Search tips
Search criteria

Results 1-25 (997527)

Clipboard (0)

Related Articles

1.  Mapping Go–No-Go performance within the subthalamic nucleus region 
Brain  2010;133(12):3625-3634.
The basal ganglia are thought to be important in the selection of wanted and the suppression of unwanted motor patterns according to explicit rules (i.e. response inhibition). The subthalamic nucleus has been hypothesized to play a particularly critical role in this function. Deep brain stimulation of the subthalamic nucleus in individuals with Parkinson’s disease has been used to test this hypothesis, but results have been variable. Based on current knowledge of the anatomical organization of the subthalamic nucleus, we propose that the location of the contacts used in deep brain stimulation could explain variability in the effects of deep brain stimulation of the subthalamic nucleus on response inhibition tasks. We hypothesized that stimulation affecting the dorsal subthalamic nucleus (connected to the motor cortex) would be more likely to affect motor symptoms of Parkinson’s disease, and stimulation affecting the ventral subthalamic nucleus (connected to higher order cortical regions) would be more likely to affect performance on a response inhibition task. We recruited 10 individuals with Parkinson’s disease and bilateral deep brain stimulation of the subthalamic nucleus with one contact in the dorsal and another in the ventral subthalamic region on one side of the brain. Patients were tested with a Go–No-Go task and a motor rating scale in three conditions: stimulation off, unilateral dorsal stimulation and unilateral ventral stimulation. Both dorsal and ventral stimulation improved motor symptoms, but only ventral subthalamic stimulation affected Go–No-Go performance, decreasing hits and increasing false alarms, but not altering reaction times. These results suggest that the ventral subthalamic nucleus is involved in the balance between appropriate selection and inhibition of prepotent responses in cognitive paradigms, but that a wide area of the subthalamic nucleus region is involved in the motor symptoms of Parkinson’s disease. This finding has implications for resolving inconsistencies in previous research, highlights the role of the ventral subthalamic nucleus region in response inhibition and suggests an approach for the clinical optimization of deep brain stimulation of the subthalamic nucleus for both motor and cognitive functions.
PMCID: PMC2995882  PMID: 20855421
subthalamic nucleus; deep brain stimulation; response inhibition; Parkinson’s disease
2.  Deep brain stimulation of the subthalamic nucleus: anatomical, neurophysiological, and outcome correlations with the effects of stimulation 
Objectives: Bilateral chronic high frequency stimulation of the subthalamic nucleus (STN), through the stereotactical placement of stimulating electrodes, effectively improves the motor symptoms of severe Parkinson's disease. Intraoperative neurophysiological and clinical monitoring techniques (neuronal electrical activity recording and intraoperative stimulation) may improve and refine the localisation of the nucleus. The objective of this work was to compare the preoperative CT and MRI localisation with the intraoperative neurophysiological identification of STN. The relation between the localisation of the STN and the position of the most effective contact of the permanent quadripolar electrode at a 3 month and 1 year follow up was also studied.
Methods: Fourteen consecutive parkinsonian patients were submitted to bilateral implant for STN stimulation. All the patients underwent a standard MRI and stereotactic CT to obtain, by image fusion and localisation software, the stereotactical coordinates of STN. The STN extension and boundaries were identified by a semimicrorecording of the neuronal electrical activity. The definitive quadripolar electrode was positioned to locate at least two contacts within the STN recording area. Intraoperative macrostimulation was performed to confirm the correct position of the electrode. Postoperative clinical evaluation of the effects of stimulation was checked for each contact of the quadripolar electrode testing the improvement on contralateral rigidity to select the best contact. This evaluation was repeated at 3 months and 1 year after surgery.
Results: In 35.7% of the procedures it was necessary to perform more than one track to get a recording of neuronal activity consistent with STN.
The mean position of the central point of all the 28 STN recording areas in respect of the AC-PC line midpoint was 2.7 mm posterior (SD 0.7), 3.8 mm inferior (SD 1.1), and 11.6 mm lateral (SD 0.9), and the mean distance between the anatomical target and the central point of the STN as defined by intraoperative recording was 0.5 mm (SD 0.5) on the anteroposterior plane, 0.7 mm (SD 0.7) on the lateral plane, and 0.9 mm (SD 0.6) on the vertical plane. At 1 year the mean position of the central point of the most effective contact of the electrode in respect of the AC-PC line midpoint was 1.7 mm posterior (SD 0.9), 1.7 mm inferior (SD 1.5), and 12.3 mm lateral (SD 0.9).
Conclusion: The results highlight the role of the intraoperative recording to get a more accurate localisation of the STN in surgery for Parkinson's disease, allowing the identification of the boundaries and of the extension of the nucleus. The most effective contact of the quadripolar electrode was always in the upper part of the STN recording area or immediately above it, suggesting a role of this region in the clinical effectiveness of the STN electrical stimulation.
PMCID: PMC1737677  PMID: 11784826
3.  Do Patient's Get Angrier Following STN, GPi, and Thalamic Deep Brain Stimulation 
NeuroImage  2010;54S1:S227-S232.
The objective of the study was to examine whether deep brain stimulation (DBS) of the subthalamic nucleus (STN), the globus pallidus internus (GPi), and/or the ventralis intermedius thalamic nucleus (Vim) was associated with making patients angrier pre to post-surgical intervention.
Secondary outcome analysis of the NIH COMPARE Parkinson's Disease DBS trial revealed that participants were angrier and had more mood and cognitive side effects following DBS. Additionally blinded on/off analysis did not change anger scores. The sample size was small but suggested that STN DBS may have been worse than GPi in provoking anger. We endeavored to examine this question utilizing a larger dataset (the UF INFORM database), and also we included a third surgical target (Vim) which has been utilized for a different disease, essential tremor.
Consecutive patients from the University of Florida Movement Disorders Center who were implanted with unilateral DBS for Parkinson's Disease (STN or GPi) or Essential Tremor (Vim) were included. Patients originally implanted at outside institutions were excluded. Pre- and 4-6 month postoperative Visual Analog Mood Scales (VAMS) scores for all three groups were compared; additionally, pre- and 1-3 month scores were compared for STN and GPi patients. A linear regression model was utilized to analyze the relationship between the VAMS anger score and the independent variables of age, years with symptoms, Mini-mental status examination (MMSE) score, handedness, ethnicity, gender, side of surgery, target of surgery, baseline Dementia Rating Scale (DRS) total score, baseline Beck Depression Index (BDI) score, micro and macro electrode passes, and years of education. Levodopa equivalent dosages and dopamine agonist use was analyzed for a potential impact on anger scores.
