PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1542614)

Clipboard (0)
None

Related Articles

1.  Pharmacogenomic responses of rat liver to methylprednisolone: An approach to mining a rich microarray time series 
The AAPS Journal  2005;7(1):E156-E194.
A data set was generated to examine global changes in gene expression in rat liver over time in response to a single bolus dose of methylprednisolone. Four control animals and 43 drug-treated animals were humanely killed at 16 different time points following drug administration. Total RNA preparation from the livers of these animals were hybridized to 47 individual Affymetrix RU34A gene chips, generating data for 8799 different probe sets for each chip. Data mining techniques that are applicable to gene array time series data sets in order to identify drug-regulated changes in gene expression were applied to this data set. A series of 4 sequentially applied filters were developed that were designed to eliminate probe sets that were not expressed in the tissue, were not regulated by the drug treatment, or did not meet defined quality control standards. These filters eliminated 7287 probe sets of the 8799 total (82%) from further consideration. Application of judiciously chosen filters is an effective tool for data mining of time series data sets. The remaining data can then be further analyzed by clustering and mathematical modeling techniques.
doi:10.1208/aapsj070117
PMCID: PMC2607485  PMID: 16146338
Data mining; gene arrays; glucocorticoids; mathematical modeling; pharmacogenomics
2.  Corticosteroid-regulated genes in rat kidney: mining time series array data 
Kidney is a major target for adverse effects associated with corticosteroids. A microarray dataset was generated to examine changes in gene expression in rat kidney in response to methylprednisolone. Four control and 48 drug-treated animals were killed at 16 times after drug administration. Kidney RNA was used to query 52 individual Affymetrix chips, generating data for 15,967 different probe sets for each chip. Mining techniques applicable to time series data that identify drug-regulated changes in gene expression were applied. Four sequential filters eliminated probe sets that were not expressed in the tissue, not regulated by drug, or did not meet defined quality control standards. These filters eliminated 14,890 probe sets (94%) from further consideration. Application of judiciously chosen filters is an effective tool for data mining of time series datasets. The remaining data can then be further analyzed by clustering and mathematical modeling. Initial analysis of this filtered dataset identified a group of genes whose pattern of regulation was highly correlated with prototype corticosteroid enhanced genes. Twenty genes in this group, as well as selected genes exhibiting either downregulation or no regulation, were analyzed for 5′ GRE half-sites conserved across species. In general, the results support the hypothesis that the existence of conserved DNA binding sites can serve as an important adjunct to purely analytic approaches to clustering genes into groups with common mechanisms of regulation. This dataset, as well as similar datasets on liver and muscle, are available online in a format amenable to further analysis by others.
doi:10.1152/ajpendo.00196.2005
PMCID: PMC3752664  PMID: 15985454
data mining; gene arrays; glucocorticoids; pharmacogenomics; evolutionary conservation
3.  A Microarray Analysis of the Temporal Response of Liver to Methylprednisolone: A Comparative Analysis of Two Dosing Regimens 
Endocrinology  2007;148(5):2209-2225.
Microarray analyses were performed on livers from adrenalectomized male Wistar rats chronically infused with methylprednisolone (MPL) (0.3 mg/kg·h) using Alzet mini-osmotic pumps for periods ranging from 6 h to 7 d. Four control and 40 drug-treated animals were killed at 10 different times during drug infusion. Total RNA preparations from the livers of these animals were hybridized to 44 individual Affymetrix REA230A gene chips, generating data for 15,967 different probe sets for each chip. A series of three filters were applied sequentially. These filters were designed to eliminate probe sets that were not expressed in the tissue, were not regulated by the drug, or did not meet defined quality control standards. These filters eliminated 13,978 probe sets (87.5%) leaving a remainder of 1989 probe sets for further consideration. We previously described a similar dataset obtained from animals after administration of a single dose of MPL (50 mg/kg given iv). That study involved 16 time points over a 72-h period. A similar filtering schema applied to the single-bolus-dose data-set identified 1519 probe sets as being regulated by MPL. A comparison of datasets from the two different dosing regimens identified 358 genes that were regulated by MPL in response to both dosing regimens. Regulated genes were grouped into 13 categories, mainly on gene product function. The temporal profiles of these common genes were subjected to detailed scrutiny. Examination of temporal profiles demonstrates that current perspectives on the mechanism of glucocorticoid action cannot entirely explain the temporal profiles of these regulated genes.
doi:10.1210/en.2006-0790
PMCID: PMC4183266  PMID: 17303664
4.  Microarray analysis of the temporal response of skeletal muscle to methylprednisolone: comparative analysis of two dosing regimens 
Physiological genomics  2007;30(3):282-299.
The transcriptional response of skeletal muscle to chronic corticosteroid exposure was examined over 168 h and compared with the response profiles observed following a single dose of corticosteroid. Male adrenalectomized Wistar rats were given a constant-rate infusion of 0.3 mg•kg−1•h−1 methylprednisolone for up to 7 days via subcutaneously implanted minipumps. Four control and forty drug-treated animals were killed at ten different time points during infusion. Liver total RNAs were hybridized to 44 individual Affymetrix REA230A gene chips. Previously, we described a filtration approach for identifying genes of interest in microarray data sets developed from tissues of rats treated with methylprednisolone (MPL) following acute dosing. Here, a similar approach involving a series of three filters was applied sequentially to identify genes of interest. These filters were designed to eliminate probe sets that were not expressed in the tissue, not regulated by the drug, or did not meet defined quality control standards. Filtering eliminated 86% of probe sets, leaving a remainder of 2,316 for further consideration. In a previous study, 653 probe sets were identified as MPL regulated following administration of a single (acute) dose of the drug. Comparison of the two data sets yielded 196 genes identified as regulated by MPL in both dosing regimens. Because of receptor downregulation, it was predicted that genes regulated by receptor-glucocorticoid response element interactions would exhibit tolerance in chronic profiles. However, many genes did not exhibit steroid tolerance, indicating that present perspectives on the mechanism of glucocorticoid action cannot entirely explain all temporal profiles.
doi:10.1152/physiolgenomics.00242.2006
PMCID: PMC4186702  PMID: 17473217
glucocorticoids; corticosteroids; Affymetrix gene chips; gene expression; time series
5.  Temporal profiling of the transcriptional basis for the development of corticosteroid-induced insulin resistance in rat muscle 
The Journal of endocrinology  2005;184(1):219-232.
