Search tips
Search criteria

Results 1-25 (1451485)

Clipboard (0)

Related Articles

1.  Isoflurane Inhibits the Tetrodotoxin-resistant Voltagegated Sodium Channel Nav1.8 
Anesthesiology  2009;111(3):591-599.
Voltage-gated sodium channels (Nav) mediate neuronal action potentials. Tetrodotoxin inhibits all Nav isoforms, but Nav1.8 and Nav1.9 are relatively tetrodotoxin-resistant (TTX-r) compared to other isoforms. Nav1.8 is highly expressed in dorsal root ganglion neurons and is functionally linked to nociception, but the sensitivity of TTX-r isoforms to inhaled anesthetics is unclear.
The sensitivities of heterologously expressed rat TTX-r Nav1.8 and endogenous tetrodotoxin-sensitive (TTX-s) Nav to the prototypic inhaled anesthetic isoflurane were tested in mammalian ND7/23 cells using patch-clamp electrophysiology.
From a holding potential of −70 mV, isoflurane (0.53±0.06 mM, ~1.8 MAC at 24°C) reduced normalized peak Na+ current (INa) of Nav1.8 to 0.55±0.03 and of endogenous TTX-s Nav to 0.56±0.06. Isoflurane minimally inhibited INa from a holding potential of −140 mV. Isoflurane did not affect voltage-dependence of activation, but significantly shifted voltage-dependence of steady-state inactivation by −6 mV for Nav1.8 and by −7 mV for TTX-s Nav. IC50 values for inhibition of peak INa were 0.67±0.06 mM for Nav1.8 and 0.66±0.09 mM for TTX-s Nav; significant inhibition occurred at clinically relevant concentrations as low as 0.58 MAC. Isoflurane produced use-dependent block of Nav1.8; at a stimulation frequency of 10 Hz, 0.56±0.08 mM isoflurane reduced INa to 0.64±0.01 vs. 0.78±0.01 for control.
Isoflurane inhibited the tetrodotoxin-resistant isoform Nav1.8 with potency comparable to that for endogenous tetrodotoxin-sensitive Nav isoforms, indicating that sensitivity to inhaled anesthetics is conserved across diverse Nav family members. Block of Nav1.8 in dorsal root ganglion neurons could contribute to the effects of inhaled anesthetics on peripheral nociceptive mechanisms.
PMCID: PMC2756082  PMID: 19672182
2.  Differential modulation of Nav1.7 and Nav1.8 peripheral nerve sodium channels by the local anesthetic lidocaine 
British Journal of Pharmacology  2004;142(3):576-584.
Voltage-gated Na+ channels are transmembrane proteins that are essential for the propagation of action potentials in excitable cells. Nav1.7 and Nav1.8 dorsal root ganglion Na+ channels exhibit different kinetics and sensitivities to tetrodotoxin (TTX). We investigated the properties of both channels in the presence of lidocaine, a local anesthetic (LA) and class I anti-arrhythmic drug.Nav1.7 and Nav1.8 Na+ channels were coexpressed with the β1-subunit in Xenopus oocytes. Na+ currents were recorded using the two-microelectrode voltage-clamp technique.Dose–response curves for both channels had different EC50 (dose producing 50% maximum current inhibition) (450 μM for Nav1.7 and 104 μM for Nav1.8). Lidocaine enhanced current decrease in a frequency-dependent manner. Steady-state inactivation of both channels was also affected by lidocaine, Nav1.7 being the most sensitive. Only the steady-state activation of Nav1.8 was affected while the entry of both channels into slow inactivation was affected by lidocaine, Nav1.8 being affected to a larger degree.Although the channels share homology at DIV S6, the LA binding site, they differ in their sensitivity to lidocaine. Recent studies suggest that other residues on DI and DII known to influence lidocaine binding may explain the differences in affinities between Nav1.7 and Nav1.8 Na+ channels.Understanding the properties of these channels and their pharmacology is of critical importance to developing drugs and finding effective therapies to treat chronic pain.
PMCID: PMC1574965  PMID: 15148257
Nav1.7; Nav1.8; sodium channels; lidocaine; local anesthetics; pain; peripheral nerve; dorsal root ganglion; Xenopus oocytes
3.  CC chemokine ligand 2 upregulates the current density and expression of TRPV1 channels and Nav1.8 sodium channels in dorsal root ganglion neurons 
Inflammation or nerve injury-induced upregulation and release of chemokine CC chemokine ligand 2 (CCL2) within the dorsal root ganglion (DRG) is believed to enhance the activity of DRG nociceptive neurons and cause hyperalgesia. Transient receptor potential vanilloid receptor 1 (TRPV1) and tetrodotoxin (TTX)-resistant Nav1.8 sodium channels play an essential role in regulating the excitability and pain transmission of DRG nociceptive neurons. We therefore tested the hypothesis that CCL2 causes peripheral sensitization of nociceptive DRG neurons by upregulating the function and expression of TRPV1 and Nav1.8 channels.
DRG neuronal culture was prepared from 3-week-old Sprague–Dawley rats and incubated with various concentrations of CCL2 for 24 to 36 hours. Whole-cell voltage-clamp recordings were performed to record TRPV1 agonist capsaicin-evoked inward currents or TTX-insensitive Na+ currents from control or CCL2-treated small DRG sensory neurons. The CCL2 effect on the mRNA expression of TRPV1 or Nav1.8 was measured by real-time quantitative RT-PCR assay.
Pretreatment of CCL2 for 24 to 36 hours dose-dependently (EC50 value = 0.6 ± 0.05 nM) increased the density of capsaicin-induced currents in small putative DRG nociceptive neurons. TRPV1 mRNA expression was greatly upregulated in DRG neurons preincubated with 5 nM CCL2. Pretreating small DRG sensory neurons with CCL2 also increased the density of TTX-resistant Na+ currents with a concentration-dependent manner (EC50 value = 0.7 ± 0.06 nM). The Nav1.8 mRNA level was significantly increased in DRG neurons pretreated with CCL2. In contrast, CCL2 preincubation failed to affect the mRNA level of TTX-resistant Nav1.9. In the presence of the specific phosphatidylinositol-3 kinase (PI3K) inhibitor LY294002 or Akt inhibitor IV, CCL2 pretreatment failed to increase the current density of capsaicin-evoked inward currents or TTX-insensitive Na+ currents and the mRNA level of TRPV1 or Nav1.8.