A total of 322 unilateral DBS procedures were analyzed, with STN (n= 195), Vim (n=71), and GPi (n=56) making up the cohort. An ANOVA analysis was used to detect significant differences among the three targets in the changes pre- to post-operatively. Similar to the COMPARE dataset, at four months the only subscore of VAMS to reveal a significant difference between the three targets was the angry subscore, with GPi revealing a mean (standard) change of 2.38 (9.53), STN 4.82 (14.52), and Vim -1.17 (11.51) (p-value = 0.012). At 1-3 months postop, both STN and GPi groups were significantly angrier (p= 0.004), but there was no significant difference between the two groups. However, GPi patients were significantly more confused as compared to STN patients (p= 0.016). The linear regression model which sought independent explanatory variables revealed a relationship between the VAMS anger score and the surgical target and the disease duration. The mean changes for STN and GPi DBS pre- to post were 11.67 (p= 0.001) and 8.21 (p= 0.022) units more than those with Vim, respectively. For every year added of disease duration, the VAMS anger score increased by 0.24 (p= 0.022). For the GPi and STN groups, number of microelectrode passes was significantly associated with angry score changes (p= 0.014), with the anger score increasing 2.29 units per microelectrode pass. Independent variables not associated with the VAMS anger score included the surgery side, handedness, gender, ethnicity, education, age at surgery, MMSE, DRS, and BDI scores. Although the STN group significantly decreased in LED when compared to GPi, there was no relationship to anger scores. Similarly dopamine agonist use was not different between STN and GPi groups, and did not correlate with the VAMS anger score changes.
STN and GPi DBS for Parkinson's disease were associated with significantly higher anger scores pre- to post-DBS as compared to Vim for essential tremor. Anger score changes in STN and GPi patients seem to be associated with microelectrode passes, suggesting it may be a lesional effect. PD patients with longer disease durations may be particularly susceptible, and this should be kept in mind when discussing the potential of DBS surgery for an individual patient. Essential tremor patients who on average have much longer disease durations did not get angrier. The changes in anger scores were not related to LED change or dopamine agonist use. Whether the induction of anger is disease specific or target specific is not currently known, however our data would suggest that PD patients implanted in STN or GPi are at a potential risk. Finally, on closer inspection of the COMPARE DBS data VAMS anger scores did not change on or off DBS, suggesting that anger changes may be more a lesional effect rather than a stimulation induced one(Okun et al., 2009).
PMCID: PMC3014411  PMID: 20932923
Subthalamic nucleus; globus pallidus; ventralis intermedius nucleus; deep brain stimulation; anger; Parkinson's disease; tremor
4.  The Subthalamic Nucleus becomes a Generator of Bursts in the Dopamine-Depleted State. Its High Frequency Stimulation Dramatically Weakens Transmission to the Globus Pallidus 
Excessive burst firing in the dopamine-depleted basal ganglia correlates with severe motor symptoms of Parkinson's disease that are attenuated by high frequency electrical stimulation of the subthalamic nucleus (STN). Here we test the hypothesis that pathological bursts in dopamine-deprived basal ganglia are generated within the STN and transmitted to globus pallidus neurons. To answer this question we recorded excitatory synaptic currents and potentials from subthalamic and pallidal neurons in the basal ganglia slice (BGS) from dopamine-depleted mice while continuously blocking GABAA receptors. In control mice, a single electrical stimulus delivered to the internal capsule or the rostral pole of the STN evoked a short duration, small amplitude, monosynaptic EPSC in subthalamic neurons. In contrast, in the dopamine-depleted BGS, this monosynaptic EPSC was amplified and followed by a burst of polysynaptic EPSCs that eventually reverberated three to seven times, providing a long lasting response that gave rise to bursts of EPSCs and spikes in GP neurons. Repetitive (10–120 Hz) stimulation delivered to the STN in the dopamine-depleted BGS attenuated STN-evoked bursts of EPSCs in pallidal neurons after several minutes of stimulation but only high frequency (90–120 Hz) stimulation replaced them with small amplitude EPSCs at 20 Hz. We propose that the polysynaptic pathway within the STN amplifies subthalamic responses to incoming excitation in the dopamine-depleted basal ganglia, thereby transforming the STN into a burst generator and entraining pallidal neurons in pathogenic bursting activities. High frequency stimulation of the STN prevents the transmission of this pathological activity to globus pallidus and imposes a new glutamatergic synaptic noise on pallidal neurons.
PMCID: PMC3115486  PMID: 21716635
basal ganglia; subthalamic nucleus; Parkinson; high frequency stimulation; burst firing; basal ganglia slice
5.  Defining a role for the subthalamic nucleus within operative theoretical models of subcortical participation in language 
Objective:To investigate the effects of bilateral, surgically induced functional inhibition of the subthalamic nucleus (STN) on general language, high level linguistic abilities, and semantic processing skills in a group of patients with Parkinson's disease.
Methods:Comprehensive linguistic profiles were obtained up to one month before and three months after bilateral implantation of electrodes in the STN during active deep brain stimulation (DBS) in five subjects with Parkinson's disease (mean age, 63.2 years). Equivalent linguistic profiles were generated over a three month period for a non-surgical control cohort of 16 subjects with Parkinson's disease (NSPD) (mean age, 64.4 years). Education and disease duration were similar in the two groups. Initial assessment and three month follow up performance profiles were compared within subjects by paired t tests. Reliability change indices (RCI), representing clinically significant alterations in performance over time, were calculated for each of the assessment scores achieved by the five STN-DBS cases and the 16 NSPD controls, relative to performance variability within a group of 16 non-neurologically impaired adults (mean age, 61.9 years). Proportions of reliable change were then compared between the STN-DBS and NSPD groups.
Results:Paired comparisons within the STN-DBS group showed prolonged postoperative semantic processing reaction times for a range of word types coded for meanings and meaning relatedness. Case by case analyses of reliable change across language assessments and groups revealed differences in proportions of change over time within the STN-DBS and NSPD groups in the domains of high level linguistics and semantic processing. Specifically, when compared with the NSPD group, the STN-DBS group showed a proportionally significant (p<0.05) reliable improvement in postoperative scores achieved on the word test-revised (TWT-R), as well as a reliable decline (p<0.01) in the accuracy of lexical decisions about words with many meanings and a high degree of relatedness between meanings.