Elevated systemic levels of glucocorticoids are causally related to peripheral insulin resistance. The pharmacological use of synthetic glucocorticoids (corticosteroids) often results in insulin resistance/type II diabetes. Skeletal muscle is responsible for close to 80% of the insulin-induced systemic disposal of glucose and is a major target for glucocorticoid-induced insulin resistance. We used Affymetrix gene chips to profile the dynamic changes in mRNA expression in rat skeletal muscle in response to a single bolus dose of the synthetic glucocorticoid methyl-prednisolone. Temporal expression profiles (analyzed on individual chips) were obtained from tissues of 48 drug-treated animals encompassing 16 time points over 72 h following drug administration along with four vehicle-treated controls. Data mining identified 653 regulated probe sets out of 8799 present on the chip. Of these 653 probe sets we identified 29, which represented 22 gene transcripts, that were associated with the development of insulin resistance. These 29 probe sets were regulated in three fundamental temporal patterns. 16 probe sets coding for 12 different genes had a profile of enhanced expression. 10 probe sets coding for eight different genes showed decreased expression and three probe sets coding for two genes showed biphasic temporal signatures. These transcripts were grouped into four general functional categories: signal transduction, transcription regulation, carbohydrate/fat metabolism, and regulation of blood flow to the muscle. The results demonstrate the polygenic nature of transcriptional changes associated with insulin resistance that can provide a temporal scaffolding for translational and post-translational data as they become available.
doi:10.1677/joe.1.05953
PMCID: PMC2574435  PMID: 15642798
6.  Application of Scaling Factors in Simultaneous Modeling of Microarray Data from Diverse Chips 
Pharmaceutical research  2007;24(4):643-649.
Purpose
Microarrays have been utilized in many biological, physiological and pharmacological studies as a high-throughput genomic technique. Several generations of Affymetrix GeneChip® microarrays are widely used in gene expression studies. However, differences in intensities of signals for different probe sets that represent the same gene on various types of Affymetrix chips make comparison of datasets complicated.
Materials and Methods
A power coefficient scaling factor was applied in the pharmacokinetic/ pharmacodynamic (PK/PD) modeling to account for differences in probe set sensitivities (i.e., signal intensities). Microarray data from muscle and liver following methylprednisolone 50 mg/kg i.v. bolus and 0.3 mg/kg/h infusion regimens were taken as an exemplar.
Results
The scaling factor applied to the pharmacodynamic output function was used to solve the problem of intensity differences between probe sets. This approach yielded consistent pharmacodynamic parameters for the applied models.
Conclusions
Modeling of pharmacodynamic/pharmacogenomic (PD/PG) data from diverse chips should be performed with caution due to differential probe set intensities. In such circumstances, a power scaling factor can be applied in the modeling.
doi:10.1007/s11095-006-9215-y
PMCID: PMC4181592  PMID: 17318415
bioinformatics; computational biology; pharmacodynamics; pharmacogenomics; pharmacokinetics
7.  Gene arrays and temporal patterns of drug response: corticosteroid effects on rat liver 
It was hypothesized that expression profiling using gene arrays can be used to distinguish temporal patterns of changes in gene expression in response to a drug in vivo, and that these patterns can be used to identify groups of genes regulated by common mechanisms. A corticosteroid, methylprednisolone (MPL), was administered intravenously to a group of 47 rats (Rattus rattus) that were sacrificed at 17 timepoints over 72 h after MPL administration. Plasma drug concentrations and hepatic glucocorticoid receptors were measured from each animal. In addition, RNAs prepared from individual livers were used to query Affymetrix genechips for mRNA expression patterns. Statistical analyses using Affymetrix and GeneSpring software were applied to the results. Cluster analysis revealed six major temporal patterns containing 196 corticosteroid-responsive probe sets representing 153 different genes. Four clusters showed increased expression with differences in lag-time, onset rate, and/or duration of transcriptional effect. A fifth cluster showed rapid reduction persisting for 18 h. The final cluster identified showed decreased expression followed by an extended period of increased expression. These results lend new insights into the diverse hepatic genes involved in the physiologic, therapeutic, and adverse effects of corticosteroids and suggest that a limited array of control processes account for the dynamics of their pharmacogenomic effects.
doi:10.1007/s10142-003-0090-x
PMCID: PMC4207265  PMID: 12928814
Corticosteroids; Glucocorticoids; Expression profiling; Cluster analysis
8.  Mathematical Modeling of Corticosteroid Pharmacogenomics in Rat Muscle following Acute and Chronic Methylprednisolone Dosing 
Molecular pharmaceutics  2008;5(2):328-339.
The pharmacogenomic effects of a corticosteroid (CS) were assessed in rat skeletal muscle using microarrays. Adrenalectomized (ADX) rats were treated with methylprednisolone (MPL) by either 50 mg/kg intravenous injection or 7-day 0.3 mg/kg/h infusion through subcutaneously implanted pumps. RNAs extracted from individual rat muscles were hybridized to Affymetrix Rat Genome Genechips. Data mining yielded 653 and 2316 CS-responsive probe sets following MPL bolus and infusion treatments. Of these, 196 genes were controlled by MPL under both dosing conditions. Cluster analysis revealed that 124 probe sets exhibited three typical expression dynamic profiles following acute dosing. Cluster A consisted of up-regulated probe sets which were grouped into five subclusters each exhibiting unique temporal patterns during the infusion. Cluster B comprised down-regulated probe sets which were divided into two subclusters with distinct dynamics during the infusion. Cluster C probe sets exhibited delayed down-regulation under both bolus and infusion conditions. Among those, 104 probe sets were further grouped into subclusters based on their profiles following chronic MPL dosing. Several mathematical models were proposed and adequately captured the temporal patterns for each subcluster. Multiple types of dosing regimens are needed to resolve common determinants of gene regulation as chronic exposure results in unexpected differences in gene expression compared to acute dosing. Pharmacokinetic/pharmacodynamic (PK/PD) modeling provides a quantitative tool for elucidating the complexities of CS pharmacogenomics in skeletal muscle.
doi:10.1021/mp700094s
PMCID: PMC4196382  PMID: 18271548
Microarray studies; pharmacokinetics; pharmacodynamics; mathematical models; computational biology
9.  Dietary exposure to soy or whey proteins alters colonic global gene expression profiles during rat colon tumorigenesis 
Molecular Cancer  2005;4:1.