Our results showed that CCL2 increased the function and mRNA level of TRPV1 channels and Nav1.8 sodium channels in small DRG sensory neurons via activating the PI3K/Akt signaling pathway. These findings suggest that following tissue inflammation or peripheral nerve injury, upregulation and release of CCL2 within the DRG could facilitate pain transmission mediated by nociceptive DRG neurons and could induce hyperalgesia by upregulating the expression and function of TRPV1 and Nav1.8 channels in DRG nociceptive neurons.
PMCID: PMC3458897  PMID: 22870919
CC chemokine ligand 2; Dorsal root ganglion neurons; Transient receptor potential vanilloid receptor 1; Tetrodotoxin-resistant Nav1.8 sodium channel
4.  Actions of Tefluthrin on Rat Nav1.7 Voltage-Gated Sodium Channels Expressed in Xenopus Oocytes 
In rats expression of the Nav1.7 voltage-gated sodium channel isoform is restricted to the peripheral nervous system and is abundant in the sensory neurons of the dorsal root ganglion. We expressed the rat Nav1.7 sodium channel α subunit together with the rat auxiliary β1 and β2 subunits in Xenopus laevis oocytes and assessed the effects of the pyrethroid insecticide tefluthrin on the expressed currents using the two-electrode voltage clamp method. Tefluthrin at 100 µM modified of Nav1.7 channels to prolong inactivation of the peak current during a depolarizing pulse, resulting in a marked "late current" at the end of a 40-ms depolarization, and induced a sodium tail current following repolarization. Tefluthrin modification was enhanced up to two-fold by the application of a train of up to 100 5-ms depolarizing prepulses. These effects of tefluthrin on Nav1.7 channels were qualitatively similar to its effects on rat Nav1.2, Nav1.3 and Nav1.6 channels assayed previously under identical conditions. However, Nav1.7 sodium channels were distinguished by their low sensitivity to modification by tefluthrin, especially compared to Nav1.3 and Nav1.6 channels. It is likely that Nav1.7 channels contribute significantly to the tetrodotoxin-sensitive, pyrethroid-resistant current found in cultured dorsal root ganglion neurons. We aligned the complete amino acid sequences of four pyrethroid-sensitive isoforms (house fly Vssc1; rat Nav1.3, Nav1.6 and Nav1.8) and two pyrethroid-resistant isoforms (rat Nav1.2 and Nav1.7) and found only a single site, located in transmembrane segment 6 of homology domain I, at which the amino acid sequence was conserved among all four sensitive isoform sequences but differed in the two resistant isoform sequences. This position, corresponding to Val410 of the house fly Vssc1 sequence, also aligns with sites of multiple amino acid substitutions identified in the sodium channel sequences of pyrethroid-resistant insect populations. These results implicate this single amino acid polymorphism in transmembrane segment 6 of sodium channel homology domain I as a determinant of the differential pyrethroid sensitivity of rat sodium channel isoforms.
PMCID: PMC3181098  PMID: 21966053
voltage-gated sodium channel; Nav1.7 isoform; pyrethroid; tefluthrin; peripheral nervous system; dorsal root ganglion
5.  PKC–NF-κB are involved in CCL2-induced Nav1.8 expression and channel function in dorsal root ganglion neurons 
Bioscience Reports  2014;34(3):e00111.
CCL2 [chemokine (C–C motif) ligand 2] contributes to the inflammation-induced neuropathic pain through activating VGSC (voltage-gated sodium channel)-mediated nerve impulse conduction, but the underlying mechanism is currently unknown. Our study aimed to investigate whether PKC (protein kinase C)–NF-κB (nuclear factor κB) is involved in CCL2-induced regulation of voltage-gated sodium Nav1.8 currents and expression. DRG (dorsal root ganglion) neurons were prepared from adult male Sprague–Dawley rats and incubated with various concentration of CCL2 for 24 h. Whole-cell patch-clamps were performed to record the Nav1.8 currents in response to the induction by CCL2. After being pretreated with 5 and10 nM CCL2 for 16 h, CCR2 [chemokine (C–C motif) receptor 2] and Nav1.8 expression significantly increased and the peak currents of Nav1.8 elevated from the baseline 46.53±4.53 pA/pF to 64.28±3.12 pA/pF following 10 nM CCL2 (P<0.05). Compared with the control, significant change in Nav1.8 current density was observed when the CCR2 inhibitor INCB3344 (10 nM) was applied. Furthermore, inhibition of PKC by AEB071 significantly eliminated CCL2-induced elevated Nav1.8 currents. In vitro PKC kinase assays and autoradiograms suggested that Nav1.8 within DRG neurons was a substrate of PKC and direct phosphorylation of the Nav1.8 channel by PKC regulates its function in these neurons. Moreover, p65 expression was significantly higher in CCL2-induced neurons (P<0.05), and was reversed by treatment with INCB3344 and AEB071. PKC–NF-κB are involved in CCL2-induced elevation of Nav1.8 current density by promoting the phosphorylation of Nav1.8 and its expression.
Cytokine CCL2 is responsible for promoting voltage-gated sodium Nav1.8 current density and expression, which mediates nerve impulse conduction and induces inflammatory nociception. PKC phosphorylates Nav1.8 to increase its current density and PKC–NF-κB are involved in inducing the up-regulation of Nav1.8.
PMCID: PMC4062041  PMID: 24724624
CCL2; CCR2; dorsal root ganglion (DRG); Nav1.8; nociception; PKC; CCL2, chemokine (C–C motif) ligand 2; CCR2, chemokine (C–C motif) receptor 2; DRG, dorsal root ganglion; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; NF-κB, nuclear factor κB; PKC, protein kinase C; TEA-Cl, tetraethylammonium-Cl; TRPV1, transient receptor potential vanilloid 1; TTX-R, tetrodotoxin-resistant; VGSC, voltage-gated sodium channel
6.  Pharmacological fractionation of tetrodotoxin-sensitive sodium currents in rat dorsal root ganglion neurons by μ-conotoxins 
British Journal of Pharmacology  2013;169(1):102-114.
