Search tips
Search criteria

Results 1-25 (955911)

Clipboard (0)

Related Articles

1.  Whole Grain, Bran, and Germ Intake and Risk of Type 2 Diabetes: A Prospective Cohort Study and Systematic Review 
PLoS Medicine  2007;4(8):e261.
Control of body weight by balancing energy intake and energy expenditure is of major importance for the prevention of type 2 diabetes, but the role of specific dietary factors in the etiology of type 2 diabetes is less well established. We evaluated intakes of whole grain, bran, and germ in relation to risk of type 2 diabetes in prospective cohort studies.
Methods and Findings
We followed 161,737 US women of the Nurses' Health Studies (NHSs) I and II, without history of diabetes, cardiovascular disease, or cancer at baseline. The age at baseline was 37–65 y for NHSI and 26–46 y for NHSII. Dietary intakes and potential confounders were assessed with regularly administered questionnaires. We documented 6,486 cases of type 2 diabetes during 12–18 y of follow-up. Other prospective cohort studies on whole grain intake and risk of type 2 diabetes were identified in searches of MEDLINE and EMBASE up to January 2007, and data were independently extracted by two reviewers. The median whole grain intake in the lowest and highest quintile of intake was, respectively, 3.7 and 31.2 g/d for NHSI and 6.2 and 39.9 g/d for NHSII. After adjustment for potential confounders, the relative risks (RRs) for the highest as compared with the lowest quintile of whole grain intake was 0.63 (95% confidence interval [CI] 0.57–0.69) for NHSI and 0.68 (95% CI 0.57–0.81) for NHSII (both: p-value, test for trend <0.001). After further adjustment for body mass index (BMI), these RRs were 0.75 (95% CI 0.68–0.83; p-value, test for trend <0.001) and 0.86 (95% CI 0.72–1.02; p-value, test for trend 0.03) respectively. Associations for bran intake were similar to those for total whole grain intake, whereas no significant association was observed for germ intake after adjustment for bran. Based on pooled data for six cohort studies including 286,125 participants and 10,944 cases of type 2 diabetes, a two-serving-per-day increment in whole grain consumption was associated with a 21% (95% CI 13%–28%) decrease in risk of type 2 diabetes after adjustment for potential confounders and BMI.
Whole grain intake is inversely associated with risk of type 2 diabetes, and this association is stronger for bran than for germ. Findings from prospective cohort studies consistently support increasing whole grain consumption for the prevention of type 2 diabetes.
Jeroen de Munter and colleagues found that, in women in the US Nurses' Health Studies, whole grain intake was inversely associated with risk of type 2 diabetes. The association was stronger for bran than for germ.
Editors' Summary
Type 2 diabetes mellitus (also sometimes called adult-onset or noninsulin-dependent diabetes) is increasing worldwide and is the most common form of diabetes. It puts people at risk of poor health and death by increasing their risk of heart disease and stroke, and a range of other conditions including blindness, kidney disease, and ulcers. It has long been recognized that there is a link between diet and developing type 2 diabetes, because people who are overweight (because the amount of energy in their diet is greater than the energy they use up) run a greater risk of getting type 2 diabetes. However, it has not been clear which particular nutrients or foods might increase the risk or might give protection.
Cereals—such as rice, wheat, corn (maize), etc.—make up a major part of most people's diets. During the refining of cereal grains, much of the outer part of the grain (kernel) are usually removed. Foods are described as “whole grain” if all components of the kernel (the bran, germ, and endosperm) are still present in their natural proportions. There is good evidence that consumption of whole grains may reduce the risk of several diseases, including various types of cancer, heart attacks, and strokes. Some evidence also suggests that eating a diet rich in whole grains might help protect against diabetes, but this has not been firmly established.
Why Was This Study Done?
The authors of this study wanted to find out how much whole grain was eaten by a large number of people over several years and to record how many of these people developed type 2 diabetes. If these two things were closely associated it would provide more evidence to support the idea that whole grain consumption helps protect against type 2 diabetes.
What Did the Researchers Do and Find?
The researchers drew on information recorded in a very large and continuing study in the US, the Nurses' Health Study, which began in 1976, when over 100,000 female registered US nurses completed and returned a mailed questionnaire to assess their health and lifestyle. More nurses were added in 1989. It is an example of what is known as a “cohort study.” Every two years, questionnaires have been mailed to the nurses. Questions asked include the nurses' age, weight, their diet, whether they smoke, their use of oral contraception; and their personal history of diabetes, cardiovascular disease, and cancer. The researchers calculated each nurse's whole grain intake in grams per day. They found that by 2004 about 6,500 of them had developed type 2 diabetes. From an analysis of the data it was clear that the greater the consumption of whole grains the lower the risk of getting type 2 diabetes.
