PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (881306)

Clipboard (0)
None

Related Articles

1.  Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis 
Journal of Clinical Investigation  2006;116(12):3183-3194.
Bronchus-associated lymphoid tissue (BALT) was originally described as a mucosal lymphoid organ in the lungs of some species. However, while the lungs of naive mice and humans typically lack BALT, pulmonary infection in mice leads to the development of inducible BALT (iBALT), which is located in peribronchial, perivascular, and interstitial areas throughout the lung. Here we investigated whether iBALT forms in patients with a variety of interstitial lung diseases. We show that while iBALT can be found in the lungs of patients suffering from multiple diseases, well-developed iBALT is most prevalent in patients with pulmonary complications of RA and Sjögren syndrome. In these patients, iBALT consisted of numerous B cell follicles containing germinal centers and follicular dendritic cells. A loosely defined T cell area surrounded the B cell follicles while lymphatics and high endothelial venules were found at the B cell/T cell interface. Increased expression of lymphoid-organizing chemokines, such as CXCL13 and CCL21, as well as molecules involved in the immunopathology of RA, such as B cell–activating factor of the TNF family (BAFF), ICOS ligand, and lymphotoxin, correlated with more well-developed iBALT. Finally, the presence of iBALT correlated with tissue damage in the lungs of RA patients, suggesting that iBALT participates in local RA pathogenesis.
doi:10.1172/JCI28756
PMCID: PMC1678820  PMID: 17143328
2.  The development of inducible Bronchus Associated Lymphoid Tissue (iBALT) is dependent on IL-17 
Nature immunology  2011;12(7):639-646.
Ectopic or tertiary lymphoid tissues, such as inducible bronchus-associated lymphoid tissue (iBALT), form in non-lymphoid organs after local infection or inflammation. However, the initial events that promote this process remain enigmatic. Here we show that iBALT formed in murine lungs as a consequence of pulmonary inflammation during the neonatal period. Although CD4+CD3− lymphoid tissue inducer (LTi) cells were found in neonatal lungs, particularly after inflammation, iBALT was formed in mice lacking LTi cells. Instead, we found that interleukin 17 (IL-17) produced by CD4+ T cells was essential for iBALT formation. IL-17 acted by promoting the lymphotoxin-α-independent expression of CXCL13, which was important for follicle formation. These results suggest that IL-17-producing T cells are critical for the development of ectopic lymphoid tissues.
doi:10.1038/ni.2053
PMCID: PMC3520063  PMID: 21666689
3.  Follicular dendritic cells, conduits, lymphatic vessels, and high endothelial venules in tertiary lymphoid organs: Parallels with lymph node stroma 
In this communication, the contribution of stromal, or non-hematopoietic, cells to the structure and function of lymph nodes (LNs), as canonical secondary lymphoid organs (SLOs), is compared to that of tertiary lymphoid tissue or organs (TLOs), also known as ectopic lymphoid tissues. TLOs can arise in non-lymphoid organs during chronic inflammation, as a result of autoimmune responses, graft rejection, atherosclerosis, microbial infection, and cancer. The stromal components found in SLOs including follicular dendritic cells, fibroblast reticular cells, lymphatic vessels, and high endothelial venules and possibly conduits are present in TLOs; their molecular regulation mimics that of LNs. Advances in visualization techniques and the development of transgenic mice that permit in vivo real time imaging of these structures will facilitate elucidation of their precise functions in the context of chronic inflammation. A clearer understanding of the inflammatory signals that drive non-lymphoid stromal cells to reorganize into TLO should allow the design of therapeutic interventions to impede the progression of autoimmune activity, or alternatively, to enhance anti-tumor responses.
doi:10.3389/fimmu.2012.00350
PMCID: PMC3515885  PMID: 23230435
autoimmunity; chronic inflammation; cancer; secondary lymphoid organ; tertiary lymphoid tissue
4.  Control of Dichotomic Innate and Adaptive Immune Responses by Artery Tertiary Lymphoid Organs in Atherosclerosis 
Tertiary lymphoid organs (TLOs) emerge in tissues in response to non-resolving inflammation such as chronic infection, graft rejection, and autoimmune disease. We identified artery TLOs (ATLOs) in the adventitia adjacent to atherosclerotic plaques of aged hyperlipidemic ApoE−/− mice. ATLOs are structured into T cell areas harboring conventional dendritic cells and monocyte-derived DCs; B cell follicles containing follicular dendritic cells within activated germinal centers; and peripheral niches of plasma cells. ATLOs also show extensive neoangiogenesis, aberrant lymphangiogenesis, and high endothelial venule (HEV) neogenesis. Newly formed conduit networks connect the external lamina of the artery with HEVs in T cell areas. ATLOs recruit and generate lymphocyte subsets with opposing activities including activated CD4+ and CD8+ effector T cells, natural and induced CD4+ T regulatory (nTregs; iTregs) cells as well as B-1 and B-2 cells at different stages of differentiation. These data indicate that ATLOs organize dichotomic innate and adaptive immune responses in atherosclerosis. In this review we discuss the novel concept that dichotomic immune responses toward atherosclerosis-specific antigens are carried out by ATLOs in the adventitia of the arterial wall and that malfunction of the tolerogenic arm of ATLO immunity triggers transition from silent autoimmune reactivity to clinically overt disease.