Background and Purpose
Adult rat dorsal root ganglion (DRG) neurons normally express transcripts for five isoforms of the α-subunit of voltage-gated sodium channels: NaV1.1, 1.6, 1.7, 1.8 and 1.9. Tetrodotoxin (TTX) readily blocks all but NaV1.8 and 1.9, and pharmacological agents that discriminate among the TTX-sensitive NaV1-isoforms are scarce. Recently, we used the activity profile of a panel of μ-conotoxins in blocking cloned rodent NaV1-isoforms expressed in Xenopus laevis oocytes to conclude that action potentials of A- and C-fibres in rat sciatic nerve were, respectively, mediated primarily by NaV1.6 and NaV1.7.
Experimental Approach
We used three μ-conotoxins, μ-TIIIA, μ-PIIIA and μ-SmIIIA, applied individually and in combinations, to pharmacologically differentiate the TTX-sensitive INa of voltage-clamped neurons acutely dissociated from adult rat DRG. We examined only small and large neurons whose respective INa were >50% and >80% TTX-sensitive.
Key Results
In both small and large neurons, the ability of the toxins to block TTX-sensitive INa was μ-TIIIA < μ-PIIIA < μ-SmIIIA, with the latter blocking ≳90%. Comparison of the toxin-susceptibility profiles of the neuronal INa with recently acquired profiles of rat NaV1-isoforms, co-expressed with various NaVβ-subunits in X. laevis oocytes, were consistent: NaV1.1, 1.6 and 1.7 could account for all of the TTX-sensitive INa, with NaV1.1 < NaV1.6 < NaV1.7 for small neurons and NaV1.7 < NaV1.1 < NaV1.6 for large neurons.
Conclusions and Implications
Combinations of μ-conotoxins can be used to determine the probable NaV1-isoforms underlying the INa in DRG neurons. Preliminary experiments with sympathetic neurons suggest that this approach is extendable to other neurons.
PMCID: PMC3632242  PMID: 23351163
μ-conotoxin PIIIA; μ-conotoxin SmIIIA; μ-conotoxin TIIIA; dorsal root ganglion; superior cervical ganglion; tetrodotoxin; voltage-gated sodium channel; whole-cell patch clamp
7.  Single-cell analysis of sodium channel expression in dorsal root ganglion neurons 
Sensory neurons of the dorsal root ganglia (DRG) express multiple voltage-gated sodium (Na) channels that substantially differ in gating kinetics and pharmacology. Small-diameter (<25 µm) neurons isolated from the rat DRG express a combination of fast tetrodotoxin-sensitive (TTX-S) and slow TTX-resistant (TTX-R) Na currents while large-diameter neurons (>30 µm) predominately express fast TTX-S Na current. Na channel expression was further investigated using single-cell RT-PCR to measure the transcripts present in individually harvested DRG neurons. Consistent with cellular electrophysiology, the small neurons expressed transcripts encoding for both TTX-S (Nav1.1, Nav1.2, Nav1.6, Nav1.7) and TTX-R (Nav1.8, Nav1.9) Na channels. Nav1.7, Nav1.8 and Nav1.9 were the predominant Na channels expressed in the small neurons. The large neurons highly expressed TTX-S isoforms (Nav1.1, Nav1.6, Nav1.7) while TTX-R channels were present at comparatively low levels. A unique subpopulation of the large neurons was identified that expressed TTX-R Na current and high levels of Nav1.8 transcript. DRG neurons also displayed substantial differences in the expression of neurofilaments (NF200, peripherin) and Necl-1, a neuronal adhesion molecule involved in myelination. The preferential expression of NF200 and Necl-1 suggests that large-diameter neurons give rise to thick myelinated axons. Small-diameter neurons expressed peripherin, but reduced levels of NF200 and Necl-1, a pattern more consistent with thin unmyelinated axons. Single-cell analysis of Na channel transcripts indicates that TTX-S and TTX-R Na channels are differentially expressed in large myelinated (Nav1.1, Nav1.6, Nav1.7) and small unmyelinated (Nav1.7, Nav1.8, Nav1.9) sensory neurons.
PMCID: PMC3005531  PMID: 20816971
Sodium channel; dorsal root ganglia; single-cell RT-PCR; Necl-1; NF200; peripherin
8.  Antisense-Mediated Knockdown of NaV1.8, but Not NaV1.9, Generates Inhibitory Effects on Complete Freund's Adjuvant-Induced Inflammatory Pain in Rat 
PLoS ONE  2011;6(5):e19865.
Tetrodotoxin-resistant (TTX-R) sodium channels NaV1.8 and NaV1.9 in sensory neurons were known as key pain modulators. Comparing with the widely reported NaV1.8, roles of NaV1.9 on inflammatory pain are poorly studied by antisense-induced specific gene knockdown. Here, we used molecular, electrophysiological and behavioral methods to examine the effects of antisense oligodeoxynucleotide (AS ODN) targeting NaV1.8 and NaV1.9 on inflammatory pain. Following complete Freund's adjuvant (CFA) inflammation treatment, NaV1.8 and NaV1.9 in rat dorsal root ganglion (DRG) up-regulated mRNA and protein expressions and increased sodium current densities. Immunohistochemical data demonstrated that NaV1.8 mainly localized in medium and small-sized DRG neurons, whereas NaV1.9 only expressed in small-sized DRG neurons. Intrathecal (i.t.) delivery of AS ODN was used to down-regulate NaV1.8 or NaV1.9 expressions confirmed by immunohistochemistry and western blot. Unexpectedly, behavioral tests showed that only NaV1.8 AS ODN, but not NaV1.9 AS ODN could reverse CFA-induced heat and mechanical hypersensitivity. Our data indicated that TTX-R sodium channels NaV1.8 and NaV1.9 in primary sensory neurons played distinct roles in CFA-induced inflammatory pain and suggested that antisense oligodeoxynucleotide-mediated blocking of key pain modulator might point toward a potential treatment strategy against certain types of inflammatory pain.
PMCID: PMC3091880  PMID: 21572961
9.  Neuropathic Nav1.3-mediated sensitization to P2X activation is regulated by protein kinase C 
Molecular Pain  2011;7:14.
Increased neuronal excitability and spontaneous firing are hallmark characteristics of injured sensory neurons. Changes in expression of various voltage-gated Na+ channels (VGSCs) have been observed under neuropathic conditions and there is evidence for the involvement of protein kinase C (PKC) in sensory hyperexcitability. Here we demonstrate the contribution of PKC to P2X-evoked VGSC activation in dorsal root ganglion (DRG) neurons in neuropathic conditions.
