Search tips
Search criteria

Results 1-25 (549542)

Clipboard (0)

Related Articles

1.  Maternal Footprints of Southeast Asians in North India 
Human Heredity  2008;66(1):1-9.
We have analyzed 7,137 samples from 125 different caste, tribal and religious groups of India and 99 samples from three populations of Nepal for the length variation in the COII/tRNALys region of mtDNA. Samples showing length variation were subjected to detailed phylogenetic analysis based on HVS-I and informative coding region sequence variation. The overall frequencies of the 9-bp deletion and insertion variants in South Asia were 1.9 and 0.6%, respectively. We have also defined a novel deep-rooting haplogroup M43 and identified the rare haplogroup H14 in Indian populations carrying the 9-bp deletion by complete mtDNA sequencing. Moreover, we redefined haplogroup M6 and dissected it into two well-defined subclades. The presence of haplogroups F1 and B5a in Uttar Pradesh suggests minor maternal contribution from Southeast Asia to Northern India. The occurrence of haplogroup F1 in the Nepalese sample implies that Nepal might have served as a bridge for the flow of eastern lineages to India. The presence of R6 in the Nepalese, on the other hand, suggests that the gene flow between India and Nepal has been reciprocal.
PMCID: PMC2588665  PMID: 18223312
South Asia; 9bp indel; mtDNA; Haplogroup
2.  Most of the extant mtDNA boundaries in South and Southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans 
BMC Genetics  2004;5:26.
Recent advances in the understanding of the maternal and paternal heritage of south and southwest Asian populations have highlighted their role in the colonization of Eurasia by anatomically modern humans. Further understanding requires a deeper insight into the topology of the branches of the Indian mtDNA phylogenetic tree, which should be contextualized within the phylogeography of the neighboring regional mtDNA variation. Accordingly, we have analyzed mtDNA control and coding region variation in 796 Indian (including both tribal and caste populations from different parts of India) and 436 Iranian mtDNAs. The results were integrated and analyzed together with published data from South, Southeast Asia and West Eurasia.
Four new Indian-specific haplogroup M sub-clades were defined. These, in combination with two previously described haplogroups, encompass approximately one third of the haplogroup M mtDNAs in India. Their phylogeography and spread among different linguistic phyla and social strata was investigated in detail. Furthermore, the analysis of the Iranian mtDNA pool revealed patterns of limited reciprocal gene flow between Iran and the Indian sub-continent and allowed the identification of different assemblies of shared mtDNA sub-clades.
Since the initial peopling of South and West Asia by anatomically modern humans, when this region may well have provided the initial settlers who colonized much of the rest of Eurasia, the gene flow in and out of India of the maternally transmitted mtDNA has been surprisingly limited. Specifically, our analysis of the mtDNA haplogroups, which are shared between Indian and Iranian populations and exhibit coalescence ages corresponding to around the early Upper Paleolithic, indicates that they are present in India largely as Indian-specific sub-lineages. In contrast, other ancient Indian-specific variants of M and R are very rare outside the sub-continent.
PMCID: PMC516768  PMID: 15339343
3.  Origin and Post-Glacial Dispersal of Mitochondrial DNA Haplogroups C and D in Northern Asia 
PLoS ONE  2010;5(12):e15214.
More than a half of the northern Asian pool of human mitochondrial DNA (mtDNA) is fragmented into a number of subclades of haplogroups C and D, two of the most frequent haplogroups throughout northern, eastern, central Asia and America. While there has been considerable recent progress in studying mitochondrial variation in eastern Asia and America at the complete genome resolution, little comparable data is available for regions such as southern Siberia – the area where most of northern Asian haplogroups, including C and D, likely diversified. This gap in our knowledge causes a serious barrier for progress in understanding the demographic pre-history of northern Eurasia in general. Here we describe the phylogeography of haplogroups C and D in the populations of northern and eastern Asia. We have analyzed 770 samples from haplogroups C and D (174 and 596, respectively) at high resolution, including 182 novel complete mtDNA sequences representing haplogroups C and D (83 and 99, respectively). The present-day variation of haplogroups C and D suggests that these mtDNA clades expanded before the Last Glacial Maximum (LGM), with their oldest lineages being present in the eastern Asia. Unlike in eastern Asia, most of the northern Asian variants of haplogroups C and D began the expansion after the LGM, thus pointing to post-glacial re-colonization of northern Asia. Our results show that both haplogroups were involved in migrations, from eastern Asia and southern Siberia to eastern and northeastern Europe, likely during the middle Holocene.
PMCID: PMC3006427  PMID: 21203537
4.  Updating Phylogeny of Mitochondrial DNA Macrohaplogroup M in India: Dispersal of Modern Human in South Asian Corridor 
PLoS ONE  2009;4(10):e7447.