doi:10.3389/fphys.2012.00226
PMCID: PMC3390894  PMID: 22783198
adaptive immune responses; artery tertiary lymphoid organs; atherosclerosis; autoimmunity; inflammation; stable plaque; vulnerable plaque
5.  CXCL13 Blockade Disrupts B Lymphocyte Organization in Tertiary Lymphoid Structures without Altering B Cell Receptor Bias or Preventing Diabetes in Nonobese Diabetic Mice 
Journal of immunology (Baltimore, Md. : 1950)  2010;185(3):10.4049/jimmunol.0903710.
Lymphocytes that invade nonlymphoid tissues often organize into follicle-like structures known as tertiary lymphoid organs (TLOs). These structures resemble those found in spleen or lymph nodes, but their function is unknown. TLOs are recognized in many autoimmune diseases, including the NOD mouse model of type 1 diabetes. In some cases, TLOs have been associated with the B lymphocyte chemoattractant, CXCL13. Studies presented in this article show that CXCL13 is present in inflamed islets of NOD mice. Ab blockade of this chemokine unraveled B lymphocyte organization in islet TLOs, without reducing their proportion in the islets. These chaotic milieus contained B lymphocytes with the same distinct repertoire of B cell receptors as those found in mice with well-organized structures. Somatic hypermutation, associated with T–B interactions, was not impaired in these disorganized insulitis lesions. Finally, loss of B lymphocyte organization in islets did not provide disease protection. Thus, B lymphocytes infiltrating islets in NOD mice do not require the morphology of secondary lymphoid tissues to support their role in disease.
doi:10.4049/jimmunol.0903710
PMCID: PMC3824617  PMID: 20574003
6.  Chemokine Binding Protein M3 of Murine Gammaherpesvirus 68 Modulates the Host Response to Infection in a Natural Host 
PLoS Pathogens  2011;7(3):e1001321.
Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an attractive model of γ-herpesvirus infection. Surprisingly, however, ablation of expression of MHV-68 M3, a secreted protein with broad chemokine-binding properties in vitro, has no discernable effect during experimental infection via the respiratory tract. Here we demonstrate that M3 indeed contributes significantly to MHV-68 infection, but only in the context of a natural host, the wood mouse (Apodemus sylvaticus). Specifically, M3 was essential for two features unique to the wood mouse: virus-dependent inducible bronchus-associated lymphoid tissue (iBALT) in the lung and highly organized secondary follicles in the spleen, both predominant sites of latency in these organs. Consequently, lack of M3 resulted in substantially reduced latency in the spleen and lung. In the absence of M3, splenic germinal centers appeared as previously described for MHV-68-infected laboratory strains of mice, further evidence that M3 is not fully functional in the established model host. Finally, analyses of M3's influence on chemokine and cytokine levels within the lungs of infected wood mice were consistent with the known chemokine-binding profile of M3, and revealed additional influences that provide further insight into its role in MHV-68 biology.
Author Summary
Infection of inbred strains of laboratory mice (Mus musculus) with the rodent γ-herpesvirus MHV-68 continues to be developed as an attractive experimental model of γ-herpesvirus infection. In this regard, the MHV-68 protein M3 has been shown to selectively bind and inhibit chemokines involved in the antiviral immune response, a property expected to contribute significantly to virus infection and host colonization. However, inactivation of the M3 gene has no discernable consequence on infection in this animal host. Prompted by recent evidence that natural hosts of MHV-68 are members of the genus Apodemus, and that MHV-68 infection in laboratory-bred wood mice (Apodemus sylvaticus) differs significantly from that which has been described in standard strains of laboratory mice, we addressed whether M3 functions in a host-specific manner. Indeed, we find that M3 is responsible for host-specific differences observed for MHV-68 infection, that its influence on infection within wood mice is consistent with its chemokine-binding properties, and that in its absence, persistent latent infection - a hallmark of herpesvirus infections - is attenuated. This highlights the importance of host selection when investigating specific roles of pathogenesis-related viral genes, and advances our understanding of this model and its potential application to human γ-herpesvirus infections.
doi:10.1371/journal.ppat.1001321
PMCID: PMC3060169  PMID: 21445235
7.  Activation-Induced Cytidine Deaminase Deficiency Causes Organ-Specific Autoimmune Disease 
PLoS ONE  2008;3(8):e3033.