Using the spinal nerve ligation (SNL) model of neuropathic pain and whole-cell patch clamp recordings of dissociated DRG neurons, we examined changes in excitability of sensory neurons after nerve injury and observed that P2X3 purinoceptor-mediated currents induced by α,β-meATP triggered activation of TTX-sensitive VGSCs in neuropathic nociceptors only. Treatment of neuropathic DRGs with the PKC blocker staurosporine or calphostin C decreased the α,β-meATP-induced Na+ channels activity and reversed neuronal hypersensitivity. In current clamp mode, α,β-meATP was able to evoke action-potentials more frequently in neuropathic neurons than in controls. Pretreatment with calphostin C significantly decreased the proportion of sensitized neurons that generated action potentials in response to α,β-meATP. Recordings measuring VGSC activity in neuropathic neurons show significant change in amplitude and voltage dependence of sodium currents. In situ hybridization data indicate a dramatic increase in expression of embryonic Nav1.3 channels in neuropathic DRG neurons. In a CHO cell line stably expressing the Nav1.3 subunit, PKC inhibition caused both a significant shift in voltage-dependence of the channel in the depolarizing direction and a decrease in current amplitude.
Neuropathic injury causes primary sensory neurons to become hyperexcitable to ATP-evoked P2X receptor-mediated depolarization, a phenotypic switch sensitive to PKC modulation and mediated by increased activity of TTX-sensitive VGSCs. Upregulation in VGSC activity after injury is likely mediated by increased expression of the Nav1.3 subunit, and the function of the Nav1.3 channel is regulated by PKC.
PMCID: PMC3050763  PMID: 21314936
10.  Early Painful Diabetic Neuropathy Is Associated with Differential Changes in Tetrodotoxin-sensitive and -resistant Sodium Channels in Dorsal Root Ganglion Neurons in the Rat* 
The Journal of biological chemistry  2004;279(28):29341-29350.
Diabetic neuropathy is a common form of peripheral neuropathy, yet the mechanisms responsible for pain in this disease are poorly understood. Alterations in the expression and function of voltage-gated tetrodotoxin-resistant (TTX-R) sodium channels have been implicated in animal models of neuropathic pain, including models of diabetic neuropathy. We investigated the expression and function of TTX-sensitive (TTX-S) and TTX-R sodium channels in dorsal root ganglion (DRG) neurons and the responses to thermal hyperalgesia and mechanical allodynia in streptozotocin-treated rats between 4–8 weeks after onset of diabetes. Diabetic rats demonstrated a significant reduction in the threshold for escape from innocuous mechanical pressure (allodynia) and a reduction in the latency to withdrawal from a noxious thermal stimulus (hyperalgesia). Both TTX-S and TTX-R sodium currents increased significantly in small DRG neurons isolated from diabetic rats. The voltage-dependent activation and steady-state inactivation curves for these currents were shifted negatively. TTX-S currents induced by fast or slow voltage ramps increased markedly in neurons from diabetic rats. Immunoblots and immunofluorescence staining demonstrated significant increases in the expression of Nav1.3 (TTX-S) and Nav1.7 (TTX-S) and decreases in the expression of Nav1.6 (TTX-S) and Nav1.8 (TTX-R) in diabetic rats. The level of serine/threonine phosphorylation of Nav1.6 and Nav1.8 increased in response to diabetes. In addition, increased tyrosine phosphorylation of Nav1.6 and Nav1.7 was observed in DRGs from diabetic rats. These results suggest that both TTX-S and TTX-R sodium channels play important roles and that differential phosphorylation of sodium channels involving both serine/threonine and tyrosine sites contributes to painful diabetic neuropathy.
PMCID: PMC1828032  PMID: 15123645
11.  Functional up-regulation of Nav1.8 sodium channel in Aβ afferent fibers subjected to chronic peripheral inflammation 
Functional alterations in the properties of Aβ afferent fibers may account for the increased pain sensitivity observed under peripheral chronic inflammation. Among the voltage-gated sodium channels involved in the pathophysiology of pain, Nav1.8 has been shown to participate in the peripheral sensitization of nociceptors. However, to date, there is no evidence for a role of Nav1.8 in controlling Aβ-fiber excitability following persistent inflammation.
Distribution and expression of Nav1.8 in dorsal root ganglia and sciatic nerves were qualitatively or quantitatively assessed by immunohistochemical staining and by real time-polymerase chain reaction at different time points following complete Freund’s adjuvant (CFA) administration. Using a whole-cell patch-clamp configuration, we further determined both total INa and TTX-R Nav1.8 currents in large-soma dorsal root ganglia (DRG) neurons isolated from sham or CFA-treated rats. Finally, we analyzed the effects of ambroxol, a Nav1.8-preferring blocker on the electrophysiological properties of Nav1.8 currents and on the mechanical sensitivity and inflammation of the hind paw in CFA-treated rats.
Our findings revealed that Nav1.8 is up-regulated in NF200-positive large sensory neurons and is subsequently anterogradely transported from the DRG cell bodies along the axons toward the periphery after CFA-induced inflammation. We also demonstrated that both total INa and Nav1.8 peak current densities are enhanced in inflamed large myelinated Aβ-fiber neurons. Persistent inflammation leading to nociception also induced time-dependent changes in Aβ-fiber neuron excitability by shifting the voltage-dependent activation of Nav1.8 in the hyperpolarizing direction, thus decreasing the current threshold for triggering action potentials. Finally, we found that ambroxol significantly reduces the potentiation of Nav1.8 currents in Aβ-fiber neurons observed following intraplantar CFA injection and concomitantly blocks CFA-induced mechanical allodynia, suggesting that Nav1.8 regulation in Aβ-fibers contributes to inflammatory pain.
Collectively, these findings support a key role for Nav1.8 in controlling the excitability of Aβ-fibers and its potential contribution to the development of mechanical allodynia under persistent inflammation.
PMCID: PMC4007624  PMID: 24606981
Aβ-fibers; Allodynia; Complete Freund’s adjuvant; Electrophysiology; Sodium channel blocker
12.  Mechanism of sodium channel NaV1.9 potentiation by G-protein signaling 
The Journal of General Physiology  2013;141(2):193-202.
