PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1007648)

Clipboard (0)
None

Related Articles

1.  Courtship attention in sagebrush lizards varies with male identity and female reproductive state 
Behavioral Ecology  2008;19(6):1326-1332.
Previous experiments suggest that males spend more time with the more receptive of 2 novel females or the one with the higher fitness potential. However, males often court individual females repeatedly over a season; for example, male lizards sequentially visit familiar females as they patrol territorial boundaries. It may benefit males to vary display intensity as they move between multiple females. In this study, we explored the factors influencing amount of male courtship to familiar females in the sagebrush lizard, Sceloporus graciosus. We tested whether males vary the amount of courtship exhibited due to individual differences among males, female reproductive state, or female fitness potential. Each male was allowed to interact separately, but repeatedly, with 2 females until both females laid eggs. Male courtship behavior with each of the 2 females was assayed at an intermediate point, after 3 weeks of interaction. We found that individual differences among males were considerable. The number of male courtship displays was also positively correlated with female latency to lay eggs, with males displaying more often toward females with eggs that had not yet been fertilized. Courtship behavior was not well predicted by the number of eggs laid or by female width, both measures of female quality. Thus, male S. graciosus appear to alter courtship intensity more in response to signals of female reproductive state than in response to variation in potential female fitness.
doi:10.1093/beheco/arn072
PMCID: PMC2583109  PMID: 19458780
courtship; male choice; mate choice; reproductive state; Sceloporus graciosus; sexual selection
2.  Food supplementation and testosterone interact to influence reproductive behavior and immune function in Sceloporous graciosus 
Hormones and behavior  2009;57(2):134.
The energetic resources in an organism’s environment are essential for executing a wide range of life history functions, including immunity and reproduction. Most energetic budgets, however, are limited, which can lead to trade-offs among competing functions. Increasing reproductive effort tends to decrease immunity in many cases; and increasing total energy via supplemental feedings can eliminate this effect. Testosterone (T), an important regulator of reproduction, and food availability are thus both potential factors regulating life-history processes, yet they are often tested in isolation of each other. In this study, we considered the effect of both food availability and elevated T on immune function and reproductive behavior in sagebrush lizards, Sceloporus graciosus, to assess how T and energy availability affect these trade-offs. We experimentally manipulated diet (via supplemental feedings) and T (via dermal patches) in males from a natural population. We determined innate immune response by calculating the bacterial killing capability of collected plasma exposed to E. coli ex vivo. We measured reproductive behavior by counting the number of courtship displays produced in a 20-min sampling period. We observed an interactive effect of food availability and T-patch on immune function, with food supplementation increasing immunity in T-patch lizards. Additionally, T increased courtship displays in control food lizards. Lizards with supplemental food had higher circulating T than controls. Collectively, this study shows that the energetic state of the animal plays a critical role in modulating the interactions among T, behavior and immunity in sagebrush lizards and likely other species.
doi:10.1016/j.yhbeh.2009.09.019
PMCID: PMC2814879  PMID: 19800885
Context-dependent; Energy allocation; Innate immunity; Life history; Resources; Sceloporus; Trade-offs
3.  Multiple male traits interact: attractive bower decorations facilitate attractive behavioural displays in satin bowerbirds. 
Sexually selected male courtship displays often involve multiple behavioural and physical traits, but little is known about the function of different traits in mate choice. Here, we examine female courtship behaviours to learn how male traits interact to influence female mating decisions. In satin bowerbirds (Ptilonorhynchus violaceus), successful males give highly aggressive, intense behavioural displays without startling females. Males do this by modulating their displays in response to female crouching, which signals the display intensity that females will tolerate without being startled. Females typically visit multiple males for multiple courtships before choosing a mate, and females show differing tolerance for intense displays during their first courtship with each male. We test three hypotheses that may explain this: (i) familiarity with the courting male; (ii) the order of the courtship in mate-searching; and (iii) the attractiveness of the courting male. We found that females are more tolerant of intense displays during first courtships with attractive males; this increased female tolerance may allow attractive males to give higher intensity courtship displays that further enhance their attractiveness. We then examined why this is so, finding evidence that females are less likely to be startled by males with better physical displays (bower decorations), and this reduced startling then contributes to male courtship success. This role of physical displays in facilitating behavioural displays suggests a novel mechanism by which multiple physical and behavioural traits may influence female choice.
doi:10.1098/rspb.2003.2530
PMCID: PMC1691511  PMID: 14667356
4.  Male dwarf chameleons assess risk of courting large, aggressive females 
Biology Letters  2005;1(2):231-234.
Conflict between the sexes has traditionally been studied in terms of costs of mating to females and female resistance. However, courting can also be costly to males, especially when females are larger and aggressively resist copulation attempts. We examined male display intensity towards females in the Cape dwarf chameleon, Bradypodion pumilum, in which females are larger than males and very aggressive. We assessed whether aggressive female rejection imposes potential costs on males and whether males vary their display behaviour with intensity of female rejection, female size or relative size differences. Males persisted in courtship after initial female rejection in 84% of trials, and were bitten in 28% of trials. Attempted mounts were positively associated with males being bitten. Males reduced courtship with increased intensity of female rejection. Male courtship behaviour also varied with female size: males were more likely to court and approach smaller females, consistent with the hypothesis that larger females can inflict more damage. These results suggest that, in addition to assessing female willingness to mate, male dwarf chameleons may use courtship displays to assess potential costs of persistence, including costs associated with aggressive female rejection, weighed against potential reproductive pay-offs associated with forced copulation.
doi:10.1098/rsbl.2005.0299
PMCID: PMC1626215  PMID: 17148174
mating costs; sexual conflict; antagonistic coevolution; female rejection
5.  Both male and female identity influence variation in male signalling effort 
Background
Male sexual displays play an important role in sexual selection by affecting reproductive success. However, for such displays to be useful for female mate choice, courtship should vary more among than within individual males. In this regard, a potentially important source of within male variation is adjustment of male courtship effort in response to female traits. Accordingly, we set out to dissect sources of variation in male courtship effort in a fish, the desert goby (Chlamydogobius eremius). We did so by designing an experiment that allowed simultaneous estimation of within and between male variation in courtship, while also assessing the importance of the males and females as sources of courtship variation.