To construct maternal phylogeny and prehistoric dispersals of modern human being in the Indian sub continent, a diverse subset of 641 complete mitochondrial DNA (mtDNA) genomes belonging to macrohaplogroup M was chosen from a total collection of 2,783 control-region sequences, sampled from 26 selected tribal populations of India. On the basis of complete mtDNA sequencing, we identified 12 new haplogroups - M53 to M64; redefined/ascertained and characterized haplogroups M2, M3, M4, M5, M6, M8′C′Z, M9, M10, M11, M12-G, D, M18, M30, M33, M35, M37, M38, M39, M40, M41, M43, M45 and M49, which were previously described by control and/or coding-region polymorphisms. Our results indicate that the mtDNA lineages reported in the present study (except East Asian lineages M8′C′Z, M9, M10, M11, M12-G, D ) are restricted to Indian region.The deep rooted lineages of macrohaplogroup ‘M’ suggest in-situ origin of these haplogroups in India. Most of these deep rooting lineages are represented by multiple ethnic/linguist groups of India. Hierarchical analysis of molecular variation (AMOVA) shows substantial subdivisions among the tribes of India (Fst = 0.16164). The current Indian mtDNA gene pool was shaped by the initial settlers and was galvanized by minor events of gene flow from the east and west to the restricted zones. Northeast Indian mtDNA pool harbors region specific lineages, other Indian lineages and East Asian lineages. We also suggest the establishment of an East Asian gene in North East India through admixture rather than replacement.
PMCID: PMC2757894  PMID: 19823670
5.  The Druze: A Population Genetic Refugium of the Near East 
PLoS ONE  2008;3(5):e2105.
Phylogenetic mitochondrial DNA haplogroups are highly partitioned across global geographic regions. A unique exception is the X haplogroup, which has a widespread global distribution without major regions of distinct localization.
Principal Findings
We have examined mitochondrial DNA sequence variation together with Y-chromosome-based haplogroup structure among the Druze, a religious minority with a unique socio-demographic history residing in the Near East. We observed a striking overall pattern of heterogeneous parental origins, consistent with Druze oral tradition, together with both a high frequency and a high diversity of the mitochondrial DNA (mtDNA) X haplogroup within a confined regional subpopulation. Furthermore demographic modeling indicated low migration rates with nearby populations.
These findings were enabled through the use of a paternal kindred based sampling approach, and suggest that the Galilee Druze represent a population isolate, and that the combination of a high frequency and diversity of the mtDNA X haplogroup signifies a phylogenetic refugium, providing a sample snapshot of the genetic landscape of the Near East prior to the modern age.
PMCID: PMC2324201  PMID: 18461126
6.  Deep Rooting In-Situ Expansion of mtDNA Haplogroup R8 in South Asia 
PLoS ONE  2009;4(8):e6545.
The phylogeny of the indigenous Indian-specific mitochondrial DNA (mtDNA) haplogroups have been determined and refined in previous reports. Similar to mtDNA superhaplogroups M and N, a profusion of reports are also available for superhaplogroup R. However, there is a dearth of information on South Asian subhaplogroups in particular, including R8. Therefore, we ought to access the genealogy and pre-historic expansion of haplogroup R8 which is considered one of the autochthonous lineages of South Asia.
Methodology/Principal Findings
Upon screening the mtDNA of 5,836 individuals belonging to 104 distinct ethnic populations of the Indian subcontinent, we found 54 individuals with the HVS-I motif that defines the R8 haplogroup. Complete mtDNA sequencing of these 54 individuals revealed two deep-rooted subclades: R8a and R8b. Furthermore, these subclades split into several fine subclades. An isofrequency contour map detected the highest frequency of R8 in the state of Orissa. Spearman's rank correlation analysis suggests significant correlation of R8 occurrence with geography.
The coalescent age of newly-characterized subclades of R8, R8a (15.4±7.2 Kya) and R8b (25.7±10.2 Kya) indicates that the initial maternal colonization of this haplogroup occurred during the middle and upper Paleolithic period, roughly around 40 to 45 Kya. These results signify that the southern part of Orissa currently inhabited by Munda speakers is likely the origin of these autochthonous maternal deep-rooted haplogroups. Our high-resolution study on the genesis of R8 haplogroup provides ample evidence of its deep-rooted ancestry among the Orissa (Austro-Asiatic) tribes.
PMCID: PMC2718812  PMID: 19662095
7.  Large-scale mitochondrial DNA analysis in Southeast Asia reveals evolutionary effects of cultural isolation in the multi-ethnic population of Myanmar 
Myanmar is the largest country in mainland Southeast Asia with a population of 55 million people subdivided into more than 100 ethnic groups. Ruled by changing kingdoms and dynasties and lying on the trade route between India and China, Myanmar was influenced by numerous cultures. Since its independence from British occupation, tensions between the ruling Bamar and ethnic minorities increased.
Our aim was to search for genetic footprints of Myanmar’s geographic, historic and sociocultural characteristics and to contribute to the picture of human colonization by describing and dating of new mitochondrial DNA (mtDNA) haplogroups. Therefore, we sequenced the mtDNA control region of 327 unrelated donors and the complete mitochondrial genome of 44 selected individuals according to highest quality standards.
