Search tips
Search criteria

Results 1-25 (1531731)

Clipboard (0)

Related Articles

1.  MEK Inhibition Leads To Lysosome-Mediated Na+/I- Symporter Protein Degradation In Human Breast Cancer Cells 
Endocrine-related cancer  2013;20(2):10.1530/ERC-12-0342.
The Na+/I- symporter (NIS) is a transmembrane glycoprotein that mediates active iodide uptake into thyroid follicular cells. NIS-mediated iodide uptake in thyroid cells is the basis for targeted radionuclide imaging and treatment of differentiated thyroid carcinomas and their metastases. Furthermore, NIS is expressed in many human breast tumors but not in normal non-lactating breast tissue, suggesting that NIS-mediated radionuclide uptake may also allow the imaging and targeted therapy of breast cancer. However, functional cell surface NIS expression is often low in breast cancer, making it important to uncover signaling pathways that modulate NIS expression at multiple levels, from gene transcription to post-translational processing and cell surface trafficking. In this study, we investigated NIS regulation in breast cancer by MEK (MAPK/ERK kinase) signaling, an important cell signaling pathway involved in oncogenic transformation. We found that MEK inhibition decreased NIS protein levels in all-trans retinoic acid (tRA)/hydrocortisone treated MCF-7 cells as well as human breast cancer cells expressing exogenous NIS. The decrease in NIS protein levels by MEK inhibition was not accompanied by a decrease in NIS mRNA or a decrease in NIS mRNA export from the nucleus to the cytoplasm. NIS protein degradation upon MEK inhibition was prevented by lysosome inhibitors, but not by proteasome inhibitors. Interestingly, NIS protein level was correlated with MEK/ERK activation in human breast tumors from a tissue microarray. Taken together, MEK activation appears to play an important role in maintaining NIS protein stability in human breast cancers.
PMCID: PMC3837521  PMID: 23404856
NIS; MEK; lysosome; breast; cancer
2.  Microarray analysis of genes associated with cell surface NIS protein levels in breast cancer 
BMC Research Notes  2011;4:397.
Na+/I- symporter (NIS)-mediated iodide uptake allows radioiodine therapy for thyroid cancer. NIS is also expressed in breast tumors, raising potential for radionuclide therapy of breast cancer. However, NIS expression in most breast cancers is low and may not be sufficient for radionuclide therapy. We aimed to identify biomarkers associated with NIS expression such that mechanisms underlying NIS modulation in human breast tumors may be elucidated.
Published oligonucleotide microarray data within the National Center for Biotechnology Information Gene Expression Omnibus database were analyzed to identify gene expression tightly correlated with NIS mRNA level among human breast tumors. NIS immunostaining was performed in a tissue microarray composed of 28 human breast tumors which had corresponding oligonucleotide microarray data available for each tumor such that gene expression associated with cell surface NIS protein level could be identified.
Results and Discussion
NIS mRNA levels do not vary among breast tumors or when compared to normal breast tissues when detected by Affymetrix oligonucleotide microarray platforms. Cell surface NIS protein levels are much more variable than their corresponding NIS mRNA levels. Despite a limited number of breast tumors examined, our analysis identified cysteinyl-tRNA synthetase as a biomarker that is highly associated with cell surface NIS protein levels in the ER-positive breast cancer subtype.
Further investigation on genes associated with cell surface NIS protein levels within each breast cancer molecular subtype may lead to novel targets for selectively increasing NIS expression/function in a subset of breast cancers patients.
PMCID: PMC3205061  PMID: 21989294
3.  Functional Radionuclide Imaging, In-Vitro Radioiodine Uptake Estimation and RT-PCR in the Evaluation of Sodium Iodide Symporter (NIS) Expression and Functionality in Breast Cancer: A Pilot Study 
Breast cancer is a common malignancy in females, which is considered as a systemic disease, whose treatment involves combined modality including systemic as well as local treatment. Recent studies have shown that breast cancer also expresses Sodium Iodide Symporter (NIS) gene, like in the thyroid, which is the factor responsible for the uptake of iodide by the thyroid, enabling radioiodine therapy of thyroid disorders. This study aimed to evaluate various radionuclide imaging characteristics, in vitro radioiodine uptake (RAIU) and evaluation of NIS expression by using Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) to explore sodium iodide symporter (NIS) expression and iodine uptake in breast cancer and to explor e whether radioiodine can be used for the diagnosis and treatment of breast cancer. Ways of differential regulation of NIS expression in breast cancer has also been explored. Female patients with palpable breast lump and histologically proven infiltrating duct carcinoma were taken up for the study, which included 50 females of mean age 49 years. (range: 23–73 years). The patients were categorized into different groups, depending on the type of the study performed. The uptake patterns in various imaging modalities were analyzed and compared with invitro and RT-PCR studies. 68 % of breast cancer cases showed 99mTc-pertechnetate uptake at the initial images. This finding could partly be due to tumor vascularity, which is usually higher compared to the normal tissues. The uptake in the delayed imaging could be related to that due to NIS in the breast. Use of perchlorate or stable iodine did not alter the pertechnetate uptake pattern in breast tumor. Good correlation between 99mTc-pertechnetate and 99mTc-tetrofosmin uptake in breast cancer was demonstrated. In vitro radioactive iodine uptake in the breast tumor was significantly higher than that in the normal breast tissue. Only 42 % of breast tumor samples studied using RT-PCR showed NIS expression. Correlation between 99mTc-pertechnetate uptake and NIS expression could not be well established. Further studies with higher dose of radioiodine and/or mechanisms of differentially blocking the thyroid are required to assess the feasibility of radioiodine therapy for breast cancer.
PMCID: PMC3578538  PMID: 24426705
Breast carcinoma; Sodium iodide symporter; Radioiodine uptake; Reverse transcriptase-polymerase chain reaction (RT-PCR); 99mTc-pertechnetate
4.  PI3K activation is associated with intracellular sodium/iodide symporter protein expression in breast cancer 
BMC Cancer  2007;7:137.
The sodium/iodide symporter (NIS) is a membrane glycoprotein mediating active iodide uptake in the thyroid gland and is the molecular basis for radioiodide imaging and therapeutic ablation of thyroid carcinomas. NIS is expressed in the lactating mammary gland and in many human breast tumors, raising interest in similar use for diagnosis and treatment. However, few human breast tumors have clinically evident iodide uptake ability. We previously identified PI3K signaling as important in NIS upregulation in transgenic mouse models of breast cancer, and the PI3K pathway is commonly activated in human breast cancer.