Activation-induced cytidine deaminase (AID) expressed by germinal center B cells is a central regulator of somatic hypermutation (SHM) and class switch recombination (CSR). Humans with AID mutations develop not only the autosomal recessive form of hyper-IgM syndrome (HIGM2) associated with B cell hyperplasia, but also autoimmune disorders by unknown mechanisms. We report here that AID−/− mice spontaneously develop tertiary lymphoid organs (TLOs) in non-lymphoid tissues including the stomach at around 6 months of age. At a later stage, AID−/− mice develop a severe gastritis characterized by loss of gastric glands and epithelial hyperplasia. The disease development was not attenuated even under germ-free (GF) conditions. Gastric autoantigen -specific serum IgM was elevated in AID−/− mice, and the serum levels correlated with the gastritis pathological score. Adoptive transfer experiments suggest that autoimmune CD4+ T cells mediate gastritis development as terminal effector cells. These results suggest that abnormal B-cell expansion due to AID deficiency can drive B-cell autoimmunity, and in turn promote TLO formation, which ultimately leads to the propagation of organ-specific autoimmune effector CD4+ T cells. Thus, AID plays an important role in the containment of autoimmune diseases by negative regulation of autoreactive B cells.
doi:10.1371/journal.pone.0003033
PMCID: PMC2515643  PMID: 18716662
8.  Therapeutic Use of Dendritic Cells to Promote the Extranodal Priming of Anti-Tumor Immunity 
Ectopic lymphoid tissue, also known as tertiary lymphoid organs (TLO) develop adaptively within sites of chronic tissue inflammation, thereby allowing the host to efficiently crossprime specific immune effector cells within sites of disease. Recent evidence suggests that the presence of TLO in the tumor microenvironment (TME) predicts better overall survival. We will discuss the relevance of extranodal T cell priming within the TME as a means to effectively promote anti-tumor immunity and the strategic use of dendritic cell (DC)-based therapies to reinforce this clinically preferred process in the cancer-bearing host.
doi:10.3389/fimmu.2013.00388
PMCID: PMC3843121  PMID: 24348473
dendritic cells; extranodal; cross-priming; therapy; cancer
9.  Induced bronchus-associated lymphoid tissue serves as a general priming site for T cells and is maintained by dendritic cells 
The Journal of Experimental Medicine  2009;206(12):2593-2601.
Mucosal vaccination via the respiratory tract can elicit protective immunity in animal infection models, but the underlying mechanisms are still poorly understood. We show that a single intranasal application of the replication-deficient modified vaccinia virus Ankara, which is widely used as a recombinant vaccination vector, results in prominent induction of bronchus-associated lymphoid tissue (BALT). Although initial peribronchiolar infiltrations, characterized by the presence of dendritic cells (DCs) and few lymphocytes, can be found 4 d after virus application, organized lymphoid structures with segregated B and T cell zones are first observed at day 8. After intratracheal application, in vitro–differentiated, antigen-loaded DCs rapidly migrate into preformed BALT and efficiently activate antigen-specific T cells, as revealed by two-photon microscopy. Furthermore, the lung-specific depletion of DCs in mice that express the diphtheria toxin receptor under the control of the CD11c promoter interferes with BALT maintenance. Collectively, these data identify BALT as tertiary lymphoid structures supporting the efficient priming of T cell responses directed against unrelated airborne antigens while crucially requiring DCs for its sustained presence.
doi:10.1084/jem.20091472
PMCID: PMC2806625  PMID: 19917776
10.  Plasmacytoid Dendritic Cells Play a Role for Effective Innate Immune Responses during Chlamydia pneumoniae Infection in Mice 
PLoS ONE  2012;7(10):e48655.
Plasmacytoid dendritic cells (pDCs) are known for their robust antiviral response and their pro-tolerance effects towards allergic diseases and tissue engraftments. However, little is known about the role pDCs may play during a bacterial infection, including pulmonary Chlamydia pneumoniae (CP). In this study, we investigated the role of pDCs during pulmonary CP infection. Our results revealed that depletion of pDCs during acute CP infection in mice results in delayed and reduced lung inflammation, with an early delay in cellular recruitment and significant reduction in early cytokine production in the lungs. This was followed by impaired and delayed bacterial clearance from the lungs which then resulted in a severe and prolonged chronic inflammation and iBALT like structures containing large numbers of B and T cells in these animals. We also observed that increasing the pDC numbers in the lung by FLT3L treatment experimentally results in greater lung inflammation during acute CP infection. In contrast to these results, restimulation of T-cells in the draining lymph nodes of pDC-depleted mice induced greater amounts of proinflammatory cytokines than we observed in control mice. These results suggest that pDCs in the lung may provide critical proinflammatory innate immune responses in response to CP infection, but are suppressive towards adaptive immune responses in the lymph node. Thus pDCs in the lung and the draining lymph node appear to have different roles and phenotypes during acute CP infection and may play a role in host immune responses.
doi:10.1371/journal.pone.0048655
PMCID: PMC3485374  PMID: 23119083
11.  Prevention of Diabetes by FTY720-Mediated Stabilization of Peri-Islet Tertiary Lymphoid Organs 
Diabetes  2010;59(6):1461-1468.
OBJECTIVE
The nonobese diabetic (NOD) mouse is a well-established mouse model of spontaneous type 1 diabetes, which is characterized by an autoimmune destruction of the insulin-secreting pancreatic β-cells. In this study, we address the role of tertiary lymphoid organs (TLOs) that form in the pancreas of NOD mice during disease progression.
