Search tips
Search criteria

Results 1-25 (429530)

Clipboard (0)

Related Articles

1.  Determination of the Nicotine Metabolites Cotinine and Trans-3′-Hydroxycotinine in Biologic fluids of Smokers and Non-Smokers using Liquid Chromatography - Tandem Mass Spectrometry: Biomarkers for Tobacco Smoke Exposure and for Phenotyping Cytochrome P450 2A6 Activity 
The nicotine metabolite cotinine is widely used to assess the extent of tobacco use in smokers, and secondhand smoke exposure in non-smokers. The ratio of another nicotine metabolite, trans-3′-hydroxycotinine, to cotinine in biofluids is highly correlated with the rate of nicotine metabolism, which is catalyzed mainly by Cytochrome P450 2A6 (CYP2A6). Consequently, this nicotine metabolite ratio is being used to phenotype individuals for CYP2A6 activity and to individualize pharmacotherapies for tobacco addiction. In this paper we describe a highly sensitive liquid chromatography – tandem mass spectrometry method for determination of the nicotine metabolites cotinine and trans-3′-hydroxycotinine in human plasma, urine, and saliva. Lower limits of quantitation range from 0.02 to 0.1 ng/ mL. The extraction procedure is straightforward and suitable for large-scale studies. The method has been applied to several thousand biofluid samples for pharmacogenetic studies and for studies of exposure to low levels of secondhand smoke. Concentrations of both metabolites in urine of non-smokers with different levels of secondhand smoke exposure are presented.
PMCID: PMC3050598  PMID: 21208832
Nicotine; Cotinine; trans-3′-hydroxycotinine; Cytochrome P450 2A6 (CYP2A6); tobacco; secondhand smoke
2.  Stability of the Nicotine Metabolite Ratio in Ad Libitum and Reducing Smokers 
The ratio of two nicotine metabolites, cotinine (COT) and trans-3′-hydroxycotinine (3-HC), has been validated as a method of phenotyping the activity of the liver enzyme cytochrome P450 (CYP) 2A6, and thus the rate of nicotine metabolism. Our objective was to evaluate the correlates and stability of the 3-HC:COT ratio in ad libitum and reducing smokers, using nicotine replacement therapy (NRT), over a period of months.
Smokers (N = 123, 94% Caucasian) participated in a smoking reduction study where one-third of the sample smoked ad libitum for 8 weeks (Waitlist phase), before joining the rest of the participants for 12 weeks of cigarette reduction (Reduction phase) using NRT. Urinary nicotine, cotinine, and 3-HC were measured at each visit.
The baseline 3-HC:COT ratio was significantly but weakly correlated with cigarettes/day (r = .19), body mass index (r = -.27), and waking at night to smoke (r = .23). As assessed by repeated measures ANOVA, the 3-HC:COT ratio was stable in the Waitlist phase (coefficient of variation for 3-4 measurements, 38% [Range = 5%-110%]), while minor variation was noted in the Reduction phase (coefficient of variation for 3-5 measurements, 35% [Range = 10%-107%]).
In non-reducing ad libitum smokers, the 3-HC:COT ratio was generally stable, while during smoking reduction using NRT, some small variation was detected. While the current findings are suggestive of the stability of the 3-HC:COT ratio in a predominantly Caucasian sample smoking freely or reducing smoking with NRT, additional research is needed in more diverse populations.
PMCID: PMC2765478  PMID: 18559554
3.  Variation in Trans-3′-Hydroxycotinine Glucuronidation Does Not Alter the Nicotine Metabolite Ratio or Nicotine Intake 
PLoS ONE  2013;8(8):e70938.
CYP2A6 metabolizes nicotine to its primary metabolite cotinine and also mediates the metabolism of cotinine to trans-3′-hydroxycotinine (3HC). The ratio of 3HC to cotinine (the “nicotine metabolite ratio”, NMR) is an in vivo marker for the rate of CYP2A6 mediated nicotine metabolism, and total nicotine clearance, and has been associated with differences in numerous smoking behaviors. The clearance of 3HC, which affects the NMR, occurs via renal excretion and metabolism by UGT2B17, and possibly UGT2B10, to 3HC-glucuronide. We investigated whether slower 3HC glucuronidation alters NMR, altering its ability to predict CYP2A6 activity and reducing its clinical utility.
Plasma NMR, three urinary NMRs, three urinary 3HC glucuronidation phenotypes and total nicotine equivalents were examined in 540 African American smokers. The UGT2B17 gene deletion and UGT2B10*2 were genotyped.
The UGT2B17 gene deletion, but not UGT2B10*2 genotype, was associated with slower 3HC glucuronidation (indicated by three 3HC-glucuronidation phenotypes), indicating its role in this glucuronidation pathway. However, neither lower rates of 3HC glucuronidation, nor the presence of a UGT2B17 and UGT2B10 reduced function allele, altered plasma or urinary NMRs or levels of smoking.
Variation in 3HC glucuronidation activity, including these caused by UGT2B17 gene deletions, did not significantly alter NMR and is therefore unlikely to affect the clinical utility of NMR in smoking behavior and cessation studies. This study demonstrates that NMR is not altered by differences in the rate of 3HC glucuronidation, providing further support that NMR is a reliable indicator of CYP2A6 mediated nicotine metabolism.
