PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (942526)

Clipboard (0)
None

Related Articles

1.  Serum levels of the hepcidin-20 isoform in a large general population: The Val Borbera study☆ 
Journal of Proteomics  2012;76(5):28-35.
Hepcidin, a 25 amino-acid liver hormone, has recently emerged as the key regulator of iron homeostasis. Proteomic studies in limited number of subjects have shown that biological fluids can also contain truncated isoforms, whose role remains to be elucidated. We report, for the first time, data about serum levels of the hepcidin-20 isoform (hep-20) in a general population, taking advantage of the Val Borbera (VB) study where hepcidin-25 (hep-25) was measured by SELDI-TOF-MS. Detectable amount of hep-20 were found in sera from 854 out of 1577 subjects (54.2%), and its levels were about 14% of hep-25 levels. A small fraction of subjects (n = 30, 1.9%) had detectable hep-20 but undetectable hep-25. In multivariate regression models, significant predictors of hep-20 were hep-25 and age in males, and hep-25, age, serum ferritin and body mass index in females. Of note, the hep-25:hep-20 ratio was not constant in the VB population, but increased progressively with increasing ferritin levels. This is not consistent with the simplistic view of hep-20 as a mere catabolic byproduct of hep-25. Although a possible active regulation of hep-20 production needs further confirmation, our results may also have implications for immunoassays for serum hepcidin based on antibodies lacking specificity for hep-25.
This article is part of a Special Issue entitled: Integrated omics.
Graphical abstract
Highlights
► Hepcidin, a 25 amino acid hormone, is the key regulator of iron metabolism. ► We measured, for the first time, serum hepcidin-20 at population level by SELDI-TOF-MS. ► Detectable amount of hepcidin 20 were found in more than half of 1577 individuals. ► The Hep25:hep20 ratio was not constant but increased with increasing iron stores. ► Our results point toward a possible active regulation of hepcidin-20 production.
doi:10.1016/j.jprot.2012.08.006
PMCID: PMC3509339  PMID: 22951294
BMI, body mass index; CRP, C-reactive protein; Hep-20, Hepcidin-20; Hep-24, Hepcidin-24; Hep-25, Hepcidin-25; PTH, parathyroid hormone; VB, Val Borbera; Iron metabolism; Hepcidin; Ferritin; SELDI-TOF-MS
2.  Advances in Quantitative Hepcidin Measurements by Time-of-Flight Mass Spectrometry 
PLoS ONE  2008;3(7):e2706.
Assays for the detection of the iron regulatory hormone hepcidin in plasma or urine have not yet been widely available, whereas quantitative comparisons between hepcidin levels in these different matrices were thus far even impossible due to technical restrictions. To circumvent these limitations, we here describe several advances in time-of flight mass spectrometry (TOF MS), the most important of which concerned spiking of a synthetic hepcidin analogue as internal standard into serum and urine samples. This serves both as a control for experimental variation, such as recovery and matrix-dependent ionization and ion suppression, and at the same time allows value assignment to the measured hepcidin peak intensities. The assay improvements were clinically evaluated using samples from various patients groups and its relevance was further underscored by the significant correlation of serum hepcidin levels with serum iron indices in healthy individuals. Most importantly, this approach allowed kinetic studies as illustrated by the paired analyses of serum and urine samples, showing that more than 97% of the freely filtered serum hepcidin can be reabsorbed in the kidney. Thus, the here reported advances in TOF MS-based hepcidin measurements represent critical steps in the accurate quantification of hepcidin in various body fluids and pave the way for clinical studies on the kinetic behavior of hepcidin in both healthy and diseased states.
doi:10.1371/journal.pone.0002706
PMCID: PMC2442656  PMID: 18628991
3.  Serum hepcidin levels and iron parameters in children with iron deficiency 
The Korean Journal of Hematology  2012;47(4):286-292.
Background
Iron deficiency (ID) and iron deficiency anemia (IDA) are common nutritional disorders in children. Hepcidin, a peptide hormone produced in the liver, is a central regulator of systemic iron metabolism. We evaluated whether serum hepcidin levels can diagnose ID in children.
Methods
Sera from 59 children (23 males and 36 females; 5 months to 17 years) were analyzed for hepcidin-25 by ELISA. Patients were classified according to hemoglobin level and iron parameters as: IDA, (N=17), ID (N=18), and control (N=24).
Results
Serum hepcidin, ferritin, soluble transferrin receptor (sTfR), transferrin saturation, and hemoglobin levels differed significantly between groups (P<0.0001). Serum hepcidin and ferritin levels (mean±SD) were 2.01±2.30 and 7.00±7.86, 7.72±8.03 and 29.35±24.01, 16.71±14.74 and 46.40±43.57 ng/mL in the IDA, ID, and control groups, respectively. The area under the receiver operating characteristic curve for serum hepcidin as a predictor of ID was 0.852 (95% CI, 0.755-0.950). Hepcidin ≤6.895 ng/mL had a sensitivity of 79.2% and specificity of 82.8% for the diagnosis of ID. Serum hepcidin levels were significantly correlated with ferritin, transferrin saturation, and hemoglobin levels and significantly negatively correlated with sTfR level and total iron binding capacity (P<0.0001).