METHODS
We developed a model designed to “lock” lymphocytes in the pancreatic lymph node (PLN) and pancreas by the use of FTY720, which blocks the exit of lymphocytes from lymph nodes. A combination of flow cytometry, immunofluorescence, and analysis of clinical scores was used to study the effects of long-term FTY720 treatment on TLO development and development of diabetes.
RESULTS
Continuous treatment of NOD mice with FTY720 prevented diabetes development even at a time of significant insulitis. Treatment withdrawal led to accelerated disease independent of the PLN. Interestingly, naive T-cells trafficked to and proliferated in the TLOs. In addition, morphological changes were observed that occurred during the development of the disease. Remarkably, although the infiltrates are not organized into T/B-cell compartments in 8-week-old mice, by 20 weeks of age, and in age-matched mice undergoing FTY720 treatment, the infiltrates showed a high degree of organization. However, in naturally and FTY720-induced diabetic mice, T/B-cell compartmentalization was lost.
CONCLUSION
Our data show that TLOs are established during diabetes development and suggest that islet destruction is due to a loss of TLO integrity, which may be prevented by FTY720 treatment.
doi:10.2337/db09-1129
PMCID: PMC2874707  PMID: 20299465
12.  Does Disease-Irrelevant Intrathecal Synthesis in Multiple Sclerosis Make Sense in the Light of Tertiary Lymphoid Organs? 
Although partly disease-irrelevant, intrathecal immunoglobulins (Ig) synthesis is a typical feature of multiple sclerosis (MS) and is driven by the tertiary lymphoid organs (TLO). A long-known hallmark of this non-specific intrathecal synthesis is the MRZ pattern, an intrathecal synthesis of Ig against measles, rubella, and zoster viruses. This non-specific intrathecal synthesis could also be directed against a wide range of pathogens. However, it is highly problematic since brain TLO should not be able to drive the clonal expansion of lymphocytes against alien antigens that are thought to be absent in MS brain. We propose to explain the paradox of non-specific intrathecal synthesis by discussing the natural properties of TLO. In fact, besides local antigen-driven clonal expansion, circulating plasmablasts and plasma cells (PC) are non-specifically recruited from blood and gain access to survival niches in the inflammatory CNS. This mechanism, which has been described in other inflammatory disorders, takes place in the TLO. As a consequence, PCs recruited in brain mirror the individual’s history of immunization and intrathecal synthesis of IgG in MS may target a broad range of common infectious agents, a hypothesis in line with epidemiological data. Moreover, the immunization schedule and its timing may interfere with PC recruitment. If this hypothesis is correct, the reaction against EBV appears paradoxical: although early infection of MS patients is systematic, intrathecal synthesis is far lower than expected, suggesting a crucial interaction between MS onset and timing of EBV infection. A growing body of evidence suggests that the non-specific intrathecal synthesis observed in MS is also common in many chronic CNS inflammatory disorders. Assuming that cortical TLO in MS are associated with typical sub-pial lesions, we have coined the concept of “TLO-pathy” to describe these lesions and take examples of them from non-MS disorders. Lastly, we propose that intrathecal synthesis could be considered a strong hallmark of CNS TLO and might be used to monitor future TLO-targeted therapies.
doi:10.3389/fneur.2014.00027
PMCID: PMC3949135  PMID: 24653716
multiple sclerosis; lymphoid tissue; antibody response; cerebrospinal fluid; Epstein–Barr virus
13.  Lymphoid Aggregates That Resemble Tertiary Lymphoid Organs Define a Specific Pathological Subset in Metal-on-Metal Hip Replacements 
PLoS ONE  2013;8(5):e63470.
Aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) has been used to describe the histological lesion associated with metal-on-metal (M-M) bearings. We tested the hypothesis that the lymphoid aggregates, associated with ALVAL lesions resemble tertiary lymphoid organs (TLOs). Histopathological changes were examined in the periprosthetic tissue of 62 M-M hip replacements requiring revision surgery, with particular emphasis on the characteristics and pattern of the lymphocytic infiltrate. Immunofluorescence and immunohistochemistry were used to study the classical features of TLOs in cases where large organized lymphoid follicles were present. Synchrotron X-ray fluorescence (XRF) measurements were undertaken to detect localisation of implant derived ions/particles within the samples. Based on type of lymphocytic infiltrates, three different categories were recognised; diffuse aggregates (51%), T cell aggregates (20%), and organised lymphoid aggregates (29%). Further investigation of tissues with organised lymphoid aggregates showed that these tissues recapitulate many of the features of TLOs with T cells and B cells organised into discrete areas, the presence of follicular dendritic cells, acquisition of high endothelial venule like phenotype by blood vessels, expression of lymphoid chemokines and the presence of plasma cells. Co-localisation of implant-derived metals with lymphoid aggregates was observed. These findings suggest that in addition to the well described general foreign body reaction mediated by macrophages and a T cell mediated type IV hypersensitivity response, an under-recognized immunological reaction to metal wear debris involving B cells and the formation of tertiary lymphoid organs occurs in a distinct subset of patients with M-M implants.
doi:10.1371/journal.pone.0063470
PMCID: PMC3665779  PMID: 23723985
14.  Expression of endothelia and lymphocyte adhesion molecules in bronchus-associated lymphoid tissue (BALT) in adult human lung 
Respiratory Research  2009;10(1):97.
