PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1774958)

Clipboard (0)
None

Related Articles

1.  DEAR1 Is a Dominant Regulator of Acinar Morphogenesis and an Independent Predictor of Local Recurrence-Free Survival in Early-Onset Breast Cancer 
PLoS Medicine  2009;6(5):e1000068.
Ann Killary and colleagues describe a new gene that is genetically altered in breast tumors, and that may provide a new breast cancer prognostic marker.
Background
Breast cancer in young women tends to have a natural history of aggressive disease for which rates of recurrence are higher than in breast cancers detected later in life. Little is known about the genetic pathways that underlie early-onset breast cancer. Here we report the discovery of DEAR1 (ductal epithelium–associated RING Chromosome 1), a novel gene encoding a member of the TRIM (tripartite motif) subfamily of RING finger proteins, and provide evidence for its role as a dominant regulator of acinar morphogenesis in the mammary gland and as an independent predictor of local recurrence-free survival in early-onset breast cancer.
Methods and Findings
Suppression subtractive hybridization identified DEAR1 as a novel gene mapping to a region of high-frequency loss of heterozygosity (LOH) in a number of histologically diverse human cancers within Chromosome 1p35.1. In the breast epithelium, DEAR1 expression is limited to the ductal and glandular epithelium and is down-regulated in transition to ductal carcinoma in situ (DCIS), an early histologic stage in breast tumorigenesis. DEAR1 missense mutations and homozygous deletion (HD) were discovered in breast cancer cell lines and tumor samples. Introduction of the DEAR1 wild type and not the missense mutant alleles to complement a mutation in a breast cancer cell line, derived from a 36-year-old female with invasive breast cancer, initiated acinar morphogenesis in three-dimensional (3D) basement membrane culture and restored tissue architecture reminiscent of normal acinar structures in the mammary gland in vivo. Stable knockdown of DEAR1 in immortalized human mammary epithelial cells (HMECs) recapitulated the growth in 3D culture of breast cancer cell lines containing mutated DEAR1, in that shDEAR1 clones demonstrated disruption of tissue architecture, loss of apical basal polarity, diffuse apoptosis, and failure of lumen formation. Furthermore, immunohistochemical staining of a tissue microarray from a cohort of 123 young female breast cancer patients with a 20-year follow-up indicated that in early-onset breast cancer, DEAR1 expression serves as an independent predictor of local recurrence-free survival and correlates significantly with strong family history of breast cancer and the triple-negative phenotype (ER−, PR−, HER-2−) of breast cancers with poor prognosis.
Conclusions
Our data provide compelling evidence for the genetic alteration and loss of expression of DEAR1 in breast cancer, for the functional role of DEAR1 in the dominant regulation of acinar morphogenesis in 3D culture, and for the potential utility of an immunohistochemical assay for DEAR1 expression as an independent prognostic marker for stratification of early-onset disease.
Editors' Summary
Background
Each year, more than one million women discover that they have breast cancer. This type of cancer begins when cells in the breast that line the milk-producing glands or the tubes that take the milk to the nipples (glandular and ductal epithelial cells, respectively) acquire genetic changes that allow them to grow uncontrollably and to move around the body (metastasize). The uncontrolled division leads to the formation of a lump that can be detected by mammography (a breast X-ray) or by manual breast examination. Breast cancer is treated by surgical removal of the lump or, if the cancer has started to spread, by removal of the whole breast (mastectomy). Surgery is usually followed by radiotherapy or chemotherapy. These “adjuvant” therapies are designed to kill any remaining cancer cells but can make patients very ill. Generally speaking, the outlook for women with breast cancer is good. In the US, for example, nearly 90% of affected women are still alive five years after their diagnosis.
Why Was This Study Done?
Although breast cancer is usually diagnosed in women in their 50s or 60s, some women develop breast cancer much earlier. In these women, the disease is often very aggressive. Compared to older women, young women with breast cancer have a lower overall survival rate and their cancer is more likely to recur locally or to metastasize. It would be useful to be able to recognize those younger women at the greatest risk of cancer recurrence so that they could be offered intensive surveillance and adjuvant therapy; those women at a lower risk could have gentler treatments. To achieve this type of “stratification,” the genetic changes that underlie breast cancer in young women need to be identified. In this study, the researchers discover a gene that is genetically altered (by mutations or deletion) in early-onset breast cancer and then investigate whether its expression can predict outcomes in women with this disease.
What Did the Researchers Do and Find?
The researchers used “suppression subtractive hybridization” to identify a new gene in a region of human Chromosome 1 where loss of heterozygosity (LOH; a genetic alteration associated with cancer development) frequently occurs. They called the gene DEAR1 (ductal epithelium-associated RING Chromosome 1) to indicate that it is expressed in ductal and glandular epithelial cells and encodes a “RING finger” protein (specifically, a subtype called a TRIM protein; RING finger proteins such as BRCA1 and BRCA2 have been implicated in early cancer development and in a large fraction of inherited breast cancers). DEAR1 expression was reduced or lost in several ductal carcinomas in situ (a local abnormality that can develop into breast cancer) and advanced breast cancers, the researchers report. Furthermore, many breast tumors carried DEAR1 missense mutations (genetic changes that interfere with the normal function of the DEAR1 protein) or had lost both copies of DEAR1 (the human genome contains two copies of most genes). To determine the function of DEAR1, the researchers replaced a normal copy of DEAR1 into a breast cancer cell that had a mutation in DEAR1. They then examined the growth of these genetically manipulated cells in special three-dimensional cultures. The breast cancer cells without DEAR1 grew rapidly without an organized structure while the breast cancer cells containing the introduced copy of DEAR1 formed structures that resembled normal breast acini (sac-like structures that secrete milk). In normal human mammary epithelial cells, the researchers silenced DEAR1 expression and also showed that without DEAR1, the normal mammary cells lost their ability to form proper acini. Finally, the researchers report that DEAR1 expression (detected “immunohistochemically”) was frequently lost in women who had had early-onset breast cancer and that the loss of DEAR1 expression correlated with reduced local recurrence-free survival, a strong family history of breast cancer and with a breast cancer subtype that has a poor outcome.
What Do These Findings Mean?
These findings indicate that genetic alteration and loss of expression of DEAR1 are common in breast cancer. Although laboratory experiments may not necessarily reflect what happens in people, the results from the three-dimensional culture of breast epithelial cells suggest that DEAR1 may regulate the normal acinar structure of the breast. Consequently, loss of DEAR1 expression could be an early event in breast cancer development. Most importantly, the correlation between DEAR1 expression and both local recurrence in early-onset breast cancer and a breast cancer subtype with a poor outcome suggests that it might be possible to use DEAR1 expression to identify women with early-onset breast cancer who have an increased risk of local recurrence so that they get the most appropriate treatment for their cancer.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000068.
This study is further discussed in a PLoS Medicine Perspective by Senthil Muthuswamy
The US National Cancer Institute provides detailed information for patients and health professionals on all aspects of breast cancer, including information on genetic alterations in breast cancer (in English and Spanish)
The MedlinePlus Encyclopedia provides information for patients about breast cancer; MedlinePlus also provides links to many other breast cancer resources (in English and Spanish)
The UK charities Cancerbackup (now merged with MacMillan Cancer Support) and Cancer Research UK also provide detailed information about breast cancer
doi:10.1371/journal.pmed.1000068
PMCID: PMC2673042  PMID: 19536326
2.  Asporin Is a Fibroblast-Derived TGF-β1 Inhibitor and a Tumor Suppressor Associated with Good Prognosis in Breast Cancer 
PLoS Medicine  2015;12(9):e1001871.
Background
Breast cancer is a leading malignancy affecting the female population worldwide. Most morbidity is caused by metastases that remain incurable to date. TGF-β1 has been identified as a key driving force behind metastatic breast cancer, with promising therapeutic implications.
Methods and Findings
Employing immunohistochemistry (IHC) analysis, we report, to our knowledge for the first time, that asporin is overexpressed in the stroma of most human breast cancers and is not expressed in normal breast tissue. In vitro, asporin is secreted by breast fibroblasts upon exposure to conditioned medium from some but not all human breast cancer cells. While hormone receptor (HR) positive cells cause strong asporin expression, triple-negative breast cancer (TNBC) cells suppress it. Further, our findings show that soluble IL-1β, secreted by TNBC cells, is responsible for inhibiting asporin in normal and cancer-associated fibroblasts. Using recombinant protein, as well as a synthetic peptide fragment, we demonstrate the ability of asporin to inhibit TGF-β1-mediated SMAD2 phosphorylation, epithelial to mesenchymal transition, and stemness in breast cancer cells. In two in vivo murine models of TNBC, we observed that tumors expressing asporin exhibit significantly reduced growth (2-fold; p = 0.01) and metastatic properties (3-fold; p = 0.045). A retrospective IHC study performed on human breast carcinoma (n = 180) demonstrates that asporin expression is lowest in TNBC and HER2+ tumors, while HR+ tumors have significantly higher asporin expression (4-fold; p = 0.001). Assessment of asporin expression and patient outcome (n = 60; 10-y follow-up) shows that low protein levels in the primary breast lesion significantly delineate patients with bad outcome regardless of the tumor HR status (area under the curve = 0.87; 95% CI 0.78–0.96; p = 0.0001). Survival analysis, based on gene expression (n = 375; 25-y follow-up), confirmed that low asporin levels are associated with a reduced likelihood of survival (hazard ratio = 0.58; 95% CI 0.37–0.91; p = 0.017). Although these data highlight the potential of asporin to serve as a prognostic marker, confirmation of the clinical value would require a prospective study on a much larger patient cohort.
Conclusions
Our data show that asporin is a stroma-derived inhibitor of TGF-β1 and a tumor suppressor in breast cancer. High asporin expression is significantly associated with less aggressive tumors, stratifying patients according to the clinical outcome. Future pre-clinical studies should consider options for increasing asporin expression in TNBC as a promising strategy for targeted therapy.
Andrei Turtoi and colleagues describe a mechanistic role for stroma-derived asporin in breast cancer development.
