influence of STAT4 polymorphisms on the susceptibility and phenotype of type-1 autoimmune hepatitis in a Japanese National Hospital Organization (NHO) AIH multicenter cohort study.
Methodology/Principal Findings
Genomic DNA from 460 individuals of Japanese origin including 230 patients with type-1 autoimmune hepatitis and 230 healthy controls was analyzed for two single nucleotide polymorphisms in the STAT4 gene (rs7574865, rs7582694). The STAT4 rs7574865T allele conferred risk for type-1 autoimmune hepatitis (OR = 1.61, 95% CI = 1.23–2.11; P = 0.001), and patients without accompanying autoimmune diseases exhibited an association with the rs7574865T allele (OR = 1.50, 95%CI = 1.13–1.99; P = 0.005). Detailed genotype-phenotype analysis of type-1 autoimmune hepatitis patients with (n = 44) or without liver cirrhosis (n = 186) demonstrated that rs7574865 was not associated with the development of liver cirrhosis and phenotype (biochemical data and the presence of auto-antibodies).
Conclusions/Significance
This is the first study to show a positive association between a STAT4 polymorphism and type-1 autoimmune hepatitis, suggesting that autoimmune hepatitis shares a gene commonly associated with risk for other autoimmune diseases.
doi:10.1371/journal.pone.0071382
PMCID: PMC3750035  PMID: 23990947
3.  Polymorphisms of STAT4 and the risk of inflammatory bowel disease: A case-control study in Chinese Han population 
Biomedical Reports  2013;1(2):320-324.
Signal transducer and activator of transcription 4 (STAT4) is a transcription factor involved in the signaling pathways of several cytokines, playing an essential role in the development of inflammation in various immune-mediated diseases. Genetic association studies have shown that the STAT4 gene was significantly associated with inflammatory bowel disease (IBD) in Spanish and Caucasian populations. However, these associations in other ethnic populations remain unknown. In the present study, we evaluated the role of the STAT4 rs7574865 and rs7582694 polymorphisms on IBD in 562 unrelated Chinese Han subjects by assessing distributions of genotypes and allele frequencies. Results showed that neither rs7574865 [Crohn’s disease (CD): P=0.66, odds ratio (OR) = 0.95, 95% confidence interval (CI) 0.74–1.21; ulcerative colitis (UC): P=0.43, OR=0.85, 95% CI 0.56–1.28; IBD: P=0.52, OR=0.93, 95% CI 0.73–1.17] nor rs7582694 (CD: P=0.40, OR=1.12, 95% CI 0.86–1.44; UC: P=0.50, OR=0.86, 95% CI 0.56–1.33; IBD: P=0.62, OR=1.06, 95% CI 0.83–1.36) was significantly associated with IBD, although the genotype frequency of rs7574865 varied in patients and the controls. In conclusion, our data did not support that STAT4 variants contribute to IBD susceptibility in the Chinese Han population.
doi:10.3892/br.2013.59
PMCID: PMC3917037  PMID: 24648942
inflammatory bowel disease; Chinese Han population; single-nucleotide polymorphisms; signal transducer and activator of transcription 4
4.  A risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5 
Human Molecular Genetics  2008;17(18):2868-2876.
Systemic lupus erythematosus (SLE) is the prototype autoimmune disease where genes regulated by type I interferon (IFN) are over-expressed and contribute to the disease pathogenesis. Because signal transducer and activator of transcription 4 (STAT4) plays a key role in the type I IFN receptor signaling, we performed a candidate gene study of a comprehensive set of single nucleotide polymorphism (SNPs) in STAT4 in Swedish patients with SLE. We found that 10 out of 53 analyzed SNPs in STAT4 were associated with SLE, with the strongest signal of association (P = 7.1 × 10−8) for two perfectly linked SNPs rs10181656 and rs7582694. The risk alleles of these 10 SNPs form a common risk haplotype for SLE (P = 1.7 × 10−5). According to conditional logistic regression analysis the SNP rs10181656 or rs7582694 accounts for all of the observed association signal. By quantitative analysis of the allelic expression of STAT4 we found that the risk allele of STAT4 was over-expressed in primary human cells of mesenchymal origin, but not in B-cells, and that the risk allele of STAT4 was over-expressed (P = 8.4 × 10−5) in cells carrying the risk haplotype for SLE compared with cells with a non-risk haplotype. The risk allele of the SNP rs7582694 in STAT4 correlated to production of anti-dsDNA (double-stranded DNA) antibodies and displayed a multiplicatively increased, 1.82-fold risk of SLE with two independent risk alleles of the IRF5 (interferon regulatory factor 5) gene.
doi:10.1093/hmg/ddn184
PMCID: PMC2525501  PMID: 18579578
5.  No Evidence of Association between Common Autoimmunity STAT4 and IL23R Risk Polymorphisms and Non-Anterior Uveitis 
PLoS ONE  2013;8(11):e72892.
Objective
STAT4 and IL23R loci represent common susceptibility genetic factors in autoimmunity. We decided to investigate for the first time the possible role of different STAT4/IL23R autoimmune disease-associated polymorphisms on the susceptibility to develop non-anterior uveitis and its main clinical phenotypes.
Methods
Four functional polymorphisms (rs3821236, rs7574865, rs7574070, and rs897200) located within STAT4 gene as well as three independent polymorphisms (rs7517847, rs11209026, and rs1495965) located within IL23R were genotyped using TaqMan® allelic discrimination in a total of 206 patients with non-anterior uveitis and 1553 healthy controls from Spain.
