PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1035569)

Clipboard (0)
None

Related Articles

1.  Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network 
Nature protocols  2011;6(9):10.1038/nprot.2011.372.
AraNet is a functional gene network for the reference plant Arabidopsis and has been constructed in order to identify new genes associated with plant traits. It is highly predictive for diverse biological pathways and can be used to prioritize genes for functional screens. Moreover, AraNet provides a web-based tool with which plant biologists can efficiently discover novel functions of Arabidopsis genes (http://www.functionalnet.org/aranet/). This protocol explains how to conduct network-based prediction of gene functions using AraNet and how to interpret the prediction results. Functional discovery in plant biology is facilitated by combining candidate prioritization by AraNet with focused experimental tests.
doi:10.1038/nprot.2011.372
PMCID: PMC3654671  PMID: 21886106
2.  Integrating Rare-Variant Testing, Function Prediction, and Gene Network in Composite Resequencing-Based Genome-Wide Association Studies (CR-GWAS) 
G3: Genes|Genomes|Genetics  2011;1(3):233-243.
High-density array-based genome-wide association studies (GWAS) are complemented by exome sequencing and whole-genome resequencing-based association studies. Here we present a composite resequencing-based genome-wide association study (CR-GWAS) strategy that systematically exploits collective biological information and analytical tools for a robust analysis. We showcased the utility of this strategy by using Arabidopsis (Arabidopsis thaliana) resequencing data. Bioinformatic predictions of biological function alteration at each locus were integrated into the process of association testing of both common and rare variants for complex traits with a suite of statistics. Significant signals were then filtered with a priori candidate loci generated from genome database and gene network models to obtain a posteriori candidate loci. A probabilistic gene network (AraNet) that interrogates network neighborhoods of genes was then used to expand the filtering power to examine the significant testing signals. Using this strategy, we confirmed the known true positives and identified several new promising associations. Promising genes (AP1, FCA, FRI, FLC, FLM, SPL5, FY, and DCL2) were shown to control for flowering time through either common variants or rare variants within a diverse set of Arabidopsis accessions. Although many of these candidate genes were cloned earlier with mutational studies, identifying their allele variation contribution to overall phenotypic variation among diverse natural accessions is critical. Our rare allele testing established a greater number of connections than previous analyses in which this issue was not addressed. More importantly, our results demonstrated the potential of integrating various biological, statistical, and bioinformatic tools into complex trait dissection.
doi:10.1534/g3.111.000364
PMCID: PMC3276137  PMID: 22384334
complex trait dissection; association mapping; rare allele; mixed model
3.  Combining Genome-Wide Association Mapping and Transcriptional Networks to Identify Novel Genes Controlling Glucosinolates in Arabidopsis thaliana 
PLoS Biology  2011;9(8):e1001125.
Genome-wide association mapping is highly sensitive to environmental changes, but network analysis allows rapid causal gene identification.
Background
Genome-wide association (GWA) is gaining popularity as a means to study the architecture of complex quantitative traits, partially due to the improvement of high-throughput low-cost genotyping and phenotyping technologies. Glucosinolate (GSL) secondary metabolites within Arabidopsis spp. can serve as a model system to understand the genomic architecture of adaptive quantitative traits. GSL are key anti-herbivory defenses that impart adaptive advantages within field trials. While little is known about how variation in the external or internal environment of an organism may influence the efficiency of GWA, GSL variation is known to be highly dependent upon the external stresses and developmental processes of the plant lending it to be an excellent model for studying conditional GWA.
Methodology/Principal Findings
To understand how development and environment can influence GWA, we conducted a study using 96 Arabidopsis thaliana accessions, >40 GSL phenotypes across three conditions (one developmental comparison and one environmental comparison) and ∼230,000 SNPs. Developmental stage had dramatic effects on the outcome of GWA, with each stage identifying different loci associated with GSL traits. Further, while the molecular bases of numerous quantitative trait loci (QTL) controlling GSL traits have been identified, there is currently no estimate of how many additional genes may control natural variation in these traits. We developed a novel co-expression network approach to prioritize the thousands of GWA candidates and successfully validated a large number of these genes as influencing GSL accumulation within A. thaliana using single gene isogenic lines.
Conclusions/Significance
Together, these results suggest that complex traits imparting environmentally contingent adaptive advantages are likely influenced by up to thousands of loci that are sensitive to fluctuations in the environment or developmental state of the organism. Additionally, while GWA is highly conditional upon genetics, the use of additional genomic information can rapidly identify causal loci en masse.
Author Summary
Understanding how genetic variation can control phenotypic variation is a fundamental goal of modern biology. A major push has been made using genome-wide association mapping in all organisms to attempt and rapidly identify the genes contributing to phenotypes such as disease and nutritional disorders. But a number of fundamental questions have not been answered about the use of genome-wide association: for example, how does the internal or external environment influence the genes found? Furthermore, the simple question of how many genes may influence a trait is unknown. Finally, a number of studies have identified significant false-positive and -negative issues within genome-wide association studies that are not solvable by direct statistical approaches. We have used genome-wide association mapping in the plant Arabidopsis thaliana to begin exploring these questions. We show that both external and internal environments significantly alter the identified genes, such that using different tissues can lead to the identification of nearly completely different gene sets. Given the large number of potential false-positives, we developed an orthogonal approach to filtering the possible genes, by identifying co-functioning networks using the nominal candidate gene list derived from genome-wide association studies. This allowed us to rapidly identify and validate a large number of novel and unexpected genes that affect Arabidopsis thaliana defense metabolism within phenotypic ranges that have been shown to be selectable within the field. These genes and the associated networks suggest that Arabidopsis thaliana defense metabolism is more readily similar to the infinite gene hypothesis, according to which there is a vast number of causative genes controlling natural variation in this phenotype. It remains to be seen how frequently this is true for other organisms and other phenotypes.
doi:10.1371/journal.pbio.1001125
PMCID: PMC3156686  PMID: 21857804
4.  Molecular and biochemical analysis of the first ARA6 homologue, a RAB5 GTPase, from green algae 
Journal of Experimental Botany  2013;64(18):5553-5568.
RAB5 GTPases are important regulators of endosomal membrane traffic in yeast, plants, and animals. A specific subgroup of this family, the ARA6 group, has been described in land plants including bryophytes, lycophytes, and flowering plants. Here, we report on the isolation of an ARA6 homologue in a green alga. CaARA6 (CaRABF1) from Chara australis, a member of the Characeae that is a close relative of land plants, encodes a polypeptide of 237 aa with a calculated molecular mass of 25.4kDa, which is highly similar to ARA6 members from Arabidopsis thaliana and other land plants and has GTPase activity. When expressed in Nicotiana benthamiana leaf epidermal cells, fluorescently tagged CaARA6 labelled organelles with diameters between 0.2 and 1.2 µm, which co-localized with fluorescently tagged AtARA6 known to be present on multivesicular endosomes. Mutations in the membrane-anchoring and GTP-binding sites altered the localization of CaARA6 comparable to that of A. thaliana ARA6 (RABF1). In characean internodal cells, confocal immunofluorescence and immunogold electron microscopy with antibodies against AtARA6 and CaARA6 revealed ARA6 epitopes not only at multivesicular endosomes but also at the plasma membrane, including convoluted domains (charasomes), and at the trans-Golgi network. Our findings demonstrate that ARA6-like proteins have a more ancient origin than previously thought. They indicate further that ARA6-like proteins could have different functions in spite of the high similarity between characean algae and flowering plants.
doi:10.1093/jxb/ert322
PMCID: PMC3871812  PMID: 24127512
ARA6; Chara australis; endosomal trafficking; multivesicular endosome; plant-specific RAB5 GTPase; plasma membrane; trans-Golgi network.