Editors' Summary
Background
Breast cancer is the most common cancer in women worldwide. Nearly 1.7 million new cases were diagnosed in 2012, and half a million women died from the disease. Breast cancer begins when cells in the breast that normally make milk (epithelial cells) acquire genetic changes that allow them to divide uncontrollably and to move around the body (metastasize). Uncontrolled cell division leads to the formation of a lump that can be detected by mammography (a breast X-ray) or by manual breast examination. Breast cancer is treated by surgical removal of the lump or, if the cancer has started to spread, by removal of the whole breast (mastectomy). After surgery, women often receive chemotherapy or radiotherapy to kill any remaining cancer cells, and women whose tumors express receptors for the female sex hormones estrogen and progesterone or for HER2, a growth factor receptor, are treated with drugs that block these receptors; estrogen, progesterone, and HER2 all control breast cell growth. Nowadays, the prognosis (outlook) for women living in high-income countries who develop breast cancer is generally good—nearly 90% of such women are still alive five years after diagnosis.
Why Was This Study Done?
The cells surrounding cancer cells—cancer-associated fibroblasts and other components of the stroma—support cancer growth and metastasis and are good targets for new cancer therapies. But, although there is mounting evidence that cancer cells actively adapt the stroma so that it produces various factors the tumor needs to grow and spread, very few molecules produced by the stroma that might serve as targets for drug development have been identified. Here, the researchers investigate whether a molecule called asporin might represent one such target. Asporin, which is highly expressed in the stroma of breast tumors, inhibits a growth factor called TGF-β1. TGF-β1 is involved in maintaining healthy joints, but is also a key molecule in the development of metastatic breast cancer. Most particularly, it modulates an important step in metastasis called the epithelial to mesenchymal transition and it regulates “stemness” in cancer cells. Stem cells are a special type of cell that can multiply indefinitely; tumor cells often look and behave very much like stem cells.
What Did the Researchers Do and Find?
Using a technique called immunohistochemistry, the researchers first showed that asporin is highly expressed in the stroma of most human breast cancers but not in normal breast tissue. Next, they showed that breast fibroblasts secrete asporin when exposed to conditioned medium from some human breast cancer cell lines (breast cancer cells adapted to grow continuously in the laboratory; conditioned medium is the solution in which cells have been grown). Specifically, conditioned medium from hormone receptor positive cells induced strong asporin expression by breast fibroblasts, whereas medium from breast cancer cells not expressing estrogen or progesterone receptors or HER2 receptors (triple-negative breast cancer cells) suppressed asporin expression. Other experiments showed that TGF-β1 secreted by breast cancer cells induces asporin expression in breast fibroblasts, and that asporin, in turn, inhibits TGF-β1-mediated induction of the epithelial to mesenchymal transition and stemness in breast cancer cells. Triple negative breast cancers appear to inhibit stromal expression of asporin at least in part via expression of the soluble signaling protein interleukin-1β. Notably, in mouse models of triple-negative breast cancer, tumors engineered to express asporin grew slower and metastasized less than tumors not expressing asporin. Finally, among women with breast cancer, asporin expression was low in triple-negative and HER2-positive tumors but significantly higher in hormone receptor positive tumors, and low asporin levels in primary breast lesions were associated with a reduced likelihood of survival independent of hormone receptor and HER2 expression.
What Do These Findings Mean?
These findings suggest that asporin is a stroma-derived inhibitor of TGF-β1 and a tumor suppressor in breast cancer. Importantly, they also provide preliminary evidence that high asporin expression is associated with less aggressive tumors (hormone receptor positive tumors), whereas low asporin expression is associated with more aggressive tumors (triple negative tumors and HER2-positive tumors). Thus, asporin expression might provide a new prognostic marker for breast cancer. However, before asporin can be used as a biomarker to predict outcomes in women with breast cancer and to identify those women in need of more aggressive treatment, these findings need to be confirmed in large prospective clinical studies. If these findings are confirmed, methods for increasing asporin expression in the stromal tissues of triple negative breast cancer could be a promising strategy for targeted therapy for this group of breast cancers, which currently have a poor prognosis.
Additional Information
This list of resources contains links that can be accessed when viewing the PDF on a device or via the online version of the article at http://dx.doi.org/10.1371/journal.pmed.1001871.
The US National Cancer Institute provides comprehensive information about cancer (in English and Spanish), including detailed information for patients and professionals about breast cancer and an online booklet for patients
Cancer Research UK, a not-for-profit organization, provides information about cancer; its detailed information about breast cancer includes sections on tests for hormone receptors and HER2, on treatments that target hormone receptors and treatments that target HER2, and on triple negative breast cancer
Breastcancer.org is a not-for-profit organization that provides up-to-date information about breast cancer (in English and Spanish), including information on hormone receptor status, HER2 status, and triple negative breast cancer
The UK National Health Service Choices website has information and personal stories about breast cancer; the not-for-profit organization Healthtalk.org also provides personal stories about dealing with breast cancer
doi:10.1371/journal.pmed.1001871
PMCID: PMC4556693  PMID: 26327350
3.  Therapeutic targeting of erbB3 with MM-121/SAR256212 enhances antitumor activity of paclitaxel against erbB2-overexpressing breast cancer 
Breast Cancer Research : BCR  2013;15(5):R101.
Introduction
Elevated expression of erbB3 rendered erbB2-overexpressing breast cancer cells resistant to paclitaxel via PI-3 K/Akt-dependent upregulation of Survivin. It is unclear whether an erbB3-targeted therapy may abrogate erbB2-mediated paclitaxel resistance in breast cancer. Here, we study the antitumor activity of an anti-erbB3 antibody MM-121/SAR256212 in combination with paclitaxel against erbB2-overexpressing breast cancer.
Methods
Cell growth assays were used to determine cell viability. Cells undergoing apoptosis were quantified by a specific apoptotic ELISA. Western blot analyses were performed to assess the protein expression and activation. Lentiviral vector containing shRNA was used to specifically knockdown Survivin. Tumor xenografts were established by inoculation of BT474-HR20 cells into nude mice. The tumor-bearing mice were treated with paclitaxel and/or MM-121/SAR256212 to determine whether the antibody (Ab) enhances paclitaxel’s antitumor activity. Immunohistochemistry was carried out to study the combinatorial effects on tumor cell proliferation and induction of apoptosis in vivo.
Results
MM-121 significantly facilitated paclitaxel-mediated anti-proliferative/anti-survival effects on SKBR3 cells transfected with a control vector or erbB3 cDNA. It specifically downregulated Survivin associated with inactivation of erbB2, erbB3, and Akt. MM-121 enhances paclitaxel-induced poly(ADP-ribose) polymerase (PARP) cleavage, activation of caspase-8 and -3, and apoptosis in both paclitaxel-sensitive and -resistant cells. Specific knockdown of Survivin in the trastuzumab-resistant BT474-HR20 cells dramatically enhanced paclitaxel-induced apoptosis, suggesting that increased Survivin caused a cross-resistance to paclitaxel. Furthermore, the studies using a tumor xenograft model-established from BT474-HR20 cells revealed that either MM-121 (10 mg/kg) or low-dose (7.5 mg/kg) paclitaxel had no effect on tumor growth, their combinations significantly inhibited tumor growth in vivo. Immunohistochemical analysis showed that the combinations of MM-121 and paclitaxel significantly reduced the cells with positive staining for Ki-67 and Survivin, and increased the cells with cleaved caspase-3.
Conclusions
The combinations of MM-121 and paclitaxel not only inhibit tumor cell proliferation, but also promote erbB2-overexpressing breast cancer cells to undergo apoptosis via downregulation of Survivin in vitro and in vivo, suggesting that inactivation of erbB3 with MM-121 enhances paclitaxel-mediated antitumor activity against erbB2-overexpressing breast cancers. Our data supports further exploration of the combinatorial regimens consisting of MM-121 and paclitaxel in breast cancer patients with erbB2-overexpressing tumors, particularly those resistant to paclitaxel.
doi:10.1186/bcr3563
PMCID: PMC3978722  PMID: 24168763
4.  Mammary gland specific expression of Brk/PTK6 promotes delayed involution and tumor formation associated with activation of p38 MAPK 
Introduction
Protein tyrosine kinases (PTKs) are frequently overexpressed and/or activated in human malignancies, and regulate cancer cell proliferation, cellular survival, and migration. As such, they have become promising molecular targets for new therapies. The non-receptor PTK termed breast tumor kinase (Brk/PTK6) is overexpressed in approximately 86% of human breast tumors. The role of Brk in breast pathology is unclear.
Methods
We expressed a WAP-driven Brk/PTK6 transgene in FVB/n mice, and analyzed mammary glands from wild-type (wt) and transgenic mice after forced weaning. Western blotting and immunohistochemistry (IHC) studies were conducted to visualize markers of mammary gland involution, cell proliferation and apoptosis, as well as Brk, STAT3, and activated p38 mitogen-activated protein kinase (MAPK) in mammary tissues and tumors from WAP-Brk mice. Human (HMEC) or mouse (HC11) mammary epithelial cells were stably or transiently transfected with Brk cDNA to assay p38 MAPK signaling and cell survival in suspension or in response to chemotherapeutic agents.
Results
Brk-transgenic dams exhibited delayed mammary gland involution and aged mice developed infrequent tumors with reduced latency relative to wt mice. Consistent with delayed involution, mammary glands of transgenic animals displayed decreased STAT3 phosphorylation, a marker of early-stage involution. Notably, p38 MAPK, a pro-survival signaling mediator downstream of Brk, was activated in mammary glands of Brk transgenic relative to wt mice. Brk-dependent signaling to p38 MAPK was recapitulated by Brk overexpression in the HC11 murine mammary epithelial cell (MEC) line and human MEC, while Brk knock-down in breast cancer cells blocked EGF-stimulated p38 signaling. Additionally, human or mouse MECs expressing Brk exhibited increased anchorage-independent survival and resistance to doxorubicin. Finally, breast tumor biopsies were subjected to IHC analysis for co-expression of Brk and phospho-p38 MAPK; ductal and lobular carcinomas expressing Brk were significantly more likely to express elevated phospho-p38 MAPK.
Conclusions
These studies illustrate that forced expression of Brk/PTK6 in non-transformed mammary epithelial cells mediates p38 MAPK phosphorylation and promotes increased cellular survival, delayed involution, and latent tumor formation. Brk expression in human breast tumors may contribute to progression by inducing p38-driven pro-survival signaling pathways.
doi:10.1186/bcr2946
PMCID: PMC3262201  PMID: 21923922
5.  Vascular endothelial growth factor receptor-3 promotes breast cancer cell proliferation, motility and survival in vitro and tumor formation in vivo 
Cell cycle (Georgetown, Tex.)  2009;8(14):2266-2280.