Results
No statistically significant differences were found when allele and genotype distributions were compared between non-anterior uveitis patients and controls for any STAT4 (rs3821236: P=0.39, OR=1.12, CI 95%=0.87-1.43; rs7574865: P=0.59 OR=1.07, CI 95%=0.84-1.37; rs7574070: P=0.26, OR=0.89, CI 95%=0.72-1.10; rs897200: P=0.22, OR=0.88, CI 95%=0.71-1.08;) or IL23R polymorphisms (rs7517847: P=0.49, OR=1.08, CI 95%=0.87-1.33; rs11209026: P=0.26, OR=0.78, CI 95%=0.51-1.21; rs1495965: P=0.51, OR=0.93, CI 95%=0.76-1.15).
Conclusion
Our results do not support a relevant role, similar to that described for other autoimmune diseases, of IL23R and STAT4 polymorphisms in the non-anterior uveitis genetic predisposition. Further studies are needed to discard a possible weak effect of the studied variant.
doi:10.1371/journal.pone.0072892
PMCID: PMC3843656  PMID: 24312163
6.  Re-evaluation of putative rheumatoid arthritis susceptibility genes in the post-genome wide association study era and hypothesis of a key pathway underlying susceptibility 
Human Molecular Genetics  2008;17(15):2274-2279.
Rheumatoid arthritis (RA) is an archetypal, common, complex autoimmune disease with both genetic and environmental contributions to disease aetiology. Two novel RA susceptibility loci have been reported from recent genome-wide and candidate gene association studies. We, therefore, investigated the evidence for association of the STAT4 and TRAF1/C5 loci with RA using imputed data from the Wellcome Trust Case Control Consortium (WTCCC). No evidence for association of variants mapping to the TRAF1/C5 gene was detected in the 1860 RA cases and 2930 control samples tested in that study. Variants mapping to the STAT4 gene did show evidence for association (rs7574865, P = 0.04). Given the association of the TRAF1/C5 locus in two previous large case–control series from populations of European descent and the evidence for association of the STAT4 locus in the WTCCC study, single nucleotide polymorphisms mapping to these loci were tested for association with RA in an independent UK series comprising DNA from >3000 cases with disease and >3000 controls and a combined analysis including the WTCCC data was undertaken. We confirm association of the STAT4 and the TRAF1/C5 loci with RA bringing to 5 the number of confirmed susceptibility loci. The effect sizes are less than those reported previously but are likely to be a more accurate reflection of the true effect size given the larger size of the cohort investigated in the current study.
doi:10.1093/hmg/ddn128
PMCID: PMC2465799  PMID: 18434327
7.  Variants in TNFAIP3, STAT4 and c12orf30 loci associated with multiple auto-immune diseases are also associated with Juvenile Idiopathic Arthritis 
Arthritis and rheumatism  2009;60(7):2124-2130.
Objectives
Subtypes of juvenile idiopathic arthritis (JIA) share phenotypic features with other autoimmune disorders. We investigated several genetic variants associated with rheumatoid arthritis (RA) and other autoimmune disorders for association with JIA, to test the hypothesis that clinically distinct phenotypes share common genetic susceptibility factors.
Methods
Cases were 445 children with JIA, and controls were 643 healthy adults. Eight single nucleotide polymorphisms (SNPs) in 7 loci [TNFAIP3 (rs10499194 and rs6920220), RSBN1 (rs6679677), C12ORF30 (rs17696736), TRAF1 (rs3761847), IL2RA (rs2104286), PTPN2 (rs2542151), and STAT4 (rs7574865)] were genotyped by the TaqMan assay. Alleles and genotypes were analyzed for association with JIA and JIA subtypes. Odds ratios (OR) and 95% confidence intervals (95% CI) were calculated.
Results
The strongest associations were observed for TNFAIP3 variants rs10499194 (OR: 0.74 (0.61-0.91); p <0.004), and TNFAIP3 rs6920220 (OR: 1.3 (1.05-1.61); p <0.02). We also observed associations between JIA and STAT4 (OR: 1.24 (1.02-1.51); p <0.03) and C12ORF30 (OR: 1.2 (1.01-1.43); p <0.04) variants. The PTPN2 variant rs2542151 deviated from Hardy-Weinberg equilibrium and was excluded from analyses. Variants in IL2RA, TRAF1, and RSBN1 were not associated with JIA. After stratification by JIA subtype, TNFAIP3 and C12ORF30 variants were associated with oligoarticular JIA, while the STAT4 variant was associated primarily with polyarticular JIA.
Conclusions
We have demonstrated associations between JIA and variants in TNFAIP3, STAT4 and C12ORF30 regions that have previously shown associations with other autoimmune diseases, including RA and systemic lupus erythematosus. Our results suggest that clinically distinct autoimmune phenotypes share common genetic susceptibility factors.
doi:10.1002/art.24618
PMCID: PMC3104295  PMID: 19565500
JRA; genetics; autoimmune; association; juvenile idiopathic arthritis; rheumatoid arthritis
8.  Cutting Edge: Autoimmune Disease Risk Variant of STAT4 Confers Increased Sensitivity to IFN-α in Lupus Patients In Vivo1 
Increased IFN-α signaling is a primary pathogenic factor in systemic lupus erythematosus (SLE). STAT4 is a transcription factor that is activated by IFN-α signaling, and genetic variation of STAT4 has been associated with risk of SLE and rheumatoid arthritis. We measured serum IFN-α activity and simultaneous IFN-α-induced gene expression in PBMC in a large SLE cohort. The risk variant of STAT4 (T allele; rs7574865) was simultaneously associated with both lower serum IFN-α activity and greater IFN-α-induced gene expression in PBMC in SLE patients in vivo. Regression analyses confirmed that the risk allele of STAT4 was associated with increased sensitivity to IFN-α signaling. The IFN regulatory factor 5 SLE risk genotype was associated with higher serum IFN-α activity; however, STAT4 showed dominant influence on the sensitivity of PBMC to serum IFN-α. These data provide biologic relevance for the risk variant of STAT4 in the IFN-α pathway in vivo.