5.  Genome-Wide Patterns of Arabidopsis Gene Expression in Nature 
PLoS Genetics  2012;8(4):e1002662.
Organisms in the wild are subject to multiple, fluctuating environmental factors, and it is in complex natural environments that genetic regulatory networks actually function and evolve. We assessed genome-wide gene expression patterns in the wild in two natural accessions of the model plant Arabidopsis thaliana and examined the nature of transcriptional variation throughout its life cycle and gene expression correlations with natural environmental fluctuations. We grew plants in a natural field environment and measured genome-wide time-series gene expression from the plant shoot every three days, spanning the seedling to reproductive stages. We find that 15,352 genes were expressed in the A. thaliana shoot in the field, and accession and flowering status (vegetative versus flowering) were strong components of transcriptional variation in this plant. We identified between ∼110 and 190 time-varying gene expression clusters in the field, many of which were significantly overrepresented by genes regulated by abiotic and biotic environmental stresses. The two main principal components of vegetative shoot gene expression (PCveg) correlate to temperature and precipitation occurrence in the field. The largest PCveg axes included thermoregulatory genes while the second major PCveg was associated with precipitation and contained drought-responsive genes. By exposing A. thaliana to natural environments in an open field, we provide a framework for further understanding the genetic networks that are deployed in natural environments, and we connect plant molecular genetics in the laboratory to plant organismal ecology in the wild.
Author Summary
Plants in the real world are continuously exposed to multiple environmental signals and must respond appropriately to the dynamic conditions found in nature. Environmental signals can fluctuate during an individual's life cycle with varying degrees of predictability, and complex natural environments are where gene activity evolves. We grew two natural accessions of the model plant Arabidopsis thaliana in an open field in New York in the spring and examined genome-wide gene expression patterns in the wild. We find nearly 200 gene expression clusters in these field-grown plants, and many of these clusters were enriched in genes that had previously been shown to be associated with expression under various abiotic or biotic environmental stress conditions. Two major principal components of gene expression were associated with environmental fluctuations in temperature and rainfall, and we identified several genes (such as the thermoregulatory nucleosome occupancy gene ARP6 and the drought-sensitive hormone biosynthetic gene AAO3) that could be found in these principal components. By exploring genome-wide gene expression in plants in the wild, we were able to connect mechanistic aspects of plant molecular biology with ecological responses in nature and to begin to understand how organisms behave and adapt in their natural environments.
doi:10.1371/journal.pgen.1002662
PMCID: PMC3330097  PMID: 22532807
6.  Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3 
BMC Genomics  2010;11:69.
Background
Plants engineered for abiotic stress tolerance may soon be commercialized. The engineering of these plants typically involves the manipulation of complex multigene networks and may therefore have a greater potential to introduce pleiotropic effects than the simple monogenic traits that currently dominate the plant biotechnology market. While research on unintended effects in transgenic plant systems has been instrumental in demonstrating the substantial equivalence of many transgenic plant systems, it is essential that such analyses be extended to transgenic plants engineered for stress tolerance. Drought-tolerant Arabidopsis thaliana were engineered through overexpression of the transcription factor ABF3 in order to investigate unintended pleiotropic effects. In order to eliminate position effects, the Cre/lox recombination system was used to create control plant lines that contain identical T-DNA insertion sites but with the ABF3 transgene excised. This additionally allowed us to determine if Cre recombinase can cause unintended effects that impact the transcriptome.
Results
Microarray analysis of control plant lines that underwent Cre-mediated excision of the ABF3 transgene revealed only two genes that were differentially expressed in more than one plant line, suggesting that the impact of Cre recombinase on the transcriptome was minimal. In the absence of drought stress, overexpression of ABF3 had no effect on the transcriptome, but following drought stress, differences were observed in the gene expression patterns of plants overexpressing ABF3 relative to control plants. Examination of the functional distribution of the differentially expressed genes revealed strong similarity indicating that unintended pathways were not activated.
Conclusions
The action of ABF3 is tightly controlled in Arabidopsis. In the absence of drought stress, ectopic activation of drought response pathways does not occur. In response to drought stress, overexpression of ABF3 results in a reprogramming of the drought response, which is characterized by changes in the timing or strength of expression of some drought response genes, without activating any unexpected gene networks. These results illustrate that important gene networks are highly regulated in Arabidopsis and that engineering stress tolerance may not necessarily cause extensive changes to the transcriptome.
doi:10.1186/1471-2164-11-69
PMCID: PMC2837038  PMID: 20105335
7.  Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.) 
BMC Genomics  2011;12:264.
Background
Global transcriptional analysis of loblolly pine (Pinus taeda L.) is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine.
Results
Microarrays were used to interrogate root cDNA populations obtained from 12 genotype × treatment combinations (four genotypes, three watering regimes). Comparison of drought-stressed roots with roots from the control treatment identified 2445 genes displaying at least a 1.5-fold expression difference (false discovery rate = 0.01). Genes commonly associated with drought response in pine and other plant species, as well as a number of abiotic and biotic stress-related genes, were up-regulated in drought-stressed roots. Only 76 genes were identified as differentially expressed in drought-recovered roots, indicating that the transcript population can return to the pre-drought state within 48 hours. Gene correlation analysis predicts a scale-free network topology and identifies eleven co-expression modules that ranged in size from 34 to 938 members. Network topological parameters identified a number of central nodes (hubs) including those with significant homology (E-values ≤ 2 × 10-30) to 9-cis-epoxycarotenoid dioxygenase, zeatin O-glucosyltransferase, and ABA-responsive protein. Identified hubs also include genes that have been associated previously with osmotic stress, phytohormones, enzymes that detoxify reactive oxygen species, and several genes of unknown function.
Conclusion
PtGen2 was used to evaluate transcriptome responses in loblolly pine and was leveraged to identify 2445 differentially expressed genes responding to severe drought stress in roots. Many of the genes identified are known to be up-regulated in response to osmotic stress in pine and other plant species and encode proteins involved in both signal transduction and stress tolerance. Gene expression levels returned to control values within a 48-hour recovery period in all but 76 transcripts. Correlation network analysis indicates a scale-free network topology for the pine root transcriptome and identifies central nodes that may serve as drivers of drought-responsive transcriptome dynamics in the roots of loblolly pine.
doi:10.1186/1471-2164-12-264
PMCID: PMC3123330  PMID: 21609476
8.  Plasticity Regulators Modulate Specific Root Traits in Discrete Nitrogen Environments 
PLoS Genetics  2013;9(9):e1003760.
Plant development is remarkably plastic but how precisely can the plant customize its form to specific environments? When the plant adjusts its development to different environments, related traits can change in a coordinated fashion, such that two traits co-vary across many genotypes. Alternatively, traits can vary independently, such that a change in one trait has little predictive value for the change in a second trait. To characterize such “tunability” in developmental plasticity, we carried out a detailed phenotypic characterization of complex root traits among 96 accessions of the model Arabidopsis thaliana in two nitrogen environments. The results revealed a surprising level of independence in the control of traits to environment – a highly tunable form of plasticity. We mapped genetic architecture of plasticity using genome-wide association studies and further used gene expression analysis to narrow down gene candidates in mapped regions. Mutants in genes implicated by association and expression analysis showed precise defects in the predicted traits in the predicted environment, corroborating the independent control of plasticity traits. The overall results suggest that there is a pool of genetic variability in plants that controls traits in specific environments, with opportunity to tune crop plants to a given environment.