Conclusion
Serum hepcidin levels are significantly associated with iron status and can be a useful indicator of ID. Further studies are necessary to validate these findings and determine a reliable cutoff value in children.
doi:10.5045/kjh.2012.47.4.286
PMCID: PMC3538801  PMID: 23320008
Serum hepcidin; Iron deficiency; Children
4.  SELDI-TOF-MS determination of hepcidin in clinical samples using stable isotope labelled hepcidin as an internal standard 
Proteome Science  2008;6:28.
Background
Hepcidin is a 25-residue peptide hormone crucial to iron homeostasis. It is essential to measure the concentration of hepcidin in cells, tissues and body fluids to understand its mechanisms and roles in physiology and pathophysiology. With a mass of 2791 Da hepcidin is readily detectable by mass spectrometry and LC-ESI, MALDI and SELDI have been used to estimate systemic hepcidin concentrations by analysing serum or urine. However, peak heights in mass spectra may not always reflect concentrations in samples due to competition during binding steps and variations in ionisation efficiency. Thus the purpose of this study was to develop a robust assay for measuring hepcidin using a stable isotope labelled hepcidin spiking approach in conjunction with SELDI-TOF-MS.
Results
We synthesised and re-folded hepcidin labelled with 13C/15N phenylalanine at position 9 to generate an internal standard for mass spectrometry experiments. This labelled hepcidin is 10 Daltons heavier than the endogenous peptides and does not overlap with the isotopic envelope of the endogenous hepcidin or other common peaks in human serum or urine mass spectra and can be distinguished in low resolution mass spectrometers. We report the validation of adding labelled hepcidin into serum followed by SELDI analysis to generate an improved assay for hepcidin.
Conclusion
We demonstrate that without utilising a spiking approach the hepcidin peak height in SELDI spectra gives a good indication of hepcidin concentration. However, a stable isotope labelled hepcidin spiking approach provides a more robust assay, measures the absolute concentration of hepcidin and should facilitate inter-laboratory hepcidin comparisons.
doi:10.1186/1477-5956-6-28
PMCID: PMC2571088  PMID: 18854031
5.  Increased hepcidin expression in colorectal carcinogenesis 
AIM: To investigate whether the iron stores regulator hepcidin is implicated in colon cancer-associated anaemia and whether it might have a role in colorectal carcinogenesis.
METHODS: Mass spectrometry (MALDI-TOF MS and SELDI-TOF MS) was employed to measure hepcidin in urine collected from 56 patients with colorectal cancer. Quantitative Real Time RT-PCR was utilized to determine hepcidin mRNA expression in colorectal cancer tissue. Hepcidin cellular localization was determined using immunohistochemistry.
RESULTS: We demonstrate that whilst urinary hepcidin expression was not correlated with anaemia it was positively associated with increasing T-stage of colorectal cancer (P < 0.05). Furthermore, we report that hepcidin mRNA is expressed in 34% of colorectal cancer tissue specimens and was correlated with ferroportin repression. This was supported by hepcidin immunoreactivity in colorectal cancer tissue.
CONCLUSION: We demonstrate that systemic hepcidin expression is unlikely to be the cause of the systemic anaemia associated with colorectal cancer. However, we demonstrate for the first time that hepcidin is expressed by colorectal cancer tissue and that this may represent a novel oncogenic signalling mechanism.
doi:10.3748/wjg.14.1339
PMCID: PMC2693679  PMID: 18322945
Iron; Hepcidin; Colon; Cancer; Anaemia; Mass spectrometry
6.  Hepcidin Expression in Iron Overload Diseases Is Variably Modulated by Circulating Factors 
PLoS ONE  2012;7(5):e36425.
Hepcidin is a regulatory hormone that plays a major role in controlling body iron homeostasis. Circulating factors (holotransferrin, cytokines, erythroid regulators) might variably contribute to hepcidin modulation in different pathological conditions. There are few studies analysing the relationship between hepcidin transcript and related protein expression profiles in humans. Our aims were: a. to measure hepcidin expression at either hepatic, serum and urinary level in three paradigmatic iron overload conditions (hemochromatosis, thalassemia and dysmetabolic iron overload syndrome) and in controls; b. to measure mRNA hepcidin expression in two different hepatic cell lines (HepG2 and Huh-7) exposed to patients and controls sera to assess whether circulating factors could influence hepcidin transcription in different pathological conditions. Our findings suggest that hepcidin assays reflect hepatic hepcidin production, but also indicate that correlation is not ideal, likely due to methodological limits and to several post-trascriptional events. In vitro study showed that THAL sera down-regulated, HFE-HH and C-NAFLD sera up-regulated hepcidin synthesis. HAMP mRNA expression in Huh-7 cells exposed to sera form C-Donors, HFE-HH and THAL reproduced, at lower level, the results observed in HepG2, suggesting the important but not critical role of HFE in hepcidin regulation.