NIS expression, subcellular localization, and function were analyzed in MCF-7 human breast cancer cells and MCF-7 cells stably or transiently expressing PI3K p110alpha subunit using Western blot of whole cell lysate, cell surface biotinylation Western blot and immunofluorescence, and radioiodide uptake assay, respectively. NIS localization was determined in a human breast cancer tissue microarray using immunohistochemical staining (IHC) and was correlated with pre-existing pAkt IHC data. Statistical analysis consisted of Student's t-test (in vitro studies) or Fisher's Exact Test (in vivo correlational studies).
In this study, we demonstrate that PI3K activation in MCF-7 human mammary carcinoma cells leads to expression of underglycosylated NIS lacking cell surface trafficking necessary for iodide uptake ability. PI3K activation also appears to interfere with cell surface trafficking of exogenous NIS as well as all-trans retinoic acid-induced endogenous NIS. A correlation between NIS expression and upregulation of PI3K signaling was found in a human breast cancer tissue microarray.
Thus, the PI3K pathway likely plays a major role in the discordance between NIS expression and iodide uptake in breast cancer patients. Further study is warranted to realize the application of NIS-mediated radioiodide ablation in breast cancer.
PMCID: PMC1963336  PMID: 17651485
5.  Sodium Iodide Symporter and the Radioiodine Treatment of Thyroid Carcinoma 
Since the specific accumulation of iodide in thyroid was found in 1915, radioiodine has been widely applied to diagnose and treat thyroid cancer. Iodide uptake occurs across the membrane of the thyroid follicular cells and cancer cells through an active transporter process mediated by the sodium iodide symporter (NIS). The NIS coding genes were cloned and identified from rat and human in 1996. Evaluation of the NIS gene and protein expression is critical in the management of thyroid cancer, and several approaches have been tried to increase NIS levels. Identification of the NIS gene has provided a means of expanding its role in the radionuclide gene therapy of nonthyroidal cancers as well as thyroid cancer. In this article, we explain the relationship between NIS expression and the treatment of thyroid carcinoma with I-131, and we include a review of the results of our experimental and clinical trials.
PMCID: PMC4042960  PMID: 24899932
Sodium iodide symporter (NIS); Thyroid cancer; I-131; Gene therapy
6.  Single photon emission computed tomography imaging for temporal dynamics of thyroidal and salivary radionuclide accumulation in 17-allyamino-17-demothoxygeldanamycin-treated thyroid cancer mouse model 
Endocrine-related cancer  2010;18(1):27-37.
Selective iodide uptake and prolonged iodine retention in the thyroid is the basis for targeted radioiodine therapy for thyroid cancer patients; however, salivary gland dysfunction is the most frequent nonthyroidal complications. In this study, we have used noninvasive single photon emission computed tomography functional imaging to quantify the temporal dynamics of thyroidal and salivary radioiodine accumulation in mice. At 60 min post radionuclide injection, radionuclide accumulation in the salivary gland was generally higher than that in thyroid due to much larger volume of the salivary gland. However, radionuclide accumulation per anatomic unit in the salivary gland was lower than that in thyroid and was comparable among mice of different age and gender. Differently, radionuclide accumulation per anatomic unit in thyroid varied greatly among mice. The extent of thyroidal radioiodine accumulation stimulated by a single dose of exogenous bovine TSH (bTSH) in triiodothyronine (T3)-supplemented mice was much less than that in mice received neither bTSH nor T3 (nontreated mice), suggesting that the duration of elevated serum TSH level is important to maximize thyroidal radioiodine accumulation. Furthermore, the extent and duration of radioiodine accumulation stimulated by bTSH was less in the thyroids of the thyroid-targeted RET/PTC1 (thyroglobulin (Tg)-PTC1) mice bearing thyroid tumors compared with the thyroids in wild-type (WT) mice. Finally, the effect of 17-allyamino-17-demothoxygeldanamycin on increasing thyroidal, but not salivary, radioiodine accumulation was validated in both WT mice and Tg-PTC1 preclinical thyroid cancer mouse model.
PMCID: PMC3902865  PMID: 20943721
7.  Construction of an MUC-1 promoter driven, conditionally replicating adenovirus that expresses the sodium iodide symporter for gene therapy of breast cancer 
The sodium iodide symporter (NIS) directs the uptake and concentration of iodide in thyroid cells. This in turn allows radioiodine imaging and therapy for thyroid cancer. To extend the use of NIS-mediated radioiodine therapy to other types of cancer, we successfully transferred and expressed the sodium-iodide symporter (NIS) gene in prostate, colon, and breast cancer cells both in vivo and in vitro by using non-replicating adenoviral vectors.
To improve virotherapy efficiency, we developed a conditionally replicating adenovirus (CRAd) in which the transcriptional cassette RSV promoter-human NIScDNA-bGH polyA was also inserted at the E3 region. The E1a gene is driven by the tumor-specific promoter MUC-1 in the CRAd Ad5AMUCH_RSV-NIS.
In vitro infection of the MUC-1-positive breast cell line T47D resulted in virus replication, cytolysis, and release of infective viral particles. Conversely, the MUC-1-negative breast cancer cell line MDA-MB-231 was refractory to the viral cytopathic effect and did not support viral replication. The data indicate that Ad5AMUCH_RSV-NIS activity is stringently restricted to MUC-1-positive cancer cells. Radioiodine uptake was readily measurable in T47 cells infected with Ad5AMUCH_RSV-NIS 24 hours after infection, thus confirming NIS expression before viral-induced cell death.
This construct may allow multimodal therapy, combining virotherapy with radioiodine therapy to be developed as a novel treatment for breast and other MUC1-overexpressing cancers.
PMCID: PMC2750114  PMID: 19635153
8.  A Probasin Promoter, Conditionally Replicating Adenovirus that Expresses the Sodium Iodide Symporter (NIS) for Radiovirotherapy of Prostate Cancer 
Gene therapy  2010;17(11):1325-1332.