Background
We previously reported that lifetime consumption of soy proteins or whey proteins reduced the incidence of azoxymethane (AOM)-induced colon tumors in rats. To obtain insights into these effects, global gene expression profiles of colons from rats with lifetime ingestion of casein (CAS, control diet), soy protein isolate (SPI), and whey protein hydrolysate (WPH) diets were determined.
Results
Male Sprague Dawley rats, fed one of the three purified diets, were studied at 40 weeks after AOM injection and when tumors had developed in some animals of each group. Total RNA, purified from non-tumor tissue within the proximal half of each colon, was used to prepare biotinylated probes, which were hybridized to Affymetrix RG_U34A rat microarrays containing probes sets for 8799 rat genes. Microarray data were analyzed using DMT (Affymetrix), SAM (Stanford) and pair-wise comparisons. Differentially expressed genes (SPI and/or WPH vs. CAS) were found. We identified 31 induced and 49 repressed genes in the proximal colons of the SPI-fed group and 44 induced and 119 repressed genes in the proximal colons of the WPH-fed group, relative to CAS. Hierarchical clustering identified the co-induction or co-repression of multiple genes by SPI and WPH. The differential expression of I-FABP (2.92-, 3.97-fold down-regulated in SPI and WPH fed rats; P = 0.023, P = 0.01, respectively), cyclin D1 (1.61-, 2.42-fold down-regulated in SPI and WPH fed rats; P = 0.033, P = 0.001, respectively), and the c-neu proto-oncogene (2.46-, 4.10-fold down-regulated in SPI and WPH fed rats; P < 0.001, P < 0.001, respectively) mRNAs were confirmed by real-time quantitative RT-PCR. SPI and WPH affected colonic neuro-endocrine gene expression: peptide YY (PYY) and glucagon mRNAs were down-regulated in WPH fed rats, whereas somatostatin mRNA and corresponding circulating protein levels, were enhanced by SPI and WPH.
Conclusions
The identification of transcripts co- or differentially-regulated by SPI and WPH diets suggests common as well as unique anti-tumorigenesis mechanisms of action which may involve growth factor, neuroendocrine and immune system genes. SPI and WPH induction of somatostatin, a known anti-proliferative agent for colon cancer cells, would inhibit tumorigenesis.
doi:10.1186/1476-4598-4-1
PMCID: PMC545049  PMID: 15644144
colon cancer; soy; whey; gene expression profiling; neuro-endocrine; microarray; rat
10.  Subchronic Exposure to TCDD, PeCDF, PCB126, and PCB153: Effect on Hepatic Gene Expression 
Environmental Health Perspectives  2004;112(16):1636-1644.
We employed DNA microarray to identify unique hepatic gene expression patterns associated with subchronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other halogenated aromatic hydrocarbons (HAHs). Female Harlan Sprague-Dawley rats were exposed for 13 weeks to toxicologically equivalent doses of four different HAHs based on the toxic equivalency factor of each chemical: TCDD (100 ng/kg/day), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF; 200 ng/kg/day), 3,3′,4,4′,5-pentachlorobiphenyl (PCB126; 1,000 ng/kg/day), or 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153; 1,000 μg/kg/day). Global gene expression profiles for each exposure, which account for 8,799 gene probe sets contained on Affymetrix RGU34A GeneChips, were compared by principal components analysis. The aryl hydrocarbon receptor (AhR) ligands TCDD, PeCDF, and PCB126 produced very similar global gene expression profiles that were unique from the nonAhR ligand PCB153, underscoring the extensive impact of AhR activation and/or the resulting hepatic injury on global gene expression in female rat liver. Many genes were co-expressed during the 13-week TCDD, PeCDF, or PCB126 exposures, including classical AhR-regulated genes and some genes not previously characterized as being AhR regulated, such as carcinoembryonic-cell adhesion molecule 4 (C-CAM4) and adenylate cyclase-associated protein 2 (CAP2). Real-time reverse-transcriptase polymerase chain reaction confirmed the increased expression of these genes in TCDD-, PeCDF-, and PCB126-exposed rats as well as the up- or down-regulation of several other novel dioxin-responsive genes. In summary, DNA microarray successfully identified dioxin-responsive genes expressed after exposure to AhR ligands (TCDD, PeCDF, PCB126) but not after exposure to the non-AhR ligand PCB153. Together, these findings may help to elucidate some of the fundamental features of dioxin toxicity and may further clarify the biologic role of the AhR signaling pathway.
doi:10.1289/txg.7253
PMCID: PMC1247661  PMID: 15598615
AhR; HAH; liver; microarray; PCB; TCDD
11.  Transcriptome Signature of Virulent and Attenuated Pseudorabies Virus-Infected Rodent Brain 
Journal of Virology  2006;80(4):1773-1786.
Mammalian alphaherpesviruses normally establish latent infections in ganglia of the peripheral nervous system in their natural hosts. Occasionally, however, these viruses spread to the central nervous system (CNS), where they cause damaging, often fatal, infections. Attenuated alphaherpesvirus derivatives have been used extensively as neuronal circuit tracers in a variety of animal models. Their circuit-specific spread provides a unique paradigm to study the local and global CNS response to infection. Thus, we systematically analyzed the host gene expression profile after acute pseudorabies virus (PRV) infection of the CNS using Affymetrix GeneChip technology. Rats were injected intraocularly with one of three selected virulent and attenuated PRV strains. Relative levels of cellular transcripts were quantified from hypothalamic and cerebellar tissues at various times postinfection. The number of cellular genes responding to infection correlated with the extent of virus dissemination and relative virulence of the PRV strains. A total of 245 out of 8,799 probe sets, corresponding to 182 unique cellular genes, displayed increased expression ranging from 2- to more than 100-fold higher than in uninfected tissue. Over 60% thereof were categorized as immune, proinflammatory, and other cellular defense genes. Additionally, a large fraction of infection-induced transcripts represented cellular stress responses, including glucocorticoid- and redox-related pathways. This is the first comprehensive in vivo analysis of the global transcriptional response of the mammalian CNS to acute alphaherpesvirus infection. The differentially regulated genes reported here are likely to include potential diagnostic and therapeutic targets for viral encephalitides and other neurodegenerative or neuroinflammatory diseases.
doi:10.1128/JVI.80.4.1773-1786.2006
PMCID: PMC1367157  PMID: 16439534
12.  A new method for class prediction based on signed-rank algorithms applied to Affymetrix® microarray experiments 
BMC Bioinformatics  2008;9:16.