Results
Although males adjusted their courtship depending on the identity of the female (a potentially important source of within-male variation), among-male differences were considerably greater. In addition, male courtship effort towards a pair of females was highly repeatable over a short time frame.
Conclusion
Despite the plasticity in male courtship effort, courtship displays had the potential to reliably convey information about the male to mate-searching females. Our experiment therefore underscores the importance of addressing the different sources contributing to variation in the expression of sexually-selected traits.
doi:10.1186/1471-2148-11-233
PMCID: PMC3163561  PMID: 21827657
6.  Androgen receptor expression and morphology of forebrain and neuromuscular systems in male green anoles displaying individual differences in sexual behavior 
Hormones and behavior  2007;52(2):228-236.
Investigating individual differences in sexual performance in unmanipulated males is important for understanding natural relationships between behavior and morphology, and the mechanisms regulating them. Among male green anole lizards, some court and copulate frequently (studs) and others do not (duds). To evaluate potential factors underlying differences in the level of these behaviors, morphology and androgen receptor expression in neuromuscular courtship and copulatory structures, as well as in the preoptic area and amygdala, were compared in males displaying varying degrees of sexual function. This study revealed that individual differences in behavior among unmanipulated males, in particular the extension of a throat fan (dewlap) used during courtship, were positively correlated with the size of fibers in the associated muscle and with soma size in the amygdala. The physiological response to testosterone, as indicated by the height of cells in an androgen-sensitive portion of the kidney, was also correlated with male sexual behavior, and predicted it better than plasma androgen levels. Androgen receptor expression was not related to the display of courtship or copulation in any of the tissues examined. The present data indicate that higher levels of male courtship behavior result in (or are the result of) enhanced courtship muscle and amygdala morphology, and that androgen-sensitive tissue in studs may be more responsive to testosterone than duds. However, some mechanism(s) other than androgen receptor expression likely confer this difference in responsiveness.
doi:10.1016/j.yhbeh.2007.04.009
PMCID: PMC2882099  PMID: 17531996
Testosterone; Courtship; Copulation; Reptile; Preoptic area; Amygdala
7.  A Cost of Sexual Attractiveness to High-Fitness Females 
PLoS Biology  2009;7(12):e1000254.
Females are frequently harassed and harmed by males attempting to obtain matings. When these males are also “choosy” with their courtship, there may be negative consequences to the species' ability to adaptively evolve.
Adaptive mate choice by females is an important component of sexual selection in many species. The evolutionary consequences of male mate preferences, however, have received relatively little study, especially in the context of sexual conflict, where males often harm their mates. Here, we describe a new and counterintuitive cost of sexual selection in species with both male mate preference and sexual conflict via antagonistic male persistence: male mate choice for high-fecundity females leads to a diminished rate of adaptive evolution by reducing the advantage to females of expressing beneficial genetic variation. We then use a Drosophila melanogaster model system to experimentally test the key prediction of this theoretical cost: that antagonistic male persistence is directed toward, and harms, intrinsically higher-fitness females more than it does intrinsically lower-fitness females. This asymmetry in male persistence causes the tails of the population's fitness distribution to regress towards the mean, thereby reducing the efficacy of natural selection. We conclude that adaptive male mate choice can lead to an important, yet unappreciated, cost of sex and sexual selection.
Author Summary
In many species, females are frequently subject to harassing courtship from males attempting to mate with them. These persistent male behaviors can result in females incurring substantial direct fitness costs. We set out to examine how these costs may influence adaptive potential in a species that also exhibits male mate choice, i.e., a preference by males for females exhibiting certain traits. We found that harmful courtship behaviors were directed predominantly towards females of greater reproductive potential (and away from females of lesser potential), resulting in a reduction in the variation of lifetime reproductive successes among females in the population. This change in distribution of realized fitnesses represents a previously unappreciated consequence of sexual conflict–adaptive male mate preference can slow the rate of accumulation of beneficial mutations and speed the rate of accumulation of harmful mutations, thereby creating a “sexual conflict adaptive load” within a species.
doi:10.1371/journal.pbio.1000254
PMCID: PMC2780925  PMID: 19997646
8.  Does male reproductive effort increase with age? Courtship in fiddler crabs 
Biology Letters  2013;9(2):20121078.
Theory suggests that reproductive effort generally increases with age, but life-history models indicate that other outcomes are possible. Empirical data are needed to quantify variation in actual age-dependence. Data are readily attainable for females (e.g. clutch per egg size), but not for males (e.g. courtship effort). To quantify male effort one must: (i) experimentally control for potential age-dependent changes in female presence; and, crucially, (ii) distinguish between the likelihood of courtship being initiated, the display rate, and the total time invested in courting before stopping (‘courtship persistence’). We provide a simple experimental protocol, suitable for many taxa, to illustrate how to obtain this information. We studied courtship waving by male fiddler crabs, Uca annulipes. Given indeterminate growth, body size is correlated with age. Larger males were more likely to wave at females and waved more persistently. They did not, however, have a higher courtship rate (waves per second). A known female preference for males with higher display rates explains why, once waving is initiated, all males display at the same rate.
doi:10.1098/rsbl.2012.1078
PMCID: PMC3639757  PMID: 23325736
age; courtship; fiddler crabs; sexual display; Uca annulipes
9.  Drosophila Pheromone-Sensing Neurons Expressing the ppk25 Ion Channel Subunit Stimulate Male Courtship and Female Receptivity 
PLoS Genetics  2014;10(3):e1004238.