The sodium iodide symporter (NIS) directs the uptake and concentration of iodide in thyroid cells. We have extended the use of NIS-mediated radioiodine therapy to other types of cancer, we transferred and expressed the sodium-iodide symporter (NIS) gene into prostate, colon, and breast cancer cells using adenoviral vectors. To improve vector efficiency we have developed a conditionally replicating adenovirus (CRAd) in which the E1a gene is driven by the prostate specific promoter, Probasin and the cassette RSV promoter-human NIScDNA-bGH polyA replaces the E3 region (CRAd Ad5PB_RSV-NIS). In vitro infection of the prostate cancer cell line LnCaP resulted in virus replication, cytolysis, and release of infective viral particles. Conversely, the prostate cancer cell line PC-3 (androgen receptor negative) and the pancreatic cancer cell line Panc-1 were refractory to the viral cytopathic effect and did not support viral replication. Radioiodine uptake was readily measurable in LnCaP cells infected with Ad5PB_RSV-NIS 24 hours post-infection, confirming NIS expression. In vivo, LnCaP tumor xenografts in nude mice injected intratumorally with Ad5PB_RSV_NIS CRAd expressed NIS actively as evidenced by 99Tc uptake and imaging. Administration of therapeutic 131I after virus injection significantly increased survival probability in mice carrying xenografted LnCaP tumors compared to virotherapy alone. The data indicate that Ad5PB_RSV_NIS replication is stringently restricted to androgen positive prostate cancer cells and results in effective NIS expression and uptake of radioiodine. This construct may allow multimodal therapy, combining cytolytic virotherapy with radioiodine treatment, to be developed as a novel treatment for prostate cancer.
PMCID: PMC2914818  PMID: 20428214
prostate cancer; probasin; adenovirus; sodium iodide symporter; virotherapy; gene therapy
9.  Sodium Iodide Symporter for Nuclear Molecular Imaging and Gene Therapy: From Bedside to Bench and Back 
Theranostics  2012;2(4):392-402.
Molecular imaging, defined as the visual representation, characterization and quantification of biological processes at the cellular and subcellular levels within intact living organisms, can be obtained by various imaging technologies, including nuclear imaging methods. Imaging of normal thyroid tissue and differentiated thyroid cancer, and treatment of thyroid cancer with radioiodine rely on the expression of the sodium iodide symporter (NIS) in these cells. NIS is an intrinsic membrane protein with 13 transmembrane domains and it takes up iodide into the cytosol from the extracellular fluid. By transferring NIS function to various cells via gene transfer, the cells can be visualized with gamma or positron emitting radioisotopes such as Tc-99m, I-123, I-131, I-124 and F-18 tetrafluoroborate, which are accumulated by NIS. They can also be treated with beta- or alpha-emitting radionuclides, such as I-131, Re-186, Re-188 and At-211, which are also accumulated by NIS. This article demonstrates the diagnostic and therapeutic applications of NIS as a radionuclide-based reporter gene for trafficking cells and a therapeutic gene for treating cancers.
PMCID: PMC3337731  PMID: 22539935
sodium iodide symporter; molecular imaging; radionuclide-based imaging; gene therapy; radionuclide.
10.  The Sodium Iodide Symporter (NIS): Regulation and Approaches to Targeting for Cancer Therapeutics 
Pharmacology & therapeutics  2012;135(3):355-370.
Expression of the sodium iodide symporter (NIS) is required for efficient iodide uptake in thyroid and lactating breast. Since most differentiated thyroid cancer expresses NIS, β-emitting radioactive iodide is routinely utilized to target remnant thyroid cancer and metastasis after total thyroidectomy. Stimulation of NIS expression by high levels of thyroid-stimulating hormone is necessary to achieve radioiodide uptake into thyroid cancer that is sufficient for therapy. The majority of breast cancer also expresses NIS, but at a low level insufficient for radioiodine therapy. Retinoic acid is a potent NIS inducer in some breast cancer cells. NIS is also modestly expressed in some non-thyroidal tissues, including salivary glands, lacrimal glands and stomach. Selective induction of iodide uptake is required to target tumors with radioiodide. Iodide uptake in mammalian cells is dependent on the level of NIS gene expression, but also successful translocation of NIS to the cell membrane and correct insertion. The regulatory mechanisms of NIS expression and membrane insertion are regulated by signal transduction pathways that differ by tissue. Differential regulation of NIS confers selective induction of functional NIS in thyroid cancer cells, as well as some breast cancer cells, leading to more efficient radioiodide therapy for thyroid cancer and a new strategy for breast cancer therapy. The potential for systemic radioiodide treatment of a range of other cancers, that do not express endogenous NIS, has been demonstrated in models with tumor-selective introduction of exogenous NIS.
PMCID: PMC3408573  PMID: 22750642
Sodium iodide symporter; thyroid cancer; breast cancer; Transcriptional regulation; Posttranslational regulation
11.  Micro–Single-Photon Emission Computed Tomography Image Acquisition and Quantification of Sodium-Iodide Symporter–Mediated Radionuclide Accumulation in Mouse Thyroid and Salivary Glands 
Thyroid  2012;22(6):617-624.
Micro–single-photon emission computed tomography (SPECT) provides a noninvasive way to evaluate the effects of genetic and/or pharmacological modulation on sodium-iodide symporter (NIS)–mediated radionuclide accumulation in mouse thyroid and salivary glands. However, parameters affecting image acquisition and analysis of mouse thyroids and salivary glands have not been thoroughly investigated. In this study, we investigated the effects of region-of-interest (ROI) selection, collimation, scan time, and imaging orbit on image acquisition and quantification of thyroidal and salivary radionuclide accumulation in mice.
The effects of data window minima and maxima on thyroidal and salivary ROI selection using a visual boundary method were examined in SPECT images acquired from mice injected with 123I NaI. The effects of collimation, scan time, and imaging orbit on counting linearity and signal intensity were investigated using phantoms filled with various activities of 123I NaI or Tc-99m pertechnetate. Spatial resolution of target organs in whole-animal images was compared between circular orbit with parallel-hole collimation and spiral orbit with five-pinhole collimation. Lastly, the inter-experimental variability of the same mouse scanned multiple times was compared with the intra-experimental variability among different mice scanned at the same time.
Thyroid ROI was separated from salivary glands by empirically increasing the data window maxima. Counting linearity within the range of 0.5–14.2 μCi was validated by phantom imaging using single- or multiple-pinhole collimators with circular or spiral imaging orbit. Scanning time could be shortened to 15 minutes per mouse without compromising counting linearity despite proportionally decreased signal intensity. Whole-animal imaging using a spiral orbit with five-pinhole collimators achieved a high spatial resolution and counting linearity. Finally, the extent of inter-experimental variability of NIS-mediated radionuclide accumulation in the thyroid and salivary glands by SPECT imaging in the same mouse was less than the magnitude of variability among the littermates.