Vascular endothelial growth factor receptor-3 is a receptor tyrosine kinase that is overexpressed in some human carcinomas, but its role in tumorigenesis has not been fully elucidated. We examined VEGFR-3 expression in normal, nonneoplastic and early stage malignant breast tissues and have shown that VEGFR-3 upregulation in breast cancer preceded tumor cell invasion, suggesting that VEGFR-3 may function as a survival signal. We characterized the biological effects of VEGFR-3 over-expression in human breast cancer cells based on two approaches: gain of function by overexpressing VEGFR-3 in MCF-7 breast cancer cells and loss of function by RNAi-mediated silencing of VEGFR-3 in MCF-7-VEGFR-3 and BT474 cells.
VEGFR-3 overexpression increased cellular proliferation by 40% when MCF7-VEGFR-3 cells were compared to parental MCF7 cells, and proliferation was reduced by more than 40% when endogenous VEGFR-3 was downregulated in BT474 cells. VEGFR-3 overexpression promoted a three-fold increase in motility and invasion and both motility and invasion were inhibited by downregulation of VEGFR-3. Furthermore, VEGFR-3 overexpression promoted cellular survival under stress conditions induced by staurosporine treatment and led to anchorage-independent growth.
VEGFR-3 overexpression dramatically increased tumor formation in both hormone-dependent and independent xenograft models. With estrogen stimulation, MCF7-VEGFR-3 xenografts were ten times larger than control xenografts. Finally, downregulation of VEGFR-3 expression in both xenograft model cell lines led to a significant reduction of tumor growth. For the first time, we have demonstrated that VEGFR-3 overexpression promotes breast cancer cell proliferation, motility, survival, anchorage-independent growth and tumorogenicity in the absence of ligand expression.
PMCID: PMC3619978  PMID: 19556880
vascular endothelial growth factor receptor-3; VEGFR-3; Flt-4; receptor tyrosine kinases; breast cancer; tumorigenicity; carcinogenesis
6.  Bone marrow stromal antigen 2 expressed in cancer cells promotes mammary tumor growth and metastasis 
Introduction
Several innate immunity genes are overexpressed in human cancers and their roles remain controversial. Bone marrow stromal antigen 2 (BST-2) is one such gene whose role in cancer is not clear. BST-2 is a unique innate immunity gene with both antiviral and pro-tumor functions and therefore can serve as a paradigm for understanding the roles of other innate immunity genes in cancers.
Methods
Meta-analysis of tumors from breast cancer patients obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets were evaluated for levels of BST-2 expression and for tumor aggressiveness. In vivo, we examined the effect of knockdown of BST-2 in two different murine carcinoma cells on tumor growth, metastasis, and survival. In vitro, we assessed the effect of carcinoma cell BST-2 knockdown and/or overexpression on adhesion, anchorage-independent growth, migration, and invasion.
Results
BST-2 in breast tumors and mammary cancer cells is a strong predictor of tumor size, tumor aggressiveness, and host survival. In humans, BST-2 mRNA is elevated in metastatic and invasive breast tumors. In mice, orthotopic implantation of mammary tumor cells lacking BST-2 increased tumor latency, decreased primary tumor growth, reduced metastases to distal organs, and prolonged host survival. Furthermore, we found that the cellular basis for the role of BST-2 in promoting tumorigenesis include BST-2-directed enhancement in cancer cell adhesion, anchorage-independency, migration, and invasion.
Conclusions
BST-2 contributes to the emergence of neoplasia and malignant progression of breast cancer. Thus, BST-2 may (1) serve as a biomarker for aggressive breast cancers, and (2) be a novel target for breast cancer therapeutics.
Electronic supplementary material
The online version of this article (doi:10.1186/s13058-014-0493-8) contains supplementary material, which is available to authorized users.
doi:10.1186/s13058-014-0493-8
PMCID: PMC4308845  PMID: 25499888
7.  ErbB2, FoxM1 and 14-3-3ζ prime breast cancer cells for invasion in response to ionizing radiation 
Oncogene  2013;33(5):589-598.
ErbB2 is frequently highly expressed in premalignant breast cancers, including ductal carcinoma in situ (DCIS); however, little is known about the signals or pathways it contributes to progression into the invasive/malignant state. Radiotherapy is often used to treat early premalignant lesions regardless of ErbB2 status. Here, we show that clinically relevant doses of ionizing radiation (IR)-induce cellular invasion of ErbB2-expressing breast cancer cells, as well as MCF10A cells overexpressing ErbB2. ErbB2-negative breast cancer cells, such as MCF7 and T47D, do not invade following treatment with IR nor do MCF10A cells overexpressing epidermal growth factor receptor. ErbB2 becomes phosphorylated at tyrosine 877 in a dose- and time- dependent manner following exposure to X-rays, and activates downstream signaling cascades including PI3K/Akt. Inhibition of these pathways, as well as inhibition of reactive oxygen species (ROS) with antioxidants, prevents IR-induced invasion. Activation of ErbB2-dependent signaling results in upregulation of the forkhead family transcription factor, FoxM1, and its transcriptional targets, including matrix metalloproteinase 2 (MMP2). Inhibition of FoxM1 by RNA interference prevented induction of invasion by IR, and overexpression of FoxM1 in MCF10A cells was sufficient to promote IR-induced invasion. Moreover, we found that 14-3-3ζ is also upregulated by IR in cancer cells in a ROS-dependent manner, is required for IR-induced invasion in ErbB2-positive breast cancer cells and together with FoxM1 is sufficient for invasion in ErbB2-negative breast cancer cells. Thus, our data show that IR-mediated activation of ErbB2 and induction of 14-3-3ζ collaborate to regulate FoxM1 and promote invasion of breast cancer cells and furthermore, may serve as therapeutic targets to enhance radiosensitivity of breast cancers.
doi:10.1038/onc.2012.629
PMCID: PMC3966179  PMID: 23318431
ErbB2; FoxM1; 14-3-3ζ; invasion; reactive oxygen species
8.  Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells 
Wang, S | Huang, J | Lyu, H | Lee, C-K | Tan, J | Wang, J | Liu, B
Cell Death & Disease  2013;4(3):e556-.
We reported that the class I HDAC inhibitor entinostat induced apoptosis in erbB2-overexpressing breast cancer cells via downregulation of erbB2 and erbB3. Here, we study the molecular mechanism by which entinostat dual-targets erbB2/erbB3. Treatment with entinostat had no effect on erbB2/erbB3 mRNA, suggesting a transcription-independent mechanism. Entinostat decreased endogenous but not exogenous erbB2/erbB3, indicating it did not alter their protein stability. We hypothesized that entinostat might inhibit erbB2/erbB3 protein translation via specific miRNAs. Indeed, entinostat significantly upregulated miR-125a, miR-125b, and miR-205, that have been reported to target erbB2 and/or erbB3. Specific inhibitors were then used to determine whether these miRNAs had a causal role in entinostat-induced downregulation of erbB2/erbB3 and apoptosis. Transfection with a single inhibitor dramatically abrogated entinostat induction of miR-125a, miR-125b, or miR-205; however, none of the inhibitors blocked entinostat action on erbB2/erbB3. In contrast, co-transfection with two inhibitors not only reduced their corresponding miRNAs, but also significantly abrogated entinostat-mediated reduction of erbB2/erbB3. Moreover, simultaneous inhibition of two, but not one miRNA significantly attenuated entinostat-induced apoptosis. Interestingly, although the other HDAC inhibitors, such as SAHA and panobinostat, exhibited activity as potent as entinostat to induce growth inhibition and apoptosis in erbB2-overexpressing breast cancer cells, they had no significant effects on the three miRNAs. Instead, both SAHA- and panobinostat-decreased erbB2/erbB3 expression correlated with the reduction of their mRNA levels. Collectively, we demonstrate that entinostat specifically induces expression of miR-125a, miR-125b, and miR-205, which act in concert to downregulate erbB2/erbB3 in breast cancer cells. Our data suggest that epigenetic regulation via miRNA-dependent or -independent mechanisms may represent a novel approach to treat breast cancer patients with erbB2-overexpressing tumors.
doi:10.1038/cddis.2013.79
PMCID: PMC3615747  PMID: 23519125
entinostat; HDAC; miRNA; erbB2; erbB3; breast cancer
9.  Characterization of fibroblast growth factor receptor 2 overexpression in the human breast cancer cell line SUM-52PE 
Breast Cancer Research : BCR  2000;2(4):311-320.
The fibroblast growth factor receptor (FGFR)2 gene has been shown to be amplified in 5-10% of breast cancer patients. A breast cancer cell line developed in our laboratory, SUM-52PE, was shown to have a 12-fold amplification of the FGFR2 gene, and FGFR2 message was found to be overexpressed 40-fold in SUM-52PE cells as compared with normal human mammary epithelial (HME) cells. Both human breast cancer (HBC) cell lines and HME cells expressed two FGFR2 isoforms, whereas SUM-52PE cells overexpressed those two isoforms, as well as several unique FGFR2 polypeptides. SUM-52PE cells expressed exclusively FGFR2-IIIb isoforms, which are high-affinity receptors for fibroblast growth factor (FGF)-1 and FGF-7. Differences were identified in the expression of the extracellular Ig-like domains, acid box and carboxyl termini, and several variants not previously reported were isolated from these cells.
Introduction:
The FGFR family of receptor tyrosine kinases includes four members, all of which are highly alternatively spliced and glycosylated. For FGFR2, alternative splicing of the second half of the third Ig-like domain, involving exons IIIb and IIIc, is a mutually exclusive choice that affects ligand binding specificity and affinity [1,2,3]. It appears that the second half of the third Ig-like domain can dictate high affinity for FGF-2 or keratinocyte growth factor (KGF), whereas affinity for FGF-1 appears to remain the same [3]. Alternative splicing of the carboxyl terminus has been shown to involve at least two different exons that can produce at least three different variants. The C1-type and C2-type carboxyl termini are encoded by the same exon, and have two different splice acceptor sites, whereas the C3-type carboxyl terminus is encoded by a separate exon [4]. The biologic significance of the C1 carboxyl terminus, as compared with the shorter C3 variant found primarily in tumorigenic samples, has been studied in NIH3T3 transfection assays, in which C3 variants were able to produce three times more transformed foci in soft agar than C1 variants (both IIIb), whereas full length FGFR2 and FGFR1 (both IIIc variants) showed no transforming activity [4].
Previous studies [5,6] have found amplification and overexpression of FGFR2 in 5-10% of primary breast cancer specimens. A recent study [7] done using a tissue array consisting of 372 primary breast cancer specimens found a 5% incidence of FGFR2 amplification. To our knowledge, none of the HBC cell lines studied thus far have an FGFR2 gene amplification, although overexpression of FGFR2 message and protein has been documented for some breast cancer cell lines [6,8,9].