PMCID: PMC2716754  PMID: 19109131
9.  Genetic Risk Factors in Lupus Nephritis and IgA Nephropathy – No Support of an Overlap 
PLoS ONE  2010;5(5):e10559.
Background
IgA nephropathy (IgAN) and nephritis in Systemic Lupus Erythematosus (SLE) are two common forms of glomerulonephritis in which genetic findings are of importance for disease development. We have recently reported an association of IgAN with variants of TGFB1. In several autoimmune diseases, particularly in SLE, IRF5, STAT4 genes and TRAF1-C5 locus have been shown to be important candidate genes. The aim of this study was to compare genetic variants from the TGFB1, IRF5, STAT4 genes and TRAF1-C5 locus with susceptibility to IgAN and lupus nephritis in two Swedish cohorts.
Patients and Methods
We genotyped 13 single nucleotide polymorphisms (SNPs) in four genetic loci in 1252 DNA samples from patients with biopsy proven IgAN or with SLE (with and without nephritis) and healthy age- and sex-matched controls from the same population in Sweden.
Results
Genotype and allelic frequencies for SNPs from selected genes did not differ significantly between lupus nephritis patients and SLE patients without nephritis. In addition, haplotype analysis for seven selected SNPs did not reveal a difference for the SLE patient groups with and without nephritis. Moreover, none of these SPNs showed a significant difference between IgAN patients and healthy controls. IRF5 and STAT4 variants remained significantly different between SLE cases and healthy controls. In addition, the data did not show an association of TRAF1-C5 polymorphism with susceptibility to SLE in this Swedish population.
Conclusion
Our data do not support an overlap in genetic susceptibility between patients with IgAN or SLE and reveal no specific importance of SLE associated SNPs for the presence of lupus nephritis.
doi:10.1371/journal.pone.0010559
PMCID: PMC2866667  PMID: 20479942
10.  Strong Evidence of a Combination Polymorphism of the Tyrosine Kinase 2 Gene and the Signal Transducer and Activator of Transcription 3 Gene as a DNA-Based Biomarker for Susceptibility to Crohn’s Disease in the Japanese Population 
Journal of Clinical Immunology  2009;29(6):815-825.
Objective
An association between susceptibility to inflammatory bowel disease (IBD) and polymorphisms of both the tyrosine kinase 2 gene (TYK2) and the signal transducer and activator of transcription 3 gene (STAT3) was examined in a Japanese population in order to identify the genetic determinants of IBD.
Methods
The study subjects comprised 112 patients with ulcerative colitis, 83 patients with Crohn’s disease (CD), and 200 healthy control subjects. Seven tag single-nucleotide polymorphisms (SNPs) in TYK2 and STAT3 were detected by PCR-restriction fragment length polymorphism.
Results
The frequencies of a C allele and its homozygous C/C genotype at rs2293152 SNP in STAT3 in CD patients were significantly higher than those in control subjects (P = 0.007 and P = 0.001, respectively). Furthermore, out of four haplotypes composed of the two tag SNPs (rs280519 and rs2304256) in TYK2, the frequencies of a Hap 1 haplotype and its homozygous Hap 1/Hap1 diplotype were significantly higher in CD patients in comparison to those in control subjects (P = 0.023 and P = 0.024, respectively). In addition, the presence of both the C/C genotype at rs2293152 SNP in STAT3 and the Hap 1/Hap 1 diplotype of TYK2 independently contributes to the pathogenesis of CD and significantly increases the odds ratio to 7.486 for CD (P = 0.0008).
Conclusion
TYK2 and STAT3 are genetic determinants of CD in the Japanese population. This combination polymorphism may be useful as a new genetic biomarker for the identification of high-risk individuals susceptible to CD.
doi:10.1007/s10875-009-9320-x
PMCID: PMC2788098  PMID: 19653082
TYK2; STAT3; polymorphisms; Crohn’s disease; candidate gene-based association study; DNA-based biomarker; Japanese population
11.  Replication of Genome Wide Association Studies on Hepatocellular Carcinoma Susceptibility Loci in a Chinese Population 
PLoS ONE  2013;8(10):e77315.
Background
Genome-wide association studies (GWAS) have identified three loci (rs17401966 in KIF1B, rs7574865 in STAT4, rs9275319 in HLA-DQ) as being associated with hepatitis B virus-related hepatocellular carcinoma (HBV-related HCC) in a Chinese population, two loci (rs2596542 in MICA, rs9275572 located between HLA-DQA and HLA-DQB) with hepatitis C virus-related HCC (HCV-related HCC) in a Japanese population. In the present study, we sought to determine whether these SNPs are predictive for HBV-related HCC development in other Chinese population as well.