As in many species, gustatory pheromones regulate the mating behavior of Drosophila. Recently, several ppk genes, encoding ion channel subunits of the DEG/ENaC family, have been implicated in this process, leading to the identification of gustatory neurons that detect specific pheromones. In a subset of taste hairs on the legs of Drosophila, there are two ppk23-expressing, pheromone-sensing neurons with complementary response profiles; one neuron detects female pheromones that stimulate male courtship, the other detects male pheromones that inhibit male-male courtship. In contrast to ppk23, ppk25, is only expressed in a single gustatory neuron per taste hair, and males with impaired ppk25 function court females at reduced rates but do not display abnormal courtship of other males. These findings raised the possibility that ppk25 expression defines a subset of pheromone-sensing neurons. Here we show that ppk25 is expressed and functions in neurons that detect female-specific pheromones and mediates their stimulatory effect on male courtship. Furthermore, the role of ppk25 and ppk25-expressing neurons is not restricted to responses to female-specific pheromones. ppk25 is also required in the same subset of neurons for stimulation of male courtship by young males, males of the Tai2 strain, and by synthetic 7-pentacosene (7-P), a hydrocarbon normally found at low levels in both males and females. Finally, we unexpectedly find that, in females, ppk25 and ppk25-expressing cells regulate receptivity to mating. In the absence of the third antennal segment, which has both olfactory and auditory functions, mutations in ppk25 or silencing of ppk25-expressing neurons block female receptivity to males. Together these results indicate that ppk25 identifies a functionally specialized subset of pheromone-sensing neurons. While ppk25 neurons are required for the responses to multiple pheromones, in both males and females these neurons are specifically involved in stimulating courtship and mating.
Author Summary
Drosophila mating behaviors serve as an attractive model to understand how external sensory cues are detected and used to generate appropriate behavioral responses. Pheromones present on the cuticle of Drosophila have important roles in stimulating male courtship toward females and inhibiting male courtship directed at other males. Recently, stimulatory pheromones emitted by females and inhibitory pheromones emitted by males have been shown to stimulate distinct subsets of gustatory neurons on the legs. We have previously shown that a DEG/ENaC ion channel subunit, ppk25, is involved in male courtship toward females but not in inhibition of male-male courtship. Here we show that ppk25 is specifically expressed and functions in a subset of gustatory neurons that mediate physiological and behavioral responses to female-specific stimulatory pheromones. Furthermore, ppk25 is also required for the function of those neurons to activate male courtship in response to other pheromones that are not female-specific. In addition to their roles in males, we find that ppk25, and the related DEG/ENaC subunits ppk23 and ppk29, also stimulate female mating behavior. In conclusion, these results show that, in both sexes, ppk25 functions in a group of neurons with a specialized role in stimulating mating behaviors.
doi:10.1371/journal.pgen.1004238
PMCID: PMC3967927  PMID: 24675786
10.  Evolutionary Rate Covariation Identifies New Members of a Protein Network Required for Drosophila melanogaster Female Post-Mating Responses 
PLoS Genetics  2014;10(1):e1004108.
Seminal fluid proteins transferred from males to females during copulation are required for full fertility and can exert dramatic effects on female physiology and behavior. In Drosophila melanogaster, the seminal protein sex peptide (SP) affects mated females by increasing egg production and decreasing receptivity to courtship. These behavioral changes persist for several days because SP binds to sperm that are stored in the female. SP is then gradually released, allowing it to interact with its female-expressed receptor. The binding of SP to sperm requires five additional seminal proteins, which act together in a network. Hundreds of uncharacterized male and female proteins have been identified in this species, but individually screening each protein for network function would present a logistical challenge. To prioritize the screening of these proteins for involvement in the SP network, we used a comparative genomic method to identify candidate proteins whose evolutionary rates across the Drosophila phylogeny co-vary with those of the SP network proteins. Subsequent functional testing of 18 co-varying candidates by RNA interference identified three male seminal proteins and three female reproductive tract proteins that are each required for the long-term persistence of SP responses in females. Molecular genetic analysis showed the three new male proteins are required for the transfer of other network proteins to females and for SP to become bound to sperm that are stored in mated females. The three female proteins, in contrast, act downstream of SP binding and sperm storage. These findings expand the number of seminal proteins required for SP's actions in the female and show that multiple female proteins are necessary for the SP response. Furthermore, our functional analyses demonstrate that evolutionary rate covariation is a valuable predictive tool for identifying candidate members of interacting protein networks.