SUM-52PE is a breast cancer cell line previously isolated in our laboratory that grows under serum-free and epidermal growth factor-free conditions, has high levels of tyrosine-phosphorylated membrane proteins, and has the capacity to invade and grow under anchorage-independent conditions [10,11,12]. This cell line exhibits all of the important hallmarks of transformed, highly malignant cells. Therefore, SUM-52PE was used as a model to study the diversity of FGFR2 expression in a breast cancer cell line that has true amplification and overexpression of FGFR2.
Objectives:
This study was conducted to examine the degree of FGFR2 amplification and overexpression in the breast cancer cell line SUM-52PE. Subsequent sequencing and characterization of individual FGFR2 variants cloned from the SUM-52PE cell line was completed to determine the complexity of FGFR2 alternative splicing in the context of a highly metastatic breast cancer cell line.
Methods:
Southern, Northern and Western blot analyses were done in order to determine the degree of FGFR2 amplification and overexpression in the breast cancer cell line SUM-52PE. Individual FGFR2 variants were cloned out of SUM-52PE using FGFR2-specific primers in a reverse transcription (RT) polymerase chain reaction (PCR). FGFR2 cDNAs were characterized by restriction fragment analysis, sequencing and transient transfection into 293 cells to examine the protein expression of each FGFR2 clone.
Results:
The results of the Southern blot showed that there was a 12-fold amplification of FGFR2 in the SUM-52PE cell line. Northern blot analysis of SUM-52PE showed FGFR2 transcripts to be highly overexpressed compared with other breast cancer cell lines and normal HME cells. Several overexpressed bands of approximately 6.3, 5.0, 4.0, and 2.8kb were observed in SUM-52PE cells. The most prominent band, at 2.8kb, was so abundant that it was difficult to discern other individual bands clearly. Western blot analysis showed that both normal HME and HBC cells expressed two FGFR2 variants of 95 and 135kDa. The SUM-52PE cell line greatly overexpressed not only these two polypeptides, as compared with HME and HBC cells, but also overexpressed two unique variants of FGFR2 - 85 and 109kDa polypeptides - as well as several smaller polypeptides in the 46-53kDa range. The antibody used in Western blot analysis only recognizes FGFR2 isoforms that express the C1 carboxyl termini, therefore greatly underestimating the actual number of different FGFR2 variants that are overexpressed in this cell line.
PCR was performed to determine the proportion of C1/C2 variants as compared with C3 variants in the SUM-52PE cell line. Results of this analysis indicated the presence of all three types of variants in this cell line, although the C1/C2 variants were predominant as compared with the C3 variants in SUM-52PE.
Four different FGFR2-C1 clones were isolated and sequenced from SUM-52PE cells, which differed in their signal sequence, first Ig-like loop, and acid box. Two FGFR2-C2 clones were isolated from the SUM-52PE cell line, which were identical to each other except for the variable expression of the number of Ig-like domains (two or three). Three C3 clones were isolated and sequenced, two of which have not previously been described in the literature. Clone C3-#3 contained two Ig-like domains, but no acid box. C3-#5 was missing the first two Ig-like domains and the acid box, but did contain the third Ig-like domain.
Discussion:
There is an extensive amount of evidence implicating erbB-2, a gene that is overexpressed in approximately 30% of breast cancer cases, as a breast cancer gene [13]. The identification of other breast oncogenes that function in the remaining 70% of cases is an ongoing challenge, as is establishing a causal role for such oncogenes in HME cell transformation.
FGFR1 and FGFR2, previously established oncogenes, were found to be amplified within large amplicons on 8p11 and 10q26, respectively, in the breast cancer cell line SUM-52PE [14]. Previous studies have shown that the FGFR2 gene is amplified in about 5-10% of breast cancer cases.
Our results showed that SUM-52PE cells overexpressed many alternatively spliced isoforms of FGFR2 at both the transcript and protein level as compared with normal HME cells. The variability in FGFR2 isoform expression is complex and involves exon IIIb/c, which encodes the second half of the third Ig-like loop; variations in the carboxyl terminal end of the receptor, involving the C1/C2 or C3 domains; and variable expression of the Ig-like loops and acid box in the extracellular portion of the receptor. The characterization of three unique FGFR2 isoforms that were cloned from SUM-52PE may build on the findings of others concerning the transforming potential of FGFR2 variants [4]. In particular, because it has been demonstrated that expression of C3-IIIb variants may have more transforming activity than C1-IIIb variants, differences between the three C3 clones we have isolated may provide information regarding the influence of particular structural domains on transforming potential.
Ongoing studies are aimed at characterizing the transforming ability of FGFR2 isoforms obtained from SUM-52PE cells by transducing these genes into normal HME cells. By overexpressing FGFR2 isoforms in a physiologically relevant system, we hope to determine the isoform(s) that acts in a dominant way in the process of cell transformation, and to determine whether different regions present in individual clones drive specific phenotypes associated with transformation.
PMCID: PMC13919  PMID: 11056689
alternative splicing; breast cancer; fibroblast growth factor receptor; receptor tyrosine kinase; SUM-52PE
10.  Overexpression of 14-3-3ζ in cancer cells activates PI3K via binding the p85 regulatory subunit 
Oncogene  2011;31(7):897-906.
The ubiquitously expressed 14-3-3 proteins regulate many pathways involved in transformation. Previously, we found that 14-3-3ζ overexpression increased Akt phosphorylation in human mammary epithelial cells. Here, we investigated the clinical relevance and molecular mechanism of 14-3-3ζ overexpression-mediated Akt phosphorylation and the potential impact on breast cancer progression. We found that 14-3-3ζ overexpression was significantly (P = 0.005) associated with increased Akt phosphorylation in human breast tumors. Additionally, 14-3-3ζ overexpression combined with strong Akt phosphorylation was significantly (P=0.01) associated with increased cancer recurrence in patients. In contrast, knockdown of 14-3-3ζ expression by siRNA in cancer cell lines and tumor xenografts reduced Akt phosphorylation. Furthermore, 14-3-3ζ enhanced Akt phosphorylation through activation of PI3K. Mechanistically, 14-3-3ζ bound to the p85 regulatory subunit of PI3K and increased PI3K translocation to the cell membrane. A single 14-3-3 binding motif encompassing serine 83 on p85 is largely responsible for 14-3-3ζ-mediated p85 binding and PI3K/Akt activation. Mutation of serine 83 to alanine on p85 inhibited 14-3-3ζ binding to the p85 subunit of PI3K, reduced PI3K membrane localization and activation, impeded anchorage independent growth and enhanced stress induced apoptosis. These findings revealed a novel mechanism by which 14-3-3ζ overexpression activates PI3K, a key node in the mitogenic signaling network known to promote malignancies in many cell types.
doi:10.1038/onc.2011.284
PMCID: PMC3193867  PMID: 21743495
14-3-3ζ; breast cancer; PI3K; Akt
11.  Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor 
Molecular Cancer  2014;13:106.
Background
Acylglycerol kinase (AGK) is reported to be overexpressed in multiple cancers. The clinical significance and biological role of AGK in breast cancer, however, remain to be established.
Methods
AGK expression in breast cancer cell lines, paired patient tissues were determined using immunoblotting and Real-time PCR. 203 human breast cancer tissue samples were analyzed by immunochemistry (IHC) to investigate the relationship between AGK expression and the clinicopathological features of breast cancer. Functional assays, such as colony formation, anchorage-independent growth and BrdU assay, and a xenograft tumor model were used to determine the oncogenic role of AGK in human breast cancer progression. The effect of AGK on FOXO1 transactivity was further investigated using the luciferase reporter assays, and by detection of the FOXO1 downstream genes.
Results
Herein, we report that AGK was markedly overexpressed in breast cancer cells and clinical tissues. Immunohistochemical analysis showed that the expression of AGK significantly correlated with patients’ clinicopathologic characteristics, including clinical stage and tumor-nodule-metastasis (TNM) classification. Breast cancer patients with higher levels of AGK expression had shorter overall survival compared to patients with lower AGK levels. We gained valuable insights into the mechanism of AGK expression in breast cancer cells by demonstrating that overexpressing AGK significantly enhanced, whereas silencing endogenous AGK inhibited, the proliferation and tumorigenicity of breast cancer cells both in vitro and in vivo. Furthermore, overexpression of AGK enhanced G1-S phase transition in breast cancer cells, which was associated with activation of AKT, suppression of FOXO1 transactivity, downregulation of cyclin-dependent kinase inhibitors p21 Cip1 and p27 Kip1 and upregulation of the cell cycle regulator cyclin D1.
Conclusions
Taken together, these findings provide new evidence that AGK plays an important role in promoting proliferation and tumorigenesis in human breast cancer and may serve as a novel prognostic biomarker and therapeutic target in this disease.
doi:10.1186/1476-4598-13-106
PMCID: PMC4028287  PMID: 24886245
AGK; Breast cancer; Tumorigenicity; FOXO1
12.  NOTCH-1 and NOTCH-4 are novel gene targets of PEA3 in breast cancer: novel therapeutic implications 
Introduction
Women with triple-negative breast cancer have the worst prognosis, frequently present with metastatic tumors and have few targeted therapy options. Notch-1 and Notch-4 are potent breast oncogenes that are overexpressed in triple-negative and other subtypes of breast cancer. PEA3, an ETS transcription factor, is also overexpressed in triple-negative and other breast cancer subtypes. We investigated whether PEA3 could be the critical transcriptional activator of Notch receptors in MDA-MB-231 and other breast cancer cells.
Methods
Real-time PCR and Western blot analysis were performed to detect Notch-1, Notch-2, Notch-3 and Notch-4 receptor expression in breast cancer cells when PEA3 was knocked down by siRNA. Chromatin immunoprecipitation was performed to identify promoter regions for Notch genes that recruited PEA3. TAM-67 and c-Jun siRNA were used to identify that c-Jun was necessary for PEA3 enrichment on the Notch-4 promoter. A Notch-4 luciferase reporter was used to confirm that endogenous PEA3 or AP-1 activated the Notch-4 promoter region. Cell cycle analysis, trypan blue exclusion, annexin V flow cytometry, colony formation assay and an in vivo xenograft study were performed to determine the biological significance of targeting PEA3 via siRNA, Notch signaling via a γ-secretase inhibitor, or both.