PMCID: PMC3732272  PMID: 23936477
4.  Utility and relationships of biomarkers of smoking in African-American light smokers 
While expired carbon monoxide (CO) and plasma cotinine (COT) have been validated as biomarkers of self-reported cigarettes per day (CPD) in heavy smoking Caucasians, their utility in light smokers is unknown. Further, variability in CYP2A6, the enzyme that mediates formation of COT from nicotine (NIC) and its metabolism to trans-3′-hydroxycotinine (3HC), may limit the usefulness of COT. We assessed whether CO and COT are correlated with CPD in African-American light smokers (≤10CPD, n=700), a population with known reduced CYP2A6 activity and slow COT metabolism. We also examined whether gender, age, BMI, smoking mentholated cigarettes or rate of CYP2A6 activity, by genotype and phenotype measures (3HC/COT), influence these relationships. At baseline, many participants (42%) exhaled CO ≤10ppm, the traditional cutoff for smoking, while few (3.1%) had COT below the cutoff of ≤14ng/ml; thus COT appears to be a better biomarker of smoking status in this population. CPD was weakly correlated with CO and COT (r = 0.32–0.39, p<0.001), and those reporting fewer CPD had higher CO/cigarette and COT/cigarette, although the correlations coefficients between these variables were also weak (r = −0.33 and −0.08, p < 0.05). The correlation between CPD and CO was not greatly increased when analyzed by CYP2A6 activity, smoking mentholated cigarettes or age, although it appeared stronger in females (r = 0.38 vs.0.21, p<0.05) and obese individuals (r = 0.38 vs.0.24, p<0.05). Together, these results suggest that CO and COT are weakly associated with self-reported cigarette consumption in African-American light smokers, and that these relationships are not substantially improved when variables previously reported to influence these biomarkers are considered.
PMCID: PMC2791893  PMID: 19959692 CAMSID: cams1333
biomarkers; smoking; cotinine; carbon monoxide; African-Americans
5.  Utility and relationships of biomarkers of smoking in African-American light smokers 
While expired carbon monoxide (CO) and plasma cotinine (COT) have been validated as biomarkers of self-reported cigarettes per day (CPD) in heavy smoking Caucasians, their utility in light smokers is unknown. Further, variability in CYP2A6, the enzyme that mediates formation of COT from nicotine (NIC) and its metabolism to trans-3′-hydroxycotinine (3HC), may limit the usefulness of COT. We assessed whether CO and COT are correlated with CPD in African-American light smokers (≤10CPD, n=700), a population with known reduced CYP2A6 activity and slow COT metabolism. We also examined whether gender, age, BMI, smoking mentholated cigarettes or rate of CYP2A6 activity, by genotype and phenotype measures (3HC/COT), influence these relationships. At baseline, many participants (42%) exhaled CO ≤10ppm, the traditional cutoff for smoking, while few (3.1%) had COT below the cutoff of ≤14ng/ml; thus COT appears to be a better biomarker of smoking status in this population. CPD was weakly correlated with CO and COT (r = 0.32–0.39, p<0.001), and those reporting fewer CPD had higher CO/cigarette and COT/cigarette, although the correlations coefficients between these variables were also weak (r = −0.33 and −0.08, p < 0.05). The correlation between CPD and CO was not greatly increased when analyzed by CYP2A6 activity, smoking mentholated cigarettes or age, although it appeared stronger in females (r = 0.38 vs.0.21, p<0.05) and obese individuals (r = 0.38 vs.0.24, p<0.05). Together, these results suggest that CO and COT are weakly associated with self-reported cigarette consumption in African-American light smokers, and that these relationships are not substantially improved when variables previously reported to influence these biomarkers are considered.
PMCID: PMC2791893  PMID: 19959692
biomarkers; smoking; cotinine; carbon monoxide; African-Americans
6.  Biomonitoring of Urinary Cotinine Concentrations Associated with Plasma Levels of Nicotine Metabolites after Daily Cigarette Smoking in a Male Japanese Population 
Human biomonitoring of plasma and urinary levels of nicotine, cotinine, and 3′-hydroxycotinine was conducted after daily cigarette smoking in a population of 92 male Japanese smokers with a mean age of 37 years who had smoked an average of 23 cigarettes per day for 16 years. Members of the population were genotyped for the nicotine-metabolizing enzyme cytochrome P450 2A6 (CYP2A6). The mean levels of nicotine, the levels of its metabolites cotinine and 3′-hydroxycotinine, and the sum of these three levels in subjects one hour after smoking the first cigarette on the sampling day were 20.1, 158, 27.7, and 198 ng/mL in plasma and 846, 1,020, 1,010, and 2,870 ng/mL in urine under daily smoking conditions. Plasma levels of 3′-hydroxycotinine and urinary levels of nicotine and 3′-hydroxycotinine were dependent on the CYP2A6 phenotype group, which was estimated from the CYP2A6 genotypes of the subjects, including those with whole gene deletion. Plasma cotinine levels were significantly correlated with the number of cigarettes smoked on the day before sampling (r = 0.71), the average number of cigarettes smoked daily (r = 0.58), and the Brinkman index (daily cigarettes × years, r = 0.48) under the present conditions. The sum of nicotine, cotinine, and 3′-hydroxycotinine concentrations in plasma showed a similar relationship to that of the plasma cotinine levels. Urinary concentrations of cotinine and the sum of nicotine metabolite concentrations also showed significant correlations with the plasma levels and the previous day’s and average cigarette consumption. The numbers of cigarettes smoked per day by two subjects with self-reported light smoking habits were predicted by measuring the urinary cotinine concentrations and using linear regression equations derived from above-mentioned data. These results indicate that biomonitoring of the urinary cotinine concentration is a good, easy-to-use marker for plasma levels of cotinine and the sum of nicotine metabolites in smokers independent of genetic polymorphism of CYP2A6.