Phylogenetic analyses of the entire mtDNA genomes uncovered eight new haplogroups and three unclassified basal M-lineages. The multi-ethnic population and the complex history of Myanmar were reflected in its mtDNA heterogeneity. Population genetic analyses of Burmese control region sequences combined with population data from neighboring countries revealed that the Myanmar haplogroup distribution showed a typical Southeast Asian pattern, but also Northeast Asian and Indian influences. The population structure of the extraordinarily diverse Bamar differed from that of the Karen people who displayed signs of genetic isolation. Migration analyses indicated a considerable genetic exchange with an overall positive migration balance from Myanmar to neighboring countries. Age estimates of the newly described haplogroups point to the existence of evolutionary windows where climatic and cultural changes gave rise to mitochondrial haplogroup diversification in Asia.
PMCID: PMC3913319  PMID: 24467713
Haplogroup; Complete mtDNA genome; Control region; Population genetics; Migration; Gene flow; Burma; Southeast Asia; Karen; Bamar; Demographic history
8.  Development of a Multiplex Single Base Extension Assay for Mitochondrial DNA Haplogroup Typing 
Croatian medical journal  2007;48(4):460-472.
To provide a screening tool to reduce time and sample consumption when attempting mtDNA haplogroup typing.
A single base primer extension assay was developed to enable typing, in a single reaction, of twelve mtDNA haplogroup specific polymorphisms. For validation purposes a total of 147 samples were tested including 73 samples successfully haplogroup typed using mtDNA control region (CR) sequence data, 21 samples inconclusively haplogroup typed by CR data, 20 samples previously haplogroup typed using restriction fragment length polymorphism (RFLP) analysis, and 31 samples of known ancestral origin without previous haplogroup typing. Additionally, two highly degraded human bones embalmed and buried in the early 1950s were analyzed using the single nucleotide polymorphisms (SNP) multiplex.
When the SNP multiplex was used to type the 96 previously CR sequenced specimens, an increase in haplogroup or macrohaplogroup assignment relative to conventional CR sequence analysis was observed. The single base extension assay was also successfully used to assign a haplogroup to decades-old, embalmed skeletal remains dating to World War II.
The SNP multiplex was successfully used to obtain haplogroup status of highly degraded human bones, and demonstrated the ability to eliminate possible contributors. The SNP multiplex provides a low-cost, high throughput method for typing of mtDNA haplogroups A, B, C, D, E, F, G, H, L1/L2, L3, M, and N that could be useful for screening purposes for human identification efforts and anthropological studies.
PMCID: PMC2080571  PMID: 17696300
9.  Mitochondrial Haplogroups Modify the Risk of Developing Hypertrophic Cardiomyopathy in a Danish Population 
PLoS ONE  2013;8(8):e71904.
Hypertrophic cardiomyopathy (HCM) is a genetic disorder caused by mutations in genes coding for proteins involved in sarcomere function. The disease is associated with mitochondrial dysfunction. Evolutionarily developed variation in mitochondrial DNA (mtDNA), defining mtDNA haplogroups and haplogroup clusters, is associated with functional differences in mitochondrial function and susceptibility to various diseases, including ischemic cardiomyopathy. We hypothesized that mtDNA haplogroups, in particular H, J and K, might modify disease susceptibility to HCM. Mitochondrial DNA, isolated from blood, was sequenced and haplogroups identified in 91 probands with HCM. The association with HCM was ascertained using two Danish control populations. Haplogroup H was more prevalent in HCM patients, 60% versus 46% (p = 0.006) and 41% (p = 0.003), in the two control populations. Haplogroup J was less prevalent, 3% vs. 12.4% (p = 0.017) and 9.1%, (p = 0.06). Likewise, the UK haplogroup cluster was less prevalent in HCM, 11% vs. 22.1% (p = 0.02) and 22.8% (p = 0.04). These results indicate that haplogroup H constitutes a susceptibility factor and that haplogroup J and haplogroup cluster UK are protective factors in the development of HCM. Thus, constitutive differences in mitochondrial function may influence the occurrence and clinical presentation of HCM. This could explain some of the phenotypic variability in HCM. The fact that haplogroup H and J are also modifying factors in ischemic cardiomyopathy suggests that mtDNA haplotypes may be of significance in determining whether a physiological hypertrophy develops into myopathy. mtDNA haplotypes may have the potential of becoming significant biomarkers in cardiomyopathy.
PMCID: PMC3734310  PMID: 23940792
10.  The Peopling of Korea Revealed by Analyses of Mitochondrial DNA and Y-Chromosomal Markers 
PLoS ONE  2009;4(1):e4210.
The Koreans are generally considered a northeast Asian group because of their geographical location. However, recent findings from Y chromosome studies showed that the Korean population contains lineages from both southern and northern parts of East Asia. To understand the genetic history and relationships of Korea more fully, additional data and analyses are necessary.