Results
Herein we provide new evidence for transcriptional regulation of Notch by PEA3 in breast cancer. PEA3 activates Notch-1 transcription in MCF-7, MDA-MB-231 and SKBr3 breast cancer cells. PEA3 activates Notch-4 transcription in MDA-MB-231 cells where PEA3 levels are endogenously high. In SKBr3 and BT474 breast cancer cells where PEA3 levels are low, overexpression of PEA3 increases Notch-4 transcripts. Chromatin immunoprecipitation confirmed the enrichment of PEA3 on Notch-1 and Notch-4 promoters in MDA-MB-231 cells. PEA3 recruitment to Notch-1 was AP-1-independent, whereas PEA3 recruitment to Notch-4 was c-JUN-dependent. Importantly, the combined inhibition of Notch signaling via a γ-secretase inhibitor (MRK-003 GSI) and knockdown of PEA3 arrested growth in the G1 phase, decreased both anchorage-dependent and anchorage-independent growth and significantly increased apoptotic cells in vitro. Moreover, either PEA3 knockdown or MRK-003 GSI treatment significantly reduced tumor growth of MDA-MB-231 xenografts in vivo.
Conclusions
Taken together, the results from this study demonstrate for the first time that Notch-1 and Notch-4 are novel transcriptional targets of PEA3 in breast cancer cells. Targeting of PEA3 and/or Notch pathways might provide a new therapeutic strategy for triple-negative and possibly other breast cancer subtypes.
doi:10.1186/bcr2900
PMCID: PMC3218952  PMID: 21679465
13.  The CCL2 chemokine is a negative regulator of autophagy and necrosis in luminal B breast cancer cells 
Luminal A and B breast cancers are the most prevalent forms of breast cancer diagnosed in women. Compared to luminal A breast cancer patients, patients with luminal B breast cancers experience increased disease recurrence and lower overall survival. The mechanisms that regulate the luminal B subtype remain poorly understood. The chemokine CCL2 is overexpressed in breast cancer, correlating with poor patient prognosis. The purpose of this study was to determine the role of CCL2 expression in luminal B breast cancer cells. Breast tissues, MMTV-PyVmT and MMTV-Neu transgenic mammary tumors forming luminal B-like lesions, were immunostained for CCL2 expression. To determine the role of CCL2 in breast cancer cells, CCL2 gene expression was silenced in mammary tumor tissues and cells using TAT cell-penetrating peptides non-covalently cross linked to siRNAs (Ca-TAT/siRNA). CCL2 expression was examined by ELISA and flow cytometry. Cell growth and survival were analyzed by flow cytometry, immunocytochemistry, and fluorescence microscopy. CCL2 expression was significantly increased in luminal B breast tumors, MMTV-PyVmT and MMTV-Neu mammary tumors, compared or normal breast tissue or luminal A breast tumors. Ca-TAT delivery of CCL2 siRNAs significantly reduced CCL2 expression in PyVmT mammary tumors, and decreased cell proliferation and survival. CCL2 gene silencing in PyVmT carcinoma cells or BT474 luminal B breast cancer cells decreased cell growth and viability associated with increased necrosis and autophagy. CCL2 expression is overexpressed in luminal B breast cancer cells and is important for regulating cell growth and survival by inhibiting necrosis and autophagy.
doi:10.1007/s10549-015-3324-4
PMCID: PMC4456035  PMID: 25744294
CCL2; siRNA; TAT cell-penetrating peptide; Luminal breast cancer; Necrosis; Autophagy
14.  Targeting inhibitor of apoptosis proteins in combination with ErbB antagonists in breast cancer 
Introduction
Inhibitor of apoptosis (IAPs) proteins are a family of proteins that can block apoptosis in normal cells and have been suggested to cause resistance to apoptosis in cancer. Overexpression of oncogenic receptor tyrosine kinases is common in breast cancer; in particular 20% of all cases show elevated Her2. Despite clinical success with the use of targeted therapies, such as Trastuzumab, only up to 35% of Her2-positive patients initially respond. We reasoned that IAP-mediated apoptosis resistance might contribute to this insensitivity to receptor tyrosine kinase therapy, in particular ErbB antagonists. Here we examine the levels of IAPs in breast cancer and evaluate whether targeting IAPs can enhance apoptosis in response to growth factor receptor antagonists and TRAIL.
Methods
IAP levels were examined in a breast cancer cell line panel and in patient samples. IAPs were inhibited using siRNA or cell permeable mimetics of endogenous inhibitors. Cells were then exposed to TRAIL, Trastuzumab, Lapatinib, or Gefitinib for 48 hours. Examining nuclear morphology and staining for cleaved caspase 3 was used to score apoptosis. Proliferation was examined by Ki67 staining.
Results
Four members of the IAP family, Survivin, XIAP, cIAP1 and cIAP2, were all expressed to varying extents in breast cancer cell lines or tumours. MDAMB468, BT474 and BT20 cells all expressed XIAP to varying extents. Depleting the cells of XIAP overcame the intrinsic resistance of BT20 and MDAMB468 cells to TRAIL. Moreover, siRNA-based depletion of XIAP or use of a Smac mimetic to target multiple IAPs increased apoptosis in response to the ErbB antagonists, Trastuzumab, Lapatinib or Gefitinib in Her2-overexpressing BT474 cells, or Gefitinib in EGFR-overexpressing MDAMB468 cells.
Conclusions
The novel findings of this study are that multiple IAPs are concomitantly expressed in breast cancers, and that, in combination with clinically relevant Her2 treatments, IAP antagonists promote apoptosis and reduce the cell turnover index of breast cancers. We also show that combination therapy of IAP antagonists with some pro-apoptotic agents (for example, TRAIL) enhances apoptosis of breast cancer cells. In some cases (for example, MDAMB468 cells), the enhanced apoptosis is profound.
doi:10.1186/bcr2328
PMCID: PMC2716510  PMID: 19563669
15.  Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan 
BMC Cancer  2012;12:458.
Background
Acquired resistance to endocrine therapy in breast cancer is a significant problem with relapse being associated with local and/or regional recurrence and frequent distant metastases. Breast cancer cell models reveal that endocrine resistance is accompanied by a gain in aggressive behaviour driven in part through altered growth factor receptor signalling, particularly involving erbB family receptors. Recently we identified that CD44, a transmembrane cell adhesion receptor known to interact with growth factor receptors, is upregulated in tamoxifen-resistant (TamR) MCF7 breast cancer cells. The purpose of this study was to explore the consequences of CD44 upregulation in an MCF7 cell model of acquired tamoxifen resistance, specifically with respect to the hypothesis that CD44 may influence erbB activity to promote an adverse phenotype.
Methods
CD44 expression in MCF7 and TamR cells was assessed by RT-PCR, Western blotting and immunocytochemistry. Immunofluorescence and immunoprecipitation studies revealed CD44-erbB associations. TamR cells (± siRNA-mediated CD44 suppression) or MCF7 cells (± transfection with the CD44 gene) were treated with the CD44 ligand, hyaluronon (HA), or heregulin and their in vitro growth (MTT), migration (Boyden chamber and wound healing) and invasion (Matrigel transwell migration) determined. erbB signalling was assessed using Western blotting. The effect of HA on erbB family dimerisation in TamR cells was determined by immunoprecipitation in the presence or absence of CD44 siRNA.
Results
TamR cells overexpressed CD44 where it was seen to associate with erbB2 at the cell surface. siRNA-mediated suppression of CD44 in TamR cells significantly attenuated their response to heregulin, inhibiting heregulin-induced cell migration and invasion. Furthermore, TamR cells exhibited enhanced sensitivity to HA, with HA treatment resulting in modulation of erbB dimerisation, ligand-independent activation of erbB2 and EGFR and induction of cell migration. Overexpression of CD44 in MCF7 cells, which lack endogenous CD44, generated an HA-sensitive phenotype, with HA-stimulation promoting erbB/EGFR activation and migration.
Conclusions
These data suggest an important role for CD44 in the context of tamoxifen-resistance where it may augment cellular response to erbB ligands and HA, factors that are reported to be present within the tumour microenvironment in vivo. Thus CD44 may present an important determinant of breast cancer progression in the setting of endocrine resistance.
doi:10.1186/1471-2407-12-458
PMCID: PMC3517483  PMID: 23039365
Tamoxifen-resistance; CD44; erbB; Hyaluronan; Heregulin
16.  During hormone depletion or tamoxifen treatment of breast cancer cells the estrogen receptor apoprotein supports cell cycling through the retinoic acid receptor α1 apoprotein 
Introduction
Current hormonal adjuvant therapies for breast cancer including tamoxifen treatment and estrogen depletion are overall tumoristatic and are severely limited by the frequent recurrence of the tumors. Regardless of the resistance mechanism, development and progression of the resistant tumors requires the persistence of a basal level of cycling cells during the treatment for which the underlying causes are unclear.
Methods
In estrogen-sensitive breast cancer cells the effects of hormone depletion and treatment with estrogen, tamoxifen, all-trans retinoic acid (ATRA), fulvestrant, estrogen receptor α (ER) siRNA or retinoic acid receptor α (RARα) siRNA were studied by examining cell growth and cycling, apoptosis, various mRNA and protein expression levels, mRNA profiles and known chromatin associations of RAR. RARα subtype expression was also examined in breast cancer cell lines and tumors by competitive PCR.
Results
Basal proliferation persisted in estrogen-sensitive breast cancer cells grown in hormone depleted conditioned media without or with 4-hydroxytamoxifen (OH-Tam). Downregulating ER using either siRNA or fulvestrant inhibited basal proliferation by promoting cell cycle arrest, without enrichment for ErbB2/3+ overexpressing cells. The basal expression of RARα1, the only RARα isoform that was expressed in breast cancer cell lines and in most breast tumors, was supported by apo-ER but was unaffected by OH-Tam; RAR-β and -γ were not regulated by apo-ER. Depleting basal RARα1 reproduced the antiproliferative effect of depleting ER whereas its restoration in the ER depleted cells partially rescued the basal cycling. The overlapping tamoxifen-insensitive gene regulation by apo-ER and apo-RARα1 comprised activation of mainly genes promoting cell cycle and mitosis and suppression of genes involved in growth inhibition; these target genes were generally insensitive to ATRA but were enriched in RAR binding sites in associated chromatin regions.