Tetrodotoxin (TTX)-resistant voltage-gated Na (NaV) channels have been implicated in nociception. In particular, NaV1.9 contributes to expression of persistent Na current in small diameter, nociceptive sensory neurons in dorsal root ganglia and is required for inflammatory pain sensation. Using ND7/23 cells stably expressing human NaV1.9, we elucidated the biophysical mechanisms responsible for potentiation of channel activity by G-protein signaling to better understand the response to inflammatory mediators. Heterologous NaV1.9 expression evoked TTX-resistant Na current with peak activation at −40 mV with extensive overlap in voltage dependence of activation and inactivation. Inactivation kinetics were slow and incomplete, giving rise to large persistent Na currents. Single-channel recording demonstrated long openings and correspondingly high open probability (Po) accounting for the large persistent current amplitude. Channels exposed to intracellular GTPγS, a proxy for G-protein signaling, exhibited twofold greater current density, slowing of inactivation, and a depolarizing shift in voltage dependence of inactivation but no change in activation voltage dependence. At the single-channel level, intracellular GTPγS had no effect on single-channel amplitude but caused an increased mean open time and greater Po compared with recordings made in the absence of GTPγS. We conclude that G-protein activation potentiates human NaV1.9 activity by increasing channel open probability and mean open time, causing the larger peak and persistent current, respectively. Our results advance our understanding about the mechanism of NaV1.9 potentiation by G-protein signaling during inflammation and provide a cellular platform useful for the discovery of NaV1.9 modulators with potential utility in treating inflammatory pain.
PMCID: PMC3557314  PMID: 23359282
13.  Dexmedetomidine inhibits Tetrodotoxin-resistant Nav1.8 sodium channel activity through Gi/o-dependent pathway in rat dorsal root ganglion neurons 
Molecular Brain  2015;8:15.
Systemically administered dexmedetomidine (DEX), a selective α2 adrenergic receptor (α2-AR) agonists, produces analgesia and sedation. Peripherally restricted α2-AR antagonist could block the analgesic effect of systemic DEX on neuropathic pain, with no effect on sedation, indicating peripheral analgesic effect of DEX. Tetrodotoxin-resistant (TTX-R) sodium channel Nav1.8 play important roles in the conduction of nociceptive sensation. Both α2-AR and Nav1.8 are found in small nociceptive DRG neurons. We, therefore, investigated the effects of DEX on the Nav1.8 currents in acutely dissociated small-diameter DRG neurons.
Whole-cell patch-clamp recordings demonstrated that DEX concentration-dependently suppressed TTX-R Nav1.8 currents in small-diameter lumbar DRG neurons. DEX also shifted the steady-state inactivation curves of Nav1.8 in a hyperpolarizing direction and increased the threshold of action potential and decrease electrical and chemical stimuli-evoked firings in small-diameter DRG neurons. The α2-AR antagonist yohimbine or α2A-AR antagonist BRL44408 but not α2B-AR antagonist imiloxan blocked the inhibition of Nav1.8 currents by DEX. Immunohistochemistry results showed that Nav1.8 was predominantly expressed in peripherin-positive small-diameter DRG neurons, and some of them were α2A-AR-positive ones. Our electrophysiological recordings also demonstrated that DEX-induced inhibition of Nav1.8 currents was prevented by intracellular application of G-protein inhibitor GDPβ-s or Gi/o proteins inhibitor pertussis toxin (PTX), and bath application of adenylate cyclase (AC) activator forskolin or membrane-permeable cAMP analogue 8-Bromo-cAMP (8-Br-cAMP). PKA inhibitor Rp-cAMP could mimic DEX-induced inhibition of Nav1.8 currents.
We established a functional link between α2-AR and Nav1.8 in primary sensory neurons utilizing the Gi/o/AC/cAMP/PKA pathway, which probably mediating peripheral analgesia of DEX.
PMCID: PMC4350947  PMID: 25761941
α2-adrenoceptor; Dexmedetomidine; Dorsal root ganglion; Pain; Tetrodotoxin-resistant (TTX-R) sodium channel Nav1.8; Whole-cell recording
14.  Continuous delta opioid receptor activation reduces neuronal voltage gated sodium channel (NaV1.7) levels through activation of protein kinase C in painful diabetic neuropathy 
The Journal of Neuroscience  2008;28(26):6652-6658.
The NaV1.7 tetrodotoxin-sensitive voltage-gated sodium channel isoform plays a critical role in nociception. In rodent models of diabetic neuropathy, increased NaV1.7 in dorsal root ganglion (DRG) neurons correlates with the emergence of pain-related behaviors characteristic of painful diabetic neuropathy (PDN). We examined the effect of transgene-mediated expression of enkephalin on pain-related behaviors and their biochemical correlates in DRG neurons. Transfection of DRG neurons by subcutaneous inoculation of a herpes simplex virus (HSV)-based vector expressing proenkephalin (PE) reversed nocisponsive behavioral responses to heat, cold, and mechanical pressure characteristic of PDN. Vector-mediated enkephalin production in vivo prevented the increase in DRG NaV1.7 observed in PDN, an effect that correlated with inhibition of phosphorylation of p38 MAP kinase and protein kinase C (PKC). Primary DRG neurons in vitro exposed to 45 mM glucose for 18 hrs also demonstrated an increase in NaV1.7 and increased phosphorylation of p38 and PKC; these changes were prevented by transfection in vitro with the enkephalin-expressing vector. The effect of hyperglycemia on NaV1.7 production in vitro was mimicked by exposure to PMA, and blocked by the myristolated PKC inhibitor 20–28 or the p38 inhibitor SB202190; the effect of vector-mediated enkephalin on NaV1.7 levels was prevented by naltrindole. The results of these studies suggest that activation of the presynaptic delta opioid receptor by enkephalin prevents the increase in neuronal NaV1.7 in DRG through inhibition of PKC and p38. These results establish a novel interaction between the delta opioid receptor and voltage gated sodium channels.
PMCID: PMC3321315  PMID: 18579738
pain; diabetic neuropathy; sodium channel; gene therapy; herpes simplex; enkephalins
15.  PKCε-dependent potentiation of TTX-resistant Nav1.8 current by neurokinin-1 receptor activation in rat dorsal root ganglion neurons 
Molecular Pain  2009;5:33.