Method and Findings
We genotyped 4 SNPs, rs2596542, rs9275572, rs17401966, rs7574865, in 506 HBV-related HCC patients and 772 chronic hepatitis B (CHB) patients in Han Chinese by TaqMan methods. Odds ratio(OR)and 95% confidence interval (CI) were calculated by logistic regression. In our case-control study, significant association between rs9275572 and HCC were observed (P = 0.02, OR = 0.73, 95% CI = 0.56–0.95). In the further haplotype analysis between rs2596542 at 6p21.33 and rs9275572 at 6p21.3, G-A showed a protective effect on HBV-related HCC occurrence (P<0.001, OR = 0.66, 95% CI = 0.52–0.84).
Conclusion
These findings provided convincing evidence that rs9275572 significantly associated with HBV-related HCC.
doi:10.1371/journal.pone.0077315
PMCID: PMC3810470  PMID: 24204805
12.  The TT Genotype of the STAT4 rs7574865 Polymorphism Is Associated with High Disease Activity and Disability in Patients with Early Arthritis 
PLoS ONE  2012;7(8):e43661.
Background
The number of copies of the HLA-DRB1 shared epitope, and the minor alleles of the STAT4 rs7574865 and the PTPN22 rs2476601 polymorphisms have all been linked with an increased risk of developing rheumatoid arthritis. In the present study, we investigated the effects of these genetic variants on disease activity and disability in patients with early arthritis.
Methodology and Results
We studied 640 patients with early arthritis (76% women; median age, 52 years), recording disease-related variables every 6 months during a 2-year follow-up. HLA-DRB1 alleles were determined by PCR-SSO, while rs7574865 and rs2476601 were genotyped with the Taqman 5′ allelic discrimination assay. Multivariate analysis was performed using generalized estimating equations for repeated measures. After adjusting for confounding variables such as gender, age and ACPA, the TT genotype of rs7574865 in STAT4 was associated with increased disease activity (DAS28) as compared with the GG genotype (β coefficient [95% confidence interval] = 0.42 [0.01–0.83], p = 0.044). Conversely, the presence of the T allele of rs2476601 in PTPN22 was associated with diminished disease activity during follow-up in a dose-dependent manner (CT genotype = −0.27 [−0.56– −0.01], p = 0.042; TT genotype = −0.68 [−1.64– −0.27], p = 0.162). After adjustment for gender, age and disease activity, homozygosity for the T allele of rs7574865 in STAT4 was associated with greater disability as compared with the GG genotype.
Conclusions
Our data suggest that patients with early arthritis who are homozygous for the T allele of rs7574865 in STAT4 may develop a more severe form of the disease with increased disease activity and disability.
doi:10.1371/journal.pone.0043661
PMCID: PMC3427144  PMID: 22937072
13.  A candidate gene study of the type I interferon pathway implicates IKBKE and IL8 as risk loci for SLE 
Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease in which the type I interferon pathway has a crucial role. We have previously shown that three genes in this pathway, IRF5, TYK2 and STAT4, are strongly associated with risk for SLE. Here, we investigated 78 genes involved in the type I interferon pathway to identify additional SLE susceptibility loci. First, we genotyped 896 single-nucleotide polymorphisms in these 78 genes and 14 other candidate genes in 482 Swedish SLE patients and 536 controls. Genes with P<0.01 in the initial screen were then followed up in 344 additional Swedish patients and 1299 controls. SNPs in the IKBKE, TANK, STAT1, IL8 and TRAF6 genes gave nominal signals of association with SLE in this extended Swedish cohort. To replicate these findings we extracted data from a genomewide association study on SLE performed in a US cohort. Combined analysis of the Swedish and US data, comprising a total of 2136 cases and 9694 controls, implicates IKBKE and IL8 as SLE susceptibility loci (Pmeta=0.00010 and Pmeta=0.00040, respectively). STAT1 was also associated with SLE in this cohort (Pmeta=3.3 × 10−5), but this association signal appears to be dependent of that previously reported for the neighbouring STAT4 gene. Our study suggests additional genes from the type I interferon system in SLE, and highlights genes in this pathway for further functional analysis.
doi:10.1038/ejhg.2010.197
PMCID: PMC3060320  PMID: 21179067
systemic lupus erythematosus; type I interferon system; candidate gene study; single nucleotide polymorphism; IKBKE; IL8
14.  Role of STAT4 polymorphisms in systemic lupus erythematosus in a Japanese population: a case-control association study of the STAT1-STAT4 region 
Arthritis Research & Therapy  2008;10(5):R113.
Introduction
Recent studies identified STAT4 (signal transducers and activators of transcription-4) as a susceptibility gene for systemic lupus erythematosus (SLE). STAT1 is encoded adjacently to STAT4 on 2q32.2-q32.3, upregulated in peripheral blood mononuclear cells from SLE patients, and functionally relevant to SLE. This study was conducted to test whether STAT4 is associated with SLE in a Japanese population also, to identify the risk haplotype, and to examine the potential genetic contribution of STAT1. To accomplish these aims, we carried out a comprehensive association analysis of 52 tag single nucleotide polymorphisms (SNPs) encompassing the STAT1-STAT4 region.
Methods
In the first screening, 52 tag SNPs were selected based on HapMap Phase II JPT (Japanese in Tokyo, Japan) data, and case-control association analysis was carried out on 105 Japanese female patients with SLE and 102 female controls. For associated SNPs, additional cases and controls were genotyped and association was analyzed using 308 SLE patients and 306 controls. Estimation of haplotype frequencies and an association study using the permutation test were performed with Haploview version 4.0 software. Population attributable risk percentage was estimated to compare the epidemiological significance of the risk genotype among populations.