Methodology and Results
We analyzed mitochondrial DNA (mtDNA) sequence variation in the hypervariable segments I and II (HVS-I and HVS-II) and haplogroup-specific mutations in coding regions in 445 individuals from seven east Asian populations (Korean, Korean-Chinese, Mongolian, Manchurian, Han (Beijing), Vietnamese and Thais). In addition, published mtDNA haplogroup data (N = 3307), mtDNA HVS-I sequences (N = 2313), Y chromosome haplogroup data (N = 1697) and Y chromosome STR data (N = 2713) were analyzed to elucidate the genetic structure of East Asian populations. All the mtDNA profiles studied here were classified into subsets of haplogroups common in East Asia, with just two exceptions. In general, the Korean mtDNA profiles revealed similarities to other northeastern Asian populations through analysis of individual haplogroup distributions, genetic distances between populations or an analysis of molecular variance, although a minor southern contribution was also suggested. Reanalysis of Y-chromosomal data confirmed both the overall similarity to other northeastern populations, and also a larger paternal contribution from southeastern populations.
The present work provides evidence that peopling of Korea can be seen as a complex process, interpreted as an early northern Asian settlement with at least one subsequent male-biased southern-to-northern migration, possibly associated with the spread of rice agriculture.
PMCID: PMC2615218  PMID: 19148289
11.  Ancient mtDNA Genetic Variants Modulate mtDNA Transcription and Replication 
PLoS Genetics  2009;5(5):e1000474.
Although the functional consequences of mitochondrial DNA (mtDNA) genetic backgrounds (haplotypes, haplogroups) have been demonstrated by both disease association studies and cell culture experiments, it is not clear which of the mutations within the haplogroup carry functional implications and which are “evolutionary silent hitchhikers”. We set forth to study the functionality of haplogroup-defining mutations within the mtDNA transcription/replication regulatory region by in vitro transcription, hypothesizing that haplogroup-defining mutations occurring within regulatory motifs of mtDNA could affect these processes. We thus screened >2500 complete human mtDNAs representing all major populations worldwide for natural variation in experimentally established protein binding sites and regulatory regions comprising a total of 241 bp in each mtDNA. Our screen revealed 77/241 sites showing point mutations that could be divided into non-fixed (57/77, 74%) and haplogroup/sub-haplogroup-defining changes (i.e., population fixed changes, 20/77, 26%). The variant defining Caucasian haplogroup J (C295T) increased the binding of TFAM (Electro Mobility Shift Assay) and the capacity of in vitro L-strand transcription, especially of a shorter transcript that maps immediately upstream of conserved sequence block 1 (CSB1), a region associated with RNA priming of mtDNA replication. Consistent with this finding, cybrids (i.e., cells sharing the same nuclear genetic background but differing in their mtDNA backgrounds) harboring haplogroup J mtDNA had a >2 fold increase in mtDNA copy number, as compared to cybrids containing haplogroup H, with no apparent differences in steady state levels of mtDNA-encoded transcripts. Hence, a haplogroup J regulatory region mutation affects mtDNA replication or stability, which may partially account for the phenotypic impact of this haplogroup. Our analysis thus demonstrates, for the first time, the functional impact of particular mtDNA haplogroup-defining control region mutations, paving the path towards assessing the functionality of both fixed and un-fixed genetic variants in the mitochondrial genome.
Author Summary
Mitochondria, the ‘power plant’ of the cell, have their own distinct genome (mtDNA), whose sequence varies among individuals around the globe. This variation, which was formed by the accumulation of mutations (variants) during the course of evolution, appears to alter the susceptibility to common complex diseases (such as Parkinson's disease and diabetes). However, since the accumulation of mtDNA mutations over time results in the formation of new combinations (genetic backgrounds), it is not clear which of the mutations are functional and which are “evolutionary silent hitchhikers”. Thus we aimed at assessing the functionality of mtDNA genetic variants, focusing on variants within the mtDNA regulatory region, hypothesizing that they could affect mtDNA activity and maintenance. We found that a variant defining mtDNA genetic background ‘J’ significantly increased the transcriptional efficiency and elevated mtDNA copy numbers in cells, as compared to other genetic backgrounds. Hence, mtDNA regulatory region variants can affect mtDNA maintenance, which may partially account for the involvement of this genetic background in disease susceptibility. Our analysis demonstrates, for the first time, the functional impact of a particular mtDNA variant that was fixed during evolution. Moreover, our findings underline the functionality of mtDNA variants in the evolutionary variable regulatory region.
PMCID: PMC2673036  PMID: 19424428
12.  Haplotype Affinities Resolve a Major Component of Goat (Capra hircus) MtDNA D-Loop Diversity and Reveal Specific Features of the Sardinian Stock 
PLoS ONE  2012;7(2):e30785.