Conclusions:Bilateral STN-DBS affects certain aspects of linguistic functioning, supporting a potential role for the STN in the mediation of language processes.
PMCID: PMC1738254  PMID: 14617713
6.  Effects of deep brain stimulation of dorsal versus ventral subthalamic nucleus regions on gait and balance in Parkinson disease 
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor function including gait and stability in people with PD, but differences in DBS contact locations within the STN may contribute to variability in the degree of improvement. Based on anatomic connectivity, dorsal STN may be preferentially involved in motor function and ventral STN in cognitive function. To determine whether dorsal DBS affects gait and balance more than ventral DBS, we conducted a double-blind evaluation of 23 PD patients with bilateral STN DBS. Each participant underwent gait analysis and balance testing off Parkinson medication in three DBS conditions (unilateral DBS in dorsal STN region, unilateral DBS in ventral STN region, and both stimulators off) on one day. For UPDRS-III scores and velocity for Fast and Pref gait, as well as stride length for Fast and Pref gait, dorsal and ventral stimulation improved gait, compared to the off condition (post hoc tests, p<0.05). However, there were no differences with dorsal compared to ventral stimulation. Balance, assessed using a multi-item clinical balance test (mini-BESTest), was similar across conditions. Absence of differences in gait and balance between dorsal and ventral conditions suggests motor connections involved in gait and balance may be more diffusely distributed in STN than previously thought, as opposed to neural connections involved in cognitive processes, such as response inhibition, which are more affected by ventral stimulation.
PMCID: PMC3250990  PMID: 21478202
Parkinson Disease; Gait; Balance; Deep Brain Stimulation; Subthalamic Nucleus
7.  Cognition and Mood in Parkinson Disease in STN versus GPi DBS: The COMPARE Trial 
Annals of neurology  2009;65(5):586-595.
There is a paucity of level-one evidence comparing STN and GPi DBS. Our aim in this prospective blinded randomized trial was to compare the cognitive and mood effects of unilateral subthalamic nucleus (STN) vs. unilateral globus pallidus interna (GPi) deep brain stimulation (DBS) in patients with Parkinson disease (PD).
Fifty-two subjects with moderate-to-advanced PD were randomized to either unilateral STN or GPi DBS. Right or alternatively left sided stimulation was chosen to address the side of the body with the most bothersome symptoms. The co-primary outcome measures were the change in the 8 subscales of the Visual Analog Mood Scale (VAMS), and the change in the 2 versions of verbal fluency (i.e. semantic and letter), at 7 months post-DBS in the optimal setting compared to the pre-DBS state. In addition, at 7 months post-DBS, after subjects underwent initial evaluation off medications and on optimized DBS therapy, they were tested in four randomized and counterbalanced conditions (optimal DBS, ventral DBS, dorsal DBS, and off DBS) while remaining off medication. Secondary outcome measures then compared the differences in the VAMS items and verbal fluency subscales within the 4 DBS conditions at 7 months, and the change in the VAMS items and verbal fluency subscales from the pre-DBS state to the other 3 DBS conditions (ventral, dorsal and off ) at 7 months.
Forty-five subjects (23 GPi and 22 STN) completed the protocol. The study revealed no significant difference between STN and GPi DBS in the change of co-primary mood and cognitive outcomes from pre- to post-DBS in the optimal setting (Hotelling's T2 test: p=0.16 and 0.08 respectively). When comparing the 4 DBS conditions at 7 months, subjects in both targets were less “happy”, less “energetic” and more “confused” when stimulated ventrally to the optimal stimulation site. When comparing the other 3 DBS conditions (ventral, dorsal and off DBS) to the pre-DBS state, the STN group showed a larger deterioration of letter verbal fluency scores than the GPi group, especially in the off DBS state. A 12-point mean improvement in the UPDRS motor subscale was seen post DBS, but there was no significant difference between targets.
There were no significant differences in in the co-primary outcome measures of mood and cognition between STN and GPi in the optimal DBS state.. However, adverse mood effects were noted when stimulating ventrally to the optimal site in both targets. Furthermore, a worsening for letter verbal fluency was noted in the 3 non-optimal post-DBS states in the STN target only. The persistence of deterioration in verbal fluency in the off DBS state at 7 months is, suggestive of a surgical rather than a stimulation-induced effect at the STN target. STN and GPi DBS resulted in similar motor improvement.
PMCID: PMC2692580  PMID: 19288469
GPi; STN; DBS; Mood; Cognition; Side Effects; verbal fluency; motor; UPDRS
Journal of neurosurgery  2012;116(6):1347-1356.
The effect of Deep Brain Stimulation (DBS) for Parkinson's disease (PD) on balance is unclear. The goal of this study was to investigate how automatic postural responses were affected in subjects randomized to either the Subthalamic Nucleus (STN) or the Globus Pallidus interna (GPi) surgery.
We tested 24 PD subjects who underwent bilateral DBS, 9 PD control subjects without DBS, and 17 age-matched control subjects. Electrode placement site was randomized and blinded to PD subjects and experimenters. Kinematic, kinetic and electromyographic recordings of postural responses to backward disequilibrium via forward translations of the standing surface were recorded in the week prior to surgery while off (OFF) and on antiparkinsonian medication (ON) and then 6 months after surgery in four conditions: off medication with DBS switched off (OFF/OFF), off medication with DBS on (DBS), on medication with DBS off (DOPA), and both medication and DBS on (DBS+DOPA). Stability of the automatic postural response (APR stability) was measured as the difference between the displacement of the center of pressure and the projected location of the center of body mass.
PD subjects had worse APR stability than control subjects. Turning the DBS on at either site improved APR stability compared to the postoperative off condition by lengthening the tibialis response, whereas medication did not show an appreciable effect. The STN group had worse APR stability in their best functional state (DBS+DOPA) six months after the DBS procedure compared to their best functional state (ON levodopa) before the DBS procedure. In contrast, the GPi group and the PD control group showed no change over 6 months. APR stability impairment in the STN group was associated with smaller tibialis response amplitudes, but no change in response latency or co-activation with gastrocnemius.
Turning the DBS current on improved APR stability for both STN and GPi sites. However, there was a detrimental DBS procedural effect for the STN group and this effect was greater than the benefit of the stimulating current, making overall APR stability functionally worse after surgery for the STN group.
PMCID: PMC3465575  PMID: 22424564
Parkinson's Disease; DBS; Postural control
9.  Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson's disease 
Background: Long term effects of subthalamic nucleus (STN) stimulation on cognition, mood, and behaviour are unknown.