Background
The huge amount of data generated by DNA chips is a powerful basis to classify various pathologies. However, constant evolution of microarray technology makes it difficult to mix data from different chip types for class prediction of limited sample populations. Affymetrix® technology provides both a quantitative fluorescence signal and a decision (detection call: absent or present) based on signed-rank algorithms applied to several hybridization repeats of each gene, with a per-chip normalization. We developed a new prediction method for class belonging based on the detection call only from recent Affymetrix chip type. Biological data were obtained by hybridization on U133A, U133B and U133Plus 2.0 microarrays of purified normal B cells and cells from three independent groups of multiple myeloma (MM) patients.
Results
After a call-based data reduction step to filter out non class-discriminative probe sets, the gene list obtained was reduced to a predictor with correction for multiple testing by iterative deletion of probe sets that sequentially improve inter-class comparisons and their significance. The error rate of the method was determined using leave-one-out and 5-fold cross-validation. It was successfully applied to (i) determine a sex predictor with the normal donor group classifying gender with no error in all patient groups except for male MM samples with a Y chromosome deletion, (ii) predict the immunoglobulin light and heavy chains expressed by the malignant myeloma clones of the validation group and (iii) predict sex, light and heavy chain nature for every new patient. Finally, this method was shown powerful when compared to the popular classification method Prediction Analysis of Microarray (PAM).
Conclusion
This normalization-free method is routinely used for quality control and correction of collection errors in patient reports to clinicians. It can be easily extended to multiple class prediction suitable with clinical groups, and looks particularly promising through international cooperative projects like the "Microarray Quality Control project of US FDA" MAQC as a predictive classifier for diagnostic, prognostic and response to treatment. Finally, it can be used as a powerful tool to mine published data generated on Affymetrix systems and more generally classify samples with binary feature values.
doi:10.1186/1471-2105-9-16
PMCID: PMC2248160  PMID: 18190711
13.  Effects of filtering by Present call on analysis of microarray experiments 
BMC Bioinformatics  2006;7:49.
Background
Affymetrix GeneChips® are widely used for expression profiling of tens of thousands of genes. The large number of comparisons can lead to false positives. Various methods have been used to reduce false positives, but they have rarely been compared or quantitatively evaluated. Here we describe and evaluate a simple method that uses the detection (Present/Absent) call generated by the Affymetrix microarray suite version 5 software (MAS5) to remove data that is not reliably detected before further analysis, and compare this with filtering by expression level. We explore the effects of various thresholds for removing data in experiments of different size (from 3 to 10 arrays per treatment), as well as their relative power to detect significant differences in expression.
Results
Our approach sets a threshold for the fraction of arrays called Present in at least one treatment group. This method removes a large percentage of probe sets called Absent before carrying out the comparisons, while retaining most of the probe sets called Present. It preferentially retains the more significant probe sets (p ≤ 0.001) and those probe sets that are turned on or off, and improves the false discovery rate. Permutations to estimate false positives indicate that probe sets removed by the filter contribute a disproportionate number of false positives. Filtering by fraction Present is effective when applied to data generated either by the MAS5 algorithm or by other probe-level algorithms, for example RMA (robust multichip average). Experiment size greatly affects the ability to reproducibly detect significant differences, and also impacts the effect of filtering; smaller experiments (3–5 samples per treatment group) benefit from more restrictive filtering (≥50% Present).
Conclusion
Use of a threshold fraction of Present detection calls (derived by MAS5) provided a simple method that effectively eliminated from analysis probe sets that are unlikely to be reliable while preserving the most significant probe sets and those turned on or off; it thereby increased the ratio of true positives to false positives.
doi:10.1186/1471-2105-7-49
PMCID: PMC1409797  PMID: 16448562
14.  Circadian Variations in Liver Gene Expression: Relationships to Drug Actions 
Chronopharmacology is an important but under-explored aspect of therapeutics. Rhythmic variations in biological processes can influence drug action, including pharmacodynamic responses, due to circadian variations in the availability or functioning of drug targets. We hypothesized that global gene expression analysis can be useful in the identification of circadian regulated genes involved in drug action. Circadian variations in gene expression in rat liver were explored using Affymetrix gene arrays. A rich time series involving animals analyzed at 18 time points within the 24 hour cycle was generated. Of the more than 15,000 probe sets on these arrays, 265 exhibited oscillations with a 24 hour frequency. Cluster analysis yielded 5 distinct circadian clusters, with approximately two-thirds of the transcripts reaching maximum expression during the animal’s dark/active period. Of the 265 probe sets, 107 of potential therapeutic importance were identified. The expression levels of clock genes were also investigated in this study. Five clock genes exhibited circadian variation in liver, and data suggest that these genes may also be regulated by corticosteroids.
doi:10.1124/jpet.108.140186
PMCID: PMC2561907  PMID: 18562560
15.  Analysis of multiple compound–protein interactions reveals novel bioactive molecules 
The authors use machine learning of compound-protein interactions to explore drug polypharmacology and to efficiently identify bioactive ligands, including novel scaffold-hopping compounds for two pharmaceutically important protein families: G-protein coupled receptors and protein kinases.
We have demonstrated that machine learning of multiple compound–protein interactions is useful for efficient ligand screening and for assessing drug polypharmacology.This approach successfully identified novel scaffold-hopping compounds for two pharmaceutically important protein families: G-protein-coupled receptors and protein kinases.These bioactive compounds were not detected by existing computational ligand-screening methods in comparative studies.The results of this study indicate that data derived from chemical genomics can be highly useful for exploring chemical space, and this systems biology perspective could accelerate drug discovery processes.
The discovery of novel bioactive molecules advances our systems-level understanding of biological processes and is crucial for innovation in drug development. Perturbations of biological systems by chemical probes provide broader applications not only for analysis of complex systems but also for intentional manipulations of these systems. Nevertheless, the lack of well-characterized chemical modulators has limited their use. Recently, chemical genomics has emerged as a promising area of research applicable to the exploration of novel bioactive molecules, and researchers are currently striving toward the identification of all possible ligands for all target protein families (Wang et al, 2009). Chemical genomics studies have shown that patterns of compound–protein interactions (CPIs) are too diverse to be understood as simple one-to-one events. There is an urgent need to develop appropriate data mining methods for characterizing and visualizing the full complexity of interactions between chemical space and biological systems. However, no existing screening approach has so far succeeded in identifying novel bioactive compounds using multiple interactions among compounds and target proteins.