Author Summary
Plants can dramatically alter their development in order to cope with new environmental conditions. Such plasticity is especially evident in the root system since it adopts a particular architecture under one condition, but can change architecture by altering the extent of lateral root branching in a different condition. To explore the extent of root plasticity to the critical nutrient nitrogen we analyzed a natural population of the model plant Arabidopsis in both nitrogen-limiting and nitrogen-rich environments. This revealed that root architecture plasticity appears to be the combined effect of many individual root responses to the environment that are independently modulated. Each aspect, such as lateral root length, number, or density seems to be turned on or off separately, giving the whole system flexibility. We then identified specific genes that control these individual component responses by exploring the genetic variation across the natural population in combination with analyzing which genes respond to nitrogen. Together the results help us gain insights into how the environment shapes plant development. This knowledge can be used to better understand how the growth of our existing crop species might change as the climate varies, and identify new crop varieties that will be robust to such variation.
doi:10.1371/journal.pgen.1003760
PMCID: PMC3764102  PMID: 24039603
9.  Genome-Wide Analysis of ZmDREB Genes and Their Association with Natural Variation in Drought Tolerance at Seedling Stage of Zea mays L 
PLoS Genetics  2013;9(9):e1003790.
The worldwide production of maize (Zea mays L.) is frequently impacted by water scarcity and as a result, increased drought tolerance is a priority target in maize breeding programs. While DREB transcription factors have been demonstrated to play a central role in desiccation tolerance, whether or not natural sequence variations in these genes are associated with the phenotypic variability of this trait is largely unknown. In the present study, eighteen ZmDREB genes present in the maize B73 genome were cloned and systematically analyzed to determine their phylogenetic relationship, synteny with rice, maize and sorghum genomes; pattern of drought-responsive gene expression, and protein transactivation activity. Importantly, the association between the nucleic acid variation of each ZmDREB gene with drought tolerance was evaluated using a diverse population of maize consisting of 368 varieties from tropical and temperate regions. A significant association between the genetic variation of ZmDREB2.7 and drought tolerance at seedling stage was identified. Further analysis found that the DNA polymorphisms in the promoter region of ZmDREB2.7, but not the protein coding region itself, was associated with different levels of drought tolerance among maize varieties, likely due to distinct patterns of gene expression in response to drought stress. In vitro, protein-DNA binding assay demonstrated that ZmDREB2.7 protein could specifically interact with the target DNA sequences. The transgenic Arabidopsis overexpressing ZmDREB2.7 displayed enhanced tolerance to drought stress. Moreover, a favorable allele of ZmDREB2.7, identified in the drought-tolerant maize varieties, was effective in imparting plant tolerance to drought stress. Based upon these findings, we conclude that natural variation in the promoter of ZmDREB2.7 contributes to maize drought tolerance, and that the gene and its favorable allele may be an important genetic resource for the genetic improvement of drought tolerance in maize.
Author Summary
Water scarcity is one of the most severe threats to maize production worldwide. Although research has demonstrated that DREB-type transcription factors play important roles in plant water stress response, whether the specific genetic variants in DREB genes contribute to plant drought tolerance is largely unknown. Taking advantages of recent technical and methodological advance, we systematically analyzed all the functional DREB genes in maize and examined their associations with the natural variation in drought tolerance of 368 maize varieties collected from tropical and temperate regions. A significant association in the ZmDREB2.7 gene with drought tolerance was detected in that the DNA polymorphisms in the gene promoter region, but not those in the protein coding region, contributed to observed variations in maize drought tolerance, probably due to the distinct gene expression patterns in response to the stress. Overexpressing ZmDREB2.7 in Arabidopsis resulted in enhanced tolerance to drought stress. Moreover, a favorable ZmDREB2.7 allele, identified from drought-tolerant varieties, was effective in improving plant tolerance to drought stress when it was introduced into a drought-sensitive background. ZmDREB2.7 and its favorable allele represent a valuable genetic resource for enhancing maize drought tolerance by marker assisted breeding and transformation technology.
doi:10.1371/journal.pgen.1003790
PMCID: PMC3784558  PMID: 24086146
10.  DNA Methylation Mediated Control of Gene Expression Is Critical for Development of Crown Gall Tumors 
PLoS Genetics  2013;9(2):e1003267.
Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA–encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA–mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene expression, physiological processes, and the development of crown gall tumors.
Author Summary
Until now, knowledge about the impact of DNA methylation on plant tumor development and physiology has been scant. Therefore, we studied the methylation pattern of Arabidopsis thaliana crown galls on a genome-wide and single-gene level. Crown gall tumor development requires expression of oncogenes, which are transferred on T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. We found that oncogene expression was associated with an unmethylated oncogene sequence although the promoters were susceptible to methylation. siRNA–mediated promoter methylation caused transcriptional silencing of oncogenes and prevented crown gall proliferation. Moreover, we observed that the genome-wide DNA methylation profile of crown gall tumors was significantly altered and influenced gene expression pattern as well as tumor development. Finally, we demonstrated that physiological processes important for wild-type-like crown gall growth, such as abscisic acid-dependent drought stress protection, are regulated by DNA methylation. From our data, we conclude that epigenetic processes control gene expression, development, and physiology of crown gall tumors.
doi:10.1371/journal.pgen.1003267
PMCID: PMC3567176  PMID: 23408907
11.  Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana 
A protein interactome focused towards cell proliferation was mapped comprising 857 interactions among 393 proteins, leading to many new insights in plant cell cycle regulation.A comprehensive view on heterodimeric cyclin-dependent kinase (CDK)/cyclin complexes in plants is obtained, in relation with their regulators.Over 100 new candidate cell cycle proteins were predicted.
The basic underlying mechanisms that govern the cell cycle are conserved among all eukaryotes. Peculiar for plants, however, is that their genome contains a collection of cell cycle regulatory genes that is intriguingly large (Vandepoele et al, 2002; Menges et al, 2005) compared to other eukaryotes. Arabidopsis thaliana (Arabidopsis) encodes 71 genes in five regulatory classes versus only 15 in yeast and 23 in human.
Despite the discovery of numerous cell cycle genes, little is known about the protein complex machinery that steers plant cell division. Therefore, we applied tandem affinity purification (TAP) approach coupled with mass spectrometry (MS) on Arabidopsis cell suspension cultures to isolate and analyze protein complexes involved in the cell cycle. This approach allowed us to successfully map a first draft of the basic cell cycle complex machinery of Arabidopsis, providing many new insights into plant cell division.
To map the interactome, we relied on a streamlined platform comprising generic Gateway-based vectors with high cloning flexibility, the fast generation of transgenic suspension cultures, TAP adapted for plant cells, and matrix-assisted laser desorption ionization (MALDI) tandem-MS for the identification of purified proteins (Van Leene et al, 2007, 2008Van Leene et al, 2007, 2008). Complexes for 102 cell cycle proteins were analyzed using this approach, leading to a non-redundant data set of 857 interactions among 393 proteins (Figure 1A). Two subspaces were identified in this data set, domain I1, containing interactions confirmed in at least two independent experimental repeats or in the reciprocal purification experiment, and domain I2 consisting of uniquely observed interactions.