doi:10.1371/journal.pone.0036425
PMCID: PMC3346721  PMID: 22586470
7.  Serum Hepcidin Levels and Reticulocyte Hemoglobin Concentrations as Indicators of the Iron Status of Peritoneal Dialysis Patients 
Hepcidin is the key mediator of renal anemia, and reliable measurement of serum hepcidin levels has been made possible by the ProteinChip system. We therefore investigated the iron status and serum hepcidin levels of peritoneal dialysis (PD) patients who had not received frequent doses of an erythrocytosis-stimulating agent (ESA) and had not received iron therapy. In addition to the usual iron parameters, the iron status of erythrocytes can be determined by measuring reticulocyte hemoglobin (RET-He). The mean serum hepcidin level of the PD patients (n = 52) was 80.7 ng/mL. Their serum hepcidin levels were significantly positively correlated with their serum ferritin levels and transferrin saturation (TSAT) levels, but no correlations were found between their serum hepcidin levels and RET-He levels, thereby suggesting that hepcidin has no effect on the iron dynamics of reticulocytes. Since low serum levels of CRP and IL-6, biomarkers of inflammation, were not correlated with the serum hepcidin levels, there is likely to be a threshold for induction of hepcidin expression by inflammation.
doi:10.1155/2012/239476
PMCID: PMC3501962  PMID: 23193472
8.  The A736V TMPRSS6 polymorphism influences hepcidin and iron metabolism in chronic hemodialysis patients: TMPRSS6 and hepcidin in hemodialysis 
BMC Nephrology  2013;14:48.
Background
Aim of this study was to evaluate whether the A736V TMPRSS6 polymorphism, a major genetic determinant of iron metabolism in healthy subjects, influences serum levels of hepcidin, the hormone regulating iron metabolism, and erythropoiesis in chronic hemodialysis (CHD).
Methods
To this end, we considered 199 CHD patients from Northern Italy (157 with hepcidin evaluation), and 188 healthy controls without iron deficiency, matched for age and gender. Genetic polymorphisms were evaluated by allele specific polymerase chain reaction assays, and hepcidin quantified by mass spectrometry.
Results
Serum hepcidin levels were not different between the whole CHD population and controls (median 7.1, interquartile range (IQR) 0.55-17.1 vs. 7.4, 4.5-17.9 nM, respectively), but were higher in the CHD subgroup after exclusion of subjects with relative iron deficiency (p = 0.04). In CHD patients, the A736V TMPRSS6 polymorphism influenced serum hepcidin levels in individuals positive for mutations in the HFE gene of hereditary hemochromatosis (p < 0.0001). In particular, the TMPRSS6 736 V variant was associated with higher hepcidin levels (p = 0.017). At multivariate analysis, HFE and A736V TMPRSS6 genotypes predicted serum hepcidin independently of ferritin and C reactive protein (p = 0.048). In patients without acute inflammation and overt iron deficiency (C reactive protein <1 mg/dl and ferritin >30 ng/ml; n = 86), hepcidin was associated with lower mean corpuscular volume (p = 0.002), suggesting that it contributed to iron-restricted erythropoiesis. In line with previous results, in patients without acute inflammation and severe iron deficiency the “high hepcidin” 736 V TMPRSS6 variant was associated with higher erythropoietin maintenance dose (p = 0.016), independently of subclinical inflammation (p = 0.02).
Conclusions
The A736V TMPRSS6 genotype influences hepcidin levels, erythropoiesis, and anemia management in CHD patients. Evaluation of the effect of TMPRSS6 genotype on clinical outcomes in prospective studies in CHD may be useful to predict the outcomes of hepcidin manipulation, and to guide treatment personalization by optimizing anemia management.
doi:10.1186/1471-2369-14-48
PMCID: PMC3585892  PMID: 23433094
Anemia; Chronic kidney disease; Erythropoietin; Genetics; Inflammation; Iron; Hemodialysis; Hepcidin; Hfe gene; Matriptase-2; Tmprss6
9.  Improved Mass Spectrometry Assay For Plasma Hepcidin: Detection and Characterization of a Novel Hepcidin Isoform 
PLoS ONE  2013;8(10):e75518.