Goat mtDNA haplogroup A is a poorly resolved lineage absorbing most of the overall diversity and is found in locations as distant as Eastern Asia and Southern Africa. Its phylogenetic dissection would cast light on an important portion of the spread of goat breeding. The aims of this work were 1) to provide an operational definition of meaningful mtDNA units within haplogroup A, 2) to investigate the mechanisms underlying the maintenance of diversity by considering the modes of selection operated by breeders and 3) to identify the peculiarities of Sardinian mtDNA types. We sequenced the mtDNA D-loop in a large sample of animals (1,591) which represents a non-trivial quota of the entire goat population of Sardinia. We found that Sardinia mirrors a large quota of mtDNA diversity of Western Eurasia in the number of variable sites, their mutational pattern and allele frequency. By using Bayesian analysis, a distance-based tree and a network analysis, we recognized demographically coherent groups of sequences identified by particular subsets of the variable positions. The results showed that this assignment system could be reproduced in other studies, capturing the greatest part of haplotype diversity.
We identified haplotype groups overrepresented in Sardinian goats as a result of founder effects. We found that breeders maintain diversity of matrilines most likely through equalization of the reproductive potential. Moreover, the relevant amount of inter-farm mtDNA diversity found does not increase proportionally with distance. Our results illustrate the effects of breeding practices on the composition of maternal gene pool and identify mtDNA types that may be considered in projects aimed at retrieving the maternal component of the oldest breeds of Sardinia.
PMCID: PMC3281868  PMID: 22363488
13.  Susceptibility to primary angle closure glaucoma in Saudi Arabia: the possible role of mitochondrial DNA ancestry informative haplogroups 
Molecular Vision  2011;17:2171-2176.
In a previous preliminary analysis we reported that mitochondrial DNA (mtDNA) haplogroup R0a was significantly more frequent in primary angle closure glaucoma (PACG) Saudi patients than in healthy Saudi controls. This result prompted us to extend our work using a significant larger Saudi PACG cohort and more healthy controls.
We sequenced the mtDNA regulatory hypervariable region-I (HVS-I) and coding regions, comprising haplogroup diagnostic polymorphisms, in 227 PACG Saudi patients and compared their haplogroup frequencies with those obtained from 186 matched healthy controls (free of PACG by examination) and from a large sample of 810 healthy Saudi Arabs representing the general Saudi population.
MtDNA Haplogroups R0a and J, the most abundant lineages in Saudi Arabia, were in significant higher frequencies in the PACG patients than in controls, while the widespread western Eurasian haplogroup U was associated with reduced risk to developing PACG.
Haplogroups R0a and J could be ancestry informative markers for PACG in the Saudi Arabian population. In addition, the western Eurasian haplogroup U may play a mild protective effect to this illness.
PMCID: PMC3156795  PMID: 21850192
14.  Mitochondrial DNA lineages of African origin confer susceptibility to primary open-angle glaucoma in Saudi patients 
Molecular Vision  2011;17:1468-1472.
We previously reported that certain mitochondrial DNA (mtDNA) polymorphisms in the coding region may be involved in the pathogenesis for primary open-angle-glaucoma (POAG). This encouraged us to extend our work and assess whether mtDNA diagnostic polymorphisms, defining geographically structured haplogroups, could be associated with the development of POAG.
We sequenced the mtDNA regulatory hypervariable region-I (HVS-I) region and coding regions, comprising haplogroup diagnostic polymorphisms, in 176 POAG patients and 186 matched healthy controls (free of glaucoma by examination) of Saudi Arabia ascendancy. A large sample of 810 healthy Saudi Arabs representing the general Saudi population has also been included in the analysis. Assigning individuals into various mitochondrial haplogroups was performed using the nomenclature previously described for African and for Eurasian sequences.
African mtDNA haplotypes belonging to L haplogroups, excluding L2, confer susceptibility to POAG whereas the Eurasian haplogroup N1 was associated with reduced risk of developing POAG in Saudi Arabian population.
Saudi individuals with mtDNA of African origin are at higher risk of developing POAG. In addition, the mtDNA Eurasian haplogroup N1 may play a mild protective effect to this illness.
PMCID: PMC3110492  PMID: 21677789
15.  Eurasian and African mitochondrial DNA influences in the Saudi Arabian population 
Genetic studies of the Arabian Peninsula are scarce even though the region was the center of ancient trade routes and empires and may have been the southern corridor for the earliest human migration from Africa to Asia. A total of 120 mtDNA Saudi Arab lineages were analyzed for HVSI/II sequences and for haplogroup confirmatory coding diagnostic positions. A phylogeny of the most abundant haplogroup (preHV)1 (R0a) was constructed based on 13 whole mtDNA genomes.
The Saudi Arabian group showed greatest similarity to other Arabian Peninsula populations (Bedouin from the Negev desert and Yemeni) and to Levantine populations. Nearly all the main western Asia haplogroups were detected in the Saudi sample, including the rare U9 clade. Saudi Arabs had only a minority sub-Saharan Africa component (7%), similar to the specific North-African contribution (5%). In addition, a small Indian influence (3%) was also detected.
The majority of the Saudi-Arab mitochondrial DNA lineages (85%) have a western Asia provenance. Although the still large confidence intervals, the coalescence and phylogeography of (preHV)1 haplogroup (accounting for 18 % of Saudi Arabian lineages) matches a Neolithic expansion in Saudi Arabia.