Substance P (SP), which mainly exists in a subtype of small-diameter dorsal root ganglion (DRG) neurons, is an important signal molecule in pain processing in the spinal cord. Our previous results have proved the expression of SP receptor neurokinin-1 (NK-1) on DRG neurons and its interaction with transient receptor potential vanilloid 1 (TRPV1) receptor.
In this study we investigated the effect of NK-1 receptor agonist on Nav1.8, a tetrodotoxin (TTX)-resistant sodium channel, in rat small-diameter DRG neurons employing whole-cell patch clamp recordings. NK-1 agonist [Sar9, Met(O2)11]-substance P (Sar-SP) significantly enhanced the Nav1.8 currents in a subgroup of small-diameter DRG neurons under both the normal and inflammatory situation, and the enhancement was blocked by NK-1 antagonist Win51708 and protein kinase C (PKC) inhibitor bisindolylmaleimide (BIM), but not the protein kinase A (PKA) inhibitor H89. In particular, the inhibitor of PKCε, a PKC isoform, completely blocked this effect. Under current clamp model, Sar-SP reduced the amount of current required to evoke action potentials and increased the firing rate in a subgroup of DRG neurons.
These data suggest that activation of NK-1 receptor potentiates Nav1.8 sodium current via PKCε-dependent signaling pathway, probably participating in the generation of inflammatory hyperalgesia.
PMCID: PMC2715383  PMID: 19563686
16.  Phyla- and Subtype-Selectivity of CgNa, a Na+ Channel Toxin from the Venom of the Giant Caribbean Sea Anemone Condylactis Gigantea 
Because of their prominent role in electro-excitability, voltage-gated sodium (NaV) channels have become the foremost important target of animal toxins. These toxins have developed the ability to discriminate between closely related NaV subtypes, making them powerful tools to study NaV channel function and structure. CgNa is a 47-amino acid residue type I toxin isolated from the venom of the Giant Caribbean Sea Anemone Condylactis gigantea. Previous studies showed that this toxin slows the fast inactivation of tetrodotoxin-sensitive NaV currents in rat dorsal root ganglion neurons. To illuminate the underlying NaV subtype-selectivity pattern, we have assayed the effects of CgNa on a broad range of mammalian isoforms (NaV1.2–NaV1.8) expressed in Xenopus oocytes. This study demonstrates that CgNa selectively slows the fast inactivation of rNaV1.3/β1, mNaV1.6/β1 and, to a lesser extent, hNaV1.5/β1, while the other mammalian isoforms remain unaffected. Importantly, CgNa was also examined on the insect sodium channel DmNaV1/tipE, revealing a clear phyla-selectivity in the efficacious actions of the toxin. CgNa strongly inhibits the inactivation of the insect NaV channel, resulting in a dramatic increase in peak current amplitude and complete removal of fast and steady-state inactivation. Together with the previously determined solution structure, the subtype-selective effects revealed in this study make of CgNa an interesting pharmacological probe to investigate the functional role of specific NaV channel subtypes. Moreover, further structural studies could provide important information on the molecular mechanism of NaV channel inactivation.
PMCID: PMC3153007  PMID: 21833172
sea anemone; toxin; inactivation; sodium channel; subtype; selectivity
17.  Comparison of Gating Properties and Use-Dependent Block of Nav1.5 and Nav1.7 Channels by Anti-Arrhythmics Mexiletine and Lidocaine 
PLoS ONE  2015;10(6):e0128653.
Mexiletine and lidocaine are widely used class IB anti-arrhythmic drugs that are considered to act by blocking voltage-gated open sodium currents for treatment of ventricular arrhythmias and relief of pain. To gain mechanistic insights into action of anti-arrhythmics, we characterized biophysical properties of Nav1.5 and Nav1.7 channels stably expressed in HEK293 cells and compared their use-dependent block in response to mexiletine and lidocaine using whole-cell patch clamp recordings. While the voltage-dependent activation of Nav1.5 or Nav1.7 was not affected by mexiletine and lidocaine, the steady-state fast and slow inactivation of Nav1.5 and Nav1.7 were significantly shifted to hyperpolarized direction by either mexiletine or lidocaine in dose-dependent manner. Both mexiletine and lidocaine enhanced the slow component of closed-state inactivation, with mexiletine exerting stronger inhibition on either Nav1.5 or Nav1.7. The recovery from inactivation of Nav1.5 or Nav1.7 was significantly prolonged by mexiletine compared to lidocaine. Furthermore, mexiletine displayed a pronounced and prominent use-dependent inhibition of Nav1.5 than lidocaine, but not Nav1.7 channels. Taken together, our findings demonstrate differential responses to blockade by mexiletine and lidocaine that preferentially affect the gating of Nav1.5, as compared to Nav1.7; and mexiletine exhibits stronger use-dependent block of Nav1.5. The differential gating properties of Nav1.5 and Nav1.7 in response to mexiletine and lidocaine may help explain the drug effectiveness and advance in new designs of safe and specific sodium channel blockers for treatment of cardiac arrhythmia or pain.
PMCID: PMC4465899  PMID: 26068619
18.  Pattern of Functional TTX-Resistant Sodium Channels Reveals a Developmental Stage of Human iPSC- and ESC-Derived Nociceptors 
Stem Cell Reports  2015;5(3):305-313.
Human pluripotent stem cells (hPSCs) offer the opportunity to generate neuronal cells, including nociceptors. Using a chemical-based approach, we generated nociceptive sensory neurons from HUES6 embryonic stem cells and retrovirally reprogrammed induced hPSCs derived from fibroblasts. The nociceptive neurons expressed respective markers and showed tetrodotoxin-sensitive (TTXs) and -resistant (TTXr) voltage-gated sodium currents in patch-clamp experiments. In contrast to their counterparts from rodent dorsal root ganglia, TTXr currents of hPSC-derived nociceptors unexpectedly displayed a significantly more hyperpolarized voltage dependence of activation and fast inactivation. This apparent discrepancy is most likely due to a substantial expression of the developmentally important sodium channel NAV1.5. In view of the obstacles to recapitulate neuropathic pain in animal models, our data advance hPSC-derived nociceptors as a better model to study developmental and pathogenetic processes in human nociceptive neurons and to develop more specific small molecules to attenuate pain.