Mass spectrometry (MS)-based assays for the quantification of the iron regulatory hormone hepcidin are pivotal to discriminate between the bioactive 25-amino acid form that can effectively block the sole iron transporter ferroportin and other naturally occurring smaller isoforms without a known role in iron metabolism. Here we describe the design, validation and use of a novel stable hepcidin-25+40 isotope as internal standard for quantification. Importantly, the relative large mass shift of 40 Da makes this isotope also suitable for easy-to-use medium resolution linear time-of-flight (TOF) platforms. As expected, implementation of hepcidin-25+40 as internal standard in our weak cation exchange (WCX) TOF MS method yielded very low inter/intra run coefficients of variation. Surprisingly, however, in samples from kidney disease patients, we detected a novel peak (m/z 2673.9) with low intensity that could be identified as hepcidin-24 and had previously remained unnoticed due to peak interference with the formerly used internal standard. Using a cell-based bioassay it was shown that synthetic hepcidin-24 was, like the -22 and -20 isoforms, a significantly less potent inducer of ferroportin degradation than hepcidin-25. During prolonged storage of plasma at room temperature, we observed that a decrease in plasma hepcidin-25 was paralleled by an increase in the levels of the hepcidin-24, -22 and -20 isoforms. This provides first evidence that all determinants for the conversion of hepcidin-25 to smaller inactive isoforms are present in the circulation, which may contribute to the functional suppression of hepcidin-25, that is significantly elevated in patients with renal impairment. The present update of our hepcidin TOF MS assay together with improved insights in the source and preparation of the internal standard, and sample stability will further improve our understanding of circulating hepcidin and pave the way towards further optimization and standardization of plasma hepcidin assays.
doi:10.1371/journal.pone.0075518
PMCID: PMC3790851  PMID: 24124495
10.  Hepcidin-25 in Chronic Hemodialysis Patients Is Related to Residual Kidney Function and Not to Treatment with Erythropoiesis Stimulating Agents 
PLoS ONE  2012;7(7):e39783.
Hepcidin-25, the bioactive form of hepcidin, is a key regulator of iron homeostasis as it induces internalization and degradation of ferroportin, a cellular iron exporter on enterocytes, macrophages and hepatocytes. Hepcidin levels are increased in chronic hemodialysis (HD) patients, but as of yet, limited information on factors associated with hepcidin-25 in these patients is available. In the current cross-sectional study, potential patient-, laboratory- and treatment-related determinants of serum hepcidin-20 and -25, were assessed in a large cohort of stable, prevalent HD patients. Baseline data from 405 patients (62% male; age 63.7±13.9 [mean SD]) enrolled in the CONvective TRAnsport STudy (CONTRAST; NCT00205556) were studied. Predialysis hepcidin concentrations were measured centrally with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Patient-, laboratory- and treatment related characteristics were entered in a backward multivariable linear regression model. Hepcidin-25 levels were independently and positively associated with ferritin (p<0.001), hsCRP (p<0.001) and the presence of diabetes (p = 0.02) and inversely with the estimated glomerular filtration rate (p = 0.01), absolute reticulocyte count (p = 0.02) and soluble transferrin receptor (p<0.001). Men had lower hepcidin-25 levels as compared to women (p = 0.03). Hepcidin-25 was not associated with the maintenance dose of erythropoiesis stimulating agents (ESA) or iron therapy. In conclusion, in the currently studied cohort of chronic HD patients, hepcidin-25 was a marker for iron stores and erythropoiesis and was associated with inflammation. Furthermore, hepcidin-25 levels were influenced by residual kidney function. Hepcidin-25 did not reflect ESA or iron dose in chronic stable HD patients on maintenance therapy. These results suggest that hepcidin is involved in the pathophysiological pathway of renal anemia and iron availability in these patients, but challenges its function as a clinical parameter for ESA resistance.
doi:10.1371/journal.pone.0039783
PMCID: PMC3396629  PMID: 22808058
11.  Serum hepcidin: indication of its role as an “acute phase” marker in febrile children 
Background
Hepcidin is classified as a type II acute phase protein; its production is a component of the innate immune response to infections.
Objective
To evaluate the alterations of serum hepcidin in children during and following an acute febrile infection.
Materials and methods
22 children with fever of acute onset (< 6 hours) admitted to the 2nd Department of Pediatrics-University of Athens. Based on clinical and laboratory findings our sample formed two groups: the viral infection group (13 children) and the bacterial infection group (9 children). Hepcidin, ferritin and serum iron measurements were performed in all subjects.
Results
Serum hepcidin values did not differ notably between children with viral and bacterial infection, but a significant reduction of hepcidin was noted in both groups post-infection.
Conclusion
Our study provides clinical pediatric data on the role of hepcidin in the face of an acute infection. In our sample of children, hepcidin was found to rise during the acute infection and fall post-infection.
doi:10.1186/1824-7288-39-25
PMCID: PMC3660274  PMID: 23618075
Hepcidin; Acute infection; Children; Marker
12.  Expression of growth differentiation factor 15 is not elevated in individuals with iron deficiency secondary to volunteer blood donation 
Transfusion  2010;50(7):1532-1535.
BACKGROUND
Low serum hepcidin levels provide a physiologic response to iron demand in patients with iron deficiency (ID). Based on a discovery of suppressed hepcidin expression by a cytokine named growth differentiation factor 15 (GDF15), it was hypothesized that GDF15 may suppress hepcidin expression in humans with ID due to blood loss.
STUDY DESIGN AND METHODS
To test this hypothesis, GDF15 and hepcidin levels were measured in peripheral blood from subjects with iron-deficient erythropoiesis before and after iron supplementation.