The impacts of multiple variables and experimental designs on micro-SPECT imaging and quantification of radionuclide accumulation in mouse thyroid and salivary glands can be minimized. This platform will serve as an invaluable tool to screen for pharmacologic reagents that differentially modulate thyroidal and salivary radioiodine accumulation in preclinical mouse models.
PMCID: PMC3358108  PMID: 22540327
12.  Stromal Targeting of Sodium Iodide Symporter Using Mesenchymal Stem Cells Allows Enhanced Imaging and Therapy of Hepatocellular Carcinoma 
Human Gene Therapy  2013;24(3):306-316.
The tumor-homing property of mesenchymal stem cells (MSC) has lead to their use as delivery vehicles for therapeutic genes. The application of the sodium iodide symporter (NIS) as therapy gene allows noninvasive imaging of functional transgene expression by 123I-scintigraphy or PET-imaging, as well as therapeutic application of 131I or 188Re. Based on the critical role of the chemokine RANTES (regulated on activation, normal T-cell expressed and presumably secreted)/CCL5 secreted by MSCs in the course of tumor stroma recruitment, use of the RANTES/CCL5 promoter should allow tumor stroma-targeted expression of NIS after MSC-mediated delivery. Using a human hepatocellular cancer (HCC) xenograft mouse model (Huh7), we investigated distribution and tumor recruitment of RANTES-NIS-engineered MSCs after systemic injection by gamma camera imaging. 123I-scintigraphy revealed active MSC recruitment and CCL5 promoter activation in the tumor stroma of Huh7 xenografts (6.5% ID/g 123I, biological half-life: 3.7 hr, tumor-absorbed dose: 44.3 mGy/MBq). In comparison, 7% ID/g 188Re was accumulated in tumors with a biological half-life of 4.1 hr (tumor-absorbed dose: 128.7 mGy/MBq). Administration of a therapeutic dose of 131I or 188Re (55.5 MBq) in RANTES-NIS-MSC-treated mice resulted in a significant delay in tumor growth and improved survival without significant differences between 131I and 188Re. These data demonstrate successful stromal targeting of NIS in HCC tumors by selective recruitment of NIS-expressing MSCs and by use of the RANTES/CCL5 promoter. The resulting tumor-selective radionuclide accumulation was high enough for a therapeutic effect of 131I and 188Re opening the exciting prospect of NIS-mediated radionuclide therapy of metastatic cancer using genetically engineered MSCs as gene delivery vehicles.
Knoop and colleagues demonstrate selective recruitment of mesenchymal stem cells (MSCs) expressing sodium iodide symporter (NIS) under the control of the RANTES/CCL5 promoter (RANTES-NIS-MSCs) into xenografted tumors in a human hepatocellular cancer mouse model. Administration of a therapeutic dose of either 131I or 188Re radionuclide results in significantly delayed tumor growth and improves survival in mice treated with RANTES-NIS-MSCs.
PMCID: PMC3609610  PMID: 23402366
13.  Radioiodine Therapy in Differentiated Thyroid Cancer: The First Targeted Therapy in Oncology 
Endocrinology and Metabolism  2014;29(3):233-239.
Iodide uptake across the membranes of thyroid follicular cells and cancer cells occurs through an active transport process mediated by the sodium-iodide symporter (NIS). The rat and human NIS-coding genes were cloned and identified in 1996. Evaluation of NIS gene and protein expression is critical for the management of thyroid cancer, and several approaches to increase NIS levels have been tried. Identification of the NIS gene has provided a means of expanding its role in radionuclide therapy and molecular target-specific theragnosis (therapy and diagnosis using the same molecular target). In this article, we describe the relationship between NIS expression and the thyroid carcinoma treatment using I-131 and alternative therapeutic approaches.
PMCID: PMC4192819  PMID: 25309780
Differentiated thyroid cancer; Radioiodine therapy; Sodium-iodide symporter; Target-specific therapy; Theranosis
14.  Activation of the PI3 Kinase Pathway By Retinoic Acid Mediates Sodium/Iodide Symporter (NIS) Induction and Iodide Transport in MCF-7 Breast Cancer Cells 
Cancer research  2009;69(8):3443-3450.
Iodide uptake in the thyroid and breast is mediated by the sodium/iodide symporter (NIS). NIS activation is utilized for radioiodide imaging and therapeutic ablation of thyroid carcinoma. NIS is expressed in more than 70% of breast cancers, but at a level insufficient for radioiodine treatment (1). All-trans retinoic acid (tRA) induces NIS gene expression and functional iodide uptake in human breast cancer cell lines and mouse breast cancer models. tRA usually regulates gene expression by direct interaction of Retinoic Acid Receptor (RAR) with a target gene, but it can also acts through nongenomic pathways. We report a direct influence of tRA treatment on the PI3K signal transduction pathway that mediates tRA-induced NIS expression in MCF-7 breast cancer cells. MCF-7 cells express all three RAR isoforms, α, β and γ, and RXRα. We previously identified RARβ and RXRα as important for NIS induction by tRA. Treatment with LY294002, the PI3K inhibitor, or p85α “knockdown” with siRNA, abolished tRA-induced NIS expression. Immunoprecipitation experiments and GST pull-down assay demonstrated a direct interaction between RARβ2, RXRα and p85α. RA also induced rapid activation of Akt in MCF-7 cells. Treatment with an Akt inhibitor or Akt “knockdown” with siRNA, reduced NIS expression. These findings indicate that RA-induction of NIS in MCF-7 cells is mediated by rapid activation of the PI3K pathway and involves direct interaction with RAR and RXR. Defining these mechanisms should lead to methods to further enhance NIS expression, as well as retinoid targets that influence growth and differentiation of breast cancer.
PMCID: PMC2852426  PMID: 19351850
Sodium/iodide symporter; Retinoic acid; MCF-7; PI3K; RAR
15.  Targeting of tumor radioiodine therapy by expression of the sodium iodide symporter under control of the survivin promoter 
Huang, R | Zhao, Z | Ma, X | Li, S | Gong, R | Kuang, A
Cancer Gene Therapy  2010;18(2):144-152.