PMCID: PMC2922738  PMID: 20717551
cytochrome P450; CYP2A6; 3′-hydroxycotinine; genetic polymorphism; smoking index; biomarker
7.  Reproducibility of the Nicotine Metabolite Ratio in Cigarette Smokers 
The nicotine metabolite ratio (NMR or 3-hydroxycotinine/cotinine) has been used to phenotype CYP2A6-mediated nicotine metabolism. Our objectives were to analyze (a) the stability of NMR in plasma, saliva, and blood in various storage conditions, (b) the relationship between NMRs derived from blood, plasma, saliva, and urine, and (c) the reproducibility of plasma NMR in ad libitum cigarette smokers.
We analyzed data from four clinical studies. In studies 1 and 2, we assessed NMR stability in saliva and plasma samples at room temperature (~22°C) over 14 days and in blood at 4°C for up to 72 hours. In studies 2 and 3, we used Bland-Altman analysis to assess agreement between blood, plasma, saliva, and urine NMRs. In study 4, plasma NMR was measured on 6 occasions over 44 weeks in 43 ad libitum smokers.
Reliability coefficients for stability tests of NMR in plasma and saliva at room temperature were 0.97 and 0.98, respectively, and 0.92 for blood at 4°C. Blood NMR agreed consistently with saliva and plasma NMRs but showed more variability in relation to urine NMR. The reliability coefficient for repeated plasma NMR measurements in smokers was 0.85.
The NMR is stable in blood, plasma, and saliva at the conditions tested. Blood, plasma, and saliva NMRs are similar while urine NMR is a good proxy for these NMR measures. Plasma NMR was reproducible over time in smokers.
One measurement may reliably estimate a smoker’s NMR for use as an estimate of the rate of nicotine metabolism.
PMCID: PMC3392523  PMID: 22552800
Nicotine metabolite ratio (NMR); cotinine; 3-hydroxycotinine; biological stability; chemical stability
8.  UGT2B10 genotype influences nicotine glucuronidation, oxidation and consumption 
Tobacco exposure is routinely assessed by quantifying nicotine metabolites in plasma or urine. On average, 80% of nicotine undergoes C-oxidation to cotinine. However, interindividual variation in nicotine glucuronidation is substantial and glucuronidation accounts for from 0 to 40% of total nicotine metabolism. We report here the effect of a polymorphism in a UDP-glucuronsyl transferase, UGT2B10, on nicotine metabolism and consumption.
Nicotine, cotinine, their N-glucuronide conjugates, and total trans-3'-hydroxycotinine were quantified in the urine (n=327) and plasma (n =115) of smokers. Urinary nicotine N-oxide was quantified in 105 smokers. Nicotine equivalents, the sum of nicotine and all major metabolites, were calculated for each smoker. The relationship of the UGT2B10 Asp67Tyr allele to nicotine equivalents, N-glucuronidation, and C-oxidation was determined.
Individuals heterozygous for the Asp67Tyr allele excreted less nicotine or cotinine as their glucuronide conjugates than wild-type, resulting in a 60% lower ratio of cotinine glucuronide:cotinine, a 50% lower ratio of nicotine glucuronide:nicotine and increased cotinine and trans-3'-hydroxycotinine. Nicotine equivalents, a robust biomarker of nicotine intake, were lower among Asp67Tyr heterozygotes compared to individuals without this allele; 58.2 nmol/ml (95% CI, 48.9 – 68.2) versus 69.2 nmol/ml (95% CI, 64.3 – 74.5).
Individuals heterozygous for UGT2B10 Asp67Tyr consume less nicotine than do wild type smokers. This striking observation suggests that variations in nicotine N-glucuronidation, as reported for nicotine C-oxidation, may influence smoking behavior.
UGT2B10 genotype influences nicotine metabolism and should be taken into account when characterizing the role of nicotine metabolism on smoking.
PMCID: PMC2882998  PMID: 20501767
Nicotine; glucuronide; UGT2B10; cotinine; smoking; glucuronidation
9.  Estimation of Nicotine Dose after Low Level Exposure Using Plasma and Urine Nicotine Metabolites 
We sought to determine the optimal plasma and urine nicotine metabolites, alone or in combination, to estimate the systemic dose of nicotine after low level exposure.
We dosed 36 nonsmokers with 100, 200 or 400 μg deuterium-labeled nicotine (doses similar to exposure to secondhand smoke, SHS) by mouth daily for 5 days and then measured plasma and urine nicotine metabolites at various intervals over 24 hours.
The strongest correlations with nicotine dose were seen for the sum of four [cotinine + cotinine-glucuronide + trans-3′-hydroxycotinine + 3HC-glucuronide] or six [ including also nicotine + nicotine-glucuronide] of the major nicotine metabolites in 24 hour urine collection (r = 0.96), with lesser correlations for these metabolites using spot urines corrected for creatinine at various times of day (r = 0.72 – 0.80). Plasma [cotinine + trans 3′ hydroxycotine] was more highly correlated with nicotine dose than plasma cotinine alone (r = 0.82 vs 0.75).
Our results provide guidance for selection of biomarkers to estimate the dose of nicotine taken in low level (SHS) tobacco exposure.
This is probably relevant to active smoking as well.