RESULTS
Iron variables and hepcidin levels were significantly suppressed in iron-deficient blood donors compared to healthy volunteers. However, ID was not associated with elevated serum levels of GDF15. Instead, iron-deficient subjects’ GDF15 levels were slightly lower than those measured in the control group of subjects (307 ± 90 and 386 ± 104 pg/mL, respectively). Additionally, GDF15 levels were not significantly altered by iron repletion.
CONCLUSIONS
ID due to blood loss is not associated with a significant change in serum levels of GDF15.
doi:10.1111/j.1537-2995.2010.02601.x
PMCID: PMC3282986  PMID: 20210929
13.  The relationship between anemia, liver disease, and hepcidin levels in hemodialysis patients with hepatitis 
Indian Journal of Nephrology  2012;22(6):415-418.
We investigated the role of hepcidin in ameliorating anemia in hemodialysis patients with hepatitis. A total of 72 hemodialysis patients with hepatitis were classified according to their requirement of erythropoietin (EPO). Anemia parameters, C-reactive protein (CRP), and biochemical measurements were recorded along with the hepcidin. The number of patients receiving no EPO was higher among patients with liver disease when compared with those without liver disease (P = 0.002). The mean hepcidin levels of the patients who did not receive EPO did not differ statistically from those of the patients who received the maximum dose (P = 0.5). The hepcidin levels of patients with liver disease who received no EPO were lower compared to those patients without liver disease who received the maximum dose (P = 0.04). There was a positive correlation between hepcidin and mean platelet levels (r = 0.26, P = 0.027) and annual intravenous iron dose (r = 0.31, P = 0.007). In hemodialysis patients with hepatitis, liver disease may be one of the factors affecting erythropiesis, related with decreased hepcidin levels and iron hemostasis. Further studies are needed to verify these associations.
doi:10.4103/0971-4065.106031
PMCID: PMC3573481  PMID: 23440611
Anemia; erythropoietin; hemodialysis; hepatitis B; hepatitis C; hepcidin
14.  Mass Spectrometry Analysis of Hepcidin Peptides in Experimental Mouse Models 
PLoS ONE  2011;6(3):e16762.
The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse Hepcidin-1 (Hep-1) and its paralogue Hepcidin-2 (Hep-2) at the peptide level. To this purpose, fourier transform ion cyclotron resonance (FTICR) and tandem-MS was used for hepcidin identification, after which a time-of-flight (TOF) MS-based methodology was exploited to routinely determine Hep-1 and -2 levels in mouse serum and urine. This method was biologically validated by hepcidin assessment in: i) 3 mouse strains (C57Bl/6; DBA/2 and BABL/c) upon stimulation with intravenous iron and LPS, ii) homozygous Hfe knock out, homozygous transferrin receptor 2 (Y245X) mutated mice and double affected mice, and iii) mice treated with a sublethal hepatotoxic dose of paracetamol. The results showed that detection of Hep-1 was restricted to serum, whereas Hep-2 and its presumed isoforms were predominantly present in urine. Elevations in serum Hep-1 and urine Hep-2 upon intravenous iron or LPS were only moderate and varied considerably between mouse strains. Serum Hep-1 was decreased in all three hemochromatosis models, being lowest in the double affected mice. Serum Hep-1 levels correlated with liver hepcidin-1 gene expression, while acute liver damage by paracetamol depleted Hep-1 from serum. Furthermore, serum Hep-1 appeared to be an excellent indicator of splenic iron accumulation. In conclusion, Hep-1 and Hep-2 peptide responses in experimental mouse agree with the known biology of hepcidin mRNA regulators, and their measurement can now be implemented in experimental mouse models to provide novel insights in post-transcriptional regulation, hepcidin function, and kinetics.
doi:10.1371/journal.pone.0016762
PMCID: PMC3050808  PMID: 21408141
15.  Interleukin-10 Regulates Hepcidin in Plasmodium falciparum Malaria 
PLoS ONE  2014;9(2):e88408.
Background
Acute malarial anemia remains a major public health problem. Hepcidin, the major hormone controlling the availability of iron, is raised during acute and asymptomatic parasitemia. Understanding the role and mechanism of raised hepcidin and so reduced iron availability during infection is critical to establish evidence-based guidelines for management of malaria anemia. Our recent clinical evidence suggests a potential role of IL-10 in the regulation of hepcidin in patients with acute P. falciparum malaria.
Methods
We have measured secretion of hepcidin by primary macrophages and the hepatoma cell line HepG2 stimulated with IL-10, IL-6 and Plasmodium falciparum-infected erythrocytes.
Findings
We have observed that IL-10 and IL-6 production increased in primary macrophages when these cells were co-cultured with Plasmodium falciparum–infected erythrocytes. We found that IL-10 induced hepcidin secretion in primary macrophages in a dose-dependent manner but not in HepG2 cells. These effects were mediated through signal transducer and activator of transcription (STAT) 3-phosphorylation and completely abrogated by a specific STAT3 inhibitor.