Several observations underlined the quality of both domains. All tested reverse purifications found the original interaction, and 150 known or predicted interactions were confirmed, meaning that also a huge stack of new interactions was revealed. An in-depth computational analysis revealed enrichment for many cell cycle-related features among the proteins of the network (Figure 1B), and many protein pairs were coregulated at the transcriptional level (Figure 1C). Through integration of known cell cycle-related features, more than 100 new candidate cell cycle proteins were predicted (Figure 1D). Besides common qualities of both interactome domains, their real significance appeared through mutual differences exposing two subspaces in the cell cycle interactome: a central regulatory network of stable complexes that are repeatedly isolated and represent core regulatory units, and a peripheral network comprising transient interactions identified less frequently, which are involved in other aspects of the process, such as crosstalk between core complexes or connections with other pathways. To evaluate the biological relevance of the cell cycle interactome in plants, we validated interactions from both domains by a transient split-luciferase assay in Arabidopsis plants (Marion et al, 2008), further sustaining the hypothesis-generating power of the data set to understand plant growth.
With respect to insights into the cell cycle physiology, the interactome was subdivided according to the functional classes of the baits and core protein complexes were extracted, covering cyclin-dependent kinase (CDK)/cyclin core complexes together with their positive and negative regulation networks, DNA replication complexes, the anaphase-promoting complex, and spindle checkpoint complexes. The data imply that mitotic A- and B-type cyclins exclusively form heterodimeric complexes with the plant-specific B-type CDKs and not with CDKA;1, whereas D-type cyclins seem to associate with CDKA;1. Besides the extraction of complexes previously shown in other organisms, our data also suggested many new functional links; for example, the link coupling cell division with the regulation of transcript splicing. The association of negative regulators of CDK/cyclin complexes with transcription factors suggests that their role in reallocation is not solely targeted to CDK/cyclin complexes. New members of the Siamese-related inhibitory proteins were identified, and for the first time potential inhibitors of plant-specific mitotic B-type CDKs have been found in plants. New evidence that the E2F–DP–RBR network is not only active at G1-to-S, but also at the G2-to-M transition is provided and many complexes involved in DNA replication or repair were isolated. For the first time, a plant APC has been isolated biochemically, identifying three potential new plant-specific APC interactors, and finally, complexes involved in the spindle checkpoint were isolated mapping many new but specific interactions.
Finally, to get a general view on the complex machinery, modules of interacting cyclins and core cell cycle regulators were ranked along the cell cycle phases according to the transcript expression peak of the cyclins, showing an assorted set of CDK–cyclin complexes with high regulatory differentiation (Figure 4). Even within the same subfamily (e.g. cyclin A3, B1, B2, D3, and D4), cyclins differ not only in their functional time frame but also in the type and number of CDKs, inhibitors, and scaffolding proteins they bind, further indicating their functional diversification. According to our interaction data, at least 92 different variants of CDK–cyclin complexes are found in Arabidopsis.
In conclusion, these results reflect how several rounds of gene duplication (Sterck et al, 2007) led to the evolution of a large set of cyclin paralogs and a myriad of regulators, resulting in a significant jump in the complexity of the cell cycle machinery that could accommodate unique plant-specific features such as an indeterminate mode of postembryonic development. Through their extensive regulation and connection with a myriad of up- and downstream pathways, the core cell cycle complexes might offer the plant a flexible toolkit to fine-tune cell proliferation in response to an ever-changing environment.
Cell proliferation is the main driving force for plant growth. Although genome sequence analysis revealed a high number of cell cycle genes in plants, little is known about the molecular complexes steering cell division. In a targeted proteomics approach, we mapped the core complex machinery at the heart of the Arabidopsis thaliana cell cycle control. Besides a central regulatory network of core complexes, we distinguished a peripheral network that links the core machinery to up- and downstream pathways. Over 100 new candidate cell cycle proteins were predicted and an in-depth biological interpretation demonstrated the hypothesis-generating power of the interaction data. The data set provided a comprehensive view on heterodimeric cyclin-dependent kinase (CDK)–cyclin complexes in plants. For the first time, inhibitory proteins of plant-specific B-type CDKs were discovered and the anaphase-promoting complex was characterized and extended. Important conclusions were that mitotic A- and B-type cyclins form complexes with the plant-specific B-type CDKs and not with CDKA;1, and that D-type cyclins and S-phase-specific A-type cyclins seem to be associated exclusively with CDKA;1. Furthermore, we could show that plants have evolved a combinatorial toolkit consisting of at least 92 different CDK–cyclin complex variants, which strongly underscores the functional diversification among the large family of cyclins and reflects the pivotal role of cell cycle regulation in the developmental plasticity of plants.
doi:10.1038/msb.2010.53
PMCID: PMC2950081  PMID: 20706207
Arabidopsis thaliana; cell cycle; interactome; protein complex; protein interactions
12.  Trichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of the Antioxidant Machinery for Saline Stress Tolerance 
PLoS Pathogens  2013;9(3):e1003221.
Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity.
Author Summary
Trichoderma fungi have been developed as biocontrol agents and are applied to protect and improve crop yields. Colonization of plant roots by Trichoderma can protect plants against diseases and environmental stresses such as salinity and drought, and an improve plant growth and development. To better understand the mechanism underlining the plant-Trichoderma interaction we followed changes in global gene expression in colonized Arabidopsis roots. We associate the known gene biological function to the processes of root colonization and abiotic stress tolerance mediated by Trichoderma. Using Arabidopsis mutant lines we show the function of a subset of those genes in root colonization. We show that wrky18 and wrky40 transcription factors activate and suppress the expression of different genes in order to allow successful root colonization. We also combine the gene expression data together with the measurement of ascorbic acid level to demonstrate that salt stress tolerance offered by Trichoderma is dependent on activation of the plant antioxidant defense machinery. Using Trichoderma lines mutated in the ACC deaminase gene, we demonstrate that reduction of ethylene levels is also essential in achieving salt tolerance. This study represents an important step forward in understanding the nature of the non-pathogenic plant Trichoderma interaction, and may contribute to the efforts to improve Trichoderma biocontrol abilities.
doi:10.1371/journal.ppat.1003221
PMCID: PMC3597500  PMID: 23516362
13.  Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice 
BMC Genomics  2007;8:260.
Background
In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs), ABRE and CE3, in thale cress (Arabidopsis thaliana) and rice (Oryza sativa).
Results
Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters.
Conclusion
Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription factors. Further studies will be needed to test whether the observed differences are extrapolatable to monocots and dicots in general, and to understand how they contribute to the fine-tuning of the hormonal response. The outcome of our investigation can now be used to direct future experimentation designed to further dissect the ABA-dependent regulatory networks.
doi:10.1186/1471-2164-8-260
PMCID: PMC2000901  PMID: 17672917
14.  ARA7(Q69L) expression in transgenic Arabidopsis cells induces the formation of enlarged multivesicular bodies 
Journal of Experimental Botany  2013;64(10):2817-2829.
Arabidopsis thaliana ARA7 (AtRabF2b), a member of the plant Rab5 small GTPases functioning in the vacuolar transport pathway, localizes to pre-vacuolar compartments (PVCs), known as multivesicular bodies (MVBs) in plant cells. Overexpression of the constitutively active GTP-bound mutant of ARA7, ARA7(Q69L), induces the formation of large ring-like structures (1–2 µm in diameter). To better understand the biology of these ARA7(Q69L)-induced ring-like structures, transgenic Arabidopsis cell lines expressing ARA7(Q69L) tagged with green fluorescent protein (GFP) under the control of a heat shock-inducible promoter were generated. In these transgenic cells, robust ring-like structures were formed after 4 h of heat shock induction. Transient co-expression, confocal imaging, and immunogold electron microscopy (immunogold-EM) experiments demonstrated that these GFP–ARA7(Q69L)-labelled ring-like structures were distinct from the Golgi apparatus and trans-Golgi network, but were labelled with an antibody against an MVB marker protein. In addition, live cell imaging and detailed EM analysis showed that the GFP–ARA7(Q69L)-induced spherical structures originated from the homotypic fusion of MVBs. In summary, it was demonstrated that GFP–ARA7(Q69L) expression is an efficient tool for studying PVC/MVB-mediated protein trafficking and vacuolar degradation in plant cells.
doi:10.1093/jxb/ert125
PMCID: PMC3697957  PMID: 23682115
ARA7(Q69L); homotypic fusion; MVB enlargement; multivesicular body; pre-vacuolar compartment; transgenic Arabidopsis cells.