PMCID: PMC2867075  PMID: 20447913
10.  Nicotine Metabolic Rate Predicts Successful Smoking Cessation with Transdermal Nicotine: A Validation Study 
Transdermal nicotine is widely used for smoking cessation, but only ~20% of smokers quit successfully with this medication. Interindividual variability in nicotine metabolism rate may influence treatment response. This study sought to validate, and extend in a larger sample, our previous finding that the ratio of plasma nicotine metabolites 3′-hydroxycotinine (3-HC)/cotinine, a measure of nicotine metabolism rate, predicts response to nicotine patch. A sample of 568 smokers was enrolled in a study that provided counseling and 8-weeks of 21mg nicotine patch. Pretreatment 3-HC/cotinine ratio was examined as a predictor of 7-day point prevalence abstinence, verified with breath carbon monoxide (CO), 8 weeks after the quit date. Controlling for sex, race, age, and nicotine dependence, smokers in the upper 3 quartiles of 3-HC/cotinine ratio (faster metabolizers) were ~50% less likely to be abstinent vs. smokers in the first quartile (slow metabolizers; 28% vs. 42%; OR=.54 [95% CI: .36–.82], p=.003). Among abstainers, plasma nicotine levels (assessed 1 week after treatment began) decreased linearly across the 3-HC/cotinine ratio (β = −3.38, t[355]=−3.09, p<.05). These data support the value of the 3-HC/cotinine ratio as a biomarker to predict success with transdermal nicotine for smoking cessation.
PMCID: PMC2657225  PMID: 19000709
nicotine; metabolism; tobacco; smoking; addiction
11.  Rapid Nicotine Clearance is Associated with Greater Reward and Heart Rate Increases from Intravenous Nicotine 
Neuropsychopharmacology  2012;37(6):1509-1516.
The ratio of nicotine metabolites (trans-3′-hydroxycotinine (3HC) to cotinine) correlates with nicotine clearance. In previous studies, high nicotine metabolite ratio (NMR) predicted poor outcomes for smoking cessation treatment with nicotine patch. The underlying mechanisms that associate NMR with treatment outcomes have not been fully elucidated. A total of 100 smokers were divided into quartiles based on their baseline plasma NMR. Following overnight abstinence, smokers received saline followed by escalating intravenous doses of nicotine (0.5 and 1.0 mg/70 kg) given 30 min apart. The effects of nicotine on subjective, plasma cortisol, heart rate, and systolic and diastolic blood pressure measures were obtained. Smokers in the first NMR quartile (slower metabolizers) had lower Fagerstrom Test for Nicotine Dependence (FTND) scores, suggesting lower levels of dependence. In contrast, smokers in the fourth NMR quartile (faster metabolizers) reported greater craving for cigarettes following overnight abstinence from smoking and reported greater ratings of nicotine-induced good drug effects, drug liking, and wanting more drug. Higher NMR was also associated with greater heart rate increases in response to nicotine. These results suggest that enhanced nicotine reward and cigarette craving may contribute to the poor treatment response in smokers with high NMR. These findings warrant further investigation, especially in treatment-seeking smokers undergoing cessation treatment.
PMCID: PMC3327855  PMID: 22334123
nicotine dependence; intravenous nicotine; nicotine abstinence; psychopharmacology; addiction & substance abuse; biological psychiatry; clinical pharmacology / clinical trials; nicotine; addiction; dependence
12.  Carbamazepine but not valproate induces CYP2A6 activity in smokers with mental illness 
Anti-epileptic drugs (AED) are increasingly used in the management of serious mental illness yet their effects on nicotine metabolism have not been studied.
This study investigated the effects of 3 AED (carbamazepine, CBZ; oxcarbazepine, OCB or valproic acid, VPA) on nicotine and nicotine metabolite levels in 149 smokers with schizophrenia and bipolar disorder who participated in an afternoon blood draw for nicotine, cotinine, and 3’-hydroxycotinine (3HC). The ratio of 3HC to cotinine was calculated as a marker of CYP2A6 metabolic activity. Eight smokers were taking CBZ, six were taking OCB and 40 were taking VPA.
The 3HC/cotinine ratio was significantly higher in individuals taking CBZ or OCB (combined, n=14) vs. those not taking it (mean 0.993 vs. 0.503; p< 0.001). The cotinine/cigarette per day ratio was significantly lower in individuals taking CBZ or OCB. The 3HC/cotinine ratios were also significantly higher in the subgroup of individuals taking CBZ (n=8) vs. those not taking it. There were no significant differences in nicotine or cotinine levels or 3HC/cotinine ratios in individuals taking VPA vs. those not taking it. We conducted backward stepwise linear regression models to identify predictors of the log transformed 3HC/cotinine ratios. Taking CBZ and number of cigarettes smoked per day were significant determinants of log 3HC/Cotinine.
CBZ likely induces hepatic metabolism via CYP2A6 and is associated with increased 3HC/Cotinine ratios.
Increased nicotine metabolism in individuals using AED has implications for increased smoking behavior and exposure to more tobacco toxins that warrants further study.
PMCID: PMC2952059  PMID: 20719908
nicotine; smoking; carbamazepine; metabolism
13.  Nicotine exposure and metabolizer phenotypes from analysis of urinary nicotine and its 15 metabolites by LC–MS 
Bioanalysis  2011;3(7):745-761.
Smokers who inhale less deeply are exposed to lower amounts of the toxic substances present in tobacco smoke. In order to more rigorously assess tobacco smoke exposure, it is necessary to have an accurate method for quantifying nicotine and all of its known metabolites.
A stable-isotope dilution LC–MRM/MS assay has been developed for quantification of urinary nicotine and the 15 possible metabolites that could arise from known metabolic pathways. Nicotine, cotinine, trans-3′-hydroxy-cotinine, nicotine-N-oxide, cotinine-N-oxide, nornicotine, norcotinine and 4-hydroxy-4-(3-pyridyl)butanoic acid were quantified by direct analysis. The corresponding glucuronide metabolites were quantified after urine hydrolysis with β-glucuronidase.