High-throughput screening (HTS) and computational screening have greatly aided in the identification of early lead compounds for drug discovery. However, the large number of assays required for HTS to identify drugs that target multiple proteins render this process very costly and time-consuming. Therefore, interest in using in silico strategies for screening has increased. The most common computational approaches, ligand-based virtual screening (LBVS) and structure-based virtual screening (SBVS; Oprea and Matter, 2004; Muegge and Oloff, 2006; McInnes, 2007; Figure 1A), have been used for practical drug development. LBVS aims to identify molecules that are very similar to known active molecules and generally has difficulty identifying compounds with novel structural scaffolds that differ from reference molecules. The other popular strategy, SBVS, is constrained by the number of three-dimensional crystallographic structures available. To circumvent these limitations, we have shown that a new computational screening strategy, chemical genomics-based virtual screening (CGBVS), has the potential to identify novel, scaffold-hopping compounds and assess their polypharmacology by using a machine-learning method to recognize conserved molecular patterns in comprehensive CPI data sets.
The CGBVS strategy used in this study was made up of five steps: CPI data collection, descriptor calculation, representation of interaction vectors, predictive model construction using training data sets, and predictions from test data (Figure 1A). Importantly, step 1, the construction of a data set of chemical structures and protein sequences for known CPIs, did not require the three-dimensional protein structures needed for SBVS. In step 2, compound structures and protein sequences were converted into numerical descriptors. These descriptors were used to construct chemical or biological spaces in which decreasing distance between vectors corresponded to increasing similarity of compound structures or protein sequences. In step 3, we represented multiple CPI patterns by concatenating these chemical and protein descriptors. Using these interaction vectors, we could quantify the similarity of molecular interactions for compound–protein pairs, despite the fact that the ligand and protein similarity maps differed substantially. In step 4, concatenated vectors for CPI pairs (positive samples) and non-interacting pairs (negative samples) were input into an established machine-learning method. In the final step, the classifier constructed using training sets was applied to test data.
To evaluate the predictive value of CGBVS, we first compared its performance with that of LBVS by fivefold cross-validation. CGBVS performed with considerably higher accuracy (91.9%) than did LBVS (84.4%; Figure 1B). We next compared CGBVS and SBVS in a retrospective virtual screening based on the human β2-adrenergic receptor (ADRB2). Figure 1C shows that CGBVS provided higher hit rates than did SBVS. These results suggest that CGBVS is more successful than conventional approaches for prediction of CPIs.
We then evaluated the ability of the CGBVS method to predict the polypharmacology of ADRB2 by attempting to identify novel ADRB2 ligands from a group of G-protein-coupled receptor (GPCR) ligands. We ranked the prediction scores for the interactions of 826 reported GPCR ligands with ADRB2 and then analyzed the 50 highest-ranked compounds in greater detail. Of 21 commercially available compounds, 11 showed ADRB2-binding activity and were not previously reported to be ADRB2 ligands. These compounds included ligands not only for aminergic receptors but also for neuropeptide Y-type 1 receptors (NPY1R), which have low protein homology to ADRB2. Most ligands we identified were not detected by LBVS and SBVS, which suggests that only CGBVS could identify this unexpected cross-reaction for a ligand developed as a target to a peptidergic receptor.
The true value of CGBVS in drug discovery must be tested by assessing whether this method can identify scaffold-hopping lead compounds from a set of compounds that is structurally more diverse. To assess this ability, we analyzed 11 500 commercially available compounds to predict compounds likely to bind to two GPCRs and two protein kinases. Functional assays revealed that nine ADRB2 ligands, three NPY1R ligands, five epidermal growth factor receptor (EGFR) inhibitors, and two cyclin-dependent kinase 2 (CDK2) inhibitors were concentrated in the top-ranked compounds (hit rate=30, 15, 25, and 10%, respectively). We also evaluated the extent of scaffold hopping achieved in the identification of these novel ligands. One ADRB2 ligand, two NPY1R ligands, and one CDK2 inhibitor exhibited scaffold hopping (Figure 4), indicating that CGBVS can use this characteristic to rationally predict novel lead compounds, a crucial and very difficult step in drug discovery. This feature of CGBVS is critically different from existing predictive methods, such as LBVS, which depend on similarities between test and reference ligands, and focus on a single protein or highly homologous proteins. In particular, CGBVS is useful for targets with undefined ligands because this method can use CPIs with target proteins that exhibit lower levels of homology.
In summary, we have demonstrated that data mining of multiple CPIs is of great practical value for exploration of chemical space. As a predictive model, CGBVS could provide an important step in the discovery of such multi-target drugs by identifying the group of proteins targeted by a particular ligand, leading to innovation in pharmaceutical research.
The discovery of novel bioactive molecules advances our systems-level understanding of biological processes and is crucial for innovation in drug development. For this purpose, the emerging field of chemical genomics is currently focused on accumulating large assay data sets describing compound–protein interactions (CPIs). Although new target proteins for known drugs have recently been identified through mining of CPI databases, using these resources to identify novel ligands remains unexplored. Herein, we demonstrate that machine learning of multiple CPIs can not only assess drug polypharmacology but can also efficiently identify novel bioactive scaffold-hopping compounds. Through a machine-learning technique that uses multiple CPIs, we have successfully identified novel lead compounds for two pharmaceutically important protein families, G-protein-coupled receptors and protein kinases. These novel compounds were not identified by existing computational ligand-screening methods in comparative studies. The results of this study indicate that data derived from chemical genomics can be highly useful for exploring chemical space, and this systems biology perspective could accelerate drug discovery processes.
doi:10.1038/msb.2011.5
PMCID: PMC3094066  PMID: 21364574
chemical genomics; data mining; drug discovery; ligand screening; systems chemical biology
16.  Building Disease-Specific Drug-Protein Connectivity Maps from Molecular Interaction Networks and PubMed Abstracts 
PLoS Computational Biology  2009;5(7):e1000450.