Objective: This study evaluated the cognitive, mood, and behavioural effects of bilateral subthalamic nucleus deep brain stimulation (STN DBS) in patients with Parkinson's disease (PD) followed up for three years.
Methods: A consecutive series of 77 PD patients was assessed before, one, and three years after surgery. Mean (SD) age at surgery was 55 (8). Seven patients died or were lost for follow up. Neuropsychological assessment included a global cognitive scale, memory, and frontal tests. Depression was evaluated using the Beck depression inventory. Assessment of thought disorders and apathy was based on the unified Parkinson's disease rating scale. Reports of the behavioural changes are mainly based on interviews done by the same neuropsychologist at each follow up.
Results: Only two cognitive variables worsened (category fluency, total score of fluency). Age was a predictor of decline in executive functions. Depression improved whereas apathy and thought disorders worsened. Major behavioural changes were two transient aggressive impulsive episodes, one suicide, four suicide attempts, one permanent apathy, one transient severe depression, four psychoses (one permanent), and five hypomania (one permanent).
Conclusions: Comparing baseline, one year, and three year postoperative assessments, STN stimulation did not lead to global cognitive deterioration. Apathy scores mildly increased. Depression scores mildly improved. Behavioural changes were comparatively rare and mostly transient. Single case reports show the major synergistic effects of both medication and stimulation on mood and behaviour, illustrating the importance of a correct postoperative management.
PMCID: PMC1739075  PMID: 15145995
10.  Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study 
Brain : a journal of neurology  2009;132(Pt 5):1376-1385.
Pathological gambling is an impulse control disorder reported in association with dopamine agonists used to treat Parkinson’s disease. Although impulse control disorders are conceptualized as lying within the spectrum of addictions, little neurobiological evidence exists to support this belief. Functional imaging studies have consistently demonstrated abnormalities of dopaminergic function in patients with drug addictions, but to date no study has specifically evaluated dopaminergic function in Parkinson’s disease patients with impulse control disorders. We describe results of a [11C] raclopride positron emission tomography (PET) study comparing dopaminergic function during gambling in Parkinson’s disease patients, with and without pathological gambling, following dopamine agonists. Patients with pathological gambling demonstrated greater decreases in binding potential in the ventral striatum during gambling (13.9%) than control patients (8.1%), likely reflecting greater dopaminergic release. Ventral striatal bindings at baseline during control task were also lower in patients with pathological gambling. Although prior imaging studies suggest that abnormality in dopaminergic binding and dopamine release may be markers of vulnerability to addiction, this study presents the first evidence of these phenomena in pathological gambling. The emergence of pathological gambling in a number of Parkinson’s disease patients may provide a model into the pathophysiology of this disorder.
PMCID: PMC3479148  PMID: 19346328 CAMSID: cams2369
Parkinson’s disease; dopamine; impulse control disorders; pathological gambling; PET; functional imaging
11.  Subthalamic deep brain stimulation improves smooth pursuit and saccade performance in patients with Parkinson’s disease 
Deep brain stimulation (DBS) in the subthalamic nucleus (STN) significantly reduces symptoms of Parkinson’s disease (PD) such as bradykinesia, tremor and rigidity. It also reduces the need for anti-PD medication, and thereby potential side-effects of L-Dopa. Although DBS in the STN is a highly effective therapeutic intervention in PD, its mechanism and effects on oculomotor eye movement control and particularly smooth pursuit eye movements have to date rarely been investigated. Furthermore, previous reports provide conflicting information. The aim was to investigate how DBS in STN affected oculomotor performance in persons with PD using novel analysis techniques.
Twenty-five patients were eligible (22 males, 3 females) according to the clinical inclusion criteria: idiopathic PD responsive to L-Dopa and having had bilateral STN stimulation for at least one year to ensure stable DBS treatment. Fifteen patients were excluded due to the strict inclusion criteria applied to avoid interacting and confounding factors when determining the effects of DBS applied alone without PD medication. One patient declined participation. Nine PD patients (median age 63, range 59–69 years) were assessed after having their PD medications withdrawn overnight. They were examined with DBS ON and OFF, with the ON/OFF order individually randomized.
DBS ON increased smooth pursuit velocity accuracy (p < 0.001) and smooth pursuit gain (p = 0.005), especially for faster smooth pursuits (p = 0.034). DBS ON generally increased saccade amplitude accuracy (p = 0.007) and tended to increase peak saccade velocity also (p = 0.087), specifically both saccade velocity and amplitude accuracy for the 20 and 40 degree saccades (p < 0.05). Smooth pursuit latency tended to be longer (p = 0.090) approaching normal with DBS ON. Saccade latency was unaffected.
STN stimulation from DBS alone significantly improved both smooth pursuit and saccade performance in patients with PD. The STN stimulation enhancement found for oculomotor performance suggests clear positive implications for patients’ ability to perform tasks that rely on visual motor control and visual feedback. The new oculomotor analysis methods provide a sensitive vehicle to detect subtle pathological modifications from PD and the functional enhancements produced by STN stimulation from DBS alone.
PMCID: PMC3621588  PMID: 23551890
Parkinson’s disease; Deep brain stimulation; Subthalamic nucleus; Oculomotor functions
12.  Parkinson's disease 
BMJ Clinical Evidence  2007;2007:1203.
Around 1% of adults have Parkinson’s disease, with a median time of 9 years between diagnosis and death.
Methods and outcomes
We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of drug treatments in people with early-stage Parkinson’s disease? What are the effects of adding other treatments in people with Parkinson’s disease who have motor complications from levodopa? What are the effects of surgery in people with later Parkinson’s disease? What are the effects of nursing and rehabilitation treatments in people with Parkinson’s disease? We searched: Medline, Embase, The Cochrane Library and other important databases up to November 2006 (BMJ Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA).
We found 59 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions.
In this systematic review we present information relating to the effectiveness and safety of the following interventions: adding a catechol-methyl transferase inhibitor, or dopamine agonist to levodopa; amantadine; dopamine agonists; levodopa (immediate-release, modified-release); monoamine oxidase B inhibitors; occupational therapy; pallidal deep brain stimulation; pallidotomy; Parkinson’s disease nurse specialist interventions; physiotherapy; speech and language therapy; subthalamic nucleus deep brain stimulation; subthalamotomy; swallowing therapy; thalamic deep brain stimulation; and thalamotomy.
Key Points
Around 1% of adults have Parkinson's disease, with a median time of 9 years between diagnosis and death.