Nicotine and all 15 nicotine metabolites were quantified by LC MRM/MS in most urine samples from 61 tobacco smokers. Urinary nicotine and metabolite concentrations ranged from 7.9 to 337.8 μM (mean 75.5 ± 67.8 μM). Three nicotine metabolizer phenotypes were established as reduced metabolizers (ratio < 8), normal metabolizers (ratio 8–30), and extensive metabolizers (ratio > 30). 4-hydroxy-4-(3-pyridyl)butanoic acid, which has not been quantified previously, was an abundant metabolite in all three phenotypes.
Using this assay it will now be possible to determine whether there are relationships between nicotine exposure and/or metabolizer phenotype with exposure to toxic substances that are present in tobacco smoke and/or to biological response biomarkers to tobacco smoking. This will help in identifying individuals at high risk for developing smoking-related diseases as well as those amenable to smoking cessation programs.
PMCID: PMC3134267  PMID: 21452992
14.  High Dose Transdermal Nicotine for Fast Metabolizers of Nicotine: A Proof of Concept Placebo-Controlled Trial 
Nicotine & Tobacco Research  2012;15(2):348-354.
Smokers with a faster rate of nicotine metabolism, estimated using the ratio of 3′-hydroxycotinine (3-HC) to cotinine, have lower plasma nicotine levels and are more likely to relapse with 21 mg nicotine patch therapy, than smokers with slower rates of nicotine metabolism. Thus, faster metabolizers of nicotine may require a higher nicotine patch dose to achieve cessation.
This proof of concept randomized placebo-controlled trial evaluated the efficacy and safety of 8 weeks of 42 mg transdermal nicotine versus 21 mg, among 87 fast metabolizers of nicotine (3-HC/cotinine ≥ 0.18).
After 1 week of treatment, an intent-to-treat (ITT) analysis showed that participants treated with 42 mg nicotine had significantly higher expired-air carbon monoxide (CO)-confirmed 24-hr abstinence (75% vs. 58.1%; OR = 3.21; 95% CI: 1.12–9.24, p = .03) but not 7-day abstinence (50% vs. 34.9%; OR = 2.02; 95% CI: 0.82–4.94, p = .13). After 8 weeks of treatment, ITT analysis showed that participants treated with 42 mg nicotine had marginally higher rates of CO-confirmed 24-hr abstinence (45.5% vs. 30.2%; OR = 2.32; 95% CI: 0.92–5.92, p = .08) but not 7-day abstinence (29.6% vs. 23.3%; OR = 1.52, 95% CI: 0.57–4.07, p = .41). Percent nicotine and cotinine replacement were significantly greater for 42 mg nicotine versus 21 mg (p < .005). There were no significant differences between treatment arms in the frequency of severe side effects and serious adverse events or blood pressure during treatment (p > .10).
Further examination of the efficacy of 42 mg nicotine patch therapy for fast metabolizers of nicotine is warranted.
PMCID: PMC3545715  PMID: 22589423
15.  A Link between Adolescent Nicotine Metabolism and Smoking Topography 
Adult slow nicotine metabolizers have lower smoke exposure, carbon monoxide levels, and plasma nicotine levels than normal and fast metabolizers. Emerging evidence suggests nicotine metabolism influences smoking topography. This study investigated the association of nicotine metabolism (the ratio of plasma 3-hydroxycotinine to cotinine; 3OHCOT/COT) with smoking topography in adolescent smokers (N=85, 65% female, 68% European American, mean age 15.3 ± 1.2, mean cigarettes per day (CPD) 18.5 ± 8.5, mean Fagerström Test for Nicotine Dependence (FTND) 7.0 ± 1.2) presenting for a nicotine replacement therapy trial. Measures obtained included puff volume, inter-puff interval, number of puffs, puff duration, and puff velocity. Linear regression analysis controlling for hormonal contraception use showed that 3OHCOT/COT ratios predicted mean puff volume in the overall sample (t = 2.126, p = .037, adjusted R2 = .067). After gender stratification, faster metabolism predicted higher mean puff volume (t = 2.81, p = .009, adjusted R2 = .192) but fewer puffs (t = −3.160, p=0.004, adjusted R2 = .237) and lower mean puff duration (t = −2.06, p = .048, adjusted R2 = .101) among boys only, suggesting that as nicotine metabolism increases, puff volume increases but puffing frequency decreases. No significant relationships were found between nicotine metabolism and total puff volume, mean puff duration, inter-puff interval, or puff velocity. If confirmed in a broader sample of adolescent smokers, these findings suggest that, as among dependent adult smokers, rate of metabolism among adolescent boys is linked to select parameters of puffing behavior that may impact cessation ability.
PMCID: PMC2720594  PMID: 19423535
adolescent; metabolism; nicotine; smoking
16.  Nicotine metabolite ratio predicts smoking topography and carcinogen biomarker level 
Variability in smoking behavior is partly attributable to heritable individual differences in nicotine clearance rates. This can be assessed as the ratio of the metabolites cotinine (COT) and 3'-hydroxycotinine (3HC) (referred to as the nicotine metabolism ratio, NMR). We hypothesized that faster NMR would be associated with greater cigarette puff volume and higher levels of total NNAL, a carcinogen biomarker.
Current smokers (n=109) smoked one of their preferred brand cigarettes through a smoking topography device and provided specimens for NMR and total NNAL assays.
Faster nicotine metabolizers (third and fourth quartiles versus first quartile) based on the NMR exhibited significantly greater total puff volume and total NNAL; the total puff volume by daily cigarette consumption interaction was a significant predictor of total NNAL level.
A heritable biomarker of nicotine clearance predicts total cigarette puff volume and total NNAL.
If validated, the NMR could contribute to smoking risk assessment in epidemiological studies and potentially in clinical practice.
PMCID: PMC3077576  PMID: 21212060
17.  Nicotine intake and smoking topography in smokers with bipolar disorder 
Bipolar disorders  2012;14(6):618-627.