The recently proposed concept of molecular connectivity maps enables researchers to integrate experimental measurements of genes, proteins, metabolites, and drug compounds under similar biological conditions. The study of these maps provides opportunities for future toxicogenomics and drug discovery applications. We developed a computational framework to build disease-specific drug-protein connectivity maps. We integrated gene/protein and drug connectivity information based on protein interaction networks and literature mining, without requiring gene expression profile information derived from drug perturbation experiments on disease samples. We described the development and application of this computational framework using Alzheimer's Disease (AD) as a primary example in three steps. First, molecular interaction networks were incorporated to reduce bias and improve relevance of AD seed proteins. Second, PubMed abstracts were used to retrieve enriched drug terms that are indirectly associated with AD through molecular mechanistic studies. Third and lastly, a comprehensive AD connectivity map was created by relating enriched drugs and related proteins in literature. We showed that this molecular connectivity map development approach outperformed both curated drug target databases and conventional information retrieval systems. Our initial explorations of the AD connectivity map yielded a new hypothesis that diltiazem and quinidine may be investigated as candidate drugs for AD treatment. Molecular connectivity maps derived computationally can help study molecular signature differences between different classes of drugs in specific disease contexts. To achieve overall good data coverage and quality, a series of statistical methods have been developed to overcome high levels of data noise in biological networks and literature mining results. Further development of computational molecular connectivity maps to cover major disease areas will likely set up a new model for drug development, in which therapeutic/toxicological profiles of candidate drugs can be checked computationally before costly clinical trials begin.
Author Summary
Molecular connectivity maps between drugs and a wide range of bio-molecular entities can help researchers to study and compare the molecular therapeutic/toxicological profiles of many candidate drugs. Recent studies in this area have focused on linking drug molecules and genes in specific disease contexts using drug-perturbed gene expression experiments, which can be costly and time-consuming to derive. In this paper, we developed a computational framework to build disease-specific drug-protein connectivity maps, by mining molecular interaction networks and PubMed abstracts. Using Alzheimer's Disease (AD) as a case study, we described how drug-protein molecular connectivity maps can be constructed to overcome data coverage and noise issues inherent in automatically extracted results. We showed that this new approach outperformed both curated drug target databases and conventional text mining systems in retrieving disease-related drugs, with an overall balanced performance of sensitivity, specificity, and positive predictive values. The AD molecular connectivity map contained novel information on AD-related genes/proteins, AD candidate drugs, and protein therapeutic/toxicological profiles of all the AD candidate drugs. Bi-clustering of the molecular connectivity map revealed interesting patterns of functionally similar proteins and drugs, therefore creating new opportunities for future drug development applications.
doi:10.1371/journal.pcbi.1000450
PMCID: PMC2709445  PMID: 19649302
17.  Integrating multiple genome annotation databases improves the interpretation of microarray gene expression data 
BMC Genomics  2010;11:50.
Background
The Affymetrix GeneChip is a widely used gene expression profiling platform. Since the chips were originally designed, the genome databases and gene definitions have been considerably updated. Thus, more accurate interpretation of microarray data requires parallel updating of the specificity of GeneChip probes. We propose a new probe remapping protocol, using the zebrafish GeneChips as an example, by removing nonspecific probes, and grouping the probes into transcript level probe sets using an integrated zebrafish genome annotation. This genome annotation is based on combining transcript information from multiple databases. This new remapping protocol, especially the new genome annotation, is shown here to be an important factor in improving the interpretation of gene expression microarray data.
Results
Transcript data from the RefSeq, GenBank and Ensembl databases were downloaded from the UCSC genome browser, and integrated to generate a combined zebrafish genome annotation. Affymetrix probes were filtered and remapped according to the new annotation. The influence of transcript collection and gene definition methods was tested using two microarray data sets. Compared to remapping using a single database, this new remapping protocol results in up to 20% more probes being retained in the remapping, leading to approximately 1,000 more genes being detected. The differentially expressed gene lists are consequently increased by up to 30%. We are also able to detect up to three times more alternative splicing events. A small number of the bioinformatics predictions were confirmed using real-time PCR validation.
Conclusions
By combining gene definitions from multiple databases, it is possible to greatly increase the numbers of genes and splice variants that can be detected in microarray gene expression experiments.
doi:10.1186/1471-2164-11-50
PMCID: PMC2827411  PMID: 20089164
18.  Exploring drug action on Mycobacterium tuberculosis using affymetrix oligonucleotide genechips 
Summary
DNA microarrays have rapidly emerged as an important tool for Mycobacterium tuberculosis research. While the microarray approach has generated valuable information, a recent survey has found a lack of correlation among the microarray data produced by different laboratories on related issues, raising a concern about the credibility of research findings. The Affymetrix oligonucleotide array has been shown to be more reliable for interrogating changes in gene expression than other platforms. However, this type of array system has not been applied to the pharmacogenomic study of M. tuberculosis. The goal here was to explore the strength of the Affymetrix array system for monitoring drug-induced gene expression in M. tuberculosis, compare with other related studies, and conduct cross-platform analysis. The genome-wide gene expression profiles of M. tuberculosis in response to drug treatments including INH (isoniazid) and ethionamide were obtained using the Affymetrix array system. Up-regulated or down-regulated genes were identified through bioinformatic analysis of the microarray data derived from the hybridization of RNA samples and gene probes. Based on the Affymetrix system, our method identified all drug-induced genes reported in the original reference work as well as some other genes that have not been recognized previously under the same drug treatment. For instance, the Affymetrix system revealed that Rv2524c (fas) was induced by both INH and ethionamide under the given levels of concentration, as suggested by most of the probe sets implementing this gene sequence. This finding is contradictory to previous observations that the expression of fas is not changed by INH treatment. This example illustrates that the determination of expression change for certain genes is probe-dependent, and the appropriate use of multiple probe-set representation is an advantage with the Affymetrix system. Our data also suggest that whereas the up-regulated gene expression pattern reflects the drug’s mode of action, the down-regulated pattern is largely non-specific. According to our analysis, the Affymetrix array system is a reliable tool for studying the pharmacogenomics of M. tuberculosis and lends itself well in the research and development of anti-TB drugs.
doi:10.1016/j.tube.2005.07.004
PMCID: PMC1557687  PMID: 16246625
Tuberculosis; Drug; Microarray; Genome
19.  Evaluation of the similarity of gene expression data estimated with SAGE and Affymetrix GeneChips 
BMC Genomics  2005;6:91.