Levodopa is considered effective at reducing symptoms in early Parkinson's disease, but can cause irreversible dyskinesias and motor fluctuation in the long term. We don't know whether levodopa, or any other treatment, improves survival. Modified-release levodopa seems no more effective than immediate-release levodopa at improving symptoms, and delaying motor complications.
Monoamine oxidase B inhibitors (MAOBIs) may improve symptoms, reduce motor fluctuations, and delay the need for levodopa, but can cause adverse effects.
We don't know whether amantadine is beneficial for people with early Parkinson's disease, although it is currently used to treat dyskinesia. People taking amantadine for dyskinesia in early Parkinson's may have a higher risk of psychiatric adverse effects in the later stages of the disease.
Adding a catechol-O-methyl transferase (COMT) inhibitor or dopamine agonist to levodopa, or using dopamine agonists as monotherapy, may reduce ‘off' time and improve symptoms compared with levodopa alone, but can cause adverse effects. The COMT inhibitor tolcapone can cause fatal hepatic toxicity.
Surgery may be considered in people with later Parkinson's disease, but can cause fatalities. Post-operative complications include speech problems and apraxia. Although evidence is lacking, many clinicians feel that both pallidal deep brain stimulation and subthalamic nucleus deep brain stimulation improve symptoms of advanced Parkinson's disease.Bilateral subthalamic nucleus deep brain stimulation may lead to greater improvement in motor symptoms, but more cognitive impairment, than pallidal deep brain stimulation. Pallidal deep brain stimulation is associated with severe intraoperative complications.Adding subthalamic nucleus deep brain stimulation to medical treatment may improve quality of life and motor symptoms compared with medical treatment alone or other forms of surgery. It can, however, cause neurological complications, neuropsychological adverse effects, and fatal surgical complications.Unilateral pallidotomy may improve symptoms and function more than medical treatment, but may be less effective than bilateral subthalamic stimulation.We don't know whether subthalamotomy or thalamotomy are effective.
Nurse specialist interventions, occupational therapy, physiotherapy, speech and language therapy and swallowing therapy are generally considered effective and safe in people with Parkinson's disease, although few studies have been found.
PMCID: PMC2943804  PMID: 19454106
13.  Stimulation of the subthalamic nucleus in Parkinson's disease: a 5 year follow up 
Background: The short term benefits of bilateral stimulation of the subthalamic nucleus (STN) in patients with advanced levodopa responsive Parkinson's disease (PD) are well documented, but long term benefits are still uncertain.
Objectives: This study provides a 5 year follow up of PD patients treated with stimulation of the STN.
Methods: Thirty seven consecutive patients with PD treated with bilateral STN stimulation were assessed prospectively 6, 24, and 60 months after neurosurgery. Parkinsonian motor disability was evaluated with and without levodopa treatment, with and without bilateral STN stimulation. Neuropsychological and mood assessments included the Mattis Dementia Rating Scale, the frontal score, and the Montgomery-Asberg Depression Rating Scale (MADRS).
Results: No severe peri- or immediate postoperative side effects were observed. Six patients died and one was lost to follow up. Five years after neurosurgery: (i) activity of daily living (Unified Parkinson Disease Rating Scale (UPDRS) II) was improved by stimulation of the STN by 40% ("off" drug) and 60% ("on" drug); (ii) parkinsonian motor disability (UPDRS III) was improved by 54% ("off" drug) and 73% ("on" drug); (iii) the severity of levodopa related motor complications was decreased by 67% and the levodopa daily doses were reduced by 58%. The MADRS was unchanged, but cognitive performance declined significantly. Persisting adverse effects included eyelid opening apraxia, weight gain, addiction to levodopa treatment, hypomania and disinhibition, depression, dysarthria, dyskinesias, and apathy.
Conclusions: Despite moderate motor and cognitive decline, probably due to disease progression, the marked improvement in motor function observed postoperatively was sustained 5 years after neurosurgery.
PMCID: PMC1739461  PMID: 16291886
14.  Subthalamic Nucleus Deep Brain Stimulation Does Not Improve Visuo-Motor Impairment in Parkinson’s Disease 
PLoS ONE  2013;8(6):e65270.
To evaluate how bilateral subthalamic nucleus deep brain stimulation (STN-DBS) affects visuo-motor coordination (VMC) in patients with Parkinson’s disease (PD).
VMC involves multi-sensory integration, motor planning, executive function and attention. VMC deficits are well-described in PD. STN-DBS conveys marked motor benefit in PD, but pyscho-cognitive complications are recognized and the effect on VMC is not known.
Thirteen PD patients with bilateral STN-DBS underwent neurological, cognitive, and mood assessment before VMC testing with optimal DBS stimulation parameters (‘on-stimulation’) and then, on the same day without any medication changes, after DBS silencing and establishing motor function deterioration (‘off-stimulation’). Twelve age-matched healthy controls performed 2 successive VMC testing sessions, with a break of similar duration to that of the PD group. The computer cursor was controlled with a dome-shaped ‘mouse’ hidden from view that minimized tremor effects. Movement duration, hand velocity, tracking continuity, directional control variables, and feedback utilization variables were measured. MANOVA was performed on (1) clinically measured motor function, (2) VMC performance and (3) mood and attention, looking for main and interaction effects of: (1) group (controls/PD), (2) test-order (controls: first/second, PD: on-stimulation/off-stimulation), (3) path (sine/square/circle) and (4) hand (dominant/non-dominant).
Unified PD Rating Scale (UPDRS) Part III worsened off-stimulation versus on-stimulation (mean: 42.3 versus 21.6, p = 0.02), as did finger tapping (p = 0.02), posture-gait (p = 0.01), upper limb function (p<0.001) and backwards digit span (p = 0.02). Stimulation state did not affect mood. PD patients performed worse in non-velocity related VMC variables than controls (F(5,18) = 8.5, p<0.001). In the control group there were significant main effects of hand (dominant/non-dominant), path (sine/square/circle) and test-order (Test_1/Test_2). In the PD group, hand and path effects, but no test-order (on-stimulation/off-stimulation), were found.
‘Low-level’ clinically-measured motor function responds to STN-DBS but ‘high-level’ motor and cognitive functions relating to VMC may be unresponsive to STN-DBS.
PMCID: PMC3679151  PMID: 23776460
15.  Cerebral blood flow responses to dorsal and ventral STN DBS correlate with gait and balance responses in Parkinson disease 
Experimental neurology  2012;241:105-112.