Results
In the first screening, rs7574865, rs11889341, and rs10168266 in STAT4 were most significantly associated (P < 0.01). Significant association was not observed for STAT1. Subsequent association studies of the three SNPs using 308 SLE patients and 306 controls confirmed a strong association of the rs7574865T allele (SLE patients: 46.3%, controls: 33.5%, P = 4.9 × 10-6, odds ratio 1.71) as well as TTT haplotype (rs10168266/rs11889341/rs7574865) (P = 1.5 × 10-6). The association was stronger in subgroups of SLE with nephritis and anti-double-stranded DNA antibodies. Population attributable risk percentage was estimated to be higher in the Japanese population (40.2%) than in Americans of European descent (19.5%).
Conclusions
The same STAT4 risk allele is associated with SLE in Caucasian and Japanese populations. Evidence for a role of STAT1 in genetic susceptibility to SLE was not detected. The contribution of STAT4 for the genetic background of SLE may be greater in the Japanese population than in Americans of European descent.
doi:10.1186/ar2516
PMCID: PMC2592800  PMID: 18803832
15.  High density genotyping of STAT4 gene reveals multiple haplotypic associations with Systemic Lupus Erythematosus in different racial groups 
Arthritis and rheumatism  2009;60(4):1085-1095.
Objective
Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disorder with complex etiology and a strong genetic component. Recently, gene products involved in the interferon pathway have been under intense investigation in SLE pathogenesis. STAT1 and STAT4 are transcription factors that play key roles in the interferon and Th1 signaling pathways, making them attractive candidates for SLE susceptibility.
Methods
Fifty-six single-nucleotide polymorphisms (SNPs) across STAT1 and STAT4 genes on chromosome 2 were genotyped using Illumina platform as a part of extensive association study in a large collection of 9923 lupus cases and controls from different racial groups. DNA from patients and controls was obtained from peripheral blood. Principal component analyses and population based case-control association analyses were performed and the p values, FDR q values and Odds ratios with 95% confidence intervals (95% CIs) were calculated.
Results
We observed strong genetic associations with SLE and multiple SNPs located within the STAT4 gene in different ethnicities (Fisher combined p= 7.02×10−25). In addition to strong confirmation of the association in the 3rd intronic region of this gene reported previously, we identified additional haplotypic association across STAT4 gene and in particular a common risk haplotype that is found in multiple racial groups. In contrast, only a relatively weak suggestive association was observed with STAT1, probably due to the proximity to STAT4.
Conclusion
Our findings indicate that the STAT4 gene is likely to be a crucial component in SLE pathogenesis among multiple racial groups. The functional effects of this association, when revealed, might improve our understanding of the disease and provide new therapeutic targets.
doi:10.1002/art.24387
PMCID: PMC2776081  PMID: 19333953
16.  MAGI2 genetic variation and inflammatory bowel disease (IBD) 
Inflammatory bowel diseases  2009;15(1):75-83.
Despite recent advances the majority of IBD susceptibility ‘genes’ remain undiscovered. Recent data suggest that autoimmune conditions may ‘share’ susceptibility loci. Epidemiological evidence indicate an association between celiac disease and IBD and both conditions demonstrate increased gut permeability. MAGI2, recently implicated in UC and celiac disease, encodes a scaffolding protein involved in epithelial integrity. Our aim was to test MAGI2 variants for association with IBD and also their role in determining intermediate hereditary phenotypes defined by antibody production to microbial antigens. We genotyped 113 MAGI2 SNPs in 681 cases of Crohn’s disease (CD), 259 ulcerative colitis (UC) cases and 195 controls. The most significant IBD association was in intron 6 (rs2160322, p=0.009)) and both UC (p=0.006) and CD (p=0.03) contributed to this association. The most significant CD association was with an intron 2 haplotype (rs7785088/rs323149/rs13246026, p=0.002). We observed highly significant associations with UC in intron 6 (rs7803276/rs7803705, p=0.002) and also significant associations in introns 2, 6 and 20. Significant associations were seen with: IgG ASCA positive CD in intron 3 (p=0.003), intron 6 (p=0.003), and intron 20 (p=0.001); anti-CBir1 positive CD in intron 3 (p=0.0001) and intron 6 (p=0.008); and anti-OMPc positive CD in intron 3 (p=0.0009), and intron 9 (p=0.007). Quantitative antibody levels were also associated with variants in intron 4 (anti-IgA ASCA, p=0.0003 and anti-IgG ASCA, p=0.0002). These findings support the significance of the epithelial barrier in IBD pathogenesis.
doi:10.1002/ibd.20611
PMCID: PMC2614310  PMID: 18720471
Inflammatory bowel disease; MAGI2; genetic susceptibility; serology
17.  Contribution of STAT4 gene single-nucleotide polymorphism to systemic lupus erythematosus in the Polish population 
Molecular Biology Reports  2012;39(9):8861-8866.