15.  Molecular and functional characterization of cold-responsive C-repeat binding factors from Brachypodium distachyon 
BMC Plant Biology  2014;14:15.
Background
Adverse environmental conditions severely influence various aspects of plant growth and developmental processes, causing worldwide reduction of crop yields. The C-repeat binding factors (CBFs) are critical transcription factors constituting the gene regulatory network that mediates the acclimation process to low temperatures. They regulate a large number of cold-responsive genes, including COLD-REGULATED (COR) genes, via the CBF-COR regulon. Recent studies have shown that the CBF transcription factors also play a role in plant responses to drought and salt stresses. Putative CBF gene homologues and their downstream genes are also present in the genome of Brachypodium distachyon, which is perceived as a monocot model in recent years. However, they have not been functionally characterized at the molecular level.
Results
Three CBF genes that are responsive to cold were identified from Brachypodium, designated BdCBF1, BdCBF2, and BdCBF3, and they were functionally characterized by molecular biological and transgenic approaches in Brachypodium and Arabidopsis thaliana. Our results demonstrate that the BdCBF genes contribute to the tolerance response of Brachypodium to cold, drought, and salt stresses by regulating downstream targets, such as DEHYDRIN5.1 (Dhn5.1) and COR genes. The BdCBF genes are induced under the environmental stress conditions. The BdCBF proteins possess transcriptional activation activity and bind directly to the promoters of the target genes. Transgenic Brachypodium plants overexpressing the BdCBF genes exhibited enhanced resistance to drought and salt stresses as well as low temperatures, and accordingly endogenous contents of proline and soluble sugars were significantly elevated in the transgenic plants. The BdCBF transcription factors are also functional in the heterologous system Arabidopsis. Transgenic Arabidopsis plants overexpressing the BdCBF genes were also tolerant to freezing, drought, and salt stresses, and a set of stress-responsive genes was upregulated in the transgenic Arabidopsis plants.
Conclusions
Taken together, our results strongly support that the BdCBF transcription factors are key regulators of cold stress responses in Brachypodium and the CBF-mediated cold stress signaling pathway is conserved in this plant species. We believe that this study would confer great impact on stress biology in monocot species and could be applied to engineer abiotic stress tolerance of bioenergy grass species.
doi:10.1186/1471-2229-14-15
PMCID: PMC3898008  PMID: 24405987
Brachypodium distachyon; C-repeat binding factor (CBF); COLD-REGULATED (COR); Abiotic stress tolerance; Arabidopsis thaliana
16.  Maximizing capture of gene co-expression relationships through pre-clustering of input expression samples: an Arabidopsis case study 
BMC Systems Biology  2013;7:44.
Background
In genomics, highly relevant gene interaction (co-expression) networks have been constructed by finding significant pair-wise correlations between genes in expression datasets. These networks are then mined to elucidate biological function at the polygenic level. In some cases networks may be constructed from input samples that measure gene expression under a variety of different conditions, such as for different genotypes, environments, disease states and tissues. When large sets of samples are obtained from public repositories it is often unmanageable to associate samples into condition-specific groups, and combining samples from various conditions has a negative effect on network size. A fixed significance threshold is often applied also limiting the size of the final network. Therefore, we propose pre-clustering of input expression samples to approximate condition-specific grouping of samples and individual network construction of each group as a means for dynamic significance thresholding. The net effect is increase sensitivity thus maximizing the total co-expression relationships in the final co-expression network compendium.
Results
A total of 86 Arabidopsis thaliana co-expression networks were constructed after k-means partitioning of 7,105 publicly available ATH1 Affymetrix microarray samples. We term each pre-sorted network a Gene Interaction Layer (GIL). Random Matrix Theory (RMT), an un-supervised thresholding method, was used to threshold each of the 86 networks independently, effectively providing a dynamic (non-global) threshold for the network. The overall gene count across all GILs reached 19,588 genes (94.7% measured gene coverage) and 558,022 unique co-expression relationships. In comparison, network construction without pre-sorting of input samples yielded only 3,297 genes (15.9%) and 129,134 relationships. in the global network.
Conclusions
Here we show that pre-clustering of microarray samples helps approximate condition-specific networks and allows for dynamic thresholding using un-supervised methods. Because RMT ensures only highly significant interactions are kept, the GIL compendium consists of 558,022 unique high quality A. thaliana co-expression relationships across almost all of the measurable genes on the ATH1 array. For A. thaliana, these networks represent the largest compendium to date of significant gene co-expression relationships, and are a means to explore complex pathway, polygenic, and pleiotropic relationships for this focal model plant. The networks can be explored at sysbio.genome.clemson.edu. Finally, this method is applicable to any large expression profile collection for any organism and is best suited where a knowledge-independent network construction method is desired.
doi:10.1186/1752-0509-7-44
PMCID: PMC3679940  PMID: 23738693
Gene network; Arabidopsis; Systems biology; Relevance network
17.  ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance 
BMC Plant Biology  2008;8:125.
Background
Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying potential targets for plant breeding. Drought tolerance in the field was successfully conferred to crops by transferring genes from this model species. While involved in a plant genomics programme, which aims to identify new genes responsible for plant response to abiotic stress, we identified ESKIMO1 as a key gene involved in plant water economy as well as cold acclimation and salt tolerance.
Results
All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE), which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress.
Transcriptomic analysis of one mutant line and its wild-type background was carried out. Under control watering conditions a number of genes were differentially expressed between the mutant and the wild type whereas under mild drought stress this list of genes was reduced. Among the genes that were differentially expressed between the wild type and mutant, two functional categories related to the response to stress or biotic and abiotic stimulus were over-represented. Under salt stress conditions, all gene functional categories were represented equally in both the mutant and wild type. Based on this transcriptome analysis we hypothesise that in control conditions the esk1 mutant behaves as if it was exposed to drought stress.
Conclusion
Overall our findings suggest that the ESKIMO1 gene plays a major role in plant response to water shortage and in whole plant water economy. Further experiments are being undertaken to elucidate the function of the ESKIMO1 protein and the way it modulates plant water uptake.
doi:10.1186/1471-2229-8-125
PMCID: PMC2630945  PMID: 19061521
18.  A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects 
eLife  2014;3:e03115.
The endodermis represents the main barrier to extracellular diffusion in plant roots, and it is central to current models of plant nutrient uptake. Despite this, little is known about the genes setting up this endodermal barrier. In this study, we report the identification and characterization of a strong barrier mutant, schengen3 (sgn3). We observe a surprising ability of the mutant to maintain nutrient homeostasis, but demonstrate a major defect in maintaining sufficient levels of the macronutrient potassium. We show that SGN3/GASSHO1 is a receptor-like kinase that is necessary for localizing CASPARIAN STRIP DOMAIN PROTEINS (CASPs)—major players of endodermal differentiation—into an uninterrupted, ring-like domain. SGN3 appears to localize into a broader band, embedding growing CASP microdomains. The discovery of SGN3 strongly advances our ability to interrogate mechanisms of plant nutrient homeostasis and provides a novel actor for localized microdomain formation at the endodermal plasma membrane.