Background
Bronchus-associated lymphoid tissue (BALT) is the secondary lymphoid tissue in bronchial mucosa and is involved in the development of bronchopulmonary immune responses. Although migration of lymphocytes from blood vessels into secondary lymphoid tissues is critical for the development of appropriate adaptive immunity, the endothelia and lymphocyte adhesion molecules that recruit specific subsets of lymphocytes into human BALT are not known. The aim of this study was to determine which adhesion molecules are expressed on lymphocytes and high endothelial venules (HEVs) in human BALT.
Methods
We immunostained frozen sections of BALT from lobectomy specimens from 17 patients with lung carcinoma with a panel of monoclonal antibodies to endothelia and lymphocyte adhesion molecules.
Results
Sections of BALT showed B cell follicles surrounded by T cells. Most BALT CD4+ T cells had a CD45RO+ memory phenotype. Almost all BALT B cells expressed α4 integrin and L-selectin. In contrast, 43% of BALT T cells expressed α4 integrin and 20% of BALT T cells expressed L-selectin. Almost all BALT lymphocytes expressed LFA-1. HEVs, which support the migration of lymphocytes from the bloodstream into secondary lymphoid tissues, were prominent in BALT. All HEVs expressed peripheral node addressin, most HEVs expressed vascular cell adhesion molecule-1, and no HEVs expressed mucosal addressin cell adhesion molecule-1.
Conclusion
Human BALT expresses endothelia and lymphocyte adhesion molecules that may be important in recruiting naive and memory/effector lymphocytes to BALT during protective and pathologic bronchopulmonary immune responses.
doi:10.1186/1465-9921-10-97
PMCID: PMC2772857  PMID: 19845971
15.  Regulatory T cells interfere with the development of bronchus-associated lymphoid tissue 
Presence and extent of bronchus-associated lymphoid tissue (BALT) is subject to considerable variations between species and is only occasionally observed in lungs of mice. Here we demonstrate that mice deficient for the chemokine receptor CCR7 regularly develop highly organized BALT. These structures were not present at birth but were detectable from day 5 onwards. Analyzing CCR7−/−/wild-type bone marrow chimeras, we demonstrate that the development of BALT is caused by alterations of the hematopoietic system in CCR7-deficient mice. These observations together with the finding that CCR7-deficient mice posses dramatically reduced numbers of regulatory T cells (T reg cells) in the lung-draining bronchial lymph node suggest that BALT formation might be caused by disabled in situ function of T reg cells. Indeed, although adoptive transfer of wild-type T reg cells to CCR7-deficient recipients resulted in a profound reduction of BALT formation, neither naive wild-type T cells nor T reg cells from CCR7−/− donors impair BALT generation. Furthermore, we provide evidence that CCR7-deficient T reg cells, although strongly impaired in homing to peripheral lymph nodes, are fully effective in vitro. Thus our data reveal a CCR7-dependent homing of T reg cells to peripheral lymph nodes in conjunction with a role for these cells in controlling BALT formation.
doi:10.1084/jem.20061424
PMCID: PMC2118537  PMID: 17371929
16.  Chlamydia pneumoniae Infection in Mice Induces Chronic Lung Inflammation, iBALT Formation, and Fibrosis 
PLoS ONE  2013;8(10):e77447.
Chlamydia pneumoniae (CP) lung infection can induce chronic lung inflammation and is associated with not only acute asthma but also COPD exacerbations. However, in mouse models of CP infection, most studies have investigated specifically the acute phase of the infection and not the longer-term chronic changes in the lungs. We infected C57BL/6 mice with 5×105 CP intratracheally and monitored inflammation, cellular infiltrates and cytokine levels over time to investigate the chronic inflammatory lung changes. While bacteria numbers declined by day 28, macrophage numbers remained high through day 35. Immune cell clusters were detected as early as day 14 and persisted through day 35, and stained positive for B, T, and follicular dendritic cells, indicating these clusters were inducible bronchus associated lymphoid tissues (iBALTs). Classically activated inflammatory M1 macrophages were the predominant subtype early on while alternatively activated M2 macrophages increased later during infection. Adoptive transfer of M1 but not M2 macrophages intratracheally 1 week after infection resulted in greater lung inflammation, severe fibrosis, and increased numbers of iBALTS 35 days after infection. In summary, we show that CP lung infection in mice induces chronic inflammatory changes including iBALT formations as well as fibrosis. These observations suggest that the M1 macrophages, which are part of the normal response to clear acute C. pneumoniae lung infection, result in an enhanced acute response when present in excess numbers, with greater inflammation, tissue injury, and severe fibrosis.
doi:10.1371/journal.pone.0077447
PMCID: PMC3808399  PMID: 24204830
17.  Low CD4/CD8 Ratio in Bronchus-Associated Lymphoid Tissue Is Associated with Lung Allograft Rejection 
Journal of Transplantation  2012;2012:928081.