PMCID: PMC1810519  PMID: 17331239
16.  Traces of Archaic Mitochondrial Lineages Persist in Austronesian-Speaking Formosan Populations 
PLoS Biology  2005;3(8):e247.
Genetic affinities between aboriginal Taiwanese and populations from Oceania and Southeast Asia have previously been explored through analyses of mitochondrial DNA (mtDNA), Y chromosomal DNA, and human leukocyte antigen loci. Recent genetic studies have supported the “slow boat” and “entangled bank” models according to which the Polynesian migration can be seen as an expansion from Melanesia without any major direct genetic thread leading back to its initiation from Taiwan. We assessed mtDNA variation in 640 individuals from nine tribes of the central mountain ranges and east coast regions of Taiwan. In contrast to the Han populations, the tribes showed a low frequency of haplogroups D4 and G, and an absence of haplogroups A, C, Z, M9, and M10. Also, more than 85% of the maternal lineages were nested within haplogroups B4, B5a, F1a, F3b, E, and M7. Although indicating a common origin of the populations of insular Southeast Asia and Oceania, most mtDNA lineages in Taiwanese aboriginal populations are grouped separately from those found in China and the Taiwan general (Han) population, suggesting a prevalence in the Taiwanese aboriginal gene pool of its initial late Pleistocene settlers. Interestingly, from complete mtDNA sequencing information, most B4a lineages were associated with three coding region substitutions, defining a new subclade, B4a1a, that endorses the origin of Polynesian migration from Taiwan. Coalescence times of B4a1a were 13.2 ± 3.8 thousand years (or 9.3 ± 2.5 thousand years in Papuans and Polynesians). Considering the lack of a common specific Y chromosomal element shared by the Taiwanese aboriginals and Polynesians, the mtDNA evidence provided here is also consistent with the suggestion that the proto-Oceanic societies would have been mainly matrilocal.
An extensive phylogenetic analysis of mtDNA from nine Taiwanese tribes reveals an unambiguous genetic link between aboriginal Taiwanese and Polynesian populations, to the exclusion of mainland Asians.
PMCID: PMC1166350  PMID: 15984912
17.  Analysis of ancient DNA from a prehistoric Amerindian cemetery. 
The Norris Farms No. 36 cemetery in central Illinois has been the subject of considerable archaeological and genetic research. Both mitochondrial DNA (mtDNA) and nuclear DNA have been examined in this 700-year-old population. DNA preservation at the site was good, with about 70% of the samples producing mtDNA results and approximately 15% yielding nuclear DNA data. All four of the major Amerindian mtDNA haplogroups were found, in addition to a fifth haplogroup. Sequences of the first hypervariable region of the mtDNA control region revealed a high level of diversity in the Norris Farms population and confirmed that the fifth haplogroup associates with Mongolian sequences and hence is probably authentic. Other than a possible reduction in the number of rare mtDNA lineages in many populations, it does not appear as if European contact significantly altered patterns of Amerindian mtDNA variation, despite the large decrease in population size that occurred. For nuclear DNA analysis, a novel method for DNA-based sex identification that uses nucleotide differences between the X and Y copies of the amelogenin gene was developed and applied successfully in approximately 20 individuals. Despite the well-known problems of poor DNA preservation and the ever-present possibility of contamination with modern DNA, genetic analysis of the Norris Farms No. 36 population demonstrates that ancient DNA can be a fruitful source of new insights into prehistoric populations.
PMCID: PMC1692451  PMID: 10091255
18.  Haplogroup relationships between domestic and wild sheep resolved using a mitogenome panel 
Heredity  2010;106(4):700-706.
Five haplogroups have been identified in domestic sheep through global surveys of mitochondrial (mt) sequence variation, however these group classifications are often based on small fragments of the complete mtDNA sequence; partial control region or the cytochrome B gene. This study presents the complete mitogenome from representatives of each haplogroup identified in domestic sheep, plus a sample of their wild relatives. Comparison of the sequence successfully resolved the relationships between each haplogroup and provided insight into the relationship with wild sheep. The five haplogroups were characterised as branching independently, a radiation that shared a common ancestor 920 000±190 000 years ago based on protein coding sequence. The utility of various mtDNA components to inform the true relationship between sheep was also examined with Bayesian, maximum likelihood and partitioned Bremmer support analyses. The control region was found to be the mtDNA component, which contributed the highest amount of support to the tree generated using the complete data set. This study provides the nucleus of a mtDNA mitogenome panel, which can be used to assess additional mitogenomes and serve as a reference set to evaluate small fragments of the mtDNA.
PMCID: PMC3183909  PMID: 20940734
Ovis aries; domestication; mitochondria; genome; diversity
19.  Eurasian and Sub-Saharan African mitochondrial DNA haplogroup influences pseudoexfoliation glaucoma development in Saudi patients 
Molecular Vision  2011;17:543-547.