Conclusion
IL-10 can directly regulate hepcidin in primary macrophages but not in HepG2 cells. This effect can be modulated by Plasmodium falciparum. The results are consistent with a role for IL-10 in modulating iron metabolism during acute phase of infection.
doi:10.1371/journal.pone.0088408
PMCID: PMC3919761  PMID: 24520384
16.  Hepcidin and Hfe in iron overload in β-thalassemia 
Hepcidin (HAMP) negatively regulates iron absorption, degrading the iron exporter ferroportin at the level of enterocytes and macrophages. We showed that mice with β-thalassemia intermedia (th3/+) have increased anemia and iron overload. However, their hepcidin expression is relatively low compared to their iron burden. We also showed that the iron metabolism gene Hfe is down-regulated in concert with hepcidin in th3/+ mice. These observations suggest that low hepcidin levels are responsible for abnormal iron absorption in thalassemic mice and that down-regulation of Hfe might be involved in the pathway that controls hepcidin synthesis in β-thalassemia. Therefore, these studies suggest that increasing hepcidin and/or Hfe expression could be a strategy to reduces iron overload in these animals. The goal of this paper is to review recent findings that correlate hepcidin, Hfe, and iron metabolism in β-thalassemia and to discuss potential novel therapeutic approaches based on these recent discoveries.
doi:10.1111/j.1749-6632.2010.05595.x
PMCID: PMC3652388  PMID: 20712796
β-thalassemia; iron overload; hepcidin; Hfe; lentiviral vectors
17.  Hepcidin in β-thalassemia 
Iron overload is the principal cause of morbidity and mortality in β-thalassemia with or without transfusion dependence. Iron homeostasis is regulated by the hepatic peptide hormone hepcidin. Hepcidin controls dietary iron absorption, plasma iron concentrations, and tissue iron distribution. Hepcidin deficiency is the main or contributing factor of iron overload in iron-loading anemias such as β-thalassemia. Hepcidin deficiency results from a strong suppressive effect of the high erythropoietic activity on hepcidin expression. Although in thalassemia major patients iron absorption contributes less to the total iron load than transfusions, in non-transfused thalassemia, low hepcidin and the consequent hyperabsorption of dietary iron is the major cause of systemic iron overload. Hepcidin diagnostics and future therapeutic agonists may help in management of patients with β-thalassemia.
doi:10.1111/j.1749-6632.2010.05585.x
PMCID: PMC2924878  PMID: 20712769
hepcidin; β-thalassemia; iron overload
18.  Iron-deficiency anemia from matriptase-2 inactivation is dependent on the presence of functional Bmp6 
Blood  2010;117(2):647-650.
Hepcidin is the master regulator of iron homeostasis. In the liver, iron-dependent hepcidin activation is regulated through Bmp6 and its membrane receptor hemojuvelin (Hjv) whereas, in response to iron deficiency, hepcidin repression seems to be controlled by a pathway involving the serine protease matriptase-2 (encoded by Tmprss6). To determine the relationship between Bmp6 and matriptase-2 pathways, Tmprss6−/− mice (characterized by increased hepcidin levels and anemia) and Bmp6−/− mice (exhibiting severe iron overload due to hepcidin deficiency) were intercrossed. We showed that loss of Bmp6 decreased hepcidin levels, increased hepatic iron and, importantly, corrected hematological abnormalities in Tmprss6−/− mice. This suggests that elevated hepcidin levels in patients with familial iron-refractory iron deficiency anemia are due to excess signaling through the Bmp6/Hjv pathway.
doi:10.1182/blood-2010-07-295147
PMCID: PMC3302207  PMID: 20940420
Anemia, Iron-Deficiency; metabolism; Animals; Antimicrobial Cationic Peptides; metabolism; Bone Morphogenetic Protein 6; metabolism; Female; Iron; metabolism; Iron, Dietary; metabolism; Liver; metabolism; Membrane Proteins; metabolism; Mice; Mice, Knockout; Serine Endopeptidases; metabolism; Signal Transduction; physiology; hepcidin; hemojuvelin; bmp6; matriptase2; tmprss6
19.  Hepcidin in anemia of chronic heart failure 
American journal of hematology  2011;86(1):107-109.
Anemia is a common finding among patients with chronic heart failure. Although co-morbidities, such as kidney failure, might contribute to the pathogenesis of anemia, many patients with heart failure do not have any other obvious etiology for their anemia. We investigated whether anemia in heart failure is associated with an elevation in hepcidin concentration.
We used time-of-flight mass spectrometry to measure hepcidin concentration in urine and serum samples of patients with heart failure and in control subjects. We found that the concentration of hepcidin was lower in urine samples of patients with heart failure compared to those of control subjects. Serum hepcidin was also reduced in heart failure but was not significantly lower than that in controls. There were no significant differences between hepcidin levels in patients with heart failure and anemia compared to patients with heart failure and normal hemoglobin. We concluded that hepcidin probably does not play a major role in pathogenesis of anemia in patients with chronic heart failure.
doi:10.1002/ajh.21902
PMCID: PMC3076004  PMID: 21080339
Anemias; Cytokines; Iron
20.  Evaluation of the First Commercial Hepcidin ELISA for the Differential Diagnosis of Anemia of Chronic Disease and Iron Deficiency Anemia in Hospitalized Geriatric Patients 
ISRN Hematology  2012;2012:567491.