Background. Bronchus-associated lymphoid tissue (BALT) has been associated with lung allograft rejection in rat transplant models. In human transplant recipients, BALT has not been linked to clinically significant rejection. We hypothesize that the immunohistochemical composition of BALT varies with the presence of acute lung allograft rejection. Methods. We retrospectively examined 40 human lung allograft recipients transplanted from 3/1/1999 to 6/1/2008. Patients were grouped by frequency and severity of acute rejection based on International Society of Heart Lung Transplant (ISHLT) criteria. Transbronchial biopsies were reviewed for BALT by a blinded pathologist. BALT if present was immunohistochemically stained to determine T-and B-cell subpopulations. Results. BALT presence was associated with an increased frequency of acute rejection episodes in the first year after transplantation. Patients with a lower CD4/CD8 ratio had an increased rejection rate; however, BALT size or densities of T-cell and B-cell subpopulations did not correlate with rejection rate. Conclusion. The presence of BALT is associated with an increased frequency of rejection one year after transplant. The lower the CD4/CD8 ratio, the more acute rejection episodes occur in the first year after transplantation. The immunohistochemical composition of BALT may predict patients prone to frequent episodes of acute cellular rejection.
doi:10.1155/2012/928081
PMCID: PMC3423936  PMID: 22928088
18.  Inflammation induces neuro-lymphatic protein expression in multiple sclerosis brain neurovasculature 
Background
Multiple sclerosis (MS) is associated with ectopic lymphoid follicle formation. Podoplanin+ (lymphatic marker) T helper17 (Th17) cells and B cell aggregates have been implicated in the formation of tertiary lymphoid organs (TLOs) in MS and experimental autoimmune encephalitis (EAE). Since podoplanin expressed by Th17 cells in MS brains is also expressed by lymphatic endothelium, we investigated whether the pathophysiology of MS involves inductions of lymphatic proteins in the inflamed neurovasculature.
Methods
We assessed the protein levels of lymphatic vessel endothelial hyaluronan receptor and podoplanin, which are specific to the lymphatic system and prospero-homeobox protein-1, angiopoietin-2, vascular endothelial growth factor-D, vascular endothelial growth factor receptor-3, which are expressed by both lymphatic endothelium and neurons. Levels of these proteins were measured in postmortem brains and sera from MS patients, in the myelin proteolipid protein (PLP)-induced EAE and Theiler’s murine encephalomyelitis virus (TMEV) induced demyelinating disease (TMEV-IDD) mouse models and in cell culture models of inflamed neurovasculature.
Results and conclusions
Intense staining for LYVE-1 was found in neurons of a subset of MS patients using immunohistochemical approaches. The lymphatic protein, podoplanin, was highly expressed in perivascular inflammatory lesions indicating signaling cross-talks between inflamed brain vasculature and lymphatic proteins in MS. The profiles of these proteins in MS patient sera discriminated between relapsing remitting MS from secondary progressive MS and normal patients. The in vivo findings were confirmed in the in vitro cell culture models of neuroinflammation.
doi:10.1186/1742-2094-10-125
PMCID: PMC3854084  PMID: 24124909
Prox-1; Angiopoietin-2; VEGFR-3; VEGF-D; LYVE-1; Podoplanin/D2-40
19.  Cytomegalovirus Latency Promotes Cardiac Lymphoid Neogenesis and Accelerated Allograft Rejection in CMV Naïve Recipients 
Human Cytomegalovirus (HCMV) infection is associated with the acceleration of transplant vascular sclerosis (TVS) and chronic allograft rejection (CR). HCMV-negative recipients of latently HCMV infected donor grafts are at highest risk for developing CMV-disease. Using a rat heart transplant CR model, we have previously shown that acute rat CMV (RCMV) infection following transplantation significantly accelerates both TVS and CR. Here, we report that RCMV-naïve recipients of heart allografts from latently RCMV-infected donors undergo acceleration of CR with similar kinetics as acutely infected recipients. In contrast to acutely infected recipients, treatment of recipients of latently infected donor hearts with ganciclovir did not prevent CR or TVS. We observed the formation of tertiary lymphoid structures (TLOs) containing macrophages and T-cells in latently infected hearts prior to transplantation but not in uninfected rats. Moreover, pathway analysis of gene expression data from allografts from latently infected donors, indicated an early and sustained production of TLO-associated genes compared to allografts from uninfected donors. We conclude that RCMV-induced TLO formation and alteration of donor tissue T-cell profiles prior to transplantation in part mediate the ganciclovir-insensitive rejection of latently infected donor allografts transplanted into naïve recipients by providing a scaffold for immune activation.
