Search tips
Search criteria

Results 1-25 (473361)

Clipboard (0)

Related Articles

1.  Mutations in the human GlyT2 gene define a presynaptic component of human startle disease 
Nature genetics  2006;38(7):801-806.
Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) α1 subunit (GLRA1)1-3. Genetic heterogeneity has been confirmed in isolated sporadic cases with mutations in other postsynaptic glycinergic proteins including the GlyR β subunit (GLRB)4, gephyrin (GPHN)5 and RhoGEF collybistin (ARHGEF9)6. However, many sporadic patients diagnosed with hyperekplexia do not carry mutations in these genes2-7. Here we reveal that missense, nonsense and frameshift mutations in the presynaptic glycine transporter 2 (GlyT2) gene (SLC6A5)8 also cause hyperekplexia. Patients harbouring mutations in SLC6A5 presented with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnoea episodes. GlyT2 mutations result in defective subcellular localisation and/or decreased glycine uptake, with selected mutations affecting predicted glycine and Na+ binding sites. Our results demonstrate that SLC6A5 is a major gene for hyperekplexia and define the first neurological disorder linked to mutations in a Na+/Cl−-dependent transporter for a classical fast neurotransmitter. By analogy, we suggest that in other human disorders where defects in postsynaptic receptors have been identified, similar symptoms could result from defects in the cognate presynaptic neurotransmitter transporter.
PMCID: PMC3204411  PMID: 16751771
2.  A Critical Role for Glycine Transporters in Hyperexcitability Disorders 
Defects in mammalian glycinergic neurotransmission result in a complex motor disorder characterized by neonatal hypertonia and an exaggerated startle reflex, known as hyperekplexia (OMIM 149400). This affects newborn children and is characterized by noise or touch-induced seizures that result in muscle stiffness and breath-holding episodes. Although rare, this disorder can have serious consequences, including brain damage and/or sudden infant death. The primary cause of hyperekplexia is missense and non-sense mutations in the glycine receptor (GlyR) α1 subunit gene (GLRA1) on chromosome 5q33.1, although we have also discovered rare mutations in the genes encoding the GlyR β subunit (GLRB) and the GlyR clustering proteins gephyrin (GPNH) and collybistin (ARHGEF9). Recent studies of the Na+/Cl−-dependent glycine transporters GlyT1 and GlyT2 using mouse knockout models and human genetics have revealed that mutations in GlyT2 are a second major cause of hyperekplexia, while the phenotype of the GlyT1 knockout mouse resembles a devastating neurological disorder known as glycine encephalopathy (OMIM 605899). These findings highlight the importance of these transporters in regulating the levels of synaptic glycine.
PMCID: PMC2526004  PMID: 18946534
glycine transporters; GlyT1; GlyT2; VIAAT; hyperekplexia; startle disease; glycine encephalopathy
3.  Glycine receptor mutants of the mouse: what are possible routes of inhibitory compensation? 
Defects in glycinergic inhibition result in a complex neuromotor disorder in humans known as hyperekplexia (OMIM 149400) with similar phenotypes in rodents characterized by an exaggerated startle reflex and hypertonia. Analogous to genetic defects in humans single point mutations, microdeletions, or insertions in the Glra1 gene but also in the Glrb gene underlie the pathology in mice. The mutations either localized in the α (spasmodic, oscillator, cincinnati, Nmf11) or the β (spastic) subunit of the glycine receptor (GlyR) are much less tolerated in mice than in humans, leaving the question for the existence of different regulatory elements of the pathomechanisms in humans and rodents. In addition to the spontaneous mutations, new insights into understanding of the regulatory pathways in hyperekplexia or glycine encephalopathy arose from the constantly increasing number of knock-out as well as knock-in mutants of GlyRs. Over the last five years, various efforts using in vivo whole cell recordings provided a detailed analysis of the kinetic parameters underlying glycinergic dysfunction. Presynaptic compensation as well as postsynaptic compensatory mechanisms in these mice by other GlyR subunits or GABAA receptors, and the role of extra-synaptic GlyRs is still a matter of debate. A recent study on the mouse mutant oscillator displayed a novel aspect for compensation of functionality by complementation of receptor domains that fold independently. This review focuses on defects in glycinergic neurotransmission in mice discussed with the background of human hyperekplexia en route to strategies of compensation.
PMCID: PMC3484359  PMID: 23118727
GlyRs; synaptic inhibition; spontaneous mouse mutants; knockout mice; hyperekplexia; rescue
4.  Novel missense mutations in the glycine receptor β subunit gene (GLRB) in startle disease 
Neurobiology of Disease  2013;52(C):137-149.