Introduction. Anemia is a frequent problem in hospitalized geriatric patients, and the anemia of chronic disease (ACD) and iron deficiency anemia (IDA) are the 2 most prevalent causes. The aim of the study was to assess the possible role of serum hepcidin in the differential diagnosis between ACD and IDA. Methods. We investigated serum hepcidin, iron status, anemia, and C-reactive protein in 39 consecutive geriatric patients with ACD and IDA. Serum hepcidin levels were determined using a commercial ELISA kit (DRG Instruments, Marburg, Germany). We also measured hepcidin in 26 healthy controls. Results. The serum hepcidin levels were not significantly higher in the 28 patients with ACD as compared to the 11 patients with IDA. Conclusions. The serum hepcidin levels measured using the commercial ELISA kit (DRG) do not appear to increase in older patients with ACD. It should be noted that an assay-specific problem could explain our results.
doi:10.5402/2012/567491
PMCID: PMC3302103  PMID: 22461996
21.  Serum Pro-hepcidin Could Reflect Disease Activity in Patients with Rheumatoid Arthritis 
Journal of Korean Medical Science  2010;25(3):348-352.
The aim of this study was to analyze the relationship between serum pro-hepcidin concentration and the anemia profiles of rheumatoid arthritis (RA) and to estimate the pro-hepcidin could reflect the disease activity of RA. RA disease activities were measured using Disease Activity Score 28 (DAS28), tender/swollen joint counts, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP). Anemia profiles such as hemoglobin, iron, total iron binding capacity (TIBC), ferritin, and transferrin levels were measured. Serum concentration of pro-hepcidin, the prohormone of hepcidin, was measured using enzyme-linked immunosorbent assay (ELISA). Mean concentration of serum pro-hepcidin was 237.6±67.9 ng/mL in 40 RA patients. The pro-hepcidin concentration was correlated with rheumatoid factor, CRP, ESR, and DAS28. There was a significant correlation between pro-hepcidin with tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. The pro-hepcidin concentration was significantly higher in the patients with active RA (DAS28>5.1) than those with inactive to moderate RA (DAS28≤5.1). However, the pro-hepcidin concentration did not correlate with the anemia profiles except hemoglobin level. There was no difference of pro-hepcidin concentration between the patients with anemia of chronic disease and those without. In conclusion, serum concentration of pro-hepcidin reflects the disease activity, regardless of the anemia states in RA patients, thus it may be another potential marker for disease activity of RA.
doi:10.3346/jkms.2010.25.3.348
PMCID: PMC2826733  PMID: 20191031
Arthritis, Rheumatoid; Anemia; Hepcidin; Prohepcidin
22.  Analysis of hepcidin expression: In situ hybridization and quantitative polymerase chain reaction from paraffin sections 
AIM: To establish methods for quantitative polymerase chain reaction (PCR) for hepcidin using RNAs isolated from paraffin-embedded sections and in situ hybridization of hepatocellular carcinoma (HCC).
METHODS: Total RNA from paraffin-embedded sections was isolated from 68 paraffin-embedded samples of HCC. Samples came from 54 male and 14 female patients with a mean age of 66.8 ± 7.8 years. Quantitative PCR was performed. Immunohistochemistry and in situ hybridization for hepcidin were also performed.
RESULTS: Quantitative PCR for hepcidin using RNAs isolated from paraffin-embedded sections of HCC was performed successfully. The expression level of hepcidin mRNA in cancer tissues was significantly higher than that in non-cancer tissues. A method of in situ hybridization for hepcidin was established successfully, and this demonstrated that hepcidin mRNA was expressed in non-cancerous tissue but absent in cancerous tissue.
CONCLUSION: We have established novel methods for quantitative PCR for hepcidin using RNAs isolated from paraffin-embedded sections and in situ hybridization of HCC.
doi:10.3748/wjg.v18.i28.3727
PMCID: PMC3406426  PMID: 22851866
Hepcidin; Expression; In situ hybridization; Immunohistochemistry; Real-time polymerase chain reaction
23.  Highly Elevated Serum Hepcidin in Patients with Acute Myeloid Leukemia prior to and after Allogeneic Hematopoietic Cell Transplantation: Does This Protect from Excessive Parenchymal Iron Loading? 
Advances in Hematology  2011;2011:491058.