doi:10.1111/j.1600-6143.2010.03365.x
PMCID: PMC3454525  PMID: 21199347
Cytomegalovirus; Chronic Rejection; Transplant Vascular Sclerosis; Latency
20.  Autoreactive T and B Cells Induce the Development of Bronchus-Associated Lymphoid Tissue in the Lung 
Rheumatoid arthritis–related interstitial lung disease (RA-ILD) is associated with significant morbidity and mortality. Studies in humans have found that the incidence of bronchus-associated lymphoid tissue (BALT) correlates with the severity of lung injury. However, the mechanisms underlying the development of BALT during systemic autoimmunity remain unknown. We have determined whether systemic autoimmunity in a murine model of autoimmune arthritis can promote the development of BALT by generating a novel murine model derived from K/BxN mice. Transgenic mice with the KRN T-cell receptor specific for the autoantigen, glucose-6–phosphate isomerase (GPI), were crossed with GPI-specific immunoglobulin heavy and light chain knock-in mice, producing mice with a majority of T and B cells specific for the same autoantigen. We found that 67% of these mice demonstrated lymphocytic infiltration in the lungs, localized to either the perivascular or peribronchial regions. Fifty percent of the mice with lymphocytic infiltration manifested lymphoid-like lesions resembling BALT, with distinct T and B cell follicles. The lungs from mice with lymphoid infiltrates had increased numbers of cytokine-producing T cells, including IL-17A+ T cells and increased major histocompatibility complex Class II expression on B cells. Interestingly, challenge with bleomycin failed to elicit a significant fibrotic response, compared with wild-type control mice. Our data suggest that systemic autoreactivity promotes ectopic lymphoid tissue development in the lung through the cooperation of autoreactive T and B cells. However, these BALT-like lesions may not be sufficient to promote fibrotic lung disease at steady state or after inflammatory challenge.
doi:10.1165/rcmb.2012-0065OC
PMCID: PMC3653607  PMID: 23371062
autoimmunity; bronchus-associated lymphoid tissue; T cells; B cells
21.  What is the clinical relevance of different lung compartments? 
The lung consists of at least seven compartments with relevance to immune reactions. Compartment 1 - the bronchoalveolar lavage (BAL), which represents the cells of the bronchoalveolar space: From a diagnostic point of view the bronchoalveolar space is the most important because it is easily accessible in laboratory animals, as well as in patients, using BAL. Although this technique has been used for several decades it is still unclear to what extent the BAL represents changes in other lung compartments. Compartment 2 - bronchus-associated lymphoid tissue (BALT): In the healthy, BALT can be found only in childhood. The role of BALT in the development of the mucosal immunity of the pulmonary surfaces has not yet been resolved. However, it might be an important tool for inhalative vaccination strategies. Compartment 3 - conducting airway mucosa: A third compartment is the bronchial epithelium and the submucosa, which both contain a distinct pool of leukocytes (e.g. intraepithelial lymphocytes, IEL). This again is also accessible via bronchoscopy. Compartment 4 - draining lymph nodes/Compartment 5 - lung parenchyma: Transbronchial biopsies are more difficult to perform but provide access to two additional compartments - lymph nodes with the draining lymphatics and lung parenchyma, which roughly means "interstitial" lung tissue. Compartment 6 - the intravascular leukocyte pool: The intravascular compartment lies between the systemic circulation and inflamed lung compartments. Compartment 7 - periarterial space: Finally, there is a unique, lung-specific space around the pulmonary arteries which contains blood and lymph capillaries. There are indications that this "periarterial space" may be involved in the pulmonary host defense.
All these compartments are connected but the functional network is not yet fully understood. A better knowledge of the complex interactions could improve diagnosis and therapy, or enable preventive approaches of local immunization.
doi:10.1186/1471-2466-9-39
PMCID: PMC2737670  PMID: 19671154
22.  Secondary Lymphoid Organs: Responding to Genetic and Environmental Cues in Ontogeny and the Immune Response1 
Secondary lymphoid organs (SLOs) include lymph nodes (LNs), spleen, Peyer’s patches (PPs) and mucosal tissues- the nasal associated lymphoid tissue (NALT), adenoids, and tonsils. Less discretely anatomically defined cellular accumulations include the bronchus associated lymphoid tissue (BALT), cryptopatches, and isolated lymphoid follicles (ILFs). All SLOs serve to generate immune responses and tolerance. SLO development depends on the precisely regulated expression of cooperating lymphoid chemokines and cytokines LTα, LTβ, RANKL, TNF, IL-7, and perhaps IL-17. The relative importance of these factors varies between the individual lymphoid organs. Participating in the process are lymphoid tissue initiator (ltin), lymphoid tissue inducer (ltind), and lymphoid tissue organizer (lto) cells. These cells, and others that produce the crucial cytokines, maintain SLOs in the adult. Similar signals regulate the transition from inflammation to ectopic or tertiary lymphoid tissues (TLOs).
doi:10.4049/jimmunol.0804324
PMCID: PMC2766168  PMID: 19661265
23.  The Tlo Proteins Are Stoichiometric Components of Candida albicans Mediator Anchored via the Med3 Subunit 
Eukaryotic Cell  2012;11(7):874-884.