DOI: http://dx.doi.org/10.7554/eLife.03115.001
eLife digest
Plant roots forage in the soil for minerals and water, but they must also provide a barrier that stops these nutrients leaking back out of the plant and stops microbes invading and causing disease. The endodermis—an inner layer of cells that surrounds the veins that run along the middle of a root—acts as such a barrier in young roots.
Polymers that repel water are deposited between the cells in the roots of almost all vascular plants—which include ferns, conifers, and flowering plants—to form a band around the endodermis called the ‘Casparian strip’. This strip seals off the young roots and stops water moving through the gaps between plant cells, but still allows minerals, nutrients, and water to be transported through the root cells and into the plant. However, the importance of this structure has yet to be tested due to the lack of mutant plants without a Casparian strip.
Pfister et al. now report that deleting the gene that encodes a protein called SCHENGEN3 in the model plant Arabidopsis thaliana causes the Casparian strip to be interrupted by irregularly sized holes. This protein is normally found at high levels in the root endodermis, where it is embedded into the cell membranes. Pfister et al. also showed that without the SCHENGEN3 protein, other proteins called CASPs—that normally mark out a stripe around the root cells where the Casparian strip will form—only accumulated in discontinuous patches. Further experiments revealed that deleting the gene for SCHENGEN3 does not cause general problems in delivering the CASP proteins to the cell membrane; instead, it specifically stops the CASP proteins from forming a single, uninterrupted stripe.
Unexpectedly, disrupting the Casparian strip did not appear to hinder many of the functions of a root. The mutant plants could still take up water and nutrients, and the leaves of mutant plants had normal levels of many essential minerals—with the exception of potassium. The level of this mineral was much lower in mutant plants without the SCHENGEN3 protein. Pfister et al. suggest that in plants that lack an intact Casparian strip, potassium is continuously leaked from the root into the soil.
These findings reveal that in Arabidopsis, at least, the Casparian strip might not be as important as once thought for helping the plant to take up and accumulate water and nutrients. Further work is now needed to uncover the as yet unknown backup systems that might be able to compensate for the loss of this structure.
DOI: http://dx.doi.org/10.7554/eLife.03115.002
doi:10.7554/eLife.03115
PMCID: PMC4164916  PMID: 25233277
root biology; polarity; plant nutrition; Arabidopsis
19.  Reverse engineering and analysis of large genome-scale gene networks 
Nucleic Acids Research  2012;41(1):e24.
Reverse engineering the whole-genome networks of complex multicellular organisms continues to remain a challenge. While simpler models easily scale to large number of genes and gene expression datasets, more accurate models are compute intensive limiting their scale of applicability. To enable fast and accurate reconstruction of large networks, we developed Tool for Inferring Network of Genes (TINGe), a parallel mutual information (MI)-based program. The novel features of our approach include: (i) B-spline-based formulation for linear-time computation of MI, (ii) a novel algorithm for direct permutation testing and (iii) development of parallel algorithms to reduce run-time and facilitate construction of large networks. We assess the quality of our method by comparison with ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks) and GeneNet and demonstrate its unique capability by reverse engineering the whole-genome network of Arabidopsis thaliana from 3137 Affymetrix ATH1 GeneChips in just 9 min on a 1024-core cluster. We further report on the development of a new software Gene Network Analyzer (GeNA) for extracting context-specific subnetworks from a given set of seed genes. Using TINGe and GeNA, we performed analysis of 241 Arabidopsis AraCyc 8.0 pathways, and the results are made available through the web.
doi:10.1093/nar/gks904
PMCID: PMC3592423  PMID: 23042249
20.  Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava 
AoB Plants  2013;5:plt007.
While the physiological basis of cassava drought tolerance has been characterized, evaluation of the molecular responses to drought stress remains largely unexplored. This study provides an initial characterization of the molecular response of cassava to drought stress resembling field conditions. The candidate drought tolerance genes in cassava identified in this study can be used as expression-based markers of drought tolerance in cassava or be tested in the context of breeding and engineering drought tolerance in transgenics.
Cassava is an important root crop to resource-poor farmers in marginal areas, where its production faces drought stress constraints. Given the difficulties associated with cassava breeding, a molecular understanding of drought tolerance in cassava will help in the identification of markers for use in marker-assisted selection and genes for transgenic improvement of drought tolerance. This study was carried out to identify candidate drought-tolerance genes and expression-based markers of drought stress in cassava. One drought-tolerant (improved variety) and one drought-susceptible (farmer-preferred) cassava landrace were grown in the glasshouse under well-watered and water-stressed conditions. Their morphological, physiological and molecular responses to drought were characterized. Morphological and physiological measurements indicate that the tolerance of the improved variety is based on drought avoidance, through reduction of water loss via partial stomatal closure. Ten genes that have previously been biologically validated as conferring or being associated with drought tolerance in other plant species were confirmed as being drought responsive in cassava. Four genes (MeALDH, MeZFP, MeMSD and MeRD28) were identified as candidate cassava drought-tolerance genes, as they were exclusively up-regulated in the drought-tolerant genotype to comparable levels known to confer drought tolerance in other species. Based on these genes, we hypothesize that the basis of the tolerance at the cellular level is probably through mitigation of the oxidative burst and osmotic adjustment. This study provides an initial characterization of the molecular response of cassava to drought stress resembling field conditions. The drought-responsive genes can now be used as expression-based markers of drought stress tolerance in cassava, and the candidate tolerance genes tested in the context of breeding (as possible quantitative trait loci) and engineering drought tolerance in transgenics.
doi:10.1093/aobpla/plt007
PMCID: PMC3604649  PMID: 23519782
Cassava; drought avoidance; drought tolerance; gene expression; osmotic adjustment; oxidative stress; real-time PCR
21.  Sequencing and analysis of the gene-rich space of cowpea 
BMC Genomics  2008;9:103.
Background
Cowpea, Vigna unguiculata (L.) Walp., is one of the most important food and forage legumes in the semi-arid tropics because of its drought tolerance and ability to grow on poor quality soils. Approximately 80% of cowpea production takes place in the dry savannahs of tropical West and Central Africa, mostly by poor subsistence farmers. Despite its economic and social importance in the developing world, cowpea remains to a large extent an underexploited crop. Among the major goals of cowpea breeding and improvement programs is the stacking of desirable agronomic traits, such as disease and pest resistance and response to abiotic stresses. Implementation of marker-assisted selection and breeding programs is severely limited by a paucity of trait-linked markers and a general lack of information on gene structure and organization. With a nuclear genome size estimated at ~620 Mb, the cowpea genome is an ideal target for reduced representation sequencing.
Results
We report here the sequencing and analysis of the gene-rich, hypomethylated portion of the cowpea genome selectively cloned by methylation filtration (MF) technology. Over 250,000 gene-space sequence reads (GSRs) with an average length of 610 bp were generated, yielding ~160 Mb of sequence information. The GSRs were assembled, annotated by BLAST homology searches of four public protein annotation databases and four plant proteomes (A. thaliana, M. truncatula, O. sativa, and P. trichocarpa), and analyzed using various domain and gene modeling tools. A total of 41,260 GSR assemblies and singletons were annotated, of which 19,786 have unique GenBank accession numbers. Within the GSR dataset, 29% of the sequences were annotated using the Arabidopsis Gene Ontology (GO) with the largest categories of assigned function being catalytic activity and metabolic processes, groups that include the majority of cellular enzymes and components of amino acid, carbohydrate and lipid metabolism. A total of 5,888 GSRs had homology to genes encoding transcription factors (TFs) and transcription associated factors (TAFs) representing about 5% of the total annotated sequences in the dataset. Sixty-two (62) of the 64 well-characterized plant transcription factor (TF) gene families are represented in the cowpea GSRs, and these families are of similar size and phylogenetic organization to those characterized in other plants. The cowpea GSRs also provides a rich source of genes involved in photoperiodic control, symbiosis, and defense-related responses. Comparisons to available databases revealed that about 74% of cowpea ESTs and 70% of all legume ESTs were represented in the GSR dataset. As approximately 12% of all GSRs contain an identifiable simple-sequence repeat, the dataset is a powerful resource for the design of microsatellite markers.