Startle disease is a rare, potentially fatal neuromotor disorder characterized by exaggerated startle reflexes and hypertonia in response to sudden unexpected auditory, visual or tactile stimuli. Mutations in the GlyR α1 subunit gene (GLRA1) are the major cause of this disorder, since remarkably few individuals with mutations in the GlyR β subunit gene (GLRB) have been found to date. Systematic DNA sequencing of GLRB in individuals with hyperekplexia revealed new missense mutations in GLRB, resulting in M177R, L285R and W310C substitutions. The recessive mutation M177R results in the insertion of a positively-charged residue into a hydrophobic pocket in the extracellular domain, resulting in an increased EC50 and decreased maximal responses of α1β GlyRs. The de novo mutation L285R results in the insertion of a positively-charged side chain into the pore-lining 9′ position. Mutations at this site are known to destabilize the channel closed state and produce spontaneously active channels. Consistent with this, we identified a leak conductance associated with spontaneous GlyR activity in cells expressing α1βL285R GlyRs. Peak currents were also reduced for α1βL285R GlyRs although glycine sensitivity was normal. W310C was predicted to interfere with hydrophobic side-chain stacking between M1, M2 and M3. We found that W310C had no effect on glycine sensitivity, but reduced maximal currents in α1β GlyRs in both homozygous (α1βW310C) and heterozygous (α1ββW310C) stoichiometries. Since mild startle symptoms were reported in W310C carriers, this may represent an example of incomplete dominance in startle disease, providing a potential genetic explanation for the ‘minor’ form of hyperekplexia.
► We report novel missense mutations in the GlyR β subunit gene causing startle disease. ► Mutation M177R in the extracellular domain decreases GlyR agonist affinity. ► Mutation L285R in TM2 produces spontaneously active channels. ► Mutation W310C in TM3 affects hydrophobic stacking and shows incomplete dominance. ► Mutations in GLRB have unique pathogenic mechanisms and modes of inheritance.
PMCID: PMC3581774  PMID: 23238346
GLRA1; GLRB; Glycine receptor; Hyperekplexia; Startle disease
5.  Startle disease in Irish wolfhounds associated with a microdeletion in the glycine transporter GlyT2 gene 
Neurobiology of Disease  2011;43(1):184-189.
Defects in glycinergic synaptic transmission in humans, cattle, and rodents result in an exaggerated startle reflex and hypertonia in response to either acoustic or tactile stimuli. Molecular genetic studies have determined that mutations in the genes encoding the postsynaptic glycine receptor (GlyR) α1 and β subunits (GLRA1 and GLRB) and the presynaptic glycine transporter GlyT2 (SLC6A5) are the major cause of these disorders. Here, we report the first genetically confirmed canine cases of startle disease. A litter of seven Irish wolfhounds was identified in which two puppies developed muscle stiffness and tremor in response to handling. Although sequencing of GLRA1 and GLRB did not reveal any pathogenic mutations, analysis of SLC6A5 revealed a homozygous 4.2 kb microdeletion encompassing exons 2 and 3 in both affected animals. This results in the loss of part of the large cytoplasmic N-terminus and all subsequent transmembrane domains due to a frameshift. This genetic lesion was confirmed by defining the deletion breakpoint, Southern blotting, and multiplex ligation-dependent probe amplification (MLPA). This analysis enabled the development of a rapid genotyping test that revealed heterozygosity for the deletion in the dam and sire and three other siblings, confirming recessive inheritance. Wider testing of related animals has identified a total of 13 carriers of the SLC6A5 deletion as well as non-carrier animals. These findings will inform future breeding strategies and enable a rational pharmacotherapy of this new canine disorder.
Research Highlights
► Startle disease is caused by mutations in glycine receptor and transporter genes. ► We report the first genetically confirmed cases of canine startle disease. ► We found a novel microdeletion in SLC6A5 encoding the glycine transporter GlyT2. ► We can now offer diagnostic testing of carriers and potentially treat this disorder. ► Deletion detection techniques should be applied in human startle disease genetics.
PMCID: PMC4068303  PMID: 21420493
Glycine transporter; GlyT2; Hyperekplexia; Irish wolfhound; SLC6A5; Startle disease
6.  Distinct phenotypes in zebrafish models of human startle disease☆ 
Neurobiology of Disease  2013;60(100):139-151.
Startle disease is an inherited neurological disorder that causes affected individuals to suffer noise- or touch-induced non-epileptic seizures, excessive muscle stiffness and neonatal apnea episodes. Mutations known to cause startle disease have been identified in glycine receptor subunit (GLRA1 and GLRB) and glycine transporter (SLC6A5) genes, which serve essential functions at glycinergic synapses. Despite the significant successes in identifying startle disease mutations, many idiopathic cases remain unresolved. Exome sequencing in these individuals will identify new candidate genes. To validate these candidate disease genes, zebrafish is an ideal choice due to rapid knockdown strategies, accessible embryonic stages, and stereotyped behaviors. The only existing zebrafish model of startle disease, bandoneon (beo), harbors point mutations in glrbb (one of two zebrafish orthologs of human GLRB) that cause compromised glycinergic transmission and touch-induced bilateral muscle contractions. In order to further develop zebrafish as a model for startle disease, we sought to identify common phenotypic outcomes of knocking down zebrafish orthologs of two known startle disease genes, GLRA1 and GLRB, using splice site-targeted morpholinos. Although both morphants were expected to result in phenotypes similar to the zebrafish beo mutant, our direct comparison demonstrated that while both glra1 and glrbb morphants exhibited embryonic spasticity, only glrbb morphants exhibited bilateral contractions characteristic of beo mutants. Likewise, zebrafish over-expressing a dominant startle disease mutation (GlyR α1R271Q) exhibited spasticity but not bilateral contractions. Since GlyR βb can interact with GlyR α subunits 2–4 in addition to GlyR α1, loss of the GlyR βb subunit may produce more severe phenotypes by affecting multiple GlyR subtypes. Indeed, immunohistochemistry of glra1 morphants suggests that in zebrafish, alternate GlyR α subunits can compensate for the loss of the GlyR α1 subunit. To address the potential for interplay among GlyR subunits during development, we quantified the expression time-course for genes known to be critical to glycinergic synapse function. We found that GlyR α2, α3 and α4a are expressed in the correct temporal pattern and could compensate for the loss of the GlyR α1 subunit. Based on our findings, future studies that aim to model candidate startle disease genes in zebrafish should include measures of spasticity and synaptic development.