Conclusions
In hormone-sensitive breast cancer, ER can support a basal fraction of S-phase cells (i) without obvious association with ErbB2/3 expression, (ii) by mechanisms unaffected by hormone depletion or OH-Tam and (iii) through maintenance of the basal expression of apo-RARα1 to regulate a set of ATRA-insensitive genes. Since isoform 1 of RARα is genetically redundant, its targeted inactivation or downregulation should be further investigated as a potential means of enhancing hormonal adjuvant therapy.
doi:10.1186/bcr2827
PMCID: PMC3109587  PMID: 21299862
17.  Transglutaminase 2 Overexpression in Tumor Stroma Identifies Invasive Ductal Carcinomas of Breast at High Risk of Recurrence 
PLoS ONE  2013;8(9):e74437.
Introduction
Molecular markers for predicting breast cancer patients at high risk of recurrence are urgently needed for more effective disease management. The impact of alterations in extracellular matrix components on tumor aggressiveness is under intense investigation. Overexpression of Transglutaminase 2 (TG2), a multifunctional enzyme, in cancer cells impacts epithelial mesenchymal transition, growth, invasion and interactions with tumor microenvironment. The objective of our study is to determine the clinical relevance of stromal TG2 overexpression and explore its potential to identify breast cancers at high risk of recurrence.
Methods
This retrospective study is based on immunohistochemical analysis of TG2 expression in normal breast tissues (n = 40) and breast cancers (n = 253) with clinical, pathological and follow-up data available for up to 12 years. TG2 expression was correlated with clinical and pathological parameters as well as disease free survival (DFS) of breast cancer patients.
Results
Stromal TG2 overexpression was observed in 114/253 (45.0%) breast cancer tissues as compared to breast normal tissues. Among invasive ductal carcinomas (IDC) of the breast, 97/168 (57.7%) showed strong TG2 expression in tumor stroma. Importantly, IDC patients showing stromal TG2 accumulation had significantly reduced DFS (mean DFS = 110 months) in comparison with patients showing low expression (mean DFS = 130 months) in Kaplan-Meier survival analysis (p<0.001). In Cox multivariate regression analysis, stromal TG2 accumulation was an independent risk factor for recurrence (p = 0.006, Hazard’s ratio, H.R. = 3.79). Notably, these breast cancer patients also showed immunostaining of N-epsilon gamma-glutamyl lysine amino residues in tumor stroma demonstrating the transamidating activity of TG2.
Conclusions
Accumulation of TG2 in tumor stroma is an independent risk factor for identifying breast cancer patients at high risk of recurrence. TG2 overexpression in tumor stroma may serve as a predictor of poor prognosis for IDC of the breast.
doi:10.1371/journal.pone.0074437
PMCID: PMC3772876  PMID: 24058567
18.  Increased cell survival by inhibition of BRCA1 using an antisense approach in an estrogen responsive ovarian carcinoma cell line 
Breast Cancer Research  2000;2(2):139-148.
We tested the hypothesis that BRCA1 may play a role in the regulation of ovarian tumor cell death as well as the inhibition of ovarian cell proliferation. Introduction of BRCA1 antisense retroviral constructs into BG-1 estrogen-dependent ovarian adenocarcinoma cells resulted in reduced BRCA1 expression. BRCA1 antisense pooled populations and derived subclones were able to proliferate in monolayer culture without estrogen, whereas control cells began to die after 10 days of estrogen deprivation. In addition, both populations and subclones of BRCA1 antisense infected cells demonstrated a growth advantage in monolayer culture in the presence of estrogen and were able to proliferate in monolayer culture without estrogen, while control cells did not. Furthermore, clonal studies demonstrated that reduced levels of BRCA1 protein correlated with growth in soft agar and greater tumor formation in nude mice in the absence of estrogen. These data suggest that reduction of BRCA1 protein in BG-1 ovarian adenocarcinoma cells may have an effect on cell survival during estrogen deprivation both in vitro and in vivo.
Introduction:
Germline mutations in the breast and ovarian cancer susceptibility gene BRCA1, which is located on chromosome 17q21, are associated with a predisposition to the development of cancer in these organs [1,2]. No mutations in the BRCA1 gene have been detected in sporadic breast cancer cases, but mutations have been detected in sporadic cases of ovarian cancer [3,4]. Although there is debate regarding the level of cancer risk associated with mutations in BRCA1 and the significance of the lack of mutations in sporadic tumors, it is possible that alterations in the function of BRCA1 may occur by mechanisms other than mutation, leading to an underestimation of risk when it is calculated solely on the basis of mutational analysis. Such alterations cannot be identified until the function and regulation of BRCA1 are better understood.
The BRCA1 gene encodes a 220-kDa nuclear phosphoprotein that is regulated in response to DNA damaging agents [5,6,7] and in response to estrogen-induced growth [8,9,10,11]. Germline mutations that cause breast and ovarian cancer predisposition frequently result in truncated and presumably inactive BRCA1 protein [12].
BG-1 cells were derived from a patient with stage III, poorly differentiated ovarian adenocarcinoma [13]. This cell line, which expresses wild-type BRCA1, is estrogen responsive and withdrawal of estrogen results in eventual cell death. Previous studies suggest that BRCA1 is stimulated as a result of estrogen treatment [8,9,10,11], and also that BRCA1 may be involved in the cell death process [14]. Therefore, we examined the effect of reduction of BRCA1 levels in BG-1 cells on the cellular response to hormone depletion as well as estrogen stimulation. The results suggest that reduced levels of BRCA1 correlates with a survival advantage when BG-1 cells are placed under growth-restrictive and hormone-depleted conditions. In optimum growth conditions, significantly reduced levels of BRCA1 correlates with enhanced growth both in vitro and in vivo.
Aims:
To test the hypothesis that BRCA1 may play a role in the regulation of ovarian tumor cell death as well as in the inhibition of ovarian cell proliferation.
Materials and methods:
The estrogen receptor-positive, BG-1 cell line [13], which contains an abundant amount of estrogen receptors (600 fmoles/100 μg DNA), was infected using a pLXSN retroviral vector (provided by AD Miller) containing an inverted partial human cDNA 900-base-pair sequence of BRCA1 (from nucleotide 121 in exon 1 to nucleotide 1025 in exon 11, accession #U14680). After 2 weeks of selection in 800 μg/ml of geneticin-G418 (Gibco/Life Technologies, Gaithersburg, MD, USA), BG-1 G418-resistant colonies were pooled, or individually isolated, and assayed for growth in the presence or absence of supplemented estrogen. Virally infected pooled populations of BG-1 cells were examined for BRCA1 message levels by ribonuclease protection assay (Fig. 1a). BRCA1 ribonuclease protection probe was made using an in vitro transcription kit (Ambion, Inc, Austin, TX, USA) as previously described [10] and derived clones were tested for protein levels by Western blot analysis using an anti-BRCA1 (Oncogene Research, Ab-1, Cambridge, MA, USA) antibody. Growth curve analysis of Infected populations and were pretreated for 5 days in phenol red-free, Dulbecco's modified eagle medium (DMEM)/F-12 medium (Gibco/Life Technologies) supplemented with 10% charcoal/dextran treated serum (Hyclone, Logan, UT, USA), then plated at 2.5 × 106 cells per 100mm dish in triplicate in the absence or presence of estrogen (10-8 mol/l; 17β-Estradiol; 1,3,5 (10) - Estratriene 3,17β-diol; Sigma, St Louis, MO, USA). For soft agar assay, clones were plated into 10 60-mm dishes at 1 × 105 cells/dish containing 0.3% bactopeptone agar with or without added estrogen (10-8 mol/l) in phenol red-free medium with 10% stripped serum in order to test for anchorage independent growth. BG-1 infected clones were tested for tumorigenicity by injection of cells (106 cells in 0.1cm2 50% matrigel; Collaborative Biomedical Products, Bedford, MA, USA) into subcutaneous sites in 6-week-old athymic Ncr-nude mice (NCI Animal Program, Bethesda, MD, USA) that were ovariectomized at approximately 4 weeks of age. Half of the ovariectomized mice received an implanted 0.18mg estrogen 60-day pellet (Innovative Research of America, Sarasota, FL, USA).
Results:
Antisense technology was effective in decreasing both RNA and protein levels of BRCA1 in the BG-1 human ovarian adenocarcinoma cells. BRCA1 antisense-infected populations contained significantly less BRCA1 message than control LXSN-infected pools and selected clones contained varying reduced levels of BRCA1 protein compared with control clones (Figs 1a and 1b).
Three independent BRCA1 antisense-infected cultures demonstrated a resistance to cell death induced by withdrawal from estrogen over a 6- to 20-day period (Fig. 2a). The BRCA1 antisense population also exhibited a threefold to sixfold increase in cell growth compared with control cells in the presence of estrogen treatment. BG-1 BRCA1 antisense clones demonstrated a similar response to pooled population studies, enhanced growth with estrogen, and failure to die upon estrogen depletion (Fig. 2b).
The BRCA1 antisense clones were further examined for other associated tumorigenic properties. All of the antisense clones were able to form colonies in soft agar (2-23 colonies per 104 cells plated; data not shown), whereas control clones were deficient in their ability to form colonies (0-0.8 colonies per 104 cells plated). Table 1 shows, in the presence of estrogen, the clone with the lowest levels of BRCA1 (AS-4) produced significantly more colonies (133 ± 17.9 colonies per 104 cells plated) than the control clone (NEO; 6 ± 3.1 colonies per 104 cells plated). Clones AS-4 and NEO were also injected with matrigel subcutaneously into ovariectomized athymic mice. Almost twice as many sites were positive for the AS-4 clone (14 out of 14) as for the NEO clone (eight out of 14) 42 days after injection. In addition, BRCA1 antisense tumors averaged twice the size of control tumors. The BRCA1 reduced cells also formed tumors with half the latency of control cells in the presence of implanted estrogen (11 days versus 21 days until tumor formation).
Discussion:
The present studies show that reduction in BRCA1 levels, using an antisense retroviral vector in the estrogen dependent BG-1 ovarian carcinoma cell line, contributes to confirmation of the hypothesis that BRCA1 plays a pivotal role in the balance between cell death and cell proliferation. BRCA1 RNA and protein levels were successfully reduced in populations and isolated clones of antisense infected BG-1 cells. Decreased BRCA1 levels rescued the BG-1 cells from growth arrest or cell death in adverse growth conditions in monolayer or soft agar conditions. Furthermore, a BRCA1 antisense clone that had significantly low levels of BRCA1 protein was able to form twice as many tumors in ovariectomized nude mice with a decreased latency compared with a control clone.