The STAT4 has been found to be a susceptible gene in the development of systemic lupus erythematosus (SLE) in various populations. There are evident population differences in the context of clinical manifestations of SLE, therefore we investigated the prevalence of the STAT4 G > C (rs7582694) polymorphism in patients with SLE (n = 253) and controls (n = 521) in a sample of the Polish population. We found that patients with the STAT4 C/G and CC genotypes exhibited a 1.583-fold increased risk of SLE incidence (95 % CI = 1.168–2.145, p = 0.003), with OR for the C/C versus C/G and G/G genotypes was 1.967 (95 % CI = 1.152–3.358, p = 0.0119). The OR for the STAT4 C allele frequency showed a 1.539-fold increased risk of SLE (95 % CI = 1.209–1.959, p = 0.0004). We also observed an increased frequency of STAT4 C/C and C/G genotypes in SLE patients with renal symptoms OR = 2.259 (1.365–3.738, p = 0.0014), (pcorr = 0.0238) and in SLE patients with neurologic manifestations OR = 2.867 (1.467–5.604, p = 0.0016), (pcorr = 0.0272). Moreover, we found a contribution of STAT4 C/C and C/G genotypes to the presence of the anti-snRNP Ab OR = 3.237 (1.667–6.288, p = 0.0003), (pcorr = 0.0051) and the presence of the anti-Scl-70 Ab OR = 2.665 (1.380–5.147, p = 0.0028), (pcorr = 0.0476). Our studies confirmed an association of the STAT4 C (rs7582694) variant with the development of SLE and occurrence of some clinical manifestations of the disease.
Electronic supplementary material
The online version of this article (doi:10.1007/s11033-012-1752-3) contains supplementary material, which is available to authorized users.
doi:10.1007/s11033-012-1752-3
PMCID: PMC3404285  PMID: 22729903
SLE; STAT4; Polymorphism
18.  Association of the C8orf13-BLK Region with Systemic Sclerosis in North-American and European Populations 
Journal of autoimmunity  2009;34(2):155.
Objective
Genetic studies in the systemic sclerosis (SSc), an autoimmune disease that clinically manifests with dermal and internal organ fibrosis and small vessel vasculopathy, have identified multiple susceptibility genes including HLA-class II, PTPN22, IRF5, and STAT4 which have also been associated with other autoimmune diseases, such as systemic lupus erythematosus (SLE). These data suggest that there are common autoimmune disease susceptibility genes. The current report sought to determine if polymorphisms in the C8orf13-BLK region (chromosome 8p23.1-B lymphoid tyrosine kinase), which is associated with SLE, are associated also with SSc.
Methods
Two variants in the C8orf13-BLK region (rs13277113 & rs2736340) were tested for association with 1050 SSc cases and 694 controls of North Americans of European descent and replicated in a second series 589 SSc cases and 722 controls from Spain.
Results
The “T” allele at rs2736340 variant was associated with SSc in both the U.S. and Spanish case-control series (P=6.8×10−5, OR 1.27, 95%CI 1.1–1.4). The “A” allele at rs13277113 variant was associated with SSc in the U.S. series only (P=3.6×10−4, OR 1.32, 95%CI 1.1–1.6) and was significant in the combined analyses of the two series (P=2.0×10−3; OR 1.20, 95%CI 1.1–1.3). Both variants demonstrated an association with the anti-centromere antibody (P=2.2×10−6 and P=5.5×10−4, respectively) and limited SSc (P=3.3×10−5 and P=2.9×10−3, respectively) in the combined analysis. Peripheral blood gene expression profiles suggest that B-cell receptor and NFκB signaling are dysregulated based on the risk haplotype of these variants.
Conclusion
We identify and replicate the association of the C8orf13-BLK region as a novel susceptibility factor for SSc, placing it in the category of common autoimmune disease susceptibility genes.
doi:10.1016/j.jaut.2009.08.014
PMCID: PMC2821978  PMID: 19796918
Scleroderma; Systemic Sclerosis/SSc; Polymorphism/SNP; BLK; C8orf13; Anti- Topoisomerase-I; Anti-Centromere; Genetics; Autoantibody; rs13277113; rs2736340
19.  STAT4: Genetics, Mechanisms, and Implications for Autoimmunity Review for Current Allergy and Asthma Reports 
Recent advances in genetics and technology have led to breakthroughs in understanding the genes that predispose individuals to autoimmune diseases. A common haplotype of the signal transducer and activator of transcription 4 (STAT4) gene has been shown to be associated with susceptibility to rheumatoid arthritis, systemic lupus erythematosus, and primary Sjögren’s syndrome. STAT4 is a transcription factor that transduces interleukin-12, interleukin-23, and type I interferon cytokine signals in T cells and monocytes, leading to T-helper type 1 and T-helper type 17 differentiation, monocyte activation, and production of interferon-γ. Although the evidence for this association is very strong and well replicated, the exact mechanism by which polymorphisms in this gene lead to disease remains unknown. In concert with the identification of other disease-associated loci, elucidating how the variant form of STAT4 modulates immune function should lead to an improved understanding of the pathophysiology of autoimmunity.
PMCID: PMC2562257  PMID: 18682104
20.  STAT4 Associates with SLE Through Two Independent Effects that Correlate with Gene Expression and Act Additively with IRF5 to Increase Risk 
Annals of the rheumatic diseases  2008;68(11):10.1136/ard.2008.097642.
Objectives
To confirm and define the genetic association of STAT4 and systemic lupus erythematosus, investigate the possibility of correlations with differential splicing and/or expression levels, and genetic interaction with IRF5.
Methods
30 tag SNPs were genotyped in an independent set of Spanish cases and controls. SNPs surviving correction for multiple tests were genotyped in 5 new sets of cases and controls for replication. STAT4 cDNA was analyzed by 5’-RACE PCR and sequencing. Expression levels were measured by quantitative PCR.
Results
In the fine-mapping, four SNPs were significant after correction for multiple testing, with rs3821236 and rs3024866 as the strongest signals, followed by the previously associated rs7574865, and by rs1467199. Association was replicated in all cohorts. After conditional regression analyses, two major independent signals represented by SNPs rs3821236 and rs7574865, remained significant across the sets. These SNPs belong to separate haplotype blocks. High levels of STAT4 expression correlated with SNPs rs3821236, rs3024866 (both in the same haplotype block) and rs7574865 but not with other SNPs. We also detected transcription of alternative tissue-specific exons 1, indicating presence of tissue-specific promoters of potential importance in the expression of STAT4. No interaction with associated SNPs of IRF5 was observed using regression analysis.