Graphical abstract
•Morpholinos and dominant-negative mutants disrupted GlyR α1 subunit function.•Spasticity and delayed onset of rhythmic motor behaviors were observed.•GlyR βb subunit morphants exhibit both spasticity and bilateral muscle contractions.•Bilateral contractions likely result from disrupting multiple GlyR subtypes.•Spasticity may provide a common zebrafish ‘startle’ phenotype.
PMCID: PMC3972633  PMID: 24029548
glra1; glrb; Glycine receptor; Startle disease; Hyperekplexia; Zebrafish
7.  A novel syndrome of lethal familial hyperekplexia associated with brain malformation 
BMC Neurology  2012;12:125.
Hyperekplexia (HPX) is a rare non-epileptic disorder manifesting immediately after birth with exaggerated persistent startle reaction to unexpected auditory, somatosensory and visual stimuli, and non-habituating generalized flexor spasm in response to tapping of the nasal bridge (glabellar tap) which forms its clinical hallmark. The course of the disease is usually benign with spontaneous amelioration with age. The disorder results from aberrant glycinergic neurotransmission, and several mutations were reported in the genes encoding glycine receptor (GlyR) α1 and β subunits, glycine transporter GlyT2 as well as two other proteins involved in glycinergic neurotransmission gephyrin and collybistin.
The phenotype of six newborns, belonging to Saudi Arabian kindred with close consanguineous marriages, who presented with hyperekplexia associated with severe brain malformation, is described. DNA samples were available from two patients, and homozygosity scan to determine overlap with known hyperkplexia genes was performed.
The kindred consisted of two brothers married to their cousin sisters, each with three affected children who presented antenatally with excessive fetal movements. Postnatally, they were found to have microcephaly, severe hyperekplexia and gross brain malformation characterized by severe simplified gyral pattern and cerebellar underdevelopment. The EEG was normal and they responded to clonazepam. All of the six patients died within six weeks. Laboratory investigations, including metabolic screen, were unremarkable. None of the known hyperkplexia genes were present within the overlapping regions of homozygosity between the two patients for whom DNA samples were available.
We present these cases as a novel syndrome of lethal familial autosomal recessive hyperekplexia associated with microcephaly and severe brain malformation.
PMCID: PMC3488335  PMID: 23101555
Hyperekplexia; Microcephaly; Simplified gyral pattern; Cerebellar underdevelopment; Autosomal recessive
8.  Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants 
Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch-once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch-once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs.
PMCID: PMC2813725  PMID: 20161699
glycine; synapse; receptor; transporter; zebrafish; behavior; motility
9.  The GLRA1 Missense Mutation W170S Associates Lack of Zn2+ Potentiation with Human Hyperekplexia 
The Journal of Neuroscience  2013;33(45):17675-17681.
Hyperekplexia is a neurological disorder associated primarily with mutations in the α1 subunit of glycine receptors (GlyRs) that lead to dysfunction of glycinergic inhibitory transmission. To date, most of the identified mutations result in disruption of surface expression or altered channel properties of α1-containing GlyRs. Little evidence has emerged to support an involvement of allosteric GlyR modulation in human hyperekplexia. Here, we report that recombinant human GlyRs containing α1 or α1β subunits with a missense mutation in the α1 subunit (W170S), previously identified from familial hyperekplexia, caused remarkably reduced potentiation and enhanced inhibition by Zn2+. Interestingly, mutant α1W170Sβ GlyRs displayed no significant changes in potency or maximum response to glycine, taurine, or β-alanine. By temporally separating the potentiating and the inhibitory effects of Zn2+, we found that the enhancement of Zn2+ inhibition resulted from a loss of Zn2+-mediated potentiation. The W170S mutation on the background of H107N, which was previously reported to selectively disrupt Zn2+ inhibition, showed remarkable attenuation of Zn2+-mediated potentiation and thus indicated that W170 is an important residue for the Zn2+-mediated GlyR potentiation. Moreover, overexpressing the α1W170S subunit in cultured rat neurons confirmed the results from heterologous expression. Together, our results reveal a new zinc potentiation site on α1 GlyRs and a strong link between Zn2+ modulation and human disease.
PMCID: PMC3873627  PMID: 24198360
10.  The impact of human hyperekplexia mutations on glycine receptor structure and function 
Molecular Brain  2014;7:2.
Hyperekplexia is a rare neurological disorder characterized by neonatal hypertonia, exaggerated startle responses to unexpected stimuli and a variable incidence of apnoea, intellectual disability and delays in speech acquisition. The majority of motor defects are successfully treated by clonazepam. Hyperekplexia is caused by hereditary mutations that disrupt the functioning of inhibitory glycinergic synapses in neuromotor pathways of the spinal cord and brainstem. The human glycine receptor α1 and β subunits, which predominate at these synapses, are the major targets of mutations. International genetic screening programs, that together have analysed several hundred probands, have recently generated a clear picture of genotype-phenotype correlations and the prevalence of different categories of hyperekplexia mutations. Focusing largely on this new information, this review seeks to summarise the effects of mutations on glycine receptor structure and function and how these functional alterations lead to hyperekplexia.