•hPSC-derived nociceptors express TTX-resistant sodium channels NAV1.8 and NAV1.9•SCN5A mRNA, coding for NAV1.5, is present in hPSC-derived nociceptors•The biophysical Nav characteristics support strong functional expression of NAV1.5•Human hPSC-derived nociceptors offer a suitable model of developing sensory neurons
This study investigates detailed electrophysiological characteristics of hPSC-derived peripheral nociceptive neurons with focus on voltage-gated sodium channels. Besides the pain-relevant subtypes NAV1.8 and NAV1.9, Lampert, Winner, and colleagues find that significant amounts of the developmentally important NAV1.5 are expressed and functionally active. Thus, human hPSC-derived nociceptors offer a suitable model of developing sensory neurons.
PMCID: PMC4618592  PMID: 26321143
19.  Inhibition of voltage-gated Na+ currents in sensory neurones by the sea anemone toxin APETx2 
British Journal of Pharmacology  2012;165(7):2167-2177.
APETx2, a toxin from the sea anemone Anthropleura elegantissima, inhibits acid-sensing ion channel 3 (ASIC3)-containing homo- and heterotrimeric channels with IC50 values < 100 nM and 0.1–2 µM respectively. ASIC3 channels mediate acute acid-induced and inflammatory pain response and APETx2 has been used as a selective pharmacological tool in animal studies. Toxins from sea anemones also modulate voltage-gated Na+ channel (Nav) function. Here we tested the effects of APETx2 on Nav function in sensory neurones.
Effects of APETx2 on Nav function were studied in rat dorsal root ganglion (DRG) neurones by whole-cell patch clamp.
APETx2 inhibited the tetrodotoxin (TTX)-resistant Nav 1.8 currents of DRG neurones (IC50, 2.6 µM). TTX-sensitive currents were less inhibited. The inhibition of Nav 1.8 currents was due to a rightward shift in the voltage dependence of activation and a reduction of the maximal macroscopic conductance. The inhibition of Nav 1.8 currents by APETx2 was confirmed with cloned channels expressed in Xenopus oocytes. In current-clamp experiments in DRG neurones, the number of action potentials induced by injection of a current ramp was reduced by APETx2.
APETx2 inhibited Nav 1.8 channels, in addition to ASIC3 channels, at concentrations used in in vivo studies. The limited specificity of this toxin should be taken into account when using APETx2 as a pharmacological tool. Its dual action will be an advantage for the use of APETx2 or its derivatives as analgesic drugs.
PMCID: PMC3413854  PMID: 21943094
APETx2; ASIC; Nav 1.8; peptide toxin; DRG; inflammatory pain; acid-induced pain; sea anemone toxins
20.  A Novel Nav1.7 Mutation Producing Carbamazepine-Responsive Erythromelalgia 
Annals of neurology  2009;65(6):733-741.
Human and animal studies have shown that Nav1.7 sodium channels, which are preferentially expressed within nociceptors and sympathetic neurons, play a major role in inflammatory and neuropathic pain. Inherited erythromelalgia (IEM) has been linked to gain-of-function mutations of Nav1.7. We now report a novel mutation (V400M) in a three-generation Canadian family in which pain is relieved by carbamazepine (CBZ).
We extracted genomic DNA from blood samples of eight members of the family, and the sequence of SCN9A coding exons was compared with the reference Nav1.7 complementary DNA. Wild-type Nav1.7 and V400M cell lines were then analyzed using whole-cell patch-clamp recording for changes in activation, deactivation, steady-state inactivation, and ramp currents.
Whole-cell patch-clamp studies of V400M demonstrate changes in activation, deactivation, steady-state inactivation, and ramp currents that can produce dorsal root ganglia neuron hyperexcitability that underlies pain in these patients. We show that CBZ, at concentrations in the human therapeutic range, normalizes the voltage dependence of activation and inactivation of this inherited erythromelalgia mutation in Nav1.7 but does not affect these parameters in wild-type Nav1.7.
Our results demonstrate a normalizing effect of CBZ on mutant Nav1.7 channels in this kindred with CBZ-responsive inherited erythromelalgia. The selective effect of CBZ on the mutant Nav1.7 channel appears to explain the ameliorative response to treatment in this kindred. Our results suggest that functional expression and pharmacological studies may provide mechanistic insights into hereditary painful disorders.
PMCID: PMC4103031  PMID: 19557861
21.  Biophysical properties of Nav1.8/Nav1.2 chimeras and inhibition by µO-conotoxin MrVIB 
British Journal of Pharmacology  2012;166(7):2148-2160.
Voltage-gated sodium channels are expressed primarily in excitable cells and play a pivotal role in the initiation and propagation of action potentials. Nine subtypes of the pore-forming α-subunit have been identified, each with a distinct tissue distribution, biophysical properties and sensitivity to tetrodotoxin (TTX). Nav1.8, a TTX-resistant (TTX-R) subtype, is selectively expressed in sensory neurons and plays a pathophysiological role in neuropathic pain. In comparison with TTX-sensitive (TTX-S) Navα-subtypes in neurons, Nav1.8 is most strongly inhibited by the µO-conotoxin MrVIB from Conus marmoreus. To determine which domain confers Nav1.8 α-subunit its biophysical properties and MrVIB binding, we constructed various chimeric channels incorporating sequence from Nav1.8 and the TTX-S Nav1.2 using a domain exchange strategy.
Wild-type and chimeric Nav channels were expressed in Xenopus oocytes, and depolarization-activated Na+ currents were recorded using the two-electrode voltage clamp technique.
MrVIB (1 µM) reduced Nav1.2 current amplitude to 69 ± 12%, whereas Nav1.8 current was reduced to 31 ± 3%, confirming that MrVIB has a binding preference for Nav1.8. A similar reduction in Na+ current amplitude was observed when MrVIB was applied to chimeras containing the region extending from S6 segment of domain I through the S5-S6 linker of domain II of Nav1.8. In contrast, MrVIB had only a small effect on Na+ current for chimeras containing the corresponding region of Nav1.2.
Taken together, these results suggest that domain II of Nav1.8 is an important determinant of MrVIB affinity, highlighting a region of the α-subunit that may allow further nociceptor-specific ligand targeting.