To test the feasibility of using the survivin promoter to induce specific expression of sodium/iodide symporter (NIS) in cancer cell lines and tumors for targeted use of radionuclide therapy, a recombinant adenovirus, Ad-SUR-NIS, that expressed the NIS gene under control of the survivin promoter was constructed. Ad-SUR-NIS mediating iodide uptake and cytotoxicity was performed in vitro. Scintigraphic, biodistribution and radioiodine therapy studies were performed in vivo. PC-3 (prostate); HepG2 (hepatoma) and A375 (melanoma) cancer cells all exhibited perchlorate-sensitive iodide uptake after infection with Ad-SUR-NIS, ∼50 times higher than that of negative control Ad-CMV-GFP-infected cells. No significant iodide uptake was observed in normal human dental pulp fibroblast (DPF) cells after infection with Ad-SUR-NIS. Clonogenic assays demonstrated that Ad-SUR-NIS-infected cancer cells were selectively killed by exposure to 131I. Ad-SUR-NIS-infected tumors show significant radioiodine accumulation (13.3±2.85% ID per g at 2 h post-injection), and the effective half-life was 3.1 h. Moreover, infection with Ad-SUR-NIS in combination with 131I suppressed tumor growth. These results indicate that expression of NIS under control of the survivin promoter can likely be used to achieve cancer-specific expression of NIS in many types of cancers. In combination with radioiodine therapy, this strategy is a possible method of cancer gene therapy.
PMCID: PMC3025317  PMID: 21037556
sodium iodide symporter; survivin promoter; radioiodine therapy
16.  Flavonoid Rutin Increases Thyroid Iodide Uptake in Rats 
PLoS ONE  2013;8(9):e73908.
Thyroid iodide uptake through the sodium-iodide symporter (NIS) is not only an essential step for thyroid hormones biosynthesis, but also fundamental for the diagnosis and treatment of different thyroid diseases. However, part of patients with thyroid cancer is refractory to radioiodine therapy, due to reduced ability to uptake iodide, which greatly reduces the chances of survival. Therefore, compounds able to increase thyroid iodide uptake are of great interest. It has been shown that some flavonoids are able to increase iodide uptake and NIS expression in vitro, however, data in vivo are lacking. Flavonoids are polyhydroxyphenolic compounds, found in vegetables present in human diet, and have been shown not only to modulate NIS, but also thyroperoxidase (TPO), the key enzyme in thyroid hormones biosynthesis, besides having antiproliferative effect in thyroid cancer cell lines. Therefore, we aimed to evaluate the effect of some flavonoids on thyroid iodide uptake in Wistar rats in vivo. Among the flavonoids tested, rutin was the only one able to increase thyroid iodide uptake, so we decided to evaluate the effect of this flavonoid on some aspects of thyroid hormones synthesis and metabolism. Rutin led to a slight reduction of serum T4 and T3 without changes in serum thyrotropin (TSH), and significantly increased hypothalamic, pituitary and brown adipose tissue type 2 deiodinase and decreased liver type 1 deiodinase activities. Moreover, rutin treatment increased thyroid iodide uptake probably due to the increment of NIS expression, which might be secondary to increased response to TSH, since TSH receptor expression was increased. Thus, rutin might be useful as an adjuvant in radioiodine therapy, since this flavonoid increased thyroid iodide uptake without greatly affecting thyroid function.
PMCID: PMC3762709  PMID: 24023911
17.  Manipulation of PBF/PTTG1IP Phosphorylation Status; a Potential New Therapeutic Strategy for Improving Radioiodine Uptake in Thyroid and Other Tumors 
The clinical effectiveness of ablative radioiodine treatment of thyroid tumors is limited by the availability of the sodium iodide symporter (NIS) at the plasma membrane (PM) for uptake of 131I. A significant proportion of well-differentiated thyroid tumors are unable to concentrate sufficient radioiodine for effective therapy, and in other tumor models such as breast tumors, where radioiodine uptake would be an attractive therapeutic option, uptake is insufficient.
Pituitary tumor–transforming gene-binding factor (PBF; PTTG1IP) is overexpressed in multiple cancers and significantly decreases NIS expression at the PM. The goal of this study was to identify a method by which PBF repression of NIS may be overcome in human tumors.
Here, we identify PBF as a tyrosine phosphoprotein that specifically binds the proto-oncogene tyrosine protein kinase Src in mass spectrometry, glutathione S-transferase pulldown and coimmunoprecipitation assays. Src induction leads to phosphorylation at PBF residue Y174. Abrogation of this residue results in PM retention and a markedly reduced ability to bind NIS. The Src inhibitor PP1 inhibits PBF phosphorylation in multiple cell lines in vitro, including human primary thyroid cells. Of direct clinical importance to the treatment of thyroid cancer, PP1 stimulates iodide uptake by transfected NIS in TPC1 thyroid carcinoma cells and entirely overcomes PBF repression of iodide uptake in human primary thyroid cells.
We propose that targeting PBF phosphorylation at residue Y174 via tyrosine kinase inhibitors may be a novel therapeutic strategy to enhance the efficacy of ablative radioiodine treatment in thyroid and other endocrine and endocrine-related tumors.
PMCID: PMC4207948  PMID: 23678037
18.  Codon-optimized Human Sodium Iodide Symporter (opt-hNIS) as a Sensitive Reporter and Efficient Therapeutic Gene 
Theranostics  2015;5(1):86-96.