Conclusion
The availability of extensive publicly available genomic data for cowpea, a non-model legume with significant importance in the developing world, represents a significant step forward in legume research. Not only does the gene space sequence enable the detailed analysis of gene structure, gene family organization and phylogenetic relationships within cowpea, but it also facilitates the characterization of syntenic relationships with other cultivated and model legumes, and will contribute to determining patterns of chromosomal evolution in the Leguminosae. The micro and macrosyntenic relationships detected between cowpea and other cultivated and model legumes should simplify the identification of informative markers for marker-assisted trait selection and map-based gene isolation necessary for cowpea improvement.
doi:10.1186/1471-2164-9-103
PMCID: PMC2279124  PMID: 18304330
22.  Natural Variants of AtHKT1 Enhance Na+ Accumulation in Two Wild Populations of Arabidopsis 
PLoS Genetics  2006;2(12):e210.
Plants are sessile and therefore have developed mechanisms to adapt to their environment, including the soil mineral nutrient composition. Ionomics is a developing functional genomic strategy designed to rapidly identify the genes and gene networks involved in regulating how plants acquire and accumulate these mineral nutrients from the soil. Here, we report on the coupling of high-throughput elemental profiling of shoot tissue from various Arabidopsis accessions with DNA microarray-based bulk segregant analysis and reverse genetics, for the rapid identification of genes from wild populations of Arabidopsis that are involved in regulating how plants acquire and accumulate Na+ from the soil. Elemental profiling of shoot tissue from 12 different Arabidopsis accessions revealed that two coastal populations of Arabidopsis collected from Tossa del Mar, Spain, and Tsu, Japan (Ts-1 and Tsu-1, respectively), accumulate higher shoot levels of Na+ than do Col-0 and other accessions. We identify AtHKT1, known to encode a Na+ transporter, as being the causal locus driving elevated shoot Na+ in both Ts-1 and Tsu-1. Furthermore, we establish that a deletion in a tandem repeat sequence approximately 5 kb upstream of AtHKT1 is responsible for the reduced root expression of AtHKT1 observed in these accessions. Reciprocal grafting experiments establish that this loss of AtHKT1 expression in roots is responsible for elevated shoot Na+. Interestingly, and in contrast to the hkt1–1 null mutant, under NaCl stress conditions, this novel AtHKT1 allele not only does not confer NaCl sensitivity but also cosegregates with elevated NaCl tolerance. We also present all our elemental profiling data in a new open access ionomics database, the Purdue Ionomics Information Management System (PiiMS; http://www.purdue.edu/dp/ionomics). Using DNA microarray-based genotyping has allowed us to rapidly identify AtHKT1 as the casual locus driving the natural variation in shoot Na+ accumulation we observed in Ts-1 and Tsu-1. Such an approach overcomes the limitations imposed by a lack of established genetic markers in most Arabidopsis accessions and opens up a vast and tractable source of natural variation for the identification of gene function not only in ionomics but also in many other biological processes.
Synopsis
Unlike most animals, plants are sessile and cannot leave a poor-quality environment after germinating. They therefore need to tolerate the particular conditions they encounter to survive. This makes plants an ideal system for the study of adaptive variation, and this is particularly true of Arabidopsis thaliana (Arabidopsis), which shows substantial natural variation and for which numerous genetic tools exist. Using a combination of analytical chemistry, genetics, and genomics, the authors were able to identify the specific genetic alteration that drive the natural variation in shoot sodium (Na+) accumulation capacity observed in Arabidopsis populations from coastal regions of Spain and Japan (Tossa del Mar and Tsu, respectively). They observed that a deletion in the DNA responsible for regulating the expression of HKT1, a gene known to encode for a Na+ transporter, causes reduced expression of AtHKT1 in roots of both the Spanish and Japanese populations. Such altered expression results in the elevated shoot Na+ observed in these two populations. Interestingly, this novel version of the HKT1 genes is also associated genetically with the enhanced NaCl resistance they observe in the Japanese population.
doi:10.1371/journal.pgen.0020210
PMCID: PMC1665649  PMID: 17140289
23.  Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana 
BMC Plant Biology  2010;10:262.
Background
Arabidopsis thaliana is clearly established as the model plant species. Given the ever-growing demand for food, there is a need to translate the knowledge learned in Arabidopsis to agronomically important species, such as rice (Oryza sativa). To gain a comparative insight into the similarities and differences into how organs are built and how plants respond to stress, the transcriptomes of Arabidopsis and rice were compared at the level of gene orthology and functional categorisation.
Results
Organ specific transcripts in rice and Arabidopsis display less overlap in terms of gene orthology compared to the orthology observed between both genomes. Although greater overlap in terms of functional classification was observed between root specific transcripts in rice and Arabidopsis, this did not extend to flower, leaf or seed specific transcripts. In contrast, the overall abiotic stress response transcriptome displayed a significantly greater overlap in terms of gene orthology compared to the orthology observed between both genomes. However, ~50% or less of these orthologues responded in a similar manner in both species. In fact, under cold and heat treatments as many or more orthologous genes responded in an opposite manner or were unchanged in one species compared to the other. Examples of transcripts that responded oppositely include several genes encoding proteins involved in stress and redox responses and non-symbiotic hemoglobins that play central roles in stress signalling pathways. The differences observed in the abiotic transcriptomes were mirrored in the presence of cis-acting regulatory elements in the promoter regions of stress responsive genes and the transcription factors that potentially bind these regulatory elements. Thus, both the abiotic transcriptome and its regulation differ between rice and Arabidopsis.
Conclusions
These results reveal significant divergence between Arabidopsis and rice, in terms of the abiotic stress response and its regulation. Both plants are shown to employ unique combinations of genes to achieve growth and stress responses. Comparison of these networks provides a more rational approach to translational studies that is based on the response observed in these two diverse plant models.
doi:10.1186/1471-2229-10-262
PMCID: PMC3095337  PMID: 21106056
24.  Understanding the physiology of Lactobacillus plantarum at zero growth 
The physiology of Lactobacillus plantarum at extremely low growth rates, through cultivation in retentostats, is much closer to carbon-limited growth than to stationary phase, as evidenced from transcriptomics data, metabolic fluxes, and biomass composition and viability.Using a genome-scale metabolic model and constraint-based computational analyses, amino-acid fluxes—in particular, the rather paradoxical excretion of Asp, Arg, Met, and Ala—could be rationalized as a means to allow extensive metabolism of other amino acids, that is, that of branched-chain and aromatic amino acids.Catabolic products from aromatic amino acids are known to have putative plant-hormone action. The metabolism of amino acids, as well as transcription data, strongly suggested a plant environment-like response in slow-growing L. plantarum, which was confirmed by significant effects of fermented medium on plant root formation.
Natural ecosystems are usually characterized by extremely low and fluctuating nutrient availability. Hence, microorganisms in these environments live a ‘feast-and-famine' existence, with famine the most habitual state. As a result, extremely slow or no growth is the most common state of bacteria, and maintenance processes dominate their life.