Conclusions
These data confirm STAT4 as a susceptibility gene for SLE and suggest the presence of at least two functional variants affecting levels of STAT4. Our results also indicate that both genes STAT4 and IRF5 act additively to increase risk for SLE.
doi:10.1136/ard.2008.097642
PMCID: PMC3878433  PMID: 19019891
Association studies; systemic lupus erythematosus; STAT4 transcription factor; Interferon regulatory factor; genetic predisposition to disease
21.  Analysis of the IBD5 locus and potential gene-gene interactions in Crohn’s disease 
Gut  2003;52(4):541-546.
Background and aims: Genetic variation in the chromosome 5q31 cytokine cluster (IBD5 risk haplotype) has been associated with Crohn’s disease (CD) in a Canadian population. We studied the IBD5 risk haplotype in both British and Japanese cohorts. Disease associations have also been reported for CARD15/NOD2 and TNF variants. Complex interactions between susceptibility loci have been shown in animal models, and we tested for potential gene-gene interactions between the three CD associated loci.
Methods: Family based association analyses were performed in 457 British families (252 ulcerative colitis, 282 CD trios) genotyped for the IBD5 haplotype, common CARD15, and TNF−857 variants. To test for possible epistatic interactions between variants, transmission disequilibrium test analyses were further stratified by genotype at other loci, and novel log linear analyses were performed using the haplotype relative risk model. Case control association analyses were performed in 178 Japanese CD patients and 156 healthy controls genotyped for the IBD5 haplotype.
Results: The IBD5 haplotype was associated with CD (p=0.007), but not with UC, in the British Caucasian population. The CARD15 variants and IBD5 haplotype showed additive main effects, and in particular no evidence for epistatic interactions was found. Variants from the IBD5 haplotype were extremely rare in the Japanese.
Conclusions: The IBD5 risk haplotype is associated with British CD. Genetic variants predisposing to CD show heterogeneity and population specific differences.
PMCID: PMC1773608  PMID: 12631666
Crohn’s disease; ulcerative colitis; inflammatory bowel disease; IBD locus
22.  A shift from pStat6 to pStat3 predominance is associated with inflammatory bowel disease-associated dysplasia 
Inflammatory Bowel Diseases  2011;18(7):1267-1274.
Background
Activated Stat3 is an important mediator of oncogenesis in the colon. To test the hypothesis that select Stat activation and/or the pattern of Stat activation serves as a marker for early neoplastic transformation, we examined the distribution of activated Stat1(pStat1), Stat6(pStat6) and Stat3(pStat3) in colitis along the continuum of inactive disease to colitis-associated cancer.
Methods
Tissue microarrays were constructed using colonoscopy biopsy and surgical specimens from 67 patients with ulcerative colitis or Crohn’s colitis and 11 controls. 111 sets of samples were analyzed representing normal tissue, active disease, low-grade dysplasia, high-grade dysplasia, and colitis-associated cancer. Immunohistochemistry to detect pStat1, pStat6 and pStat3 in colonic epithelial and mucosal immune cells was then correlated with clinical and pathological data (tumor location, histologic type, grade and lymph node involvement).
Results
In 50% of colitis-associated cancer samples, pStat3 was detected prominently in epithelial cells, where it was routinely associated with intense pStat3 staining in surrounding immune cells. Stat3 activation was greater in low-grade tumors than in high-grade ones (P<0.05). pStat6 expression was more common in normal tissues than in colitis-associated cancer (P<0.05). pStat1 was detected in a small subset of immune cells in patients with chronic inactive and active colitis, low and high grade dysplasia, but not in colitis-associated cancer.
Conclusions
pStat3 may be a marker for neoplastic transformation in patients with colitis. A shift from predominant immune cell Stat6 activation to Stat3 activation accompanies the onset of dysplasia with concomitant increased epithelial cell Stat3 activation in a subset of patients.
doi:10.1002/ibd.21908
PMCID: PMC3266961  PMID: 22021169
Stat3; Th17; Colitis-associated cancer
23.  PTPN2 Gene Variants Are Associated with Susceptibility to Both Crohn's Disease and Ulcerative Colitis Supporting a Common Genetic Disease Background 
PLoS ONE  2012;7(3):e33682.
Background
Genome-wide association studies identified PTPN2 (protein tyrosine phosphatase, non-receptor type 2) as susceptibility gene for inflammatory bowel diseases (IBD). However, the exact role of PTPN2 in Crohn's disease (CD) and ulcerative colitis (UC) and its phenotypic effect are unclear. We therefore performed a detailed genotype-phenotype and epistasis analysis of PTPN2 gene variants.