Author Summary
Reproduction requires more than a sperm and an egg. In animals with internal fertilization, other proteins in the seminal fluid and the female are essential for full fertility. Although hundreds of such reproductive proteins are known, our ability to understand how they interact remains limited. In this study, we investigated whether shared patterns of protein sequence evolution were predictive of functional interactions by focusing on a small network of proteins that control fertility and female post-mating behavior in the fruit fly, Drosophila melanogaster. We first showed that the six proteins already known to act in this network display correlated patterns of evolution across the Drosophila phylogeny. We then screened hundreds of otherwise uncharacterized male and female reproductive proteins and identified those with patterns of evolution most similar to those of the known network proteins. We tested each of these candidate genes and found six new network members that are each required for long-term fertility. Using molecular genetics, we also observed that the steps in the network at which these new proteins act are consistent with their strongest evolutionary correlations. Our results suggest that patterns of coevolution may be broadly useful for predicting protein interactions in a variety of biological processes.
doi:10.1371/journal.pgen.1004108
PMCID: PMC3894160  PMID: 24453993
11.  Identification of Gene Expression Changes Associated With Long-Term Memory of Courtship Rejection in Drosophila Males 
G3: Genes|Genomes|Genetics  2012;2(11):1437-1445.
Long-term memory formation in Drosophila melanogaster is an important neuronal function shaping the insect’s behavioral repertoire by allowing an individual to modify behaviors on the basis of previous experiences. In conditioned courtship or courtship suppression, male flies that have been repeatedly rejected by mated females during courtship advances are less likely than naïve males to subsequently court another mated female. This long-term courtship suppression can last for several days after the initial rejection period. Although genes with known functions in many associative learning paradigms, including those that function in cyclic AMP signaling and RNA translocation, have been identified as playing critical roles in long-term conditioned courtship, it is clear that additional mechanisms also contribute. We have used RNA sequencing to identify differentially expressed genes and transcript isoforms between naïve males and males subjected to courtship-conditioning regimens that are sufficient for inducing long-term courtship suppression. Transcriptome analyses 24 hours after the training regimens revealed differentially expressed genes and transcript isoforms with predicted and known functions in nervous system development, chromatin biology, translation, cytoskeletal dynamics, and transcriptional regulation. A much larger number of differentially expressed transcript isoforms were identified, including genes previously implicated in associative memory and neuronal development, including fruitless, that may play functional roles in learning during courtship conditioning. Our results shed light on the complexity of the genetics that underlies this behavioral plasticity and reveal several new potential areas of inquiry for future studies.
doi:10.1534/g3.112.004119
PMCID: PMC3484674  PMID: 23173095
long-term memory; courtship conditioning; RNA seq; courtship behavior
12.  Pheromonal and Behavioral Cues Trigger Male-to-Female Aggression in Drosophila 
PLoS Biology  2010;8(11):e1000541.
By genetically manipulating both pheromonal profiles and behavioral patterns, we find that Drosophila males showed a complete reversal in their patterns of aggression towards other males and females
Appropriate displays of aggression rely on the ability to recognize potential competitors. As in most species, Drosophila males fight with other males and do not attack females. In insects, sex recognition is strongly dependent on chemosensory communication, mediated by cuticular hydrocarbons acting as pheromones. While the roles of chemical and other sensory cues in stimulating male to female courtship have been well characterized in Drosophila, the signals that elicit aggression remain unclear. Here we show that when female pheromones or behavior are masculinized, males recognize females as competitors and switch from courtship to aggression. To masculinize female pheromones, a transgene carrying dsRNA for the sex determination factor transformer (traIR) was targeted to the pheromone producing cells, the oenocytes. Shortly after copulation males attacked these females, indicating that pheromonal cues can override other sensory cues. Surprisingly, masculinization of female behavior by targeting traIR to the nervous system in an otherwise normal female also was sufficient to trigger male aggression. Simultaneous masculinization of both pheromones and behavior induced a complete switch in the normal male response to a female. Control males now fought rather than copulated with these females. In a reciprocal experiment, feminization of the oenocytes and nervous system in males by expression of transformer (traF) elicited high levels of courtship and little or no aggression from control males. Finally, when confronted with flies devoid of pheromones, control males attacked male but not female opponents, suggesting that aggression is not a default behavior in the absence of pheromonal cues. Thus, our results show that masculinization of either pheromones or behavior in females is sufficient to trigger male-to-female aggression. Moreover, by manipulating both the pheromonal profile and the fighting patterns displayed by the opponent, male behavioral responses towards males and females can be completely reversed. Therefore, both pheromonal and behavioral cues are used by Drosophila males in recognizing a conspecific as a competitor.
Author Summary
As in other species, the fruit fly Drosophila melanogaster uses chemical signals in the form of pheromones to recognize the species and sex of another individual. Males typically fight with other males and do not attack females. While the roles of pheromonal and other sensory cues in stimulating courtship towards females have been extensively studied, the signals that elicit aggression towards other males remain unclear. In this work, we use genetic tools to show that masculinization of female pheromones is sufficient to trigger aggression from wild type males towards females. Surprisingly, males also attacked females that displayed male patterns of aggression, even if they show normal female pheromonal profiles, indicating that pheromones are not the only cues important for identifying another animal as an opponent. By simultaneously manipulating pheromones and behavioral patterns of opponents, we can completely switch the behavioral response of males towards females and males. These results demonstrate that not only pheromonal but also behavioral cues can serve as triggers of aggression, underlining the importance of behavioral feedback in the manifestation of social behaviors.
doi:10.1371/journal.pbio.1000541
PMCID: PMC2990703  PMID: 21124886
13.  Sex-specific visual performance: female lizards outperform males in motion detection 
Biology Letters  2009;5(6):732-734.