To generate a more efficient in vivo reporter and therapeutic gene, we optimized the coding sequence of the human sodium/iodide symporter (NIS) gene by replacing NIS DNA codons from wild type to new codons having the highest usage in human gene translation. The Codon Adaptation Index (CAI), representing the number of codons effective for human expression, was much improved (0.79 for hNIS, 0.97 for opt-hNIS). Both wild-type (hNIS) and optimized human NIS (opt-hNIS) were cloned into pcDNA3.1 and pMSCV vectors for transfection. Various cancer cell lines such as thyroid (TPC-1, FRO, B-CPAP), breast (MDA-MB-231), liver (Hep3B), cervical (HeLa), and glioma (U87MG) were transfected with pcDNA3.1/hNIS or pcDNA3.1/opt-hNIS. 125I uptake by opt-hNIS-expressing cells was 1.6 ~ 2.1 times higher than uptake by wild-type hNIS-expressing cells. Stable cell lines were also established by retroviral transduction using pMSCV/hNIS or pMSCV/opt-hNIS, revealing higher NIS protein levels and 125I uptake in opt-hNIS-expressing cells than in hNIS-expressing cells. Moreover, scintigraphic images from cell plates and mouse xenografts showed stronger signals from opt-hNIS-expressing cells than hNIS-expressing cells, and radioactivity uptake by opt-hNIS-expressing tumors was 2.3-fold greater than that by hNIS-expressing tumors. To test the efficacy of radioiodine therapy, mouse xenograft models were established with cancer cells expressing hNIS or opt-hNIS. 131I treatment reduced tumor sizes of hNIS- and opt-hNIS-expressing tumors to 0.57- and 0.27- fold, respectively, compared to their sizes before therapy, suggesting an improved therapeutic effect of opt-hNIS. In summary, this study shows that codon optimization strongly increases hNIS protein levels and radioiodine uptake, thus supporting opt-hNIS as a more sensitive reporter and efficient therapeutic gene.
PMCID: PMC4265750  PMID: 25553100
human sodium iodide symporter (hNIS); radioiodine therapy; codon optimization; reporter; gene therapy.
19.  Modulation of sodium iodide symporter expression and function by LY294002, Akti-1/2 and Rapamycin in thyroid cells 
Endocrine-related cancer  2012;19(3):291-304.
The selective increase of Na+/I− symporter (NIS)-mediated active iodide uptake in thyroid cells allows the use of radioiodine I131 for diagnosis and targeted treatment of thyroid cancers. However, NIS-mediated radioiodine accumulation is often reduced in thyroid cancers due to decreased NIS expression/function. As PI3K signaling is overactivated in many thyroid tumors, we investigated the effects of inhibitors for PI3K, Akt, or mTORC1 as well as their interplay on NIS modulation in thyroid cells under chronic TSH stimulation. PI3K inhibition by LY294002 increased NIS-mediated radioiodide uptake (RAIU) mainly through upregulation of NIS expression, however, mTORC1 inhibition by Rapamycin did not increase NIS-mediated RAIU despite increased NIS protein levels. In comparison, Akt inhibition by Akti-1/2 did not increase NIS protein levels, yet markedly increased NIS-mediated RAIU by decreasing iodide efflux rate and increasing iodide transport rate and iodide affinity of NIS. The effects of Akti-1/2 on NIS-mediated RAIU are not detected in nonthyroid cells, implying that Akti-1/2 or its derivatives may represent potential pharmacological reagents to selectively increase thyroidal radioiodine accumulation and therapeutic efficacy.
PMCID: PMC3736852  PMID: 22355179
20.  Feasibility of Eradication of Breast Cancer Cells Remaining in Post-Lumpectomy Cavity and Draining Lymph Nodes Following Intracavitary Injection of Radioactive Immunoliposomes 
Molecular pharmaceutics  2012;9(9):2513-2522.
Most diagnosed early stage breast cancer cases are treated by lumpectomy and adjuvant radiation therapy, which significantly decreases the locoregional recurrence but causes inevitable toxicity to normal tissue. By using a technique of preparing liposomes carrying technetium-99m (99mTc), rhenium-186 (186Re), or rhenium-188 (188Re) radionuclides, as well as chemotherapeutic agents, or their combination, for cancer therapy with real time image-monitoring of pharmacokinetics and prediction of therapy effect, this study investigated the potential of a novel targeted focal radiotherapy with low systemic toxicity using radioactive immunoliposomes to treat both the surgical cavity and draining lymph nodes in a rat breast cancer xenograft positive surgical margin model. Immunoliposomes modified with either panitumumab (anti-EGFR), or bevacizumab (anti-VEGF) were remote loaded with 99mTc diagnostic radionuclide, and injected into the surgical cavity of female nude rats with positive margins post lumpectomy. Locoregional retention and systemic distribution of 99mTc-immunoliposomes were investigated by nuclear imaging, stereofluorescent microscopic imaging and gamma counting. Histopathological examination of excised draining lymph nodes was performed. The locoregional retention of 99mTc-immunoliposomes in each animal was influenced by the physiological characteristics of surgical site of individual animals. Panitumumab- and bevacizumab-liposome groups had higher intracavitary retention compared with the control liposome groups. Draining lymph node uptake was influenced by both the intracavitary radioactivity retention level and metastasis status. Panitumumab-liposome group had higher accumulation on the residual tumor surface and in the metastatic lymph nodes. Radioactive liposomes that were cleared from the cavity were metabolized quickly and accumulated at low levels in vital organs. Therapeutic radionuclide-carrying specifically targeted panitumumab- and bevacizumab- liposomes have increased potential compared to non-antibody targeted liposomes for post-lumpectomy focal therapy to eradicate remaining breast cancer cells inside the cavity and draining lymph nodes with low systemic toxicity.
PMCID: PMC3444252  PMID: 22894603
breast cancer; targeted therapy; immunoliposomes; intracavitary injection; metastasis
21.  Vascular Endothelial Growth Factor Mediates Intracrine Survival in Human Breast Carcinoma Cells through Internally Expressed VEGFR1/FLT1 
PLoS Medicine  2007;4(6):e186.
While vascular endothelial growth factor (VEGF) expression in breast tumors has been correlated with a poor outcome in the pathogenesis of breast cancer, the expression, localization, and function of VEGF receptors VEGFR1 (also known as FLT1) and VEGFR2 (also known as KDR or FLK1), as well as neuropilin 1 (NRP1), in breast cancer are controversial.
Methods and Findings
We investigated the expression and function of VEGF and VEGF receptors in breast cancer cells. We observed that VEGFR1 expression was abundant, VEGFR2 expression was low, and NRP1 expression was variable. MDA-MB-231 and MCF-7 breast cancer cells, transfected with antisense VEGF cDNA or with siVEGF (VEGF-targeted small interfering RNA), showed a significant reduction in VEGF expression and increased apoptosis as compared to the control cells. Additionally, specifically targeted knockdown of VEGFR1 expression by siRNA (siVEGFR1) significantly decreased the survival of breast cancer cells through down-regulation of protein kinase B (AKT) phosphorylation, while targeted knockdown of VEGFR2 or NRP1 expression had no effect on the survival of these cancer cells. Since a VEGFR1-specific ligand, placenta growth factor (PGF), did not, as expected, inhibit the breast cancer cell apoptosis induced by siVEGF, and since VEGFR1 antibody also had no effects on the survival of these cells, we examined VEGFR1 localization. VEGFR1 was predominantly expressed internally in MDA-MB-231 and MCF-7 breast cancer cells. Specifically, VEGFR1 was found to be colocalized with lamin A/C and was expressed mainly in the nuclear envelope in breast cancer cell lines and primary breast cancer tumors. Breast cancer cells treated with siVEGFR1 showed significantly decreased VEGFR1 expression levels and a lack of VEGFR1 expression in the nuclear envelope.