The effects of subthalamic nucleus (STN) deep brain stimulation (DBS) on gait and balance vary and the underlying mechanisms remain unclear. DBS location may alter motor benefit due to anatomical heterogeneity in STN. The purposes of this study were to (1) compare effects of DBS of dorsal (D-STN) versus ventral (V-STN) regions on gait, balance and regional cerebral blood flow (rCBF) and (2) examine relationships between changes in rCBF and changes in gait and balance induced by D-STN or V-STN DBS.
We used a validated atlas registration to locate and stimulate through electrode contacts in D-STN and V-STN regions of 37 people with Parkinson disease. In a within-subjects, double-blind and counterbalanced design controlled for DBS settings, we measured PET rCBF responses in a priori regions of interest and quantified gait and balance during DBS Off, unilateral D-STN DBS and unilateral V-STN DBS.
DBS of either site increased stride length without producing significant group-level changes in gait velocity, cadence or balance. Both sites increased rCBF in subcortical regions and produced variable changes in cortical and cerebellar regions. DBS-induced changes in gait velocity related to premotor cortex rCBF changes during V-STN DBS (r = −0.40, p = 0.03) and to rCBF changes in the cerebellum anterior lobe during D-STN DBS (r = −0.43, p = 0.02).
DBS-induced changes in gait corresponded to rCBF responses in selected cortical and cerebellar regions. These relationships differed during D-STN versus V-STN DBS, suggesting DBS acts through distinct neuronal pathways dependent on DBS location.
PMCID: PMC3570746  PMID: 23262122
deep brain stimulation; gait; positron emission tomography; Parkinson disease; subthalamic nucleus
16.  Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: evaluation of active electrode contacts 
Background: The subthalamic nucleus is the preferred target for deep brain stimulation in patients with advanced Parkinson's disease. The site of permanent stimulation is the subject of ongoing debate, as stimulation both within and adjacent to the subthalamic nucleus may be effective.
Objective: To assess the position of active electrode contacts in relation to the dorsal margin of the subthalamic nucleus as determined by intraoperative microrecordings and magnetic resonance imaging (MRI).
Methods: In 25 patients suffering from severe levodopa sensitive parkinsonism, deep brain stimulating electrodes (n = 49) were implanted following mapping of the subthalamic nucleus by microrecording and microstimulation along five parallel tracks. Postoperative stereotactic radiography and fusion of pre- and postoperative MRI studies were used to determine the stereotactic position relative to the midcommissural point of the most effective electrode contacts selected for permanent stimulation (n = 49). Intraoperative microrecordings were analysed retrospectively to define the dorsal margin of the subthalamic nucleus. In cases where the dorsal margin could be defined in at least three microrecording tracks (n = 37) it was correlated with the position of the active contact using an algorithm developed for direct three dimensional comparisons.
Results: Stimulation of the subthalamic nucleus resulted in marked improvement in levodopa sensitive parkinsonian symptoms and levodopa induced dyskinesias, with significant improvement in UPDRS III scores. In several instances, projection of the electrode artefacts onto the T2 weighted MRI visualised subthalamic nucleus of individual patients suggested that the electrodes had passed through the subthalamic nucleus. When the actual position of active electrode contacts (n = 35) was correlated with the dorsal margin of the subthalamic nucleus as defined neurophysiologically, most contacts were located either in proximity (± 1.0 mm) to the dorsal border of the subthalamic nucleus (32.4%) or further dorsal within the subthalamic region (37.8%). The other active contacts (29.7%) were detected within the dorsal (sensorimotor) subthalamic nucleus. The average position of all active contacts (n = 49) was 12.8 mm (± 1.0) lateral, 1.9 mm (± 1.4) posterior, and 1.6 mm (± 2.1) ventral to the midcommissural point.
Conclusions: Subthalamic nucleus stimulation appears to be most effective in the border area between the upper subthalamic nucleus (sensorimotor part) and the subthalamic area containing the zona incerta, fields of Forel, and subthalamic nucleus projections.
PMCID: PMC1738607  PMID: 12876231
17.  Does bilateral stimulation of the subthalamic nucleus aggravate apathy in Parkinson's disease? 
Objective: High frequency stimulation of the subthalamic nucleus (STN) dramatically decreases motor disability in patients with Parkinson"s disease (PD), but has been reported to aggravate apathy. The aim of this study was to analyse the effect of STN stimulation on motivation and reward sensitivity in a consecutive series of PD patients.
Methods: Apathy and reward sensitivity (Apathy Scale, Stimulus-Reward Learning, Reversal, Extinction, and Gambling tasks) were assessed in 18 PD patients treated by bilateral STN stimulation ("on" and "off" conditions) compared with 23 matched patients undergoing long term treatment with levodopa ("on" and "off" conditions).
Results: Apathy decreased under both STN stimulation and levodopa treatment, whereas explicit and implicit stimulus reward learning was unchanged.
Conclusions: Bilateral STN stimulation in PD patients does not necessarily have a negative effect on motivation and reward sensitivity and can even improve apathy provided patients have been appropriately selected for neurosurgery.
PMCID: PMC1739659  PMID: 15897497
Journal of neurosurgery  2012;117(6):1141-1149.
Difficulty with step initiation, called ‘start hesitation,’ is related to bradykinesia of gait and an early hallmark of freezing of gait in Parkinson’s disease (PD). This study investigated the effects of deep brain stimulation (DBS) and levodopa on step initiation in 29 patients with PD before and six months after DBS surgery randomized to either the bilateral subthalamic nucleus (STN) or globus pallidus internus (GPi).
We measured the amplitude and duration of anticipatory postural adjustments (APAs), the feed-forward postural preparation that precedes the onset of voluntary step initiation, based on center of pressure displacements on a forceplate. We also measured the length and velocity of the first step from kinematic motion analysis. The subjects were a cohort from a large, multi-center, double-blinded, clinical trial randomized to DBS in either bilateral STN (15 subjects) or bilateral GPi (14 subjects). Twenty-eight elderly healthy control subjects were tested and nine PD control subjects, who met criteria for DBS, were tested at baseline and six months later. Differences in step initiation were investigated in two conditions before surgery (Off/On levodopa) and in four conditions after surgery (Off/On levodopa combined with Off/On DBS).
The PD subjects had smaller amplitudes and longer durations of APAs compared to healthy control subjects in all conditions. Before surgery, APAs improved with levodopa. After surgery, the APAs were significantly worse than in the best treatment state before surgery and responsiveness to levodopa decreased. No differences were detected between STN and GPi groups. Comparison with PD control subjects who did not have surgery confirmed that deterioration of step preparation was not related to disease progression.