Background
Serial Analysis of Gene Expression (SAGE) and microarrays have found awidespread application, but much ambiguity exists regarding the evaluation of these technologies. Cross-platform utilization of gene expression data from the SAGE and microarray technology could reduce the need for duplicate experiments and facilitate a more extensive exchange of data within the research community. This requires a measure for the correspondence of the different gene expression platforms. To date, a number of cross-platform evaluations (including a few studies using SAGE and Affymetrix GeneChips) have been conducted showing a variable, but overall low, concordance. This study evaluates these overall measures and introduces the between-ratio difference as a concordance measure pergene.
Results
In this study, gene expression measurements of Unigene clusters represented by both Affymetrix GeneChips HG-U133A and SAGE were compared using two independent RNA samples. After matching of the data sets the final comparison contains a small data set of 1094 unique Unigene clusters, which is unbiased with respect to expression level. Different overall correlation approaches, like Up/Down classification, contingency tables and correlation coefficients were used to compare both platforms. In addition, we introduce a novel approach to compare two platforms based on the calculation of differences between expression ratios observed in each platform for each individual transcript. This approach results in a concordance measure per gene (with statistical probability value), as opposed to the commonly used overall concordance measures between platforms.
Conclusion
We can conclude that intra-platform correlations are generally good, but that overall agreement between the two platforms is modest. This might be due to the binomially distributed sampling variation in SAGE tag counts, SAGE annotation errors and the intensity variation between probe sets of a single gene in Affymetrix GeneChips. We cannot identify or advice which platform performs better since both have their (dis)-advantages. Therefore it is strongly recommended to perform follow-up studies of interesting genes using additional techniques. The newly introduced between-ratio difference is a filtering-independent measure for between-platform concordance. Moreover, the between-ratio difference per gene can be used to detect transcripts with similar regulation on both platforms.
doi:10.1186/1471-2164-6-91
PMCID: PMC1186021  PMID: 15955238
20.  Comparison of Filtering Methods for the Modeling and Retrospective Forecasting of Influenza Epidemics 
PLoS Computational Biology  2014;10(4):e1003583.
A variety of filtering methods enable the recursive estimation of system state variables and inference of model parameters. These methods have found application in a range of disciplines and settings, including engineering design and forecasting, and, over the last two decades, have been applied to infectious disease epidemiology. For any system of interest, the ideal filter depends on the nonlinearity and complexity of the model to which it is applied, the quality and abundance of observations being entrained, and the ultimate application (e.g. forecast, parameter estimation, etc.). Here, we compare the performance of six state-of-the-art filter methods when used to model and forecast influenza activity. Three particle filters—a basic particle filter (PF) with resampling and regularization, maximum likelihood estimation via iterated filtering (MIF), and particle Markov chain Monte Carlo (pMCMC)—and three ensemble filters—the ensemble Kalman filter (EnKF), the ensemble adjustment Kalman filter (EAKF), and the rank histogram filter (RHF)—were used in conjunction with a humidity-forced susceptible-infectious-recovered-susceptible (SIRS) model and weekly estimates of influenza incidence. The modeling frameworks, first validated with synthetic influenza epidemic data, were then applied to fit and retrospectively forecast the historical incidence time series of seven influenza epidemics during 2003–2012, for 115 cities in the United States. Results suggest that when using the SIRS model the ensemble filters and the basic PF are more capable of faithfully recreating historical influenza incidence time series, while the MIF and pMCMC do not perform as well for multimodal outbreaks. For forecast of the week with the highest influenza activity, the accuracies of the six model-filter frameworks are comparable; the three particle filters perform slightly better predicting peaks 1–5 weeks in the future; the ensemble filters are more accurate predicting peaks in the past.
Author Summary
Influenza, or the flu, is a significant public health burden in the U.S. that annually causes between 3,000 and 49,000 deaths. Predictions of influenza, if reliable, would provide public health officials valuable advanced warning that could aid efforts to reduce the burden of this disease. For instance, medical resources, including vaccines and antiviral drugs, can be distributed to areas in need well in advance of peak influenza incidence. Recent applications of statistical filtering methods to epidemiological models have shown that accurate and reliable influenza forecast is possible; however, many filtering methods exist, and the performance of any filter may be application dependent. Here we use a single epidemiological modeling framework to test the performance of six state-of-the-art filters for modeling and forecasting influenza. Three of the filters are particle filters, commonly used in scientific, engineering, and economic disciplines; the other three filters are ensemble filters, frequently used in geophysical disciplines, such as numerical weather prediction. We use each of the six filters to retrospectively model and forecast seasonal influenza activity during 2003–2012 for 115 cities in the U.S. We report the performance of the six filters and discuss potential strategies for improving real-time influenza prediction.
doi:10.1371/journal.pcbi.1003583
PMCID: PMC3998879  PMID: 24762780
21.  A verification protocol for the probe sequences of Affymetrix genome arrays reveals high probe accuracy for studies in mouse, human and rat 
BMC Bioinformatics  2007;8:132.
Background
The Affymetrix GeneChip technology uses multiple probes per gene to measure its expression level. Individual probe signals can vary widely, which hampers proper interpretation. This variation can be caused by probes that do not properly match their target gene or that match multiple genes. To determine the accuracy of Affymetrix arrays, we developed an extensive verification protocol, for mouse arrays incorporating the NCBI RefSeq, NCBI UniGene Unique, NIA Mouse Gene Index, and UCSC mouse genome databases.
Results
Applying this protocol to Affymetrix Mouse Genome arrays (the earlier U74Av2 and the newer 430 2.0 array), the number of sequence-verified probes with perfect matches was no less than 85% and 95%, respectively; and for 74% and 85% of the probe sets all probes were sequence verified. The latter percentages increased to 80% and 94% after discarding one or two unverifiable probes per probe set, and even further to 84% and 97% when, in addition, allowing for one or two mismatches between probe and target gene. Similar results were obtained for other mouse arrays, as well as for human and rat arrays. Based on these data, refined chip definition files for all arrays are provided online. Researchers can choose the version appropriate for their study to (re)analyze expression data.
Conclusion
The accuracy of Affymetrix probe sequences is higher than previously reported, particularly on newer arrays. Yet, refined probe set definitions have clear effects on the detection of differentially expressed genes. We demonstrate that the interpretation of the results of Affymetrix arrays is improved when the new chip definition files are used.
doi:10.1186/1471-2105-8-132
PMCID: PMC1865557  PMID: 17448222
22.  A white-box approach to microarray probe response characterization: the BaFL pipeline 
BMC Bioinformatics  2009;10:449.