This study provides, to our knowledge for the first time, evidence of a unique survival system in breast cancer cells by which VEGF can act as an internal autocrine (intracrine) survival factor through its binding to VEGFR1. These results may lead to an improved strategy for tumor therapy based on the inhibition of angiogenesis.
Shalom Avraham and colleagues' study provides evidence of a survival system in breast cancer cells by which VEGF acts as an internal autocrine survival factor through its binding to VEGFR1.
Editors' Summary
One woman in eight will develop breast cancer during her lifetime. Most of these women live for many years after their diagnosis and many are cured of their cancer. However, sometimes the cancer grows inexorably and spreads (metastasizes) around the body despite the efforts of oncologists. Characteristics of the tumor known as prognostic factors can indicate whether this spreading is likely to happen. Large tumors that have metastasized have a poorer prognosis than small tumors that are confined to the breast. The expression of specific proteins within the tumor also provides prognostic information. One protein whose expression is associated with a poor prognosis is vascular endothelial growth factor (VEGF). VEGF stimulates angiogenesis—the growth of new blood vessels. Small tumors get the nutrients needed for their growth from existing blood vessels but large tumors need to organize their own blood supply. They do this, in part, by secreting VEGF. This compound binds to proteins (receptors) on the surface of endothelial cells (the cells lining blood vessels), which then send a signal into the cell instructing it to make new blood vessels. Angiogenesis inhibitors, including molecules that block the activity of VEGF receptors, are being developed for the treatment of cancer.
Why Was This Study Done?
Some breast cancer cell lines (cells isolated from breast cancers and grown in the laboratory) make VEGF and VEGF receptors (VEGFR1, VEGFR2, and neuropilin 1 [NRP1]). But, although some studies have reported an association between VEGFR1 expression in breast tumors and a poor prognosis, other studies have found no expression of VEGFR1 in breast tumors. Consequently, the role of VEGF receptors in breast cancer is unclear. In this study, the researchers analyzed the expression and function of VEGF and its receptors in breast cancer cells to investigate whether and how VEGF helps these cells to survive.
What Did the Researchers Do and Find?
The researchers first examined the expression of VEGF receptors in several human breast cancer cell lines. All of them expressed VEGFR1, some expressed NRP1, but VEGFR2 expression was universally low. They then investigated the function of VEGF and its receptors in two human breast cancer cell lines (MDA-MB-231 and MCF-7). In both cell lines, blocking the expression of VEGF or of VEGFR1 (but not of the other two receptors) reduced cell survival by stimulating a specific process of cell death called apoptosis. Unexpectedly, adding VEGF to the cultures did not reverse the effect of blocking VEGF expression, a result that suggests that VEGF and VEGFR1 do not affect breast cancer cell survival by acting at the cell surface. Accordingly, when the researchers examined where VEGFR1 occurs in the cell, they found it on the membranes around the nucleus of the breast cancer cell lines and not on the cell surface; several primary breast tumors and normal breast tissue had the same localization pattern. Finally, the researchers showed that inhibitors of VEGF action that act at the cell surface did not affect the survival of the breast cancer cell lines.
What Do These Findings Mean?
These findings suggest that VEGF helps breast cancer cells to survive in a unique way: by binding to VEGFR1 inside the cell. In other words, whereas VEGF normally acts as a paracrine growth factor (it is released by one cell and affects another cell), in breast cancer cells it might act as an internal autocrine (intracrine) survival factor, a factor that affects the cells in which it is produced. These findings need confirming in more cell lines and in primary breast cancers but could have important implications for the treatment of breast cancer. Inhibitors of VEGF and VEGFR1 that act inside the cell (small molecule drugs) might block breast cancer growth more effectively than inhibitors that act at the cell surface (for example, proteins that bind to the receptor), because internally acting inhibitors might both kill the tumor directly and have antiangiogenic effects, whereas externally acting inhibitors could only have the second effect.
Additional Information.
Please access these Web sites via the online version of this summary at
US National Cancer Institute information for patients and professionals on breast cancer (in English and Spanish) and on angiogenesis (in English and Spanish)
MedlinePlus Encyclopedia information for patients on breast cancer (in English and Spanish)
CancerQuest, information from Emory University on cancer biology and on angiogenesis and angiogenesis inhibitors (in several languages)
Wikipedia pages on VEGF (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC1885450  PMID: 17550303
22.  Experimental Study of Nasopharyngeal Carcinoma Radionuclide Imaging and Therapy Using Transferred Human Sodium/Iodide Symporter Gene 
PLoS ONE  2015;10(1):e0117053.
The aim of this study was to design a method of radionuclide for imaging and therapy of nasopharyngeal carcinoma (NPC) using the transferred human sodium/iodide symporter (hNIS) gene.
A stable NPC cell line expressing hNIS was established (CNE-2-hNIS). After 131I treatment, we detected proliferation and apoptosis of NPC cells, both in vitro and vivo. In vivo, the radioactivity of different organs of nude mice was counted and 99mTc imaging using SPECT was performed. The apparent diffusion coefficient (ADC) value changes of tumor xenografts were observed by diffusion-weighted magnetic resonance imaging (DW-MRI) within 6–24 days of 131I treatment. The correlation of ADC changes with apoptosis and proliferation was investigated. Post-treatment expression levels of P53, Bax, Bcl-2, Caspase-3, and Survivin proteins were detected by western blotting.
131I uptake was higher in CNE-2-hNIS than in CNE-2 cells. The proliferation and apoptosis rate decreased and increased respectively both in vitro and vivo in the experimental group after 131I treatment. The experimental group tumors accumulated 99mTc in vivo, leading to a good visualization by SPECT. DW-MRI showed that ADC values increased in the experimental group 6 days after treatment, while ADC values were positively and negatively correlated with the apoptotic and Ki-67 proliferation indices, respectively. After treatment, CNE-2-hNIS cells up-regulated the expression of P53 and Survivin proteins and activated Caspase-3, and down-regulated the expression of Bcl-2 proteins.