To investigate whether different mitochondrial DNA (mtDNA) haplogroups have a role on the development of pseudoexfoliation glaucoma (PEG) in the Saudi Arab population.
The mtDNA regulatory region and coding regions comprising mtDNA haplogroup diagnostic polymorphisms were sequenced in patients with PEG (n=94), healthy matched controls (free of PEG; n=112) and a healthy Saudi Arab population group (n=810).
The Eurasian haplogroup T and the Sub-Saharan African Haplogroup L2 confer susceptibility to PEG, whereas the Eurasian haplogroup N1 was associated with reduced risk to develop PEG in the Saudi Arab population.
Mitochondrial haplogroups T and L2 may play a role in the development of PEG in the Saudi Arabian population.
PMCID: PMC3044700  PMID: 21364909
20.  In situ origin of deep rooting lineages of mitochondrial Macrohaplogroup 'M' in India 
BMC Genomics  2006;7:151.
Macrohaplogroups 'M' and 'N' have evolved almost in parallel from a founder haplogroup L3. Macrohaplogroup N in India has already been defined in previous studies and recently the macrohaplogroup M among the Indian populations has been characterized. In this study, we attempted to reconstruct and re-evaluate the phylogeny of Macrohaplogroup M, which harbors more than 60% of the Indian mtDNA lineage, and to shed light on the origin of its deep rooting haplogroups.
Using 11 whole mtDNA and 2231 partial coding sequence of Indian M lineage selected from 8670 HVS1 sequences across India, we have reconstructed the tree including Andamanese-specific lineage M31 and calculated the time depth of all the nodes. We defined one novel haplogroup M41, and revised the classification of haplogroups M3, M18, and M31.
Our result indicates that the Indian mtDNA pool consists of several deep rooting lineages of macrohaplogroup 'M' suggesting in-situ origin of these haplogroups in South Asia, most likely in the India. These deep rooting lineages are not language specific and spread over all the language groups in India. Moreover, our reanalysis of the Andamanese-specific lineage M31 suggests population specific two clear-cut subclades (M31a1 and M31a2). Onge and Jarwa share M31a1 branch while M31a2 clade is present in only Great Andamanese individuals. Overall our study supported the one wave, rapid dispersal theory of modern humans along the Asian coast.
PMCID: PMC1534032  PMID: 16776823
21.  Mitochondrial DNA Haplogroup Background Affects LHON, but Not Suspected LHON, in Chinese Patients 
PLoS ONE  2011;6(11):e27750.
Recent studies have shown that mtDNA background could affect the clinical expression of Leber hereditary optic neuropathy (LHON). We analyzed the mitochondrial DNA (mtDNA) variation of 304 Chinese patients with m.11778G>A (sample #1) and of 843 suspected LHON patients who lack the three primary mutations (sample #2) to discern mtDNA haplogroup effect on disease onset. Haplogroup frequencies in the patient group was compared to frequencies in the general Han Chinese population (n = 1,689; sample #3). The overall matrilineal composition of the suspected LHON population resembles that of the general Han Chinese population, suggesting no association with mtDNA haplogroup. In contrast, analysis of these LHON patients confirms mtDNA haplogroup effect on LHON. Specifically, the LHON sample significantly differs from the general Han Chinese and suspected LHON populations by harboring an extremely lower frequency of haplogroup R9, in particular of its main sub-haplogroup F (#1 vs. #3, P-value = 1.46×10−17, OR = 0.051, 95% CI: 0.016–0.162; #1 vs. #2, P-value = 4.44×10−17, OR = 0.049, 95% CI: 0.015–0.154; in both cases, adjusted P-value <10−5) and higher frequencies of M7b (#1 vs. #3, adjusted P-value = 0.001 and #1 vs. #2, adjusted P-value = 0.004). Our result shows that mtDNA background affects LHON in Chinese patients with m.11778G>A but not suspected LHON. Haplogroup F has a protective effect against LHON, while M7b is a risk factor.
PMCID: PMC3216987  PMID: 22110754
22.  The Local Origin of the Tibetan Pig and Additional Insights into the Origin of Asian Pigs 
PLoS ONE  2011;6(12):e28215.
The domestic pig currently indigenous to the Tibetan highlands is supposed to have been introduced during a continuous period of colonization by the ancestors of modern Tibetans. However, there is no direct genetic evidence of either the local origin or exotic migration of the Tibetan pig.
Methods and Findings
We analyzed mtDNA hypervariable segment I (HVI) variation of 218 individuals from seven Tibetan pig populations and 1,737 reported mtDNA sequences from domestic pigs and wild boars across Asia. The Bayesian consensus tree revealed a main haplogroup M and twelve minor haplogroups, which suggested a large number of small scale in situ domestication episodes. In particular, haplogroups D1 and D6 represented two highly divergent lineages in the Tibetan highlands and Island Southeastern Asia, respectively. Network analysis of haplogroup M further revealed one main subhaplogroup M1 and two minor subhaplogroups M2 and M3. Intriguingly, M2 was mainly distributed in Southeastern Asia, suggesting for a local origin. Similar with haplogroup D6, M3 was mainly restricted in Island Southeastern Asia. This pattern suggested that Island Southeastern Asia, but not Southeastern Asia, might be the center of domestication of the so-called Pacific clade (M3 and D6 here) described in previous studies. Diversity gradient analysis of major subhaplogroup M1 suggested three local origins in Southeastern Asia, the middle and downstream regions of the Yangtze River, and the Tibetan highlands, respectively.