PMCID: PMC3895786  PMID: 24405574
Cys-loop receptor; Ligand-gated ion channel; Chloride channel; Startle disease; Glycinergic neurotransmission
11.  Constitutive Endocytosis and Turnover of the Neuronal Glycine Transporter GlyT2 Is Dependent on Ubiquitination of a C-Terminal Lysine Cluster 
PLoS ONE  2013;8(3):e58863.
Inhibitory glycinergic neurotransmission is terminated by sodium and chloride-dependent plasma membrane glycine transporters (GlyTs). The mainly glial glycine transporter GlyT1 is primarily responsible for the completion of inhibitory neurotransmission and the neuronal glycine transporter GlyT2 mediates the reuptake of the neurotransmitter that is used to refill synaptic vesicles in the terminal, a fundamental role in the physiology and pathology of glycinergic neurotransmission. Indeed, inhibitory glycinergic neurotransmission is modulated by the exocytosis and endocytosis of GlyT2. We previously reported that constitutive and Protein Kinase C (PKC)-regulated endocytosis of GlyT2 is mediated by clathrin and that PKC accelerates GlyT2 endocytosis by increasing its ubiquitination. However, the role of ubiquitination in the constitutive endocytosis and turnover of this protein remains unexplored. Here, we show that ubiquitination of a C-terminus four lysine cluster of GlyT2 is required for constitutive endocytosis, sorting into the slow recycling pathway and turnover of the transporter. Ubiquitination negatively modulates the turnover of GlyT2, such that increased ubiquitination driven by PKC activation accelerates transporter degradation rate shortening its half-life while decreased ubiquitination increases transporter stability. Finally, ubiquitination of GlyT2 in neurons is highly responsive to the free pool of ubiquitin, suggesting that the deubiquitinating enzyme (DUB) ubiquitin C-terminal hydrolase-L1 (UCHL1), as the major regulator of neuronal ubiquitin homeostasis, indirectly modulates the turnover of GlyT2. Our results contribute to the elucidation of the mechanisms underlying the dynamic trafficking of this important neuronal protein which has pathological relevance since mutations in the GlyT2 gene (SLC6A5) are the second most common cause of human hyperekplexia.
PMCID: PMC3590132  PMID: 23484054
12.  β Subunit M2–M3 Loop Conformational Changes Are Uncoupled from α1 β Glycine Receptor Channel Gating: Implications for Human Hereditary Hyperekplexia 
PLoS ONE  2011;6(11):e28105.
Hereditary hyperekplexia, or startle disease, is a neuromotor disorder caused mainly by mutations that either prevent the surface expression of, or modify the function of, the human heteromeric α1 β glycine receptor (GlyR) chloride channel. There is as yet no explanation as to why hyperekplexia mutations that modify channel function are almost exclusively located in the α1 to the exclusion of β subunit. The majority of these mutations are identified in the M2–M3 loop of the α1 subunit. Here we demonstrate that α1 β GlyR channel function is less sensitive to hyperekplexia-mimicking mutations introduced into the M2–M3 loop of the β than into the α1 subunit. This suggests that the M2–M3 loop of the α subunit dominates the β subunit in gating the α1 β GlyR channel. A further attempt to determine the possible mechanism underlying this phenomenon by using the voltage-clamp fluorometry technique revealed that agonist-induced conformational changes in the β subunit M2–M3 loop were uncoupled from α1 β GlyR channel gating. This is in contrast to the α subunit, where the M2–M3 loop conformational changes were shown to be directly coupled to α1 β GlyR channel gating. Finally, based on analysis of α1 β chimeric receptors, we demonstrate that the structural components responsible for this are distributed throughout the β subunit, implying that the β subunit has evolved without the functional constraint of a normal gating pathway within it. Our study provides a possible explanation of why hereditary hyperekplexia-causing mutations that modify α1 β GlyR channel function are almost exclusively located in the α1 to the exclusion of the β subunit.
PMCID: PMC3222680  PMID: 22132222
13.  Transient neuromotor phenotype in transgenic spastic mice expressing low levels of glycine receptor β-subunit: an animal model of startle disease 
Startle disease or hereditary hyperekplexia has been shown to result from mutations in the α1-subunit gene of the inhibitory glycine receptor (GlyR). In hyperekplexia patients, neuromotor symptoms generally become apparent at birth, improve with age, and often disappear in adulthood. Loss-of-function mutations of GlyR α or β-subunits in mice show rather severe neuromotor phenotypes. Here, we generated mutant mice with a transient neuromotor deficiency by introducing a GlyR β transgene into the spastic mouse (spa/spa), a recessive mutant carrying a transposon insertion within the GlyR β-subunit gene. In spa/spa TG456 mice, one of three strains generated with this construct, which expressed very low levels of GlyR β transgene-dependent mRNA and protein, the spastic phenotype was found to depend upon the transgene copy number. Notably, mice carrying two copies of the transgene showed an age-dependent sensitivity to tremor induction, which peaked at ∼ 3–4 weeks postnatally. This closely resembles the development of symptoms in human hyperekplexia patients, where motor coordination significantly improves after adolescence. The spa/spa TG456 line thus may serve as an animal model of human startle disease.