In the present study, Lactobacillus plantarum was used as a model microorganism to investigate the physiology of slow growth. Besides fermented foods, this microorganism can be observed in a variety of environmental niches, including plants and lakes, in which nutrient supply is limited. To mimic these conditions, L. plantarum was grown in a glucose-limited chemostat with complete biomass retention (retentostat). During cultivation, biomass progressively accumulated, resulting in steadily decreasing specific substrate availability. Less energy was thus available for growth, and the specific growth rate decreased accordingly, with a final calculated doubling time greater than one year. Detailed measurements of metabolic fluxes were used as constraints in a genome-scale metabolic model to precisely calculate the amount of energy used for net biomass synthesis and for maintenance purposes: at the lowest growth rate investigated (μ=0.0002 h−1), maintenance accounted for 94% of all energy expenses.
Genome-scale metabolic analysis was used in combination with transcriptomics to study the adaptation of L. plantarum to extremely slow growth under limited carbon and energy supply. Importantly, slow growth as investigated here was fundamentally different from the widely studied carbon starvation-induced stationary phase: non-growing cells in retentostat conditions were glucose limited rather than starved, and the transition from a growing to a non-growing state under retentostat conditions was progressive, in contrast with the abrupt transition in batch cultures. These differences were reflected in various aspects of the cell physiology.
The metabolic behavior was remarkably stable during adaptation to slow growth. Although carbon catabolite repression was clearly relieved, as indicated by the upregulation of genes for the utilization of alternative carbohydrates, the metabolism remained largely based on the conversion of glucose to lactate.
Stress resistance mechanisms were also not massively induced. In particular, analysis of the biomass composition—which remained similar to fast-growing cells even under virtually non-growing conditions—and of the gene expression profile, failed to reveal clear stringent or general stress responses, which are generally triggered in glucose-starved cells. The observation that genes involved in growth-associated processes were not downregulated suggested that active synthesis of biomass components (RNA, proteins, and membranes) was required to account for the observed stable biomass and that turnover of macromolecules was high in slow-growing cells. Biomass viability or morphology was also not affected, compared with faster growth conditions. The only typical stress response was the induction of an SOS response—in particular, the upregulation of the two error-prone DNA polymerases—suggesting an increased potential for genetic diversity under adverse conditions. Although diversity was not apparent under the conditions studied here, such mechanisms of increased rates of mutagenesis are likely to have an important role in the adaptation of L. plantarum to slow growth.
A surprising response of L. plantarum during adaptation to slow growth was the production of several amino acids (Arg, Asp, Met, and Ala). A priori, this metabolic behavior seemed inefficient in a context of energy limitation. However, reduced cost analysis using the genome-scale metabolic model indicated that it had a positive effect on energy generation. In-depth analysis of metabolic flux distributions showed that biosynthesis of these amino acids was connected to the catabolism of branched-chain and aromatic amino acids (BCAAs and AAAs), under conditions of limited ammonium efflux. At a fixed ammonium efflux—fixed at the measured value—flux balance analysis indicated that BCAAs and AAAs were expensive to metabolize, because the regeneration of 2-ketoglutarate through glutamate dehydrogenase was limited by ammonium dissipation. Therefore, alternative pathways had to be active to supply the necessary pool of 2-ketoglutarate. At low growth rates, amino-acid production (Arg, Asp, Ala, and Met) accounted for most of the 2-ketoglutarate regeneration. Although it came at the expense of ATP, this metabolic alternative to glutamate dehydrogenase was less energy costly than other solutions such as purine biosynthesis. This is thus an excellent example in which precise, quantitative modeling results in new insights in physiology that intuition would never have achieved. It also shows that flux balance analysis can be used to accurately predict energetically inefficient metabolism, provided the appropriate fluxes are constrained (here, ammonium efflux).
The observation that BCAAs and AAAs were catabolized at the expense of energy was intriguing. However, several end products of these catabolic pathways can serve as signaling molecules for interactions with other organisms. In particular, precursors of plant hormones were predicted as possible end products in the model simulations. Accordingly, the production of compounds interfering with plant root development was demonstrated in slow-growing L. plantarum. The metabolic analysis thus suggested that slow-growing L. plantarum produced plant hormones—or precursors thereof—as a strategy to divert the plant metabolism towards its own interest. In support of this view, transcriptome analysis indicated the upregulation of genes involved in the catabolism of β-glucosides—typical sugars from plant cell wall—as well as a very high induction of six gene clusters encoding cell-surface protein complexes predicted to have a role in the utilization of plant polysaccharides (csc clusters). In such a plant context, limited ammonium production would also make sense, because of the well-documented toxicity of ammonium for plants: production of amino acids could represent an alternative to ammonium excretion while keeping both parties satisfied.
In conclusion, the physiology of L. plantarum at extremely low growth rates, as studied by genome-scale metabolic modeling and transcriptomics, is fundamentally different from that of starvation-induced stationary phase cells. Excitingly, these conditions seem to trigger responses that favor interactions with the environment, more specifically with plants. The reported observations were made in the absence of any plant-derived material, suggesting that this response might constitute a hardwired behavior.
Situations of extremely low substrate availability, resulting in slow growth, are common in natural environments. To mimic these conditions, Lactobacillus plantarum was grown in a carbon-limited retentostat with complete biomass retention. The physiology of extremely slow-growing L. plantarum—as studied by genome-scale modeling and transcriptomics—was fundamentally different from that of stationary-phase cells. Stress resistance mechanisms were not massively induced during transition to extremely slow growth. The energy-generating metabolism was remarkably stable and remained largely based on the conversion of glucose to lactate. The combination of metabolic and transcriptomic analyses revealed behaviors involved in interactions with the environment, more particularly with plants: production of plant hormones or precursors thereof, and preparedness for the utilization of plant-derived substrates. Accordingly, the production of compounds interfering with plant root development was demonstrated in slow-growing L. plantarum. Thus, conditions of slow growth and limited substrate availability seem to trigger a plant environment-like response, even in the absence of plant-derived material, suggesting that this might constitute an intrinsic behavior in L. plantarum.
doi:10.1038/msb.2010.67
PMCID: PMC2964122  PMID: 20865006
Lactobacillus plantarum; metabolic modeling; retentostat; slow growth; transcriptome analysis
25.  Conserved Non-Coding Regulatory Signatures in Arabidopsis Co-Expressed Gene Modules 
PLoS ONE  2012;7(9):e45041.
Complex traits and other polygenic processes require coordinated gene expression. Co-expression networks model mRNA co-expression: the product of gene regulatory networks. To identify regulatory mechanisms underlying coordinated gene expression in a tissue-enriched context, ten Arabidopsis thaliana co-expression networks were constructed after manually sorting 4,566 RNA profiling datasets into aerial, flower, leaf, root, rosette, seedling, seed, shoot, whole plant, and global (all samples combined) groups. Collectively, the ten networks contained 30% of the measurable genes of Arabidopsis and were circumscribed into 5,491 modules. Modules were scrutinized for cis regulatory mechanisms putatively encoded in conserved non-coding sequences (CNSs) previously identified as remnants of a whole genome duplication event. We determined the non-random association of 1,361 unique CNSs to 1,904 co-expression network gene modules. Furthermore, the CNS elements were placed in the context of known gene regulatory networks (GRNs) by connecting 250 CNS motifs with known GRN cis elements. Our results provide support for a regulatory role of some CNS elements and suggest the functional consequences of CNS activation of co-expression in specific gene sets dispersed throughout the genome.
doi:10.1371/journal.pone.0045041
PMCID: PMC3443200  PMID: 23024789

Results 1-25 (1035569)