In multicellular mammalian organisms, a balance between cell proliferation and cell death is extremely important for the maintenance of normal healthy tissues. In support of this hypothesis, it has been shown that p53 and BRCA1 can form stable complexes, and can coactivate p21 and bax genes, which may lead to the activation of the apoptosis pathway [15]. The present data, which show that cells with a reduction of BRCA1 have a survival advantage in conditions where control cells fail to thrive, also supports this hypothesis. BRCA1 levels appear to affect the ability of cells to arrest growth or die in the absence of estrogenic growth-inducing conditions. Although mutations in this gene are uncommon in sporadic breast and ovarian tumors, BRCA1 expression levels and protein levels have been found to be reduced in sporadic human breast carcinomas [16,17,18,19]. In addition it has been demonstrated [20] that hormone-dependent tumors such as breast and ovarian cancers have a decreased ability to undergo apoptosis. Other mechanisms involving gene regulation may allow for decreased expression of BRCA1 in sporadic tumors. The response of BRCA1 mRNA and protein levels to mitogens and hormones in vitro suggests that BRCA1 may play a role in regulation of cell growth or maintenance [21]. The BRCA1 gene product may be involved in the regulation of hormone response pathways, and the present results demonstrate that loss of BRCA1 may result in loss of inhibitory control of these mitogenic pathways. These studies show that reduction in BRCA1 mRNA and protein can result in increased proliferation of BG-1 ovarian cancer cells in both in vitro and in vivo conditions, suggesting that BRCA1 may normally be acting as a growth inhibitor. Low BRCA1 levels found in sporadic cancers may be an important factor in tumorigenesis. The present data suggest that diminished levels of BRCA1 not only accelerate proliferation in the BG-1 ovarian carcinoma cell line, but also appear to promote tumorigenesis. We propose that the loss or reduction of BRCA1 may predispose a cell population to neoplastic transformation by altering the balance between cell death and proliferation/survival, rendering it more sensitive to secondary genetic changes.
PMCID: PMC13916  PMID: 11056686
antisense; BRCA1; cell death; estrogen; ovarian cancer; proliferation
19.  HER3 Is Required for HER2-Induced Preneoplastic Changes to the Breast Epithelium and Tumor Formation 
Cancer research  2012;72(10):2672-2682.
Increasing evidence suggests that HER2-amplified breast cancer cells use HER3/ErbB3 to drive therapeutic resistance to HER2 inhibitors. However, the role of ErbB3 in the earliest events of breast epithelial transformation remains unknown. Using mouse mammary specific models of Cre-mediated ErbB3 ablation, we show that ErbB3 loss prevents the progressive transformation of HER2-overexpressing mammary epithelium. Decreased proliferation and increased apoptosis were seen in MMTV-HER2 and MMTV-Neu mammary glands lacking ErbB3, thus inhibiting premalignant HER2-induced hyperplasia. Using a transgenic model in which HER2 and Cre are expressed from a single polycistronic transcript, we showed that palpable tumor penetrance decreased from 93.3% to 6.7% upon ErbB3 ablation. Penetrance of ductal carcinomas in situ was also decreased. In addition, loss of ErbB3 impaired Akt and p44/42 phosphorylation in preneoplastic HER2-overexpressing mammary glands and in tumors, decreased growth of preexisting HER2-overexpressing tumors, and improved tumor response to the HER2 tyrosine kinase inhibitor lapatinib. These events were rescued by reexpression of ErbB3, but were only partially rescued by ErbB36F, an ErbB3 mutant harboring six tyrosine-to-phenylalanine mutations that block its interaction with phosphatidyl inositol 3-kinase. Taken together, our findings suggest that ErbB3 promotes HER2-induced changes in the breast epithelium before, during, and after tumor formation. These results may have important translational implications for the treatment and prevention of HER2-amplified breast tumors through ErbB3 inhibition.
doi:10.1158/0008-5472.CAN-11-3594
PMCID: PMC3693553  PMID: 22461506
20.  Vascular Endothelial Growth Factor Mediates Intracrine Survival in Human Breast Carcinoma Cells through Internally Expressed VEGFR1/FLT1 
PLoS Medicine  2007;4(6):e186.
Background
While vascular endothelial growth factor (VEGF) expression in breast tumors has been correlated with a poor outcome in the pathogenesis of breast cancer, the expression, localization, and function of VEGF receptors VEGFR1 (also known as FLT1) and VEGFR2 (also known as KDR or FLK1), as well as neuropilin 1 (NRP1), in breast cancer are controversial.
Methods and Findings
We investigated the expression and function of VEGF and VEGF receptors in breast cancer cells. We observed that VEGFR1 expression was abundant, VEGFR2 expression was low, and NRP1 expression was variable. MDA-MB-231 and MCF-7 breast cancer cells, transfected with antisense VEGF cDNA or with siVEGF (VEGF-targeted small interfering RNA), showed a significant reduction in VEGF expression and increased apoptosis as compared to the control cells. Additionally, specifically targeted knockdown of VEGFR1 expression by siRNA (siVEGFR1) significantly decreased the survival of breast cancer cells through down-regulation of protein kinase B (AKT) phosphorylation, while targeted knockdown of VEGFR2 or NRP1 expression had no effect on the survival of these cancer cells. Since a VEGFR1-specific ligand, placenta growth factor (PGF), did not, as expected, inhibit the breast cancer cell apoptosis induced by siVEGF, and since VEGFR1 antibody also had no effects on the survival of these cells, we examined VEGFR1 localization. VEGFR1 was predominantly expressed internally in MDA-MB-231 and MCF-7 breast cancer cells. Specifically, VEGFR1 was found to be colocalized with lamin A/C and was expressed mainly in the nuclear envelope in breast cancer cell lines and primary breast cancer tumors. Breast cancer cells treated with siVEGFR1 showed significantly decreased VEGFR1 expression levels and a lack of VEGFR1 expression in the nuclear envelope.
Conclusions
This study provides, to our knowledge for the first time, evidence of a unique survival system in breast cancer cells by which VEGF can act as an internal autocrine (intracrine) survival factor through its binding to VEGFR1. These results may lead to an improved strategy for tumor therapy based on the inhibition of angiogenesis.
Shalom Avraham and colleagues' study provides evidence of a survival system in breast cancer cells by which VEGF acts as an internal autocrine survival factor through its binding to VEGFR1.
Editors' Summary
Background.
One woman in eight will develop breast cancer during her lifetime. Most of these women live for many years after their diagnosis and many are cured of their cancer. However, sometimes the cancer grows inexorably and spreads (metastasizes) around the body despite the efforts of oncologists. Characteristics of the tumor known as prognostic factors can indicate whether this spreading is likely to happen. Large tumors that have metastasized have a poorer prognosis than small tumors that are confined to the breast. The expression of specific proteins within the tumor also provides prognostic information. One protein whose expression is associated with a poor prognosis is vascular endothelial growth factor (VEGF). VEGF stimulates angiogenesis—the growth of new blood vessels. Small tumors get the nutrients needed for their growth from existing blood vessels but large tumors need to organize their own blood supply. They do this, in part, by secreting VEGF. This compound binds to proteins (receptors) on the surface of endothelial cells (the cells lining blood vessels), which then send a signal into the cell instructing it to make new blood vessels. Angiogenesis inhibitors, including molecules that block the activity of VEGF receptors, are being developed for the treatment of cancer.
Why Was This Study Done?
Some breast cancer cell lines (cells isolated from breast cancers and grown in the laboratory) make VEGF and VEGF receptors (VEGFR1, VEGFR2, and neuropilin 1 [NRP1]). But, although some studies have reported an association between VEGFR1 expression in breast tumors and a poor prognosis, other studies have found no expression of VEGFR1 in breast tumors. Consequently, the role of VEGF receptors in breast cancer is unclear. In this study, the researchers analyzed the expression and function of VEGF and its receptors in breast cancer cells to investigate whether and how VEGF helps these cells to survive.
What Did the Researchers Do and Find?
The researchers first examined the expression of VEGF receptors in several human breast cancer cell lines. All of them expressed VEGFR1, some expressed NRP1, but VEGFR2 expression was universally low. They then investigated the function of VEGF and its receptors in two human breast cancer cell lines (MDA-MB-231 and MCF-7). In both cell lines, blocking the expression of VEGF or of VEGFR1 (but not of the other two receptors) reduced cell survival by stimulating a specific process of cell death called apoptosis. Unexpectedly, adding VEGF to the cultures did not reverse the effect of blocking VEGF expression, a result that suggests that VEGF and VEGFR1 do not affect breast cancer cell survival by acting at the cell surface. Accordingly, when the researchers examined where VEGFR1 occurs in the cell, they found it on the membranes around the nucleus of the breast cancer cell lines and not on the cell surface; several primary breast tumors and normal breast tissue had the same localization pattern. Finally, the researchers showed that inhibitors of VEGF action that act at the cell surface did not affect the survival of the breast cancer cell lines.
What Do These Findings Mean?
These findings suggest that VEGF helps breast cancer cells to survive in a unique way: by binding to VEGFR1 inside the cell. In other words, whereas VEGF normally acts as a paracrine growth factor (it is released by one cell and affects another cell), in breast cancer cells it might act as an internal autocrine (intracrine) survival factor, a factor that affects the cells in which it is produced. These findings need confirming in more cell lines and in primary breast cancers but could have important implications for the treatment of breast cancer. Inhibitors of VEGF and VEGFR1 that act inside the cell (small molecule drugs) might block breast cancer growth more effectively than inhibitors that act at the cell surface (for example, proteins that bind to the receptor), because internally acting inhibitors might both kill the tumor directly and have antiangiogenic effects, whereas externally acting inhibitors could only have the second effect.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040186.
US National Cancer Institute information for patients and professionals on breast cancer (in English and Spanish) and on angiogenesis (in English and Spanish)
MedlinePlus Encyclopedia information for patients on breast cancer (in English and Spanish)
CancerQuest, information from Emory University on cancer biology and on angiogenesis and angiogenesis inhibitors (in several languages)
Wikipedia pages on VEGF (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.0040186
PMCID: PMC1885450  PMID: 17550303
21.  Novel Role for PDEF in Epithelial Cell Migration and Invasion 
Cancer research  2005;65(24):11572-11580.