Cigarette smoking behavior in bipolar disorder (BPD), including the effects of mood-stabilizing medications, has not been well characterized.
We compared serum nicotine, nicotine metabolite levels, and smoking topography in 75 smokers with BPD to 86 control smokers (CON). For some comparisons, an additional control group of 75 smokers with schizophrenia (SCZ) were included.
There were no differences between the BPD and CON groups in baseline smoking characteristics or serum nicotine or cotinine levels. Fifty-one smokers with BPD (68.9%) were taking one of the following mood stabilizers: valproic acid, lamotrigine, carbamazepine, oxcarbazepine, lithium, or topiramate. The 3-hydroxycotinine-to-cotinine ratio, a marker of cytochrome P450 2A6 (CYP2A6) metabolic activity, was significantly higher in BPD versus CON and versus SCZ (0.68 versus 0.49 versus 0.54; p = 0.002). The difference between groups, however, was no longer significant when the analysis was repeated with those taking hepatic enzyme-inducing drugs (carbamazepine, oxcarbazepine, and topiramate) included as a covariate. The time between puffs, or interpuff interval (IPI), was shorter in BPD versus CON by an average of 3.0 sec (p < 0.05), although this was no longer significant when we removed smokers from the analysis of those taking hepatic enzyme inducers.
Smokers with BPD are not different from CON on most measures of nicotine intake and smoking topography. We found an increased rate of nicotine metabolism in smokers taking mood stabilizers that are hepatic enzyme inducers, including carbamazepine, oxcarbazepine, and topiramate. Smokers with rapid nicotine metabolism might be expected to smoke more intensely to compensate for the more rapid disappearance of nicotine from the blood and brain, and may have more difficulty in quitting smoking, although this requires further study.
PMCID: PMC3641517  PMID: 22938167
bipolar disorder; cotinine; metabolism; nicotine; smoking
18.  Chinese ‘low-tar’ cigarettes do not deliver lower levels of nicotine and carcinogens 
Tobacco Control  2010;19(5):374-379.
Low-tar cigarette smoking is gaining popularity in China. The China National Tobacco Corporation (CNTC) promotes low-tar cigarettes as safer than regular cigarettes.
A total of 543 male smokers smoking cigarettes with different tar yields (15 mg, regular cigarettes, 10–13 mg low-tar cigarettes and <10 mg low-tar cigarettes) were recruited in Shanghai, China, who then completed a questionnaire on smoking behaviour and provided a urine sample for analysis of the nicotine metabolites cotinine and trans-3′-hydroxycotinine. A total of 177 urine samples were selected at random for the analysis of the carcinogens polycyclic aromatic hydrocarbon metabolites (PAHs) (1-hydroxypyrene, naphthols, hydroxyfluorenes and hydroxyphenanthrenes) and the tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK) metabolites, 4-(methylnitrosamino)-1-(3-pyridyl)-butanol (NNAL) and NNAL-glucuronide. Values were normalised by creatinine to correct for possible distortions introduced by dilution or concentration of the urine.
Smokers of low-tar cigarettes smoked fewer cigarettes per day (p=0.001) compared to smokers of regular cigarettes. Despite this lower reported consumption, levels of cotinine, trans-3′-hydroxycotinine and PAHs in urine of people smoking low-tar cigarettes were not correlated with nominal tar delivery of the cigarettes they smoked. Urine concentrations of NNAL were higher in smokers of lower tar than higher tar cigarettes.
Chinese low-tar cigarettes do not deliver lower doses of nicotine and carcinogens than regular cigarettes, therefore it is unlikely that there would be any reduction in harm. CNTC's promotion of low-tar cigarettes as ‘less harmful’ is a violation of the World Health Organization Framework Convention on Tobacco Control, which China ratified in 2005.
PMCID: PMC2978929  PMID: 20507920
Addiction; carcinogens; nicotine reduction in cigarettes; smoking topography; tobacco products
19.  Exposure and Kinetics of Polycyclic Aromatic Hydrocarbons (PAHs) in Cigarette Smokers 
Chemical Research in Toxicology  2012;25(4):952-964.
Study objectives were (1) to investigate the selectivity of polycyclic aromatic hydrocarbon (PAH) metabolites for tobacco smoke exposure, and (2) to determine half-lives of PAH metabolites in smokers. There were 622 participants from the United States (US) and Poland, and of these 70% were smokers. All subjects provided spot urine samples and 125 smokers provided blood samples. Urinary PAH metabolite half-lives were determined in 8 smokers. In controlled hospital studies of 18 smokers, the associations between various measures of nicotine intake and urinary excretion of PAH metabolites were investigated. Plasma nicotine was measured by GC. LC-MS/MS was used to measure the plasma levels of cotinine and trans-3′-hydroxycotinine, and urine levels of nicotine and its metabolites, total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and PAH metabolites (2-naphthol, 1-, 2- and 3-hydroxyfluorenes, 1-, 2-, 3-, and 4-hydroxyphenanthrenes, and 1-hydroxypyrene). Regardless of smoking status, PAH metabolite excretion was higher in Polish subjects than in US subjects (p-values<0.001). 1-Hydroxyfluorene exhibited the greatest difference between smokers and non-smokers, with a 5-fold difference in Polish subjects and a 25-fold difference in US subjects, followed by 3- and 2-hydroxyfluorenes, 2-naphthol and 1-hydroxypyrene. The differences for hydroxyphenanthrenes were small or non-significant. 1-Hydroxyfluorene had the highest correlation with urine nicotine equivalents (r=0.77) and urine NNAL (r=0.64). While the half-lives of PAH metabolites were <10 h in smokers, 1-hydroxyfluorene had the largest ratio of initial to terminal urine concentration (58.4±38.6, mean±SD) after smoking. Receiver Operating Characteristic (ROC) analysis of PAHs among Polish and US subjects further showed that hydroxyfluorenes are most highly discriminative of smokers from nonsmokers followed by 2-naphthol and 1-hydroxypyrene. In conclusion, hydroxyfluorenes, particularly 1-hydroxyfluorene, and 2-naphthol are more selective of tobacco smoke than 1-hydroxypyrene and hydroxyphenanthrenes. Characterization of hydroxyfluorene and 2-naphthol metabolites in urine may improve the characterization of PAHs from tobacco smoke and related disease risks among smokers and nonsmokers.