PMCID: PMC3655541  PMID: 10651857
glycine receptor; hereditary hyperekplexia; spa/spa TG456 mice; startle syndrome
14.  A MusD Retrotransposon Insertion in the Mouse Slc6a5 Gene Causes Alterations in Neuromuscular Junction Maturation and Behavioral Phenotypes 
PLoS ONE  2012;7(1):e30217.
Glycine is the major inhibitory neurotransmitter in the spinal cord and some brain regions. The presynaptic glycine transporter, GlyT2, is required for sustained glycinergic transmission through presynaptic reuptake and recycling of glycine. Mutations in SLC6A5, encoding GlyT2, cause hereditary hyperekplexia in humans, and similar phenotypes in knock-out mice, and variants are associated with schizophrenia. We identified a spontaneous mutation in mouse Slc6a5, caused by a MusD retrotransposon insertion. The GlyT2 protein is undetectable in homozygous mutants, indicating a null allele. Homozygous mutant mice are normal at birth, but develop handling-induced spasms at five days of age, and only survive for two weeks, but allow the study of early activity-regulated developmental processes. At the neuromuscular junction, synapse elimination and the switch from embryonic to adult acetylcholine receptor subunits are hastened, consistent with a presumed increase in motor neuron activity, and transcription of acetylcholine receptors is elevated. Heterozygous mice, which show no reduction in lifespan but nonetheless have reduced levels of GlyT2, have a normal thermal sensitivity with the hot-plate test, but differences in repetitive grooming and decreased sleep time with home-cage monitoring. Open-field and elevated plus-maze tests did not detect anxiety-like behaviors; however, the latter showed a hyperactivity phenotype. Importantly, grooming and hyperactivity are observed in mouse schizophrenia models. Thus, mutations in Slc6a5 show changes in neuromuscular junction development as homozygotes, and behavioral phenotypes as heterozygotes, indicating their usefulness for studies related to glycinergic dysfunction.
PMCID: PMC3260239  PMID: 22272310
15.  Identification of a novel missense GLRA1 gene mutation in hyperekplexia: a case report 
Hereditary hyperekplexia is a neurological disorder characterized by excessive startle responses with violent jerking to noise or touch, stiffening of the trunk and limbs, clenching of the fists and attacks of a high-frequency trembling. Hyperekplexia has a heterogeneous genetic background with several identified causative genes and demonstrates both dominant and recessive inheritance. Mutations in the glycine receptor alpha 1 subunit gene occur in about 30 percent of hyperekplexia cases.
Case presentation
In this study, we report the case of a Hungarian boy whose abnormal movements, muscle stiffness and convulsions were first noted when he was 4 days old. Neurological and electrophysiological investigation suggested the clinical diagnosis of hyperekplexia.
Direct sequencing of the coding regions and the flanking introns of the glycine receptor alpha 1 subunit gene revealed a novel heterozygous missense mutation (c.211A/T, p.Ile71Phe). Genetic screening of our patient’s family revealed that the clinically unaffected parents and sister do not carry the mutation, suggesting that the identified sequence change is a de novo mutation. Since hyperekplexia can have severe consequences, including sudden infant death due to laryngospasm and cardiorespiratory failure, identification of the causative genetic alteration(s) of the disease is high priority. Such knowledge is necessary for prenatal diagnosis, which would allow informed family planning and greater parental sensitivity to hyperekplexia 1-associated risks.
PMCID: PMC4096538  PMID: 24969041
Stiff-baby syndrome; Hereditary hyperekplexia; GLRA1 gene; Missense mutation
16.  Hyperekplexia in neonates 
Postgraduate Medical Journal  2001;77(911):570-572.
Hyperekplexia (startle disease) is a rare non-epileptic disorder characterised by an exaggerated persistent startle reaction to unexpected auditory, somatosensory and visual stimuli, generalised muscular rigidity, and nocturnal myoclonus. The genetic basis is a mutation usually of the arginine residue 271 leading to neuronal hyperexcitability by impairing glycinergic inhibition. Hyperekplexia is usually familial, most often autosomal dominant with complete penetrance and variable expression. It can present in fetal life as abnormal intrauterine movements, or later at any time from the neonatal period to adulthood. Early manifestations include abnormal responses to unexpected auditory, visual, and somatosensory stimuli such as sustained tonic spasm, exaggerated startle response, and fetal posture with clenched fists and anxious stare. The tonic spasms may mimic generalised tonic seizures, leading to apnoea and death. Consistent generalised flexor spasm in response to tapping of the nasal bridge (without habituation) is the clinical hallmark of hyperekplexia. Electroencephalography may show fast spikes initially during the tonic spasms, followed by slowing of background activity with eventual flattening corresponding to the phase of apnoea bradycardia and cyanosis. Electromyography shows a characteristic almost permanent muscular activity with periods of electrical quietness. Nerve conduction velocity is normal. No specific computed tomography findings have been reported yet. Clonazepam, a gamma aminobutyric acid (GABA) receptor agonist, is the treatment of choice for hypertonia and apnoeic episodes. It, however, may not influence the degree of stiffness significantly. A simple manoeuvre like forced flexion of the head and legs towards the trunk is known to be life saving when prolonged stiffness impedes respiration.