In animal communication, complex displays usually have multiple functions and, male and female receivers often differ in their utilization and response to different aspects of these displays. The perceptual variability hypothesis suggests that different aspects of complex signals differ in their ability to be detected and processed by different receivers. Here, we tested whether receiver male and female Sceloporus graciosus lizards differ in visual motion detection by measuring the latency to the visual grasp response to a motion stimulus. We demonstrate that in lizards that largely exhibit complex motions as courtship signals, female lizards are faster than males at visually detecting motion. These results highlight that differential signal utilization by the sexes may be driven by variability in the capacity to detect different display properties.
doi:10.1098/rsbl.2009.0348
PMCID: PMC2827977  PMID: 19656865
sex difference; visual performance; motion detection; complex signals; animal communication; Sceloporus graciosus
14.  Barriers to gene exchange in hybridizing field crickets: the role of male courtship effort and cuticular hydrocarbons 
Background
Pre-zygotic barriers often involve some form of sexual selection, usually interpreted as female choice, as females are typically the choosier sex. However, males typically show some mate preferences, which are increasingly reported. Here we document previously uncharacterized male courtship behavior (effort and song) and cuticular hydrocarbon (CHC) profiles in the hybridizing crickets Gryllus firmus and G. pennsylvanicus. These two species exhibit multiple barriers to gene exchange that act throughout their life history, including a behavioral barrier that results in increased time to mate in heterospecific pairs.
Results
We demonstrated that male mate choice (as courtship effort allocation) plays a more important role in the prezygotic behavioral barrier than previously recognized. In gryllids females ultimately decide whether or not to mate, yet we found males were selective by regulating courtship effort intensity toward the preferred (conspecific) females. Females were also selective by mating with more intensely courting males, which happened to be conspecifics. We report no differences in courtship song between the two species and suggest that the mechanism that allows males to act differentially towards conspecific and heterospecific females is the cuticular hydrocarbon (CHC) composition. CHC profiles differed between males and females of both species, and there were clear differences in CHC composition between female G. firmus and G. pennsylvanicus but not between the males of each species.
Conclusion
Although many barriers to gene exchange are known in this system, the mechanism behind the mate recognition leading to reduced heterospecific mating remains unknown. The CHC profiles might be the phenotypic cue that allow males to identify conspecifics and thus to adjust their courtship intensity accordingly, leading to differential mating between species.
doi:10.1186/1471-2148-14-65
PMCID: PMC4137559  PMID: 24678642
Gryllus firmus; Gryllus pennsylvanicus; Behavior; Barrier to gene exchange; Pre-zygotic; Pheromone
15.  The African Cichlid Fish Astatotilapia burtoni Uses Acoustic Communication for Reproduction: Sound Production, Hearing, and Behavioral Significance 
PLoS ONE  2012;7(5):e37612.
Sexual reproduction in all animals depends on effective communication between signalers and receivers. Many fish species, especially the African cichlids, are well known for their bright coloration and the importance of visual signaling during courtship and mate choice, but little is known about what role acoustic communication plays during mating and how it contributes to sexual selection in this phenotypically diverse group of vertebrates. Here we examined acoustic communication during reproduction in the social cichlid fish, Astatotilapia burtoni. We characterized the sounds and associated behaviors produced by dominant males during courtship, tested for differences in hearing ability associated with female reproductive state and male social status, and then tested the hypothesis that female mate preference is influenced by male sound production. We show that dominant males produce intentional courtship sounds in close proximity to females, and that sounds are spectrally similar to their hearing abilities. Females were 2–5-fold more sensitive to low frequency sounds in the spectral range of male courtship sounds when they were sexually-receptive compared to during the mouthbrooding parental phase. Hearing thresholds were also negatively correlated with circulating sex-steroid levels in females but positively correlated in males, suggesting a potential role for steroids in reproductive-state auditory plasticity. Behavioral experiments showed that receptive females preferred to affiliate with males that were associated with playback of courtship sounds compared to noise controls, indicating that acoustic information is likely important for female mate choice. These data show for the first time in a Tanganyikan cichlid that acoustic communication is important during reproduction as part of a multimodal signaling repertoire, and that perception of auditory information changes depending on the animal's internal physiological state. Our results highlight the importance of examining non-visual sensory modalities as potential substrates for sexual selection contributing to the incredible phenotypic diversity of African cichlid fishes.
doi:10.1371/journal.pone.0037612
PMCID: PMC3356291  PMID: 22624055
16.  Multi-modal Analysis of Courtship Behaviour in the Old World Leishmaniasis Vector Phlebotomus argentipes 
Background
The sand fly Phlebotomus argentipes is arguably the most important vector of leishmaniasis worldwide. As there is no vaccine against the parasites that cause leishmaniasis, disease prevention focuses on control of the insect vector. Understanding reproductive behaviour will be essential to controlling populations of P. argentipes, and developing new strategies for reducing leishmaniasis transmission. Through statistical analysis of male-female interactions, this study provides a detailed description of P. argentipes courtship, and behaviours critical to mating success are highlighted. The potential for a role of cuticular hydrocarbons in P. argentipes courtship is also investigated, by comparing chemicals extracted from the surface of male and female flies.
Principal Findings
P. argentipes courtship shared many similarities with that of both Phlebotomus papatasi and the New World leishmaniasis vector Lutzomyia longipalpis. Male wing-flapping while approaching the female during courtship predicted mating success, and touching between males and females was a common and frequent occurrence. Both sexes were able to reject a potential partner. Significant differences were found in the profile of chemicals extracted from the surface of males and females. Results of GC analysis indicate that female extracts contained a number of peaks with relatively short retention times not present in males. Extracts from males had higher peaks for chemicals with relatively long retention times.
Conclusions
The importance of male approach flapping suggests that production of audio signals through wing beating, or dispersal of sex pheromones, are important to mating in this species. Frequent touching as a means of communication, and the differences in the chemical profiles extracted from males and females, may also indicate a role for cuticular hydrocarbons in P. argentipes courtship. Comparing characteristics of successful and unsuccessful mates could aid in identifying the modality of signals involved in P. argentipes courtship, and their potential for use in developing new strategies for vector control.