PMCID: PMC3402778  PMID: 22452751
electrophysiology; heterologous expression; Xenopus oocytes; chimera; µO-conotoxin MrVIB; tetrodotoxin; voltage-gated sodium channels; Nav1.2; Nav1.8
22.  The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA-MB-231 human breast cancer cells 
Upregulation of functional voltage-gated Na+ channels (VGSCs) occurs in metastatic human breast cancer (BCa) in vitro and in vivo. The present study aimed to ascertain the specific involvement of the ‘neonatal’ splice variant of Nav1.5 (nNav1.5), thought to be predominant, in the VGSC-dependent invasive behaviour of MDA-MB-231 cells. Functional activity of nNav1.5 was suppressed by two different methods targeting nNav1.5: (i) small interfering RNA (siRNA), and (ii) a polyclonal antibody (NESO-pAb); effects upon migration and invasion were determined. nNav1.5 mRNA, protein and signalling were measured using real-time PCR, Western blotting, and patch clamp recording, respectively. Treatment with the siRNA rapidly reduced (by ~90 %) the level of nNav1.5 (but not adult Nav1.5) mRNA, but the protein reduction was much smaller (~30 %), even after 13 days. Nevertheless, the siRNA reduced peak VGSC current density by 33 %, and significantly increased the cells’ sensitivity to nanomolar tetrodotoxin (TTX). Importantly, the siRNA suppressed in vitro migration by 43 %, and eliminated the normally inhibitory effect of TTX. Migrated MDA-MB-231 cells expressed more nNav1.5 protein at the plasma membrane than non-migrated cells. Furthermore, NESO-pAb reduced migration by up to 42 %, in a dose-dependent manner. NESO-pAb also reduced Matrigel invasion without affecting proliferation. TTX had no effect on cells already treated with NESO-pAb. It was concluded that nNav1.5 is primarily responsible for the VGSC-dependent enhancement of invasive behaviour in MDA-MB-231 cells. Accordingly, targeting nNav1.5 expression/activity may be useful in clinical management of metastatic BCa.
PMCID: PMC4122814  PMID: 16838113
Antibody; breast cancer; metastasis; RNAi; voltage-gated Na+ channel
23.  Post-translational modifications of voltage-gated sodium channels in chronic pain syndromes 
In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs) is very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential (AP). Navs are composed of nine different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8, and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the AP and consequently modify nociceptive transmission, a process that is observed in persistent pain conditions. Post-translational modification (PTM) of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG) sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e., peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B, and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological tools to alleviate pain.
PMCID: PMC4633509  PMID: 26594175
voltage-gated sodium channels; post-translational modification; chronic pain; hyperexcitability; nociceptive neurons
24.  Human Nav1.6 Channels Generate Larger Resurgent Currents than Human Nav1.1 Channels, but the Navβ4 Peptide Does Not Protect Either Isoform from Use-Dependent Reduction 
PLoS ONE  2015;10(7):e0133485.
Voltage-gated sodium channels are responsible for the initiation and propagation of action potentials (APs). Two brain isoforms, Nav1.1 and Nav1.6, have very distinct cellular and subcellular expression. Specifically, Nav1.1 is predominantly expressed in the soma and proximal axon initial segment of fast-spiking GABAergic neurons, while Nav1.6 is found at the distal axon initial segment and nodes of Ranvier of both fast-spiking GABAergic and excitatory neurons. Interestingly, an auxiliary voltage-gated sodium channel subunit, Navβ4, is also enriched in the axon initial segment of fast-spiking GABAergic neurons. The C-terminal tail of Navβ4 is thought to mediate resurgent sodium current, an atypical current that occurs immediately following the action potential and is predicted to enhance excitability. To better understand the contribution of Nav1.1, Nav1.6 and Navβ4 to high frequency firing, we compared the properties of these two channel isoforms in the presence and absence of a peptide corresponding to part of the C-terminal tail of Navβ4. We used whole-cell patch clamp recordings to examine the biophysical properties of these two channel isoforms in HEK293T cells and found several differences between human Nav1.1 and Nav1.6 currents. Nav1.1 channels exhibited slower closed-state inactivation but faster open-state inactivation than Nav1.6 channels. We also observed a greater propensity of Nav1.6 to generate resurgent currents, most likely due to its slower kinetics of open-state inactivation, compared to Nav1.1. These two isoforms also showed differential responses to slow and fast AP waveforms, which were altered by the Navβ4 peptide. Although the Navβ4 peptide substantially increased the rate of recovery from apparent inactivation, Navβ4 peptide did not protect either channel isoform from undergoing use-dependent reduction with 10 Hz step-pulse stimulation or trains of slow or fast AP waveforms. Overall, these two channels have distinct biophysical properties that may differentially contribute to regulating neuronal excitability.
PMCID: PMC4504674  PMID: 26182346
25.  Effects of (−)-Gallocatechin-3-Gallate on Tetrodotoxin-Resistant Voltage-Gated Sodium Channels in Rat Dorsal Root Ganglion Neurons 
The (−)-gallocatechin-3-gallate (GCG) concentration in some tea beverages can account for as much as 50% of the total catechins. It has been shown that catechins have analgesic properties. Voltage-gated sodium channels (Nav) mediate neuronal action potentials. Tetrodotoxin inhibits all Nav isoforms, but Nav1.8 and Nav1.9 are relatively tetrodotoxin-resistant compared to other isoforms and functionally linked to nociception. In this study, the effects of GCG on tetrodotoxin-resistant Na+ currents were investigated in rat primary cultures of dorsal root ganglion neurons via the whole-cell patch-clamp technique. We found that 1 μM GCG reduced the amplitudes of peak current density of tetrodotoxin-resistant Na+ currents significantly. Furthermore, the inhibition was accompanied by a depolarizing shift of the activation voltage and a hyperpolarizing shift of steady-state inactivation voltage. The percentage block of GCG (1 μM) on tetrodotoxin-resistant Na+ current was 45.1% ± 1.1% in 10 min. In addition, GCG did not produce frequency-dependent block of tetrodotoxin-resistant Na+ currents at stimulation frequencies of 1 Hz, 2 Hz and 5 Hz. On the basis of these findings, we propose that GCG may be a potential analgesic agent.
PMCID: PMC3676812  PMID: 23652835
catechins; (−)-gallocatechin-3-gallate; Na+ channel; dorsal root ganglion; tetrodotoxin-resistant

Results 1-25 (1451485)