PMCID: PMC3330130  PMID: 22428611
20.  Urine nicotine metabolite concentrations in relation to plasma cotinine during low-level nicotine exposure 
Nicotine & Tobacco Research  2009;11(8):954-960.
Plasma or saliva cotinine concentrations are used widely as biomarkers of secondhand smoke (SHS) exposure and have been associated with the risk of SHS-related disease. Concentrations of cotinine and other nicotine metabolites are considerably higher in urine than in plasma or saliva, making chemical analysis easier. In addition, urine is often more convenient to collect in some SHS exposure studies. The optimal use of nicotine metabolites in urine, singly or in combination, with or without correction for urine creatinine concentration, to estimate plasma cotinine concentration with low-level nicotine exposure has not been determined.
We dosed 36 nonsmokers with 100, 200, or 400 μg deuterium-labeled nicotine (simulating exposure to SHS) by mouth daily for 5 days and then measured plasma and urine cotinine and metabolites at various intervals over 24 hr.
A plasma cotinine concentration of 1 ng/ml corresponds on average to a daily intake of 100 μg nicotine. Cotinine concentrations in urine averaged four to five times those in plasma. Correction of urine cotinine for creatinine concentration improved the correlation between urine and plasma cotinine. Measuring multiple cotinine metabolites in urine did not improve the correlation with plasma cotinine, compared with the use of urine cotinine alone.
Measurement of urine cotinine corrected for creatinine concentration appears to be the best predictor of plasma cotinine.
PMCID: PMC2734286  PMID: 19525206
21.  Cigarette nicotine yields and nicotine intake among Japanese male workers 
Tobacco Control  2002;11(1):55-60.
Objectives: To analyse brand nicotine yield including "ultra low" brands (that is, cigarettes yielding ≤ 0.1 mg of nicotine by Federal Trade Commission (FTC) methods) in relation to nicotine intake (urinary nicotine, cotinine and trans-3'-hydroxycotinine) among 246 Japanese male smokers.
Design: Cross sectional study.
Setting: Two companies in Osaka, Japan.
Subjects: 130 Japanese male workers selected randomly during their annual regular health check up and 116 Japanese male volunteers taking part in a smoking cessation programme.
Main outcome measurements: Subjects answered a questionnaire about smoking habits. Following the interview, each participant was asked to smoke his own cigarette and, after extinguishing it, to blow expired air into an apparatus for measuring carbon monoxide concentration. Urine was also collected for the assays of nicotine metabolites.
Results: We found wide variation in urinary nicotine metabolite concentrations at any given nicotine yield. Based on one way analysis of variance (ANOVA), the urinary nicotine metabolite concentrations of ultra low yield cigarette smokers were significantly lower compared to smokers of high (p = 0.002) and medium yield cigarettes (p = 0.017). On the other hand, the estimated nicotine intake per ultra low yield cigarette smoked (0.59 mg) was much higher than the 0.1 mg indicated by machine.
Conclusions: In this study of Japanese male smokers, actual levels of nicotine intake bore little relation to advertised nicotine yield levels. Our study reinforces the need to warn consumers of inappropriate advertisements of nicotine yields, especially low yield brands.
PMCID: PMC1747645  PMID: 11891369
22.  A comparison of nicotine dose estimates in smokers between filter analysis, salivary cotinine, and urinary excretion of nicotine metabolites 
Psychopharmacology  2006;189(3):345-354.
Nicotine uptake during smoking was estimated by either analyzing the metabolites of nicotine in various body fluids or by analyzing filters from smoked cigarettes. However, no comparison of the filter analysis method with body fluid analysis methods has been published.
Correlate nicotine uptake estimates between filter analysis, salivary cotinine, and urinary excretion of selected nicotine metabolites to determine the suitability of these methods in estimating nicotine absorption in smokers of filtered cigarettes.
Materials and methods
A 5-day clinical study was conducted with 74 smokers who smoked 1–19 mg Federal Trade Commission tar cigarettes, using their own brands ad libitum. Filters were analyzed to estimate the daily mouth exposure of nicotine. Twenty-four-hour urine samples were collected and analyzed for nicotine, cotinine, and 3′-hydroxycotinine plus their glucuronide conjugates. Saliva samples were collected daily for cotinine analysis.
Each method correlated significantly (p < 0.01) with the other two. The best correlation was between the mouth exposure of nicotine, as estimated by filter analysis, and urinary nicotine plus metabolites. Multiple regression analysis implies that saliva cotinine and urinary output are dependent on nicotine mouth exposure for multiple days. Creatinine normalization of the urinary metabolites degrades the correlation with mouth exposure.
The filter analysis method was shown to correlate with more traditional methods of estimating nicotine uptake. However, because filter analysis is less complicated and intrusive, subjects can collect samples easily and unsupervised. This should enable improvements in study compliance and future study designs.