Keywords: hyperekplexia; neonates; startle
PMCID: PMC1757896  PMID: 11524514
17.  Glycinergic Transmission in the Mammalian Retina 
Glycine and γ-aminobutyric acid (GABA) are the major inhibitory neurotransmitters in the retina. Approximately half of the amacrine cells release glycine at their synapses with bipolar, other amacrine, and ganglion cells. Glycinergic amacrine cells are small-field amacrine cells with vertically oriented dendrites and comprise more than 10 different morphological types. The retinal distributions of glycine receptor (GlyR) α1, α2, α3 and α4 subtypes have been mapped with subunit-specific antibodies. GlyRs were clustered at postsynaptic hot spots which showed selective distributions for the different subunits. As a rule, only one α subunit was expressed at a given postsynaptic site. The kinetic properties of GlyRs were measured by recording spontaneous inhibitory postsynaptic currents (sIPSCs) from identified retinal neurons in wild-type, Glra1spd-ot, Glra2 and Glra3 knockout mice. From observed differences of sIPSCs in wild-type and mutant mice, the cell-type specific subunit composition of GlyRs could be defined. OFF-cone bipolar cells and A-type ganglion cells receive prominent glycinergic input with fast kinetics that is mainly mediated by α1β GlyRs (decay time constant τ ∼ 5 ms). By contrast, AII amacrine cells express α3β GlyRs with medium fast kinetics (τ ∼ 11 ms). Narrow-field (NF) and wide-field amacrine cells contain predominantly α2β GlyRs with slow kinetics (τ ∼ 27 ms). Lastly, ON-starburst, narrow-field and wide-field amacrine cells in Glra2 knockout mice express α4β GlyRs with very slow kinetics (τ ∼ 70 ms).
PMCID: PMC2777502  PMID: 19924257
glycine receptors; sIPSCs; retina; synapses; Glra1spd-ot mice; Glra2−/− mice; Glra3−/− mice
18.  Analysis of GLRA1 in hereditary and sporadic hyperekplexia: a novel mutation in a family cosegregating for hyperekplexia and spastic paraparesis. 
Journal of Medical Genetics  1996;33(5):435-436.
Hyperekplexia is a rare condition characterised by the presence of neonatal hypertonia and an exaggerated startle response. Mutations have been described in GLRA1, the gene encoding the alpha 1 subunit of the glycine receptor, in dominant families with hyperekplexia and in a single sporadic case, thought to represent an autosomal recessive form of the disease. In this study the coding region of the GLRA1 was analysed in eight probands with hyperekplexia by restriction digest and sequencing. Two familial cases were found to possess the previously described G1192A (R271Q) mutation in exon 6. In an additional family in which hyperekplexia cosegregates with spastic paraparesis, a novel A to G transversion at nucleotide 1206 in exon 6 was detected that changes a lysine at amino acid 276 to a glutamate (K276E). In four sporadic cases no mutations were found. In addition, one familial case did not have a mutation in the coding region of the gene.
PMCID: PMC1050620  PMID: 8733061
19.  Glycine Receptor Channels in Spinal Motoneurons are Abnormal in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis 
Amyotrophic lateral sclerosis (ALS) is a rapidly evolving and fatal adult-onset neurological disease characterized by progressive degeneration of motoneurons. Our previous study showed that glycinergic innervation of spinal motoneurons is deficient in an ALS mouse model expressing a mutant form of human superoxide dismutase-1 with a Gly93→Ala substitution (G93A-SOD1). In this study we have examined, using whole-cell patch clamp recordings, glycine receptor (GlyR)-mediated currents in spinal motoneurons from these transgenic mice. We developed a dissociated spinal cord culture model using embryonic transgenic mice expressing eGFP driven by the Hb9 promoter. Motoneurons were identified as Hb9-eGFP+ neurons with a characteristic morphology. To examine GlyRs in ALS motoneurons, we bred G93A-SOD1 mice to Hb9-eGFP mice and compared glycine-evoked currents in cultured Hb9-eGFP+ motoneurons prepared from G93A-SOD1 embryos and from their non-transgenic littermates. Glycine-evoked current density was significantly smaller in the G93A-SOD1 motoneurons compared with control. Furthermore, the averaged current densities of spontaneous glycinergic miniature inhibitory postsynaptic currents (mIPSCs) were significantly smaller in the G93A-SOD1 motoneurons than in control motoneurons. No significant differences in GABA-induced currents and GABAergic mIPSCs were observed between G93A-SOD1 and control motoneurons. Quantitative single-cell RT-PCR found lower GlyRα1 subunit mRNA expression in G93A-SOD1 motoneurons, indicating that the reduction of GlyR current may result from the downregulation of GlyR mRNA expression in motoneurons. Immunocytochemistry demonstrated a decrease of surface postsynaptic GlyR on G93A-SOD1 motoneurons. Our study suggests that selective alterations in GlyR function contribute to inhibitory insufficiency in motoneurons early in the disease process of ALS.
PMCID: PMC3081715  PMID: 21414903
Hb9-eGFP; mutant SOD1; motoneuron culture; GABAA receptor; patch clamp; single-cell RT-PCR
20.  Inhibitory Synaptic Regulation of Motoneurons: A New Target of Disease Mechanisms in Amyotrophic Lateral Sclerosis 
Molecular neurobiology  2011;45(1):30-42.