Cell migration and invasion are two critical cellular processes that are often deregulated during tumorigenesis. To identify factors that contribute to oncogenic progression by stimulating cell migration, we conducted a powerful retroviral based migration screen using an MCF7 cDNA library and the immortalized human breast epithelial cell line MCF-10A. We identified prostate derived Ets factor (PDEF), an Ets transcription factor that is overexpressed in both prostate and breast carcinoma, as a candidate promigratory gene from this screen. Whereas PDEF induced limited motility of MCF-10A cells, coexpression of PDEF with the receptor tyrosine kinases (RTK) ErbB2 and colony-stimulating factor receptor (CSF-1R)/CSF-1 significantly enhanced MCF-10A motility. Furthermore, cells coexpressing PDEF with either ErbB2 or CSF-1R/CSF-1 induced a dramatic invasive phenotype in three-dimensional cultures. Constitutive activation of the extracellular signal–regulated kinase (ERK) pathway also enhanced PDEF-induced motility and invasion, suggesting that activation of the ERK/mitogen-activated protein kinase by ErbB2 and CSF-1R/CSF-1 can cooperate with PDEF to promote motility and invasion. Furthermore, PDEF promoted anchorage-independent growth of ErbB2 and CSF-1R/CSF-1–expressing cells. Using laser capture microdissection, we also found that PDEF mRNA is overexpressed in breast tumor epithelia throughout tumor progression. Taken together, these findings suggest that the transcription factor PDEF may play an important role in breast tumorigenesis and that PDEF overexpression may be particularly significant in tumors that exhibit activation of oncogenic RTKs such as ErbB2 and CSF-1R.
doi:10.1158/0008-5472.CAN-05-1196
PMCID: PMC2919290  PMID: 16357167
22.  HER2/ErbB2 activates HSF1 and thereby controls HSP90 clients including MIF in HER2-overexpressing breast cancer 
Cell Death & Disease  2014;5(1):e980-.
Overexpression of the human epidermal growth factor receptor-2 (HER2) in breast cancer strongly correlates with aggressive tumors and poor prognosis. Recently, a positive correlation between HER2 and MIF (macrophage migration inhibitory factor, a tumor-promoting protein and heat-shock protein 90 (HSP90) client) protein levels was shown in cancer cells. However, the underlying mechanistic link remained unknown. Here we show that overexpressed HER2 constitutively activates heat-shock factor 1 (HSF1), the master transcriptional regulator of the inducible proteotoxic stress response of heat-shock chaperones, including HSP90, and a crucial factor in initiation and maintenance of the malignant state. Inhibiting HER2 pharmacologically by Lapatinib (a dual HER2/epidermal growth factor receptor inhibitor) or CP724.714 (a specific HER2 inhibitor), or by knockdown via siRNA leads to inhibition of phosphoactivated Ser326 HSF1, and subsequently blocks the activity of the HSP90 chaperone machinery in HER2-overexpressing breast cancer lines. Consequently, HSP90 clients, including MIF, AKT, mutant p53 and HSF1 itself, become destabilized, which in turn inhibits tumor proliferation. Mechanistically, HER2 signals via the phosphoinositide-3-kinase (PI3K)–AKT– mammalian target of rapamycin (mTOR) axis to induce activated pSer326 HSF1. Heat-shock stress experiments confirm this functional link between HER2 and HSF1, as HER2 (and PI3K) inhibition attenuate the HSF1-mediated heat-shock response. Importantly, we confirmed this axis in vivo. In the mouse model of HER2-driven breast cancer, ErbB2 inhibition by Lapatinib strongly suppresses tumor progression, and this is associated with inactivation of the HSF1 pathway. Moreover, ErbB2-overexpressing cancer cells derived from a primary mouse ErbB2 tumor also show HSF1 inactivation and HSP90 client destabilization in response to ErbB2 inhibition. Furthermore, in HER2-positive human breast cancers HER2 levels strongly correlate with pSer326 HSF1 activity. Our results show for the first time that HER2/ErbB2 overexpression controls HSF1 activity, with subsequent stabilization of numerous tumor-promoting HSP90 clients such as MIF, AKT and HSF1 itself, thereby causing a robust promotion in tumor growth in HER2-positive breast cancer.
doi:10.1038/cddis.2013.508
PMCID: PMC4040658  PMID: 24384723
MIF; HSP90; HSF1; mTOR; HER2; ErbB2
23.  Luminal Breast Cancer Cell Lines Overexpressing ZNF703 Are Resistant to Tamoxifen through Activation of Akt/mTOR Signaling 
PLoS ONE  2013;8(8):e72053.
Background
Selective estrogen receptor modulators, such as tamoxifen, play a pivotal role in the treatment of luminal-type breast cancer. However, in clinical applications, nearly half of breast cancer patients are insensitive to tamoxifen, a small number of whom have early recurrence or disease progression when receiving tamoxifen. The underlying mechanism of this resistance has not been determined. ZNF703 is a novel oncogene in the 15% of breast cancers that harbor 8p12 amplifications. Therefore, the goal of our study was to explore the role of ZNF703 in tamoxifen resistance.
Methodology/Principal Findings
We used immunohistochemistry techniques to examine ZNF703 expression in stage I-III primary breast cancer specimens and found a positive expression rate of 91.3%. All patients were divided into either high or low ZNF703 expression groups. We found that high ZNF703 expression mainly occurred in ER+ and PR+ breast cancers. Furthermore, 4-hydroxytamoxifen had different modes of action in breast cancer cell lines with high or low ZNF703 expression. ZNF703 overexpression in MCF-7 breast cancer cells activated the Akt/mTOR signaling pathway, downregulated ERα, and reduced the antitumor effect of tamoxifen. Low-dose tamoxifen did not suppress, but rather, stimulated the growth of cells overexpressing ZNF703. ZNF703 knockdown in MDA-MB-134 and HCC1500 luminal B-type breast cancer cell lines by siRNA significantly decreased survival rates when cells were treated with tamoxifen. Furthermore, targeting ZNF703 with a mTOR inhibitor increased the inhibitory effects of tamoxifen in ZNF703-overexpressing cells.
Conclusion/Significance
Our study suggests that ZNF703 expression levels may predict tamoxifen sensitivity. Tamoxifen should be administered with caution to those patients bearing tumors with ZNF703 overexpression. However, large clinical trials and prospective clinical studies are needed to verify these results.
doi:10.1371/journal.pone.0072053
PMCID: PMC3753350  PMID: 23991038
24.  Loss of interferon regulatory factor 5 (IRF5) expression in human ductal carcinoma correlates with disease stage and contributes to metastasis 
Breast Cancer Research : BCR  2011;13(6):R111.
Introduction
New signaling pathways of the interleukin (IL) family, interferons (IFN) and interferon regulatory factors (IRF) have recently been found within tumor microenvironments and in metastatic sites. Some of these cytokines stimulate while others inhibit breast cancer proliferation and/or invasion. IRFs, a family of nine mammalian transcription factors, have multiple biologic functions that when dysregulated may contribute to tumorigenesis; most well-known are their roles in regulating/initiating host immunity. Some IRF family members have been implicated in tumorigenesis yet little is still known of their expression in primary human tumors or their role(s) in disease development/progression. IRF5 is one of the newer family members to be studied and has been shown to be a critical mediator of host immunity and the cellular response to DNA damage. Here, we examined the expression of IRF5 in primary breast tissue and determined how loss of expression may contribute to breast cancer development and/or progression.
Methods
Formalin-fixed paraffin-embedded archival breast tissue specimens from patients with atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) were examined for their expression of IRF1 and IRF5. Knockdown or overexpression of IRF5 in MCF-10A, MCF-7 and MDA-MB-231 mammary epithelial cell lines was used to examine the role of IRF5 in growth inhibition, invasion and tumorigenesis.
Results
Analysis of IRF expression in human breast tissues revealed the unique down-regulation of IRF5 in patients with different grades of DCIS and IDC as compared to IRF1; loss of IRF5 preceded that of IRF1 and correlated with increased invasiveness. Overexpression of IRF5 in breast cancer cells inhibited in vitro and in vivo cell growth and sensitized them to DNA damage. Complementary experiments with IRF5 siRNAs made normal mammary epithelial cells resistant to DNA damage. By 3-D culture, IRF5 overexpression reverted MDA-MB-231 to normal acini-like structures; cells overexpressing IRF5 had decreased CXCR4 expression and were insensitive to SDF-1/CXCL12-induced migration. These findings were confirmed by CXCR4 promoter reporter assays.
Conclusions
IRF5 is an important tumor suppressor that regulates multiple cellular processes involved in the conversion of normal mammary epithelial cells to tumor epithelial cells with metastatic potential.
doi:10.1186/bcr3053
PMCID: PMC3326553  PMID: 22053985
25.  t-DARPP regulates phosphatidylinositol-3-kinase-dependent cell growth in breast cancer 
Molecular Cancer  2010;9:240.
Background
Recent reports have shown that t-DARPP (truncated isoform of DARPP-32) can mediate trastuzumab resistance in breast cancer cell models. In this study, we evaluated expression of t-DARPP in human primary breast tumors, and investigated the role of t-DARPP in regulating growth and proliferation in breast cancer cells.
Results
Quantitative real time RT-PCR analysis using primers specific for t-DARPP demonstrated overexpression of t-DARPP in 36% of breast cancers (13/36) as opposed to absent to very low t-DARPP expression in normal breast tissue (p < 0.05). The mRNA overexpression of t-DARPP was overwhelmingly observed in ductal carcinomas, including invasive ductal carcinomas and intraductal carcinomas, rather than other types of breast cancers. The immunohistochemistry analysis of DARPP-32/t-DARPP protein(s) expression in breast cancer tissue microarray that contained 59 tumors and matched normal tissues when available indicated overexpression in 35.5% of primary breast tumors that were more frequent in invasive ductal carcinomas (43.7%; 21/48). In vitro studies showed that stable overexpression of t-DARPP in MCF-7 cells positively regulated proliferation and anchorage-dependent and -independent growth. Furthermore, this effect was concomitant with induction of phosphorylation of AKTser473 and its downstream target phosphoser9 GSK3β, and increased Cyclin D1 and C-Myc protein levels. The knockdown of endogenous t-DARPP in HCC1569 cells led to a marked decrease in phosphorylation of AKTsser473 and GSK3βser9. The use of PI3K inhibitor LY294002 or Akt siRNA abrogated the t-DARPP-mediated phosphorylation of AKTser473 and led to a significant reduction in cell growth.
Conclusions
Our findings underscore the potential role of t-DARPP in regulating cell growth and proliferation through PI3 kinase-dependent mechanism.
doi:10.1186/1476-4598-9-240
PMCID: PMC2945963  PMID: 20836878

Results 1-25 (1774958)