Hepcidin is upregulated by inflammation and iron. Inherited (HFE genotype) and treatment-related factors (blood units (BU), Iron overload) affecting hepcidin (measured by C-ELISA) were studied in 42 consecutive patients with AML prior to and after allogeneic hematopoietic cell transplantation (HCT). Results. Elevated serum ferritin pre- and post-HCT was present in all patients. Median hepcidin pre- and post-HCT of 358 and 398 ng/mL, respectively, were elevated compared to controls (median 52 ng/mL) (P < .0001). Liver and renal function, prior chemotherapies, and conditioning had no impact on hepcidin. Despite higher total BU after HCT compared to pretransplantation (P < .0005), pre- and posttransplant ferritin and hepcidin were similar. BU influenced ferritin (P = .001) and hepcidin (P = .001). No correlation of pre- or posttransplant hepcidin with pretransplant ferritin was found. HFE genotype did not influence hepcidin. Conclusions. Hepcidin is elevated in AML patients pre- and post-HCT due to transfusional iron-loading suggesting that hepcidin synthesis remains intact despite chemotherapy and HCT.
doi:10.1155/2011/491058
PMCID: PMC3112503  PMID: 21687645
24.  Lower serum hepcidin and greater parenchymal iron in nonalcoholic fatty liver disease patients with C282Y HFE mutations 
Hepatology (Baltimore, Md.)  2012;56(5):1730-1740.
Hepcidin regulation is linked to both iron and inflammatory signals and may influence iron loading in nonalcoholic steatohepatitis (NASH). The aim of this study was to examine the relationships among HFE genotype, serum hepcidin level, hepatic iron deposition and histology in nonalcoholic fatty liver disease (NAFLD). SNP genotyping for C282Y (rs1800562) and H63D (rs1799945) HFE mutations was performed in 786 adult subjects in the NASH Clinical Research Network (CRN). Clinical, histologic, and laboratory data were compared using nonparametric statistics and multivariate logistic regression. NAFLD patients with C282Y, but not H63D mutations, had lower median serum hepcidin levels (57 vs 65 ng/ml, p=0.01) and higher mean hepatocellular (HC) iron grades (0.59 vs 0.28, p<0.001), compared to wild type (WT) subjects. Subjects with hepatic iron deposition had higher serum hepcidin levels than subjects without iron for all HFE genotypes (p<0.0001). Hepcidin levels were highest among patients with mixed HC/reticuloendothelial system cell (RES) iron deposition. H63D mutations were associated with higher steatosis grades and NAFLD activity scores (OR≥1.4, CI >1.0≤2.5, p≤0.041), compared to WT, but not with either HC or RES iron. NAFLD patients with C282Y mutations had less ballooning or NASH (OR ≤0.62, 95% CI >0.39<0.94, p≤0.024) compared to WT subjects.
Conclusions
Presence of C282Y mutations in patients with NAFLD is associated with greater HC iron deposition and decreased serum hepcidin levels and there is a positive relationship between hepatic iron stores and serum hepcidin level across all HFE genotypes. These data suggest that body iron stores are the major determinant of hepcidin regulation in NAFLD regardless of HFE genotype. A potential role for H63D mutations in NAFLD pathogenesis is possible through iron-independent mechanisms.
doi:10.1002/hep.25856
PMCID: PMC3462887  PMID: 22611049
NAFLD; Steatohepatitis; HFE; hepcidin; iron
25.  Hepcidin: A useful marker in chronic obstructive pulmonary disease 
Annals of Thoracic Medicine  2012;7(1):31-35.
PURPOSE:
This study was designed to evaluate the levels of hepcidin in the serum of patients with chronic obstructive pulmonary disease (COPD).
METHODS:
In the study, 74 male patients (ages 45-75) in a stable period for COPD were grouped as Group I: Mild COPD (n:25), Group II: Moderate COPD (n:24), and Group III: Severe COPD (n:25). Healthy non-smoker males were included in Group IV (n:35) as a control group. The differences of hepcidin level among all the groups were examined. Also, in the patient groups with COPD, hepcidin level was compared with age, body mass index, cigarette (package/year), blood parameters (iron, total iron binding capacity, ferritin, hemoglobin, hematocrit [hct]), respiratory function tests, and arterial blood gas results.
RESULTS:
Although there was no difference between the healthy control group and the mild COPD patient group (P=0.781) in terms of hepcidin level, there was a difference between the moderate (P=0.004) and the severe COPD patient groups (P=0.002). The hepcidin level of the control group was found to be higher than the moderate and severe COPD patient groups. In the severe COPD patients, hepcidin level increased with the increase in serum iron (P=0.000), hct (P=0.009), ferritin levels (P=0.012), and arterial oxygen saturation (SaO2, P=0.000).
CONCLUSION:
The serum hepcidin level that is decreased in severe COPD brings into mind that it may play a role in the mechanism to prevent hypoxemia. The results suggest that serum hepcidin level may be a useful marker in COPD. Larger prospective studies are needed to confirm our findings between hepcidin and COPD.
doi:10.4103/1817-1737.91562
PMCID: PMC3277039  PMID: 22347348
Chronic obstructive pulmonary disease; hepcidin; hypoxemia

Results 1-25 (942526)