Methodology/Principal Findings
Genomic DNA from 2131 individuals of Caucasian origin (905 patients with CD, 318 patients with UC, and 908 healthy, unrelated controls) was analyzed for two SNPs in the PTPN2 region (rs2542151, rs7234029) for which associations with IBD were found in previous studies in other cohorts. Our analysis revealed a significant association of PTPN2 SNP rs2542151 with both susceptibility to CD (p = 1.95×10−5; OR 1.49 [1.34–1.79]) and UC (p = 3.87×10−2, OR 1.31 [1.02–1.68]). Moreover, PTPN2 SNP rs7234029 demonstrated a significant association with susceptibility to CD (p = 1.30×10−3; OR 1.35 [1.13–1.62]) and a trend towards association with UC (p = 7.53×10−2; OR 1.26 [0.98–1.62]). Genotype-phenotype analysis revealed an association of PTPN2 SNP rs7234029 with a stricturing disease phenotype (B2) in CD patients (p = 6.62×10−3). Epistasis analysis showed weak epistasis between the ATG16L1 SNP rs2241879 and PTPN2 SNP rs2542151 (p = 0.024) in CD and between ATG16L1 SNP rs4663396 and PTPN2 SNP rs7234029 (p = 4.68×10−3) in UC. There was no evidence of epistasis between PTPN2 and NOD2 and PTPN2 and IL23R. In silico analysis revealed that the SNP rs7234029 modulates potentially the binding sites of several transcription factors involved in inflammation including GATA-3, NF-κB, C/EBP, and E4BP4.
Conclusions/Significance
Our data confirm the association of PTPN2 variants with susceptibility to both CD and UC, suggesting a common disease pathomechanism for these diseases. Given recent evidence that PTPN2 regulates autophagosome formation in intestinal epithelial cells, the potential link between PTPN2 and ATG16L1 should be further investigated.
doi:10.1371/journal.pone.0033682
PMCID: PMC3310077  PMID: 22457781
24.  Analysis of Gender Differences in Genetic Risk: Association of TNFAIP3 Polymorphism with Male Childhood-Onset Systemic Lupus Erythematosus in the Japanese Population 
PLoS ONE  2013;8(8):e72551.
Background
Systemic lupus erythematosus (SLE) is a systemic multisystem autoimmune disorder influenced by genetic background and environmental factors. Our aim here was to replicate findings of associations between 7 of the implicated single nucleotide polymorphisms (SNPs) in IRF5, BLK, STAT4, TNFAIP3, SPP1, TNIP1 and ETS1 genes with susceptibility to childhood-onset SLE in the Japanese population. In particular, we focused on gender differences in allelic frequencies.
Methodology/Principal Findings
The 7 SNPs were genotyped using TaqMan assays in 75 patients with childhood-onset SLE and in 190 healthy controls. The relationship between the cumulative number of risk alleles and SLE manifestations was explored in childhood-onset SLE. Logistic regression was used to test the effect of each polymorphism on susceptibility to SLE, and Wilcoxon rank sum testing was used for comparison of total risk alleles. Data on rs7574865 in the STAT4 gene and rs9138 in SPP1 were replicated for associations with SLE when comparing cases and controls (corrected P values ranging from 0.0043 to 0.027). The rs2230926 allele of TNFAIP3 was associated with susceptibility to SLE in males, but after Bonferroni correction there were no significant associations with any of the other four SNPs in IRF5, BLK, TNIP1 and ETS1 genes. The cumulative number of risk alleles was significantly increased in childhood-onset SLE relative to healthy controls (P = 0.0000041). Male SLE patients had a slightly but significantly higher frequency of the TNFAIP3 (rs2230926G) risk allele than female patients (odds ratio [OR] = 4.05, 95% confidence interval [95%CI] = 1.46–11.2 P<0.05).
Conclusions
Associations of polymorphisms in STAT4 and SPP1 with childhood-onset SLE were confirmed in a Japanese population. Although these are preliminary results for a limited number of cases, TNFAIP3 rs2230926G may be an important predictor of disease onset in males. We also replicated findings that the cumulative number of risk alleles was significantly increased in childhood-onset SLE.
doi:10.1371/journal.pone.0072551
PMCID: PMC3758304  PMID: 24023622
25.  Evaluation of 22 genetic variants with Crohn's Disease risk in the Ashkenazi Jewish population: a case-control study 
BMC Medical Genetics  2011;12:63.
Background
Crohn's disease (CD) has the highest prevalence among individuals of Ashkenazi Jewish (AJ) descent compared to non-Jewish Caucasian populations (NJ). We evaluated a set of well-established CD-susceptibility variants to determine if they can explain the increased CD risk in the AJ population.
Methods
We recruited 369 AJ CD patients and 503 AJ controls, genotyped 22 single nucleotide polymorphisms (SNPs) at or near 10 CD-associated genes, NOD2, IL23R, IRGM, ATG16L1, PTGER4, NKX2-3, IL12B, PTPN2, TNFSF15 and STAT3, and assessed their association with CD status. We generated genetic scores based on the risk allele count alone and the risk allele count weighed by the effect size, and evaluated their predictive value.
Results
Three NOD2 SNPs, two IL23R SNPs, and one SNP each at IRGM and PTGER4 were independently associated with CD risk. Carriage of 7 or more copies of these risk alleles or the weighted genetic risk score of 7 or greater correctly classified 92% (allelic count score) and 83% (weighted score) of the controls; however, only 29% and 47% of the cases were identified as having the disease, respectively. This cutoff was associated with a >4-fold increased disease risk (p < 10e-16).
Conclusions
CD-associated genetic risks were similar to those reported in NJ population and are unlikely to explain the excess prevalence of the disease in AJ individuals. These results support the existence of novel, yet unidentified, genetic variants unique to this population. Understanding of ethnic and racial differences in disease susceptibility may help unravel the pathogenesis of CD leading to new personalized diagnostic and therapeutic approaches.
doi:10.1186/1471-2350-12-63
PMCID: PMC3212904  PMID: 21548950
Crohn's Disease; Ashkenazi Jewish; genetic risk score

Results 1-25 (865485)