Author Summary
The sand fly Phlebotomus argentipes transmits Leishmania parasites through female blood-feeding. These parasites cause leishmaniasis, a potentially fatal disease for which there is no vaccine. Understanding how insect vectors behave can aid in developing strategies to reduce disease transmission. Here, we investigate courtship behaviour in P. argentipes. Courtship is critical to an organism's life cycle, as it is essential for mating and reproduction. We show that courtship in this species begins with the male wing-flapping while approaching the female. This behaviour may suggest production of audio signals, or dispersal of chemicals from the male, which the female finds attractive. There then follows a period of touching between males and females prior to copulation. This behaviour may function in the transmission and reception of chemical signals, present on the insect surface. Many insects use these kinds of chemicals in courtship, and here we show differences in the chemicals extracted from the cuticle of male and female P. argentipes. Both males and females were found to be able to reject a potential mate. Understanding why some P. argentipes are more attractive than others could help identify the signals essential to reproduction, and their potential for use in vector control.
doi:10.1371/journal.pntd.0003316
PMCID: PMC4256473  PMID: 25474027
17.  Male Choice in the Stream-Anadromous Stickleback Complex 
PLoS ONE  2012;7(6):e37951.
Studies of mating preferences and pre-mating reproductive isolation have often focused on females, but the potential importance of male preferences is increasingly appreciated. We investigated male behavior in the context of reproductive isolation between divergent anadromous and stream-resident populations of threespine stickleback, Gasterosteus aculeatus, using size-manipulated females of both ecotypes. Specifically, we asked if male courtship preferences are present, and if they are based on relative body size, non-size aspects of ecotype, or other traits. Because male behaviors were correlated with each other, we conducted a principal components analysis on the correlations and ran subsequent analyses on the principal components. The two male ecotypes differed in overall behavioral frequencies, with stream-resident males exhibiting consistently more vigorous and positive courtship than anadromous males, and an otherwise aggressive behavior playing a more positive role in anadromous than stream-resident courtship. We observed more vigorous courtship toward smaller females by (relatively small) stream-resident males and the reverse pattern for (relatively large) anadromous males. Thus size-assortative male courtship preferences may contribute to reproductive isolation in this system, although preferences are far from absolute. We found little indication of males responding preferentially to females of their own ecotype independent of body size.
doi:10.1371/journal.pone.0037951
PMCID: PMC3372497  PMID: 22701589
18.  Sexual selection and mating advantages in the giant sperm species, Drosophila bifurca 
Mate choice may be exercised by either sex; however, females are generally choosier than males because they invest more in their gametes. Female choice is often based on direct benefits, such as better reproductive output, whereas male choice appears to be based on differences in female fecundity. However, when gamete production is limited, sexual selection theories predict that mate choice will be decisive for reproductive success in both sexes. Here, we investigate how mating advantage is achieved in Drosophila bifurca, a giant sperm species in which both sexes produce only a few gametes. Our initial expectations were as follows: (1) females would discriminate against sperm-depleted males to avoid fertility cost; and (2) males would discriminate against inseminated females to reduce sperm competition and increase the assurance of paternity of individual gametes. Differences in courtship behaviors were analyzed with regard to the sexual maturity, which is reached after 22 days in males at 21°C, and the reproductive history of both sexes (inseminated versus virgin for females, and sperm-depleted versus sperm-loaded for males). Our results show that: (1) sexual immaturity precludes mating in both sexes; (2) virgin females do not discriminate between sperm-loaded and sperm-depleted males, and (3) males mate preferentially with virgin females, because inseminated females fend off the male, which tended to bring male courtship to an end. Female remating was limited, but increased significantly when the first male was sperm-depleted. Contrary to our initial expectations, these findings suggest that male sperm depletion does not affect female mating preference, whereas the success of male courtship is driven by female behavior. The possibility that female remating was only promoted in response to low sperm transfer is discussed in relation to the gametic system of this species.
PMCID: PMC1283891  PMID: 16299600
copulation duration; frequency of remating; reproductive behavior; sexual maturity; sperm-limited species
19.  Male-Male Sexual Behavior in the Parasitic Wasp Psyttalia concolor  
The role of male-male courtship in parasitic Hymenoptera is poorly known. A laboratory study was conducted to assess if Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae) male courtship can be affected by a previous experience in courting young conspecifics of both sexes. Two experiments were performed to evaluate the effect of experience in courting young wasps on both male courtship and male-male competition behavior. Results showed that a courting experience on both sexes can modify some sexual traits in a P. concolor male, without affecting its success in mating. When approaching virgin females, a P. concolor male that had a previous courtship experience with young wasps of either sex showed shorter latency times, more wing fanning, and longer courtship durations with respect to the control male. The hypothesis that a previous courting experience may allow a P. concolor male to refine its courtship behavior and to enhance courtship intensity in subsequent encounters with females was discussed.
doi:10.1673/031.013.2501
PMCID: PMC3735074  PMID: 23895402
adaptive behavior; courtship; experience; mating; Opiinae; wing fanning
20.  Male courtship preferences demonstrate discrimination against allopatric colour morphs in a cichlid fish 
Journal of Evolutionary Biology  2013;26(3):577-586.