The radionuclide imaging and therapy technique for NPC hNIS-transfected cell lines can provide a new therapy strategy for monitoring and treatment of NPC.
PMCID: PMC4304840  PMID: 25615643
23.  Vaccinia virus GLV-1h153 is a novel agent for detection and effective local control of positive surgical margins for breast cancer 
Surgery is currently the definitive treatment for early-stage breast cancer. However, the rate of positive surgical margins remains unacceptably high. The human sodium iodide symporter (hNIS) is a naturally occurring protein in human thyroid tissue, which enables cells to concentrate radionuclides. The hNIS has been exploited to image and treat thyroid cancer. We therefore investigated the potential of a novel oncolytic vaccinia virus GLV1h-153 engineered to express the hNIS gene for identifying positive surgical margins after tumor resection via positron emission tomography (PET). Furthermore, we studied its role as an adjuvant therapeutic agent in achieving local control of remaining tumors in an orthotopic breast cancer model.
GLV-1h153, a replication-competent vaccinia virus, was tested against breast cancer cell lines at various multiplicities of infection (MOIs). Cytotoxicity and viral replication were determined. Mammary fat pad tumors were generated in athymic nude mice. To determine the utility of GLV-1h153 in identifying positive surgical margins, 90% of the mammary fat pad tumors were surgically resected and subsequently injected with GLV-1h153 or phosphate buffered saline (PBS) in the surgical wound. Serial Focus 120 microPET images were obtained six hours post-tail vein injection of approximately 600 μCi of 124I-iodide.
Viral infectivity, measured by green fluorescent protein (GFP) expression, was time- and concentration-dependent. All cell lines showed less than 10% of cell survival five days after treatment at an MOI of 5. GLV-1h153 replicated efficiently in all cell lines with a peak titer of 27 million viral plaque forming units (PFU) ( <10,000-fold increase from the initial viral dose ) by Day 4. Administration of GLV-1h153 into the surgical wound allowed positive surgical margins to be identified via PET scanning. In vivo, mean volume of infected surgically resected residual tumors four weeks after treatment was 14 mm3 versus 168 mm3 in untreated controls (P < 0.05).
This is the first study to our knowledge to demonstrate a novel vaccinia virus carrying hNIS as an imaging tool in identifying positive surgical margins of breast cancers in an orthotopic murine model. Moreover, our results suggest that GLV-1h153 is a promising therapeutic agent in achieving local control for positive surgical margins in resected breast tumors.
PMCID: PMC3672815  PMID: 23506710
24.  Selumetinib-Enhanced Radioiodine Uptake in Advanced Thyroid Cancer 
The New England journal of medicine  2013;368(7):623-632.
Metastatic thyroid cancers that are refractory to radioiodine (iodine-131) are associated with a poor prognosis. In mouse models of thyroid cancer, selective mitogen-activated protein kinase (MAPK) pathway antagonists increase the expression of the sodium–iodide symporter and uptake of iodine. Their effects in humans are not known.
We conducted a study to determine whether the MAPK kinase (MEK) 1 and MEK2 inhibitor selumetinib (AZD6244, ARRY-142886) could reverse refractoriness to radioiodine in patients with metastatic thyroid cancer. After stimulation with thyrotropin alfa, dosimetry with iodine-124 positron-emission tomography (PET) was performed before and 4 weeks after treatment with selumetinib (75 mg twice daily). If the second iodine-124 PET study indicated that a dose of iodine-131 of 2000 cGy or more could be delivered to the metastatic lesion or lesions, therapeutic radioiodine was administered while the patient was receiving selumetinib.
Of 24 patients screened for the study, 20 could be evaluated. The median age was 61 years (range, 44 to 77), and 11 patients were men. Nine patients had tumors with BRAF mutations, and 5 patients had tumors with mutations of NRAS. Selumetinib increased the uptake of iodine-124 in 12 of the 20 patients (4 of 9 patients with BRAF mutations and 5 of 5 patients with NRAS mutations). Eight of these 12 patients reached the dosimetry threshold for radioiodine therapy, including all 5 patients with NRAS mutations. Of the 8 patients treated with radioiodine, 5 had confirmed partial responses and 3 had stable disease; all patients had decreases in serum thyroglobulin levels (mean reduction, 89%). No toxic effects of grade 3 or higher attributable by the investigators to selumetinib were observed. One patient received a diagnosis of myelodysplastic syndrome more than 51 weeks after radioiodine treatment, with progression to acute leukemia.
Selumetinib produces clinically meaningful increases in iodine uptake and retention in a subgroup of patients with thyroid cancer that is refractory to radioiodine; the effectiveness may be greater in patients with RAS-mutant disease. (Funded by the American Thyroid Association and others; number, NCT00970359.)
PMCID: PMC3615415  PMID: 23406027
25.  The Sodium Iodide Symporter (NIS) as an Imaging Reporter for Gene, Viral, and Cell-based Therapies 
Current Gene Therapy  2012;12(1):33-47.
Preclinical and clinical tomographic imaging systems increasingly are being utilized for non-invasive imaging of reporter gene products to reveal the distribution of molecular therapeutics within living subjects. Reporter gene and probe combinations can be employed to monitor vectors for gene, viral, and cell-based therapies. There are several reporter systems available; however, those employing radionuclides for positron emission tomography (PET) or singlephoton emission computed tomography (SPECT) offer the highest sensitivity and the greatest promise for deep tissue imaging in humans. Within the category of radionuclide reporters, the thyroidal sodium iodide symporter (NIS) has emerged as one of the most promising for preclinical and translational research. NIS has been incorporated into a remarkable variety of viral and non-viral vectors in which its functionality is conveniently determined by in vitro iodide uptake assays prior to live animal imaging. This review on the NIS reporter will focus on 1) differences between endogenous NIS and heterologously-expressed NIS, 2) qualitative or comparative use of NIS as an imaging reporter in preclinical and translational gene therapy, oncolytic viral therapy, and cell trafficking research, and 3) use of NIS as an absolute quantitative reporter.
PMCID: PMC3367315  PMID: 22263922
Gene therapy; imaging; NIS; oncolytic virus; PET; reporter gene; SPECT; sodium iodide symporter.

Results 1-25 (1531731)