Amyotrophic lateral sclerosis (ALS) is the third most common adult-onset neurodegenerative disease. It causes the degeneration of motoneurons and is fatal due to paralysis, particularly of respiratory muscles. ALS can be inherited, and specific disease-causing genes have been identified, but the mechanisms causing motoneuron death in ALS are not understood. No effective treatments exist for ALS. One well-studied theory of ALS pathogenesis involves faulty RNA editing and abnormal activation of specific glutamate receptors as well as failure of glutamate transport resulting in glutamate excitotoxicity; however, the excitotoxicity theory is challenged by the inability of anti-glutamate drugs to have major disease-modifying effects clinically. Nevertheless, hyperexcitability of upper and lower motoneurons is a feature of human ALS and transgenic (tg) mouse models of ALS. Motoneuron excitability is strongly modulated by synaptic inhibition mediated by presynaptic glycinergic and GABAergic innervations and postsynaptic glycine receptors (GlyR) and GABAA receptors; yet, the integrity of inhibitory systems regulating motoneurons has been understudied in experimental models, despite findings in human ALS suggesting that they may be affected. We have found in tg mice expressing a mutant form of human superoxide dismutase-1 (hSOD1) with a Gly93 → Ala substitution (G93A-hSOD1), causing familial ALS, that subsets of spinal interneurons degenerate. Inhibitory glycinergic innervation of spinal motoneurons becomes deficient before motoneuron degeneration is evident in G93A-hSOD1 mice. Motoneurons in these ALS mice also have insufficient synaptic inhibition as reflected by smaller GlyR currents, smaller GlyR clusters on their plasma membrane, and lower expression of GlyR1α mRNA compared to wild-type motoneurons. In contrast, GABAergic innervation of ALS mouse motoneurons and GABAA receptor function appear normal. Abnormal synaptic inhibition resulting from dysfunction of interneurons and motoneuron GlyRs is a new direction for unveiling mechanisms of ALS pathogenesis that could be relevant to new therapies for ALS.
PMCID: PMC3530198  PMID: 22072396
Chloride channel; Glutamate receptor; Glycine receptor; Hb9-eGFP; Excitotoxicity; Hyperexcitability; Interneuron; Renshaw cell
21.  4-Chloropropofol enhances chloride currents in human hyperekplexic and artificial mutated glycine receptors 
BMC Neurology  2012;12:104.
The mammalian neurological disorder hereditary hyperekplexia can be attributed to various mutations of strychnine sensitive glycine receptors. The clinical symptoms of “startle disease” predominantly occur in the newborn leading to convulsive hypertonia and an exaggerated startle response to unexpected mild stimuli. Amongst others, point mutations R271Q and R271L in the α1-subunit of strychnine sensitive glycine receptors show reduced glycine sensitivity and cause the clinical symptoms of hyperekplexia.
Halogenation has been shown to be a crucial structural determinant for the potency of a phenolic compound to positively modulate glycine receptor function.
The aim of this in vitro study was to characterize the effects of 4-chloropropofol (4-chloro-2,6-dimethylphenol) at four glycine receptor mutations.
Glycine receptor subunits were expressed in HEK 293 cells and experiments were performed using the whole-cell patch-clamp technique.
4-chloropropofol exerted a positive allosteric modulatory effect in a low sub-nanomolar concentration range at the wild type receptor (EC50 value of 0.08 ± 0.02 nM) and in a micromolar concentration range at the mutations (1.3 ± 0.6 μM, 0.1 ± 0.2 μM, 6.0 ± 2.3 μM and 55 ± 28 μM for R271Q, L, K and S267I, respectively).
4-chloropropofol might be an effective compound for the activation of mutated glycine receptors in experimental models of startle disease.
PMCID: PMC3517478  PMID: 23006332
Glycine receptor mutations; Hereditary hyperekplexia; 4-chloropropofol
22.  Localization of Glycine Receptors in the Human Forebrain, Brainstem, and Cervical Spinal Cord: An Immunohistochemical Review 
Inhibitory neurotransmitter receptors for glycine (GlyR) are heteropentameric chloride ion channels that are comprised of four functional subunits, alpha1–3 and beta and that facilitate fast-response, inhibitory neurotransmission in the mammalian brain and spinal cord. We have investigated the distribution of GlyRs in the human forebrain, brainstem, and cervical spinal cord using immunohistochemistry at light and confocal laser scanning microscopy levels. This review will summarize the present knowledge on the GlyR distribution in the human brain using our established immunohistochemical techniques. The results of our immunohistochemical labeling studies demonstrated GlyR immunoreactivity (IR) throughout the human basal ganglia, substantia nigra, various pontine regions, rostral medulla oblongata and the cervical spinal cord present an intense and abundant punctate IR along the membranes of the neuronal soma and dendrites. This work is part of a systematic study of inhibitory neurotransmitter receptor distribution in the human CNS, and provides a basis for additional detailed physiological and pharmacological studies on the inter-relationship of GlyR, GABAAR and gephyrin in the human brain. This basic mapping exercise, we believe, will provide important baselines for the testing of future pharmacotherapies and drug regimes that modulate neuroinhibitory systems. These findings provide new information for understanding the complexity of glycinergic functions in the human brain, which will translate into the contribution of inhibitory mechanisms in paroxysmal disorders and neurodegenerative diseases such as Epilepsy, Huntington's and Parkinson's Disease and Motor Neuron Disease.