Step length and velocity were smaller in PD-DBS group than control group in all conditions. Before surgery, levodopa improved both length and velocity of the first step. Both step length and velocity were unchanged in the best treatment state before surgery (DOPA condition) as compared with after surgery (DBS+DOPA), with only the step velocity in STN group getting worse after surgery.
Six months of DBS in the STN or GPi impaired the anticipatory postural preparation for step initiation, the opposite effect as levodopa. Step execution was not as disrupted as postural preparation by DBS, suggesting independent motor pathways for preparation and execution of gait. Although turning the stimulators on after surgery had an added benefit with levodopa on postural preparation to step, comparison pre- and post-surgery suggests that either the surgery itself or six months of continuous stimulation may result in alteration of circuits or plastic changes that impair step initiation.
PMCID: PMC3990225  PMID: 23039143
Parkinson’s disease; Deep Brain Stimulation; Anticipatory Postural Adjustments; Posture control; Step initiation
19.  Bilateral subthalamic stimulation impairs cognitive–motor performance in Parkinson's disease patients 
Brain  2008;131(12):3348-3360.
Deep brain stimulation (DBS) is a surgical procedure that has been shown effective in improving the cardinal motor signs of advanced Parkinson's disease, however, declines in cognitive function have been associated with bilateral subthalamic nucleus (STN) DBS. Despite the fact that most activities of daily living clearly have motor and cognitive components performed simultaneously, postoperative assessments of cognitive and motor function occur, in general, in isolation of one another. The primary aim of this study was to determine the effects of unilateral and bilateral STN DBS on upper extremity motor function and cognitive performance under single- and dual-task conditions in advanced Parkinson's disease patients. Data were collected from eight advanced Parkinson's disease patients between the ages of 48 and 70 years (mean 56.5) who had bilaterally placed STN stimulators. Stimulation parameters for DBS devices were optimized clinically and were stable for at least 6 months prior to study participation. Data were collected while patients were Off anti-parkinsonian medications under three stimulation conditions: Off stimulation, unilateral DBS and bilateral DBS. In each stimulation condition patients performed a cognitive (n-back task) and motor (force tracking) task under single- and dual-task conditions. During dual-task conditions, patients performed the n-back and force-maintenance task simultaneously. Under relatively simple dual-task conditions there were no differences in cognitive or motor performance under unilateral and bilateral stimulation. As dual-task complexity increased, cognitive and motor performance was significantly worse with bilateral compared with unilateral stimulation. In the most complex dual-task condition (i.e. 2-back + force tracking), bilateral stimulation resulted in a level of motor performance that was similar to the Off stimulation condition. Significant declines in cognitive and motor function under modest dual-task conditions with bilateral but not with unilateral STN DBS suggest that unilateral procedures may be an alternative to bilateral DBS for some patients, in particular, those with asymmetric symptomology. From a clinical perspective, these results underscore the need to assess cognitive and motor function simultaneously during DBS programming as these conditions may better reflect the context in which daily activities are performed.
PMCID: PMC2639204  PMID: 18842609
Parkinson's disease; deep brain stimulation; force control; cognitive function; dual-task
20.  Deep brain stimulation for the treatment of Parkinson's disease: subthalamic nucleus versus globus pallidus internus 
OBJECTIVES—Deep brain stimulation of the basal ganglia has become a promising treatment option for patients with Parkinson's disease who have side effects from drugs. Which is the best target—globus pallidus internus (GPi) or subthalamic nucleus (STN)—is still a matter of discussion. The aim of this prospective study is to compare the long term effects of GPi and STN stimulation in patients with severe Parkinson's disease.
PATIENTS AND METHODS—Bilateral deep brain stimulators were implanted in the GPi in six patients and in the STN in 12 patients with severe Parkinson's disease. Presurgery and 3, 6, and 12 months postsurgery patients were scored according to the CAPIT protocol.
RESULTS—Stimulation of the STN increased best Schwab and England scale score significantly from 62 before surgery to 81 at 12 months after surgery; GPi stimulation did not have an effect on the Schwab and England scale. Stimulation of the GPi reduced dyskinesias directly whereas STN stimulation seemed to reduce dyskinesias by a reduction of medication. Whereas STN stimulation increased the unified Parkinson's disease rating scale (UPDRS) motor score, GPi stimulation did not have a significant effect. Fluctuations were reduced only by STN stimulation and STN stimulation suppressed tremor very effectively.
CONCLUSION—Stimulation of the GPi reduces medication side effects, which leads to a better drug tolerance. There was no direct improvement of bradykinesia or tremor by GPi stimulation. Stimulation of the STN ameliorated all parkinsonian symptoms. Daily drug intake was reduced by STN stimulation. The STN is the target of choice for treating patients with severe Parkinson's disease who have side effects from drugs. 

PMCID: PMC1737315  PMID: 11254768
21.  Genome-wide Association Study of a Quantitative Disordered Gambling Trait 
Addiction biology  2012;18(3):511-522.
Disordered gambling is a moderately heritable trait, but the underlying genetic basis is largely unknown. We performed a genome-wide association study (GWAS) for disordered gambling using a quantitative factor score in 1,312 twins from 894 Australian families. Association was conducted for 2,381,914 single nucleotide polymorphisms (SNPs) using the family-based association test in Merlin followed by gene and pathway enrichment analyses. Although no SNP reached genome-wide significance, six achieved P-values < 1 × 10−5 with variants in three genes (MT1X, ATXN1 and VLDLR) implicated in disordered gambling. Secondary case-control analyses found two SNPs on chromosome 9 (rs1106076 and rs12305135 near VLDLR) and rs10812227 near FZD10 on chromosome 12 to be significantly associated with lifetime DSM-IV pathological gambling and SOGS classified probable pathological gambling status. Furthermore, several addiction-related pathways were enriched for SNPs associated with disordered gambling. Finally, gene-based analysis of 24 candidate genes for dopamine agonist induced gambling in individuals with Parkinson’s disease suggested an enrichment of SNPs associated with disordered gambling. We report the first GWAS of disordered gambling. While further replication is required, the identification of susceptibility loci and biological pathways will be important in characterizing the biological mechanisms that underpin disordered gambling.
PMCID: PMC3470766  PMID: 22780124
association; disordered gambling; genomewide; MERLIN; quantitative
22.  Bilateral high-frequency stimulation of the subthalamic nucleus on attentional performance: transient deleterious effects and enhanced motivation in both intact and parkinsonian rats 
The European journal of neuroscience  2007;25(4):1187-1194.