Background
Microarrays depend on appropriate probe design to deliver the promise of accurate genome-wide measurement. Probe design, ideally, produces a unique probe-target match with homogeneous duplex stability over the complete set of probes. Much of microarray pre-processing is concerned with adjusting for non-ideal probes that do not report target concentration accurately. Cross-hybridizing probes (non-unique), probe composition and structure, as well as platform effects such as instrument limitations, have been shown to affect the interpretation of signal. Data cleansing pipelines seldom filter specifically for these constraints, relying instead on general statistical tests to remove the most variable probes from the samples in a study. This adjusts probes contributing to ProbeSet (gene) values in a study-specific manner. We refer to the complete set of factors as biologically applied filter levels (BaFL) and have assembled an analysis pipeline for managing them consistently. The pipeline and associated experiments reported here examine the outcome of comprehensively excluding probes affected by known factors on inter-experiment target behavior consistency.
Results
We present here a 'white box' probe filtering and intensity transformation protocol that incorporates currently understood factors affecting probe and target interactions; the method has been tested on data from the Affymetrix human GeneChip HG-U95Av2, using two independent datasets from studies of a complex lung adenocarcinoma phenotype. The protocol incorporates probe-specific effects from SNPs, cross-hybridization and low heteroduplex affinity, as well as effects from scanner sensitivity, sample batches, and includes simple statistical tests for identifying unresolved biological factors leading to sample variability. Subsequent to filtering for these factors, the consistency and reliability of the remaining measurements is shown to be markedly improved.
Conclusions
The data cleansing protocol yields reproducible estimates of a given probe or ProbeSet's (gene's) relative expression that translates across datasets, allowing for credible cross-experiment comparisons. We provide supporting evidence for the validity of removing several large classes of probes, and for our approaches for removing outlying samples. The resulting expression profiles demonstrate consistency across the two independent datasets. Finally, we demonstrate that, given an appropriate sampling pool, the method enhances the t-test's statistical power to discriminate significantly different means over sample classes.
doi:10.1186/1471-2105-10-449
PMCID: PMC2804686  PMID: 20040098
23.  Uncovering information on expression of natural antisense transcripts in Affymetrix MOE430 datasets 
BMC Genomics  2007;8:200.
Background
The function and significance of the widespread expression of natural antisense transcripts (NATs) is largely unknown. The ability to quantitatively assess changes in NAT expression for many different transcripts in multiple samples would facilitate our understanding of this relatively new class of RNA molecules.
Results
Here, we demonstrate that standard expression analysis Affymetrix MOE430 and HG-U133 GeneChips contain hundreds of probe sets that detect NATs. Probe sets carrying a "Negative Strand Matching Probes" annotation in NetAffx were validated using Ensembl by manual and automated approaches. More than 50 % of the 1,113 probe sets with "Negative Strand Matching Probes" on the MOE430 2.0 GeneChip were confirmed as detecting NATs. Expression of selected antisense transcripts as indicated by Affymetrix data was confirmed using strand-specific RT-PCR. Thus, Affymetrix datasets can be mined to reveal information about the regulated expression of a considerable number of NATs. In a correlation analysis of 179 sense-antisense (SAS) probe set pairs using publicly available data from 1637 MOE430 2.0 GeneChips a significant number of SAS transcript pairs were found to be positively correlated.
Conclusion
Standard expression analysis Affymetrix GeneChips can be used to measure many different NATs. The large amount of samples deposited in microarray databases represents a valuable resource for a quantitative analysis of NAT expression and regulation in different cells, tissues and biological conditions.
doi:10.1186/1471-2164-8-200
PMCID: PMC1929078  PMID: 17598913
24.  Pharmacodynamic/Pharmacogenomic Modeling of Insulin Resistance Genes in Rat Muscle After Methylprednisolone Treatment: Exploring Regulatory Signaling Cascades 
Corticosteroids (CS) effects on insulin resistance related genes in rat skeletal muscle were studied. In our acute study, adrenalectomized (ADX) rats were given single doses of 50 mg/kg methylprednisolone (MPL) intravenously. In our chronic study, ADX rats were implanted with Alzet mini-pumps giving zero-order release rates of 0.3 mg/kg/h MPL and sacrificed at various times up to 7 days. Total RNA was extracted from gastrocnemius muscles and hybridized to Affymetrix GeneChips. Data mining and literature searches identified 6 insulin resistance related genes which exhibited complex regulatory pathways. Insulin receptor substrate-1 (IRS-1), uncoupling protein 3 (UCP3), pyruvate dehydrogenase kinase isoenzyme 4 (PDK4), fatty acid translocase (FAT) and glycerol-3-phosphate acyltransferase (GPAT) dynamic profiles were modeled with mutual effects by calculated nuclear drug-receptor complex (DR(N)) and transcription factors. The oscillatory feature of endothelin-1 (ET-1) expression was depicted by a negative feedback loop. These integrated models provide testable quantitative hypotheses for these regulatory cascades.
PMCID: PMC2733097  PMID: 19787081
corticosteroid; glucocorticoid; microarrays; mathematical modeling; insulin resistance
25.  The genomic response of skeletal muscle to methylprednisolone using microarrays: tailoring data mining to the structure of the pharmacogenomic time series 
Pharmacogenomics  2004;5(5):525-552.
High-throughput data collection using gene microarrays has great potential as a method for addressing the pharmacogenomics of complex biological systems. Similarly, mechanism-based pharmacokinetic/pharmacodynamic modeling provides a tool for formulating quantitative testable hypotheses concerning the responses of complex biological systems. As the response of such systems to drugs generally entails cascades of molecular events in time, a time series design provides the best approach to capturing the full scope of drug effects. A major problem in using microarrays for high-throughput data collection is sorting through the massive amount of data in order to identify probe sets and genes of interest. Due to its inherent redundancy, a rich time series containing many time points and multiple samples per time point allows for the use of less stringent criteria of expression, expression change and data quality for initial filtering of unwanted probe sets. The remaining probe sets can then become the focus of more intense scrutiny by other methods, including temporal clustering, functional clustering and pharmacokinetic/pharmacodynamic modeling, which provide additional ways of identifying the probes and genes of pharmacological interest.
doi:10.1517/14622416.5.5.525
PMCID: PMC2607486  PMID: 15212590
corticosteroids; data mining; expression profiling; gene chips; methylprednisolone; microarrays; modeling; pharmacodynamics; skeletal muscle; time series

Results 1-25 (1542614)