The amplification of the TLO (for telomere-associated) genes in Candida albicans, compared to its less pathogenic, close relative Candida dubliniensis, suggests a role in virulence. Little, however, is known about the function of the Tlo proteins. We have purified the Mediator coactivator complex from C. albicans (caMediator) and found that Tlo proteins are a stoichiometric component of caMediator. Many members of the Tlo family are expressed, and each is a unique member of caMediator. Protein expression analysis of individual Tlo proteins, as well as the purification of tagged Tlo proteins, demonstrate that there is a large free population of Tlo proteins in addition to the Mediator-associated population. Coexpression and copurification of Tloα12 and caMed3 in Escherichia coli established a direct physical interaction between the two proteins. We have also made a C. albicans med3Δ/Δ strain and purified an intact Mediator from this strain. The analysis of the composition of the med3Δ Mediator shows that it lacks a Tlo subunit. Regarding Mediator function, the med3Δ/Δ strain serves as a substitute for the difficult-to-make tloΔ/Δ C. albicans strain. A potential role of the TLO and MED3 genes in virulence is supported by the inability of the med3Δ/Δ strain to form normal germ tubes. This study of caMediator structure provides initial clues to the mechanism of action of the Tlo genes and a platform for further mechanistic studies of caMediator's involvement in gene regulatory patterns that underlie pathogenesis.
doi:10.1128/EC.00095-12
PMCID: PMC3416505  PMID: 22562472
24.  Bronchus associated lymphoid tissue (BALT) in human lung: its distribution in smokers and non-smokers. 
Thorax  1993;48(11):1130-1134.
BACKGROUND--Bronchus associated lymphoid tissue (BALT) is a normal component of the lung's immune system in many animals and may be analogous to gut associated lymphoid tissue (GALT). This study aimed at assessing the nature and extent of BALT in human lung and determining whether its expression is induced within the human airway in response to smoking. METHODS--Paraffin embedded, formalin fixed full thickness bronchial wall sections were examined from 31 whole lung specimens derived from both smokers and non-smokers. Samples were taken from throughout the bronchial tree to include main stem bronchi, lobar bronchi and segmental bronchi, as well as first to third generation carinae. Standard 4 microns step sections were stained by haematoxylin and eosin and immunocytochemical methods to show foci of BALT. RESULTS--Examination of 256 airway sites detected 46 foci of BALT. These differed from those described in other mammals in being distributed throughout the bronchial tree, in being found in relation to bronchial glandular epithelium as well as luminal bronchial epithelium, and in lacking any accompanying M cells. Analysis by smoking status showed that the expression of BALT was significantly more common in smokers than non-smokers (82% (14/17) v 14% (2/14) respectively). CONCLUSIONS--The findings support the view that BALT in humans is an integral feature in a comparatively small proportion of lungs from non-smokers while being significantly more prominent in lungs from smokers. The tissue shows several important differences from that described in other mammals.
Images
PMCID: PMC464898  PMID: 8296257
25.  Vaccination reduces macrophage infiltration in bronchus-associated lymphoid tissue in pigs infected with a highly virulent Mycoplasma hyopneumoniae strain 
Background
Mycoplasma hyopneumoniae is the causative agent of enzootic pneumonia and is responsible for significant economic losses to the pig industry. To better understand the mode of action of a commercial, adjuvanted, inactivated whole cell vaccine and the influence of diversity on the efficacy of vaccination, we investigated samples from vaccinated and non-vaccinated pigs experimentally infected with either a low (LV) or a highly virulent (HV) M. hyopneumoniae strain. Non-vaccinated and sham-infected control groups were included. Lung tissue samples collected at 4 and 8 weeks post infection (PI) were immunohistochemically tested for the presence of T-lymphocytes, B-lymphocytes and macrophages in the bronchus-associated lymphoid tissue (BALT). The number of M. hyopneumoniae organisms in bronchoalveolar lavage (BAL) fluid was determined using quantitative PCR at 4 and 8 weeks PI. Serum antibodies against M. hyopneumoniae were determined at 0, 2, 4, 6 and 8 weeks PI.
Results
The immunostaining revealed a lower density of macrophages in the BALT of the vaccinated groups compared to the non-vaccinated groups. The highest number of M. hyopneumoniae organisms in the BAL fluid was measured at 4 weeks PI for the HV strain and at 8 weeks PI for the LV strain. Vaccination reduced the number of organisms non-significantly, though for the HV strain the reduction was clinically more relevant than for the LV strain. At the level of the individual pigs, a higher lung lesion score was associated with more M. hyopneumoniae organisms in the lungs and a higher density of the investigated immune cells in the BALT.
Conclusions
In conclusion, the infiltration of macrophages after infection with M. hyopneumoniae is reduced by vaccination. The M. hyopneumoniae replication in the lungs is also reduced in vaccinated pigs, though the HV strain is inhibited more than the LV strain.
doi:10.1186/1746-6148-8-24
PMCID: PMC3349615  PMID: 22409839

Results 1-25 (881306)