We identified two new origin centers for domestic pigs in the Tibetan highlands and in the Island Southeastern Asian region.
PMCID: PMC3233571  PMID: 22163285
23.  Mitochondrial DNA haplogroup associated with sperm motility in the Han population 
Asian Journal of Andrology  2013;15(5):630-633.
In this study, we aimed to determine whether the main mitochondrial DNA (mtDNA) haplogroups of the Han people have an impact on spermatozoa motility. We recruited 312 men who were consecutively admitted to two affiliated hospitals of College of Medicine, Zhejiang University from May 2011 to April 2012 as part of fertility investigations. Semen and whole blood samples were collected from the men. We determined the mtDNA haplogroups by analysing the sequences of mtDNA hypervariable segment I and testing diagnostic polymorphisms in the mtDNA coding region with DNA probes. No significant differences were found in the clinical characteristics of the mtDNA haplogroup R and non-R (P>0.05). Our results suggest that mtDNA haplogroup R is a strong independent predictor of sperm motility in the Han population, conferring a 2.97-fold (95% confidence interval: 1.74–4.48, P<0.001) decreased chance of asthenozoospermia compared with those without haplogroup R.
PMCID: PMC3881638  PMID: 23912313
asthenozoospermia; haplogroup; mitochondrial DNA (mtDNA)
24.  Characterization of mtDNA variation in a cohort of South African paediatric patients with mitochondrial disease 
Mitochondrial disease can be attributed to both mitochondrial and nuclear gene mutations. It has a heterogeneous clinical and biochemical profile, which is compounded by the diversity of the genetic background. Disease-based epidemiological information has expanded significantly in recent decades, but little information is known that clarifies the aetiology in African patients. The aim of this study was to investigate mitochondrial DNA variation and pathogenic mutations in the muscle of diagnosed paediatric patients from South Africa. A cohort of 71 South African paediatric patients was included and a high-throughput nucleotide sequencing approach was used to sequence full-length muscle mtDNA. The average coverage of the mtDNA genome was 81±26 per position. After assigning haplogroups, it was determined that although the nature of non-haplogroup-defining variants was similar in African and non-African haplogroup patients, the number of substitutions were significantly higher in African patients. We describe previously reported disease-associated and novel variants in this cohort. We observed a general lack of commonly reported syndrome-associated mutations, which supports clinical observations and confirms general observations in African patients when using single mutation screening strategies based on (predominantly non-African) mtDNA disease-based information. It is finally concluded that this first extensive report on muscle mtDNA sequences in African paediatric patients highlights the need for a full-length mtDNA sequencing strategy, which applies to all populations where specific mutations is not present. This, in addition to nuclear DNA gene mutation and pathogenicity evaluations, will be required to better unravel the aetiology of these disorders in African patients.
PMCID: PMC3355259  PMID: 22258525
mitochondrial DNA; mitochondrial diseases; paediatrics; Africa; high-throughput nucleotide sequencing
25.  The Phylogeny of the Four Pan-American MtDNA Haplogroups: Implications for Evolutionary and Disease Studies 
PLoS ONE  2008;3(3):e1764.
Only a limited number of complete mitochondrial genome sequences belonging to Native American haplogroups were available until recently, which left America as the continent with the least amount of information about sequence variation of entire mitochondrial DNAs. In this study, a comprehensive overview of all available complete mitochondrial DNA (mtDNA) genomes of the four pan-American haplogroups A2, B2, C1, and D1 is provided by revising the information scattered throughout GenBank and the literature, and adding 14 novel mtDNA sequences. The phylogenies of haplogroups A2, B2, C1, and D1 reveal a large number of sub-haplogroups but suggest that the ancestral Beringian population(s) contributed only six (successful) founder haplotypes to these haplogroups. The derived clades are overall starlike with coalescence times ranging from 18,000 to 21,000 years (with one exception) using the conventional calibration. The average of about 19,000 years somewhat contrasts with the corresponding lower age of about 13,500 years that was recently proposed by employing a different calibration and estimation approach. Our estimate indicates a human entry and spread of the pan-American haplogroups into the Americas right after the peak of the Last Glacial Maximum and comfortably agrees with the undisputed ages of the earliest Paleoindians in South America. In addition, the phylogenetic approach also indicates that the pathogenic status proposed for various mtDNA mutations, which actually define branches of Native American haplogroups, was based on insufficient grounds.
PMCID: PMC2258150  PMID: 18335039

Results 1-25 (549542)