PMCID: PMC1705539  PMID: 17028908
Cigarette smoking; Smoking behavior; Filter; Nicotine; Metabolites; Urine; Saliva
23.  A novel validated procedure for the determination of nicotine, eight nicotine metabolites and two minor tobacco alkaloids in human plasma or urine by solid-phase extraction coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry 
A novel validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) procedure was developed and fully validated for the simultaneous determination of nicotine-N-β-D-glucuronide, cotinine-N-oxide, trans-3-hydroxycotinine, norcotinine, trans-nicotine-1′-oxide, cotinine, nornicotine, nicotine, anatabine, anabasine and cotinine-N-β-D-glucuronide in human plasma or urine.
Target analytes and corresponding deuterated internal standards were extracted by solid-phase extraction and analyzed by LC-MS/MS with electrospray ionization (ESI) using multiple reaction monitoring (MRM) data acquisition. Calibration curves were linear over the selected concentration ranges for each analyte, with calculated coefficients of determination (R2) of greater than 0.99. The total extraction recovery (%) was concentration dependent and ranged from 52–88 % in plasma and 51–118 % in urine. The limit of quantification for all analytes in plasma and urine were 1.0 ng/mL and 2.5 ng/mL respectively with the exception of cotinine-N-β-D-glucuronide which was 50 ng/mL. Intra-day and inter-day imprecision were ≤14 % and ≤17 % respectively. Matrix effect (%) was sufficiently minimized to ≤19 % for both matrices using the described sample preparation and extraction methods. The target analytes were stable in both matrices for at least 3 freeze thaw cycles, 24 hours at room temperature, 24 hours in the refrigerator (4 °C) and 1 week in the freezer (−20 °C). Reconstituted plasma and urine extracts were stable for at least 72 hours storage in the liquid chromatography autosampler at 4 °C.
The plasma procedure has been successfully applied in the quantitative determination of selected analytes in samples collected from nicotine-abstinent human participants as part of a pharmacokinetic study investigating biomarkers of nicotine use in plasma following controlled low dose (7 mg) transdermal nicotine delivery. Nicotine, cotinine, trans-3-hydroxycotinine and trans-nicotine-1′-oxide were detected in the particular sample presented herein. The urine procedure has been used to facilitate the monitoring of unauthorized tobacco use by clinical study participants at the time of physical examination (before enrolment) and on the pharmacokinetic study day.
PMCID: PMC2975562  PMID: 20097626
24.  Simultaneous and Sensitive Measurement of Nicotine, Cotinine, trans-3’-Hydroxycotinine and Norcotinine in Human Plasma by Liquid Chromatography-Tandem Mass Spectrometry 
An LCMSMS method for the simultaneous quantification of nicotine, cotinine, trans-3’-hydroxycotinine and norcotinine in human plasma was developed and fully validated. Potential endogenous and exogenous interferences were extensively evaluated and limits of quantification were determined by decreasing analyte concentration. Analytical ranges were 1–500 ng/mL for nicotine and cotinine, 5–500 ng/mL for trans-3’-hydroxycotinine and norcotinine. Mean intra- and inter-assay analytical recovery were between 101.9 and 116.8%, and intra- and inter-assay imprecision were less than 11% RSD for all analytes: parameters were evaluated at three different concentrations across the linear range of the assay. Extraction efficiency was ≥ 70% for all analytes. This validated method is useful for determination of nicotine and metabolites in human plasma to support research on the role of nicotine biomarkers on neuronal systems mediating cognitive and affective processes and to differentiate active, passive and environmental exposure.
PMCID: PMC2763023  PMID: 19748838
Nicotine; Cotinine; trans-3’-hydroxycotinine; Norcotinine; Plasma; LCMSMS
25.  Meconium Nicotine and Metabolites by Liquid Chromatography–Tandem Mass Spectrometry: Differentiation of Passive and Nonexposure and Correlation with Neonatal Outcome Measures 
Clinical chemistry  2008;54(12):2018-2027.
Meconium analysis is a diagnostically sensitive and objective alternative to maternal self-report for detecting prenatal tobacco exposure. Nicotine and metabolite disposition in meconium is poorly characterized, and correlation of analytes’ concentrations with neonatal outcomes is unexplored. Our objectives were to quantify nicotine, cotinine, trans-3′-hydroxycotinine (OH-cotinine), nornicotine, norcotinine, and glucuronide concentrations in meconium, identify the best biomarkers of in utero tobacco exposure, compare meconium concentrations of tobacco-exposed and nonexposed neonates, and investigate concentration–outcome relationships.
We quantified concentrations of nicotine and 4 metabolites with and without hydrolysis simultaneously in meconium from tobacco-exposed and nonexposed neonates by liquid chromatography–tandem mass spectrometry. We compared meconium concentrations to birth weight, length, head circumference, gestational age, and 1- and 5-min Apgar scores.
Nicotine, cotinine, and OH-cotinine were the most prevalent and abundant meconium tobacco biomarkers and were found in higher concentrations in tobacco-exposed neonates. Whereas cotinine and OH-cotinine are glucuronide bound, performing the lengthy and costly enzymatic hydrolysis identified only 1 additional positive specimen. Unconjugated nicotine, cotinine, or OH-cotinine meconium concentration >10 ng/g most accurately discriminated active from passive and nonexposed neonates. There was no significant correlation between quantitative nicotine and metabolite meconium results and neonatal outcomes, although presence of a nicotine biomarker predicted decreased head circumference.
Unconjugated nicotine, cotinine, and OH-cotinine should be analyzed in meconium to detect in utero tobacco exposure, as approximately 25% of positive specimens did not contain cotinine. Immunoassay testing monitoring cotinine only would underestimate the prevalence of prenatal tobacco exposure.
PMCID: PMC3163082  PMID: 18845770

Results 1-25 (429530)