Whether premating isolation is achieved by male-specific, female-specific or sex-independent assortative preferences often depends on the underlying evolutionary processes. Here we test mate preferences of males presented with females of different allopatric colour variants of the cichlid fish Tropheus sp., a Lake Tanganyika endemic with rich geographical colour pattern variation, in which the strength of sexual isolation varies between populations. We conducted two-way mate choice experiments to compare behaviour of males of a red-bodied morph (population Moliro) towards females from their own population with behaviour towards females from four allopatric populations at different stages of phylogenetic and phenotypic divergence. Males courted same-population females significantly more intensely than females of other populations, and reduced their heteromorphic courtship efforts both with increasing genetic and increasing phenotypic distinctness of the females. In particular, females of a closely related red-bodied population received significantly more courtship than either genetically distinct, similarly coloured females (‘Kirschfleck’ morph) or genetically related, differently coloured females (‘yellow-blotch’ morph), both of which were courted similarly. Genetically and phenotypically distinct females (Tropheus polli) were not courted at all. Consistent with previous female-choice experiments, female courtship activity also decreased with increasing genetic distance from the males’ population. Given successful experimental and natural introgression between colour morphs and the pervasive allopatry of related variants, we consider it unlikely that assortative preferences of both sexes were driven by direct selection during periods of secondary contact or, in turn, drove colour pattern differentiation in allopatry. Rather, we suggest that sexual isolation evolved as by-product of allopatric divergence.
doi:10.1111/jeb.12074
PMCID: PMC3599476  PMID: 23405907
allopatric divergence; Cichlidae; Lake Tanganyika; male preference; mate choice; reproductive isolation; Tropheus
21.  Love Is Blind: Indiscriminate Female Mating Responses to Male Courtship Pheromones in Newts (Salamandridae) 
PLoS ONE  2013;8(2):e56538.
Internal fertilization without copulation or prolonged physical contact is a rare reproductive mode among vertebrates. In many newts (Salamandridae), the male deposits a spermatophore on the substrate in the water, which the female subsequently takes up with her cloaca. Because such an insemination requires intense coordination of both sexes, male newts have evolved a courtship display, essentially consisting of sending pheromones under water by tail-fanning towards their potential partner. Behavioral experiments until now mostly focused on an attractant function, i.e. showing that olfactory cues are able to bring both sexes together. However, since males start their display only after an initial contact phase, courtship pheromones are expected to have an alternative function. Here we developed a series of intraspecific and interspecific two-female experiments with alpine newt (Ichthyosaura alpestris) and palmate newt (Lissotriton helveticus) females, comparing behavior in male courtship water and control water. We show that male olfactory cues emitted during tail-fanning are pheromones that can induce all typical features of natural female mating behavior. Interestingly, females exposed to male pheromones of their own species show indiscriminate mating responses to conspecific and heterospecific females, indicating that visual cues are subordinate to olfactory cues during courtship.
doi:10.1371/journal.pone.0056538
PMCID: PMC3574087  PMID: 23457580
22.  Is female preference for large sexual ornaments due to a bias to escape predation risk? 
Background
A female preference for intense sexual visual signals is widespread in animals. Although the preferences for a signal per se and for the intensity of the signal were often regarded to have the identical origin, no study has demonstrated if this is true. It was suggested that the female fiddler crabs prefer males with courtship structures because of direct benefit to escape predation. Here we tested if female preference for both components (i.e. presence and size) of the courtship structure in Uca lactea is from the sensory bias to escape predation. If both components have the identical origin, females should show the same response to different-sized courtship structures regardless of predation risk.
Results
First, we observed responses of mate-searching female U. lactea to courting males with full-sized, half-sized and no semidomes which were experimentally manipulated. Females had a directional preference for males with bigger semidomes within normal variation. Thereafter, we tested the effect of predation risk on the female bias in the non-courtship context. When threatened by an avian mock predator, females preferentially approached burrows with full-sized semidomes regardless of reproductive cycles (i.e. reproductive periods and non-reproductive periods). When the predator cue was absent, however, females preferred burrows with semidomes without discriminating structure size during reproductive periods but did not show any bias during non-reproductive periods.
Conclusions
Results indicate that selection for the size of courtship structures in U. lactea may have an origin in the function to reduce predation risk, but that the preference for males with structures may have evolved by female choice, independent of predation pressure.
doi:10.1186/1471-2148-12-33
PMCID: PMC3313857  PMID: 22413838
23.  Integrated action of pheromone signals in promoting courtship behavior in male mice 
eLife  2014;3:e03025.
The mammalian vomeronasal organ encodes pheromone information about gender, reproductive status, genetic background and individual differences. It remains unknown how pheromone information interacts to trigger innate behaviors. In this study, we identify vomeronasal receptors responsible for detecting female pheromones. A sub-group of V1re clade members recognizes gender-identifying cues in female urine. Multiple members of the V1rj clade are cognate receptors for urinary estrus signals, as well as for sulfated estrogen (SE) compounds. In both cases, the same cue activates multiple homologous receptors, suggesting redundancy in encoding female pheromone cues. Neither gender-specific cues nor SEs alone are sufficient to promote courtship behavior in male mice, whereas robust courtship behavior can be induced when the two cues are applied together. Thus, integrated action of different female cues is required in pheromone-triggered mating behavior. These results suggest a gating mechanism in the vomeronasal circuit in promoting specific innate behavior.
DOI: http://dx.doi.org/10.7554/eLife.03025.001
eLife digest
Pheromones are chemicals that are given off by living things and they lead to a range of social responses in others of the same species. These chemical signals, for example, can let an animal know when a suitable mate is near and trigger the release of hormones that encourage the animal to mate.
In mammals, an organ found between the roof of the mouth and the nose detects pheromones. This organ contains more than 300 different receptors for these chemicals. However, only a few of these receptors have been matched with the pheromones that they detect. One example is a chemical released by male mice that interacts with a specific nasal receptor and causes a female mouse to arch her back in a way that signals she is ready to mate.