It is now well established that subthalamic nucleus high-frequency stimulation (STN HFS) alleviates motor problems in Parkinson's disease. However, its efficacy for cognitive function remains a matter of debate. The aim of this study was to assess the effects of STN HFS in rats performing a visual attentional task. Bilateral STN HFS was applied in intact and in bilaterally dopamine (DA)-depleted rats. In all animals, STN HFS had a transient debilitating effect on all the variables measured in the task. In DA-depleted rats, STN HFS did not alleviate the deficits induced by the DA lesion such as omissions and latency to make correct responses, but induced perseverative approaches to the food magazine, an indicator of enhanced motivation. In sham-operated controls, STN HFS significantly reduced accuracy and induced perseverative behaviour, mimicking partially the effects of bilateral STN lesions in the same task. These results are in line with the hypothesis that STN HFS only partially mimics inactivation of STN produced by lesioning and confirm the motivational exacerbation induced by STN inactivation.
PMCID: PMC1877866  PMID: 17331214
basal ganglia; cognitive functions; deep brain stimulation; dopamine
23.  Bilateral subthalamic nucleus stimulation improves balance control in Parkinson's disease 
Background: Parkinson's disease (PD), the most common basal ganglia degenerative disease, affects balance control, especially when patients change balance strategy during postural tasks. Bilateral chronic stimulation of the subthalamic nucleus (STN) is therapeutically useful in advanced PD, and reduces the motor signs of patients. Nevertheless, the effects of STN stimulation on postural control are still debatable.
Aims: To assess the impact of bilateral STN stimulation on balance control in PD and to determine how basal ganglia related sensorimotor modifications act on neurosensorial organisation of balance and motor postural programming.
Methods: Twelve subjects aged 45–70 years underwent unified Parkinson's disease rating scale motor (part III) clinical tests, static and dynamic posturography, including sensory organisation and adaptation tests, shortly before and six months after bilateral implantation of electrodes into the STN.
Results: The postoperative static test showed an improvement in postural control precision both in eyes open and eyes closed conditions. The dynamic test highlighted the decreased number of falls and the ability of the patients to develop more appropriate sensorimotor strategies when stimulated. The sensory organisation test showed an improvement of equilibrium score and, thus, a better resolution of sensorial conflicts.
Conclusions: STN stimulation allowed a reduction in rigidity and therefore an improvement in the ability to use muscular proprioception as reliable information, resulting in vestibulo-proprioceptive conflict suppression. STN stimulation has a synergistic effect with levodopa for postural control. Accordingly, non-dopaminergic pathways could be involved in postural regulation and STN stimulation may influence the functioning of these pathways.
PMCID: PMC1739669  PMID: 15897498
24.  Asymmetric right/left encoding of emotions in the human subthalamic nucleus 
Emotional processing is lateralized to the non-dominant brain hemisphere. However, there is no clear spatial model for lateralization of emotional domains in the basal ganglia. The subthalamic nucleus (STN), an input structure in the basal ganglia network, plays a major role in the pathophysiology of Parkinson's disease (PD). This role is probably not limited only to the motor deficits of PD, but may also span the emotional and cognitive deficits commonly observed in PD patients. Beta oscillations (12–30 Hz), the electrophysiological signature of PD, are restricted to the dorsolateral part of the STN that corresponds to the anatomically defined sensorimotor STN. The more medial, more anterior and more ventral parts of the STN are thought to correspond to the anatomically defined limbic and associative territories of the STN. Surprisingly, little is known about the electrophysiological properties of the non-motor domains of the STN, nor about electrophysiological differences between right and left STNs. In this study, microelectrodes were utilized to record the STN spontaneous spiking activity and responses to vocal non-verbal emotional stimuli during deep brain stimulation (DBS) surgeries in human PD patients. The oscillation properties of the STN neurons were used to map the dorsal oscillatory and the ventral non-oscillatory regions of the STN. Emotive auditory stimulation evoked activity in the ventral non-oscillatory region of the right STN. These responses were not observed in the left ventral STN or in the dorsal regions of either the right or left STN. Therefore, our results suggest that the ventral non-oscillatory regions are asymmetrically associated with non-motor functions, with the right ventral STN associated with emotional processing. These results suggest that DBS of the right ventral STN may be associated with beneficial or adverse emotional effects observed in PD patients and may relieve mental symptoms in other neurological and psychiatric diseases.
PMCID: PMC3810611  PMID: 24194703
Parkinson's disease; deep brain stimulation (DBS); emotions; subthalamic nucleus; spikes
25.  Axial parkinsonian symptoms can be improved: the role of levodopa and bilateral subthalamic stimulation 
OBJECTIVE—To assess the effects of high frequency stimulation of the subthalamic nucleus (STN) on axial symptoms occurring in advanced stages of Parkinson's disease (PD).
METHODS—The efficacy of STN stimulation on total motor disability score (unified Parkinson's disease rating scale (UPDRS) part III) were evaluated in 10 patients with severe Parkinson's disease. The subscores were then studied separately for limb akinesia, rigidity, and tremor, which are known to respond to levodopa, and axial signs, including speech, neck rigidity, rising from a chair, posture, gait, and postural stability, which are known to respond less well to levodopa. Patients were clinically assessed in the "off" and "on" drug condition during a levodopa challenge test performed before surgical implantation of stimulation electrodes and repeated 6 months after surgery under continuous STN stimulation. A complementary score for axial symptoms from the "activities of daily living" (ADL)—that is, speech, swallowing, turning in bed, falling, walking, and freezing—was obtained from each patient's questionnaire (UPDRS, part II).
RESULTS—Improvements in total motor disability score (62%), limb signs (62%), and axial signs (72%) obtained with STN stimulation were statistically comparable with those obtained with levodopa during the preoperative challenge (68%, 69%, and 59%, respectively). When levodopa and STN stimulation were combined there was a further improvement in total motor disability (80%) compared with preoperative levodopa administration. This consisted largely of an additional improvement in axial signs (84%) mainly for posture and postural stability, no further improvement in levodopa responsive signs being found. Axial symptoms from the ADL showed similar additional improvement when levodopa and STN stimulation were combined.
CONCLUSION—These findings suggest that bilateral STN stimulation improves most axial features of Parkinson's disease and that a synergistic effect can be obtained when stimulation is used in conjunction with levodopa treatment.

PMCID: PMC1736917  PMID: 10766889

Results 1-25 (997527)