PMCID: PMC2776491  PMID: 19915682
human brain; glycine receptor; immunohistochemistry
23.  Distribution of glycine receptors on the surface of the mature calyx of Held nerve terminal 
The physiological functions of glycine receptors (GlyRs) depend on their subcellular locations. In axonal terminals of the central neurons, GlyRs trigger a slow facilitation of presynaptic transmitter release; however, their spatial relationship to the release sites is not known. In this study, we examined the distribution of GlyRs in the rat glutamatergic calyx of Held nerve terminal using high-resolution pre-embedding immunoelectron microscopy. We performed a quantitative analysis of GlyR-associated immunogold (IG) labeling in 3D reconstructed calyceal segments. A variable density of IG particles and their putative accumulations, inferred from the frequency distribution of inter-IG distances, indicated a non-uniform distribution of the receptors in the calyx. Subsequently, increased densities of IG particles were found in calyceal swellings, structures characterized by extensive exocytosis of glutamate. In swellings as well as in larger calyceal stalks, IG particles did not tend to accumulate near the glutamate releasing zones. On the other hand, GlyRs in swellings (but not in stalks) preferentially occupied membrane regions, unconnected to postsynaptic cells and presumably accessible by ambient glycine. Furthermore, the sites with increased GlyR concentrations were found in swellings tightly juxtaposed with GABA/glycinergic nerve endings. Thus, the results support the concept of an indirect mechanism underlying the modulatory effects of calyceal GlyRs, activated by glycine spillover. We also suggest the existence of an activity-dependent mechanism regulating the surface distribution of α homomeric GlyRs in axonal terminals of central neurons.
PMCID: PMC4186306  PMID: 25339867
presynaptic; glycine receptor; MNTB; calyx of Held; pre-embedding immunoelectron microscopy; spillover
24.  Hyperekplexia and stiff-man syndrome: abnormal brainstem reflexes suggest a physiological relationship 
Background and objectives: Hyperekplexia and the stiff-man syndrome (SMS) are both conditions with exaggerated startle suggesting abnormal brainstem function. Investigation of brainstem reflexes may provide insight into disturbed reflex excitation and inhibition underlying these movement disorders.
Patients and methods: Using four-channel EMG, we examined four trigeminal brainstem reflexes (monosynaptic masseter, masseter inhibitory, glabella, and orbicularis oculi blink reflexes) and their spread into pericranial muscles in five patients with familial hyperekplexia (FH), two with acquired hyperekplexia (AH), 10 with SMS, and 15 healthy control subjects.
Results: Both FH/AH and SMS patients had abnormal propagation of brainstem reflexes into pericranial muscles. All patients with hyperekplexia showed an abnormal short-latency (15–20 ms) reflex in the trapezius muscle with a characteristic clinical appearance ("head retraction jerk") evoked by tactile or electrical stimulation of the trigeminal nerve, but normal monosynaptic masseter reflexes. Inhibitory brainstem reflexes were attenuated in some FH/AH patients. Four of 10 patients with SMS had similar short-latency reflexes in the neck muscles and frequently showed widespread enhancement of other excitatory reflexes, reflex spasms, and attenuation of inhibitory brainstem reflexes.
Conclusion: Reflex excitation is exaggerated and inhibition is attenuated in both stiff-man syndrome and familial or acquired hyperekplexia, indicating a physiological relationship. Reflex transmission in the brainstem appears biased towards excitation which may imply dysfunction of inhibitory glycinergic or GABAergic interneurons, or both.
PMCID: PMC1739206  PMID: 15314112
25.  Inhibitory Neurotransmission, Plasticity and Aging in the Mammalian Central Auditory System 
The Journal of experimental biology  2008;211(Pt 11):1781-1791.
Aging and acoustic trauma may result in partial peripheral deafferentation in the central auditory pathway of the mammalian brain. In accord with homeostatic plasticity, loss of sensory input results in a change in pre- and postsynaptic GABAergic and glycinergic inhibitory neurotransmission. As seen in development, age-related changes may be activity dependent. Age-related presynaptic changes in the cochlear nucleus include reduced glycine levels, while in the auditory midbrain and cortex, GABA synthesis and release are altered. Presumably, in response to age-related decreases in presynaptic release of inhibitory neurotransmitters, there are age-related postsynaptic subunit changes in the composition of the glycine (GlyR) and GABAA receptors (GABAAR). Age-related changes in the subunit makeup of inhibitory pentameric receptor constructs result in altered pharmacological and physiological responses consistent with a net down-regulation of functional inhibition. Age-related functional changes associated with glycine neurotransmission in dorsal cochlear nucleus (DCN) include altered intensity and temporal coding by DCN projection neurons. Loss of synaptic inhibition in the superior olivary complex (SOC) and the inferior colliculus (IC) likely affect the ability of aged animals to localize sounds in their natural environment. Age-related postsynaptic GABAAR changes in IC and primary auditory cortex (A1) involve changes in the subunit makeup of GABAARs. In turn, these changes cause age-related changes in the pharmacology and response properties of neurons in IC and A1 circuits which collectively may affect temporal processing and response reliability. Findings of age-related inhibitory changes within mammalian auditory circuits are similar to age and deafferentation plasticity changes observed in other sensory systems. Although few studies have examined sensory aging in the wild, these age-related changes would likely compromise an animal’s ability to avoid predation or to be a successful predator in their natural environment.
PMCID: PMC2409121  PMID: 18490394

Results 1-25 (473361)