One reason that more pheromone-receptor pairs are not known is that pheromones are released in very small quantities, which makes them hard to detect. In an effort to identify more pairs, Haga-Yamanaka et al. took tissue slices from the organ that detects pheromones in mice and then looked for cells that responded to the urine of female mice. Two previously unknown pheromone-receptor pairs were found. One helps male mice detect when a female is present, while the other lets him know if she is ready to mate. Together these two chemicals alert a male mouse to a potential mate and cause him to mount her in order to mate. However, neither chemical is able to trigger this male courtship behavior on its own.
The techniques developed by Haga-Yamanaka et al. may, in the future, help identify more pheromone-receptor pairs. The next challenge will be to identify the pathways of nerve cells that integrate the information about pheromones and trigger the courtship behaviors.
DOI: http://dx.doi.org/10.7554/eLife.03025.002
doi:10.7554/eLife.03025
PMCID: PMC4107909  PMID: 25073926
olfactory; vomeronasal; pheromone; innate behavior; GCaMP; imaging; mouse
24.  To signal or not to signal? Chemical communication by urine-borne signals mirrors sexual conflict in crayfish 
BMC Biology  2010;8:25.
Background
Sexual selection theory predicts that females, being the limiting sex, invest less in courtship signals than males. However, when chemical signals are involved it is often the female that initiates mating by producing stimuli that inform about sex and/or receptivity. This apparent contradiction has been discussed in the literature as 'the female pheromone fallacy'. Because the release of chemical stimuli may not have evolved to elicit the male's courtship response, whether these female stimuli represent signals remains an open question. Using techniques to visualise and block release of urine, we studied the role of urine signals during fighting and mating interactions of crayfish (Pacifastacus leniusculus). Test individuals were blindfolded to exclude visual disturbance from dye release and artificial urine introduction.
Results
Staged female-male pairings during the reproductive season often resulted in male mating attempts. Blocking female urine release in such pairings prevented any male courtship behaviour. Artificial introduction of female urine re-established male mating attempts. Urine visualisation showed that female urine release coincides with aggressive behaviours but not with female submissive behaviour in reproductive interactions as well as in intersexual and intrasexual fights. In reproductive interactions, females predominately released urine during precopulatory aggression; males subsequently released significantly less urine during mating than in fights.
Conclusions
Urine-blocking experiments demonstrate that female urine contains sex-specific components that elicit male mating behaviour. The coincidence of chemical signalling and aggressive behaviour in both females and males suggests that urine release has evolved as an aggressive signal in both sexes of crayfish. By limiting urine release to aggressive behaviours in reproductive interactions females challenge their potential mating partners at the same time as they trigger a sexual response. These double messages should favour stronger males that are able to overcome the resistance of the female. We conclude that the difference between the sexes in disclosing urine-borne information reflects their conflicting interests in reproduction. Males discontinue aggressive urine signalling in order to increase their chances of mating. Females resume urine signalling in connection with aggressive behaviour, potentially repelling low quality or sexually inactive males while favouring reproduction with high quality males.
doi:10.1186/1741-7007-8-25
PMCID: PMC2867775  PMID: 20353555
25.  A meal or a male: the ‘whispers’ of black widow males do not trigger a predatory response in females 
Frontiers in Zoology  2014;11:4.
Introduction
Female spiders are fine-tuned to detect and quickly respond to prey vibrations, presenting a challenge to courting males who must attract a female’s attention but not be mistaken for prey. This is likely particularly important at the onset of courtship when a male enters a female’s web. In web-dwelling spiders, little is known about how males solve this conundrum, or about their courtship signals. Here we used laser Doppler vibrometry to study the vibrations produced by males and prey (house flies and crickets) on tangle webs of the western black widow Latrodectus hesperus and on sheet webs of the hobo spider Tegenaria agrestis. We recorded the vibrations at the location typically occupied by a hunting female spider. We compared the vibrations produced by males and prey in terms of their waveform, dominant frequency, frequency bandwidth, amplitude and duration. We also played back recorded male and prey vibrations through the webs of female L. hesperus to determine the vibratory parameters that trigger a predatory response in females.
Results
We found overlap in waveform between male and prey vibrations in both L. hesperus and T. agrestis. In both species, male vibrations were continuous, of long duration (on average 6.35 s for T. agrestis and 9.31 s for L. hesperus), and lacked complex temporal patterning such as repeated motifs or syllables. Prey vibrations were shorter (1.38 - 2.59 s), sporadic and often percussive. Based on the parameters measured, courtship signals of male L. hesperus differed more markedly from prey cues than did those of T. agrestis. Courtship vibrations of L. hesperus males differed from prey vibrations in terms of dominant frequency, amplitude and duration. Vibrations of T. agrestis males differed from prey in terms of duration only. During a playback experiment, L. hesperus females did not respond aggressively to low-amplitude vibrations irrespective of whether the playback recording was from a prey or a male.
Conclusions
Unlike courtship signals of other spider species, the courtship signals of L. hesperus and T. agrestis males do not have complex temporal patterning. The low-amplitude ‘whispers’ of L. hesperus males at the onset of courtship are less likely to trigger a predatory response in females than the high-amplitude vibrations of struggling prey.
doi:10.1186/1742-9994-11-4
PMCID: PMC3909478  PMID: 24433544
Sexual cannibalism; Sexual signalling; Latrodectus hesperus; Black widow spider; Tegenaria agrestis; Hobo spider; Vibration; Spider web

Results 1-25 (1007648)