An additional part of the study was that the researchers searched the medical literature for other cohort studies that examined whole grain intake in relation to risk of type 2 diabetes. (This type of research is called a “systematic review,” and it requires that researchers define clearly in advance the kind of studies they are looking for and how they will analyze the data.) They found five such studies. They added together the results of all the studies, including their own. This gave a total of nearly 11,000 cases of type 2 diabetes, out of around 286,000 people. From their analysis they calculated that a two-serving-per-day increment in whole grain consumption was associated with a 21% decrease in risk of type 2 diabetes.
What Do These Findings Mean?
Scientists say that association can never prove causation. (That would require a different sort of study called a trial, where two similar groups of people would be given either a diet high in whole grains or one that was low.) Nevertheless, the research does strongly suggest that a healthy diet that reduces the risk of developing type 2 diabetes should include the consumption of several servings of whole grains daily. The authors do point out that people who choose to eat a lot of whole grains also tend to have a healthy lifestyle in other respects, and that it was hard to calculate intake accurately. However, they do not consider that these limitations to their study would have affected the overall result too seriously.
Additional Information.
Please access these Web sites via the online version of this summary at
Good introductory information about diabetes (type 1 and type 2) may be found on the Web sites of the National Diabetes Clearing House (US) and Diabetes UK
More detailed information is available on Medline Plus, a Web site that brings together authoritative information from several US government agencies and health-related organizations
Wikipedia has an entry on whole grain (Wikipedia is a free online encyclopedia that anyone can edit)
The Nurses' Health Study has a Web site
PMCID: PMC1952203  PMID: 17760498
2.  Autoimmune syndromes in major histocompatibility complex (MHC) congenic strains of nonobese diabetic (NOD) mice. The NOD MHC is dominant for insulitis and cyclophosphamide-induced diabetes 
The development of autoimmune diabetes in the nonobese diabetic (NOD) mouse is controlled by multiple genes. At least one diabetogenic gene is linked to the major histocompatibility complex (MHC) of the NOD and is most likely represented by the two genes encoding the alpha and beta chains of the unique NOD class II molecule. Three other diabetogenic loci have recently been identified in the NOD mouse and are located on chromosomes 1, 3, and 11. In addition to the autoimmune diabetes which is caused by destruction of the insulin-producing beta cells in the pancreas, other manifestations of autoimmunity are seen in the NOD mouse. These include mononuclear cell inflammation of the submandibular and lacrimal glands, as well as the presence of circulating autoantibodies. To determine the effect of the non-MHC diabetogenic genes on the development of autoimmunity, we constructed the NOD.B10-H- 2b (NOD.H-2b) strain, which possesses the non-MHC diabetogenic genes from the NOD mouse, but derives its MHC from the C57BL/10 (B10) strain. The NOD.H-2b strain does not develop insulitis, cyclophosphamide- induced diabetes, or spontaneous diabetes. It does, however, develop extensive lymphocytic infiltrates in the pancreas and the submandibular glands that are primarily composed of Thy 1.2+ T cells and B220+ B cells. In addition, autoantibodies are present in NOD.H-2b mice which recognize the "polar antigen" on the insulin-secreting rat tumor line RINm38. These observations demonstrate that the non-MHC genes in the NOD strain, in the absence of the NOD MHC, significantly contribute to the development of autoimmunity. The contribution of a single dose of the NOD MHC to autoimmunity was assessed with a (NOD x NOD.H-2b)F1 cross. Although only approximately 3% of F1 females developed spontaneous diabetes, approximately 50% of both female and male F1 mice developed insulitis, and 25% of females and 17% of males became diabetic after treatment with cyclophosphamide. These data demonstrate that the MHC-linked diabetogenic genes of the NOD mouse are dominant with decreasing levels of penetrance for the following phenotypes: insulitis greater than cyclophosphamide-induced diabetes greater than spontaneous diabetes.
PMCID: PMC2119272  PMID: 1613467
Young mice were maintained for periods of 1 to 6 weeks on experimental diets containing all known growth factors, but differing in their protein and amino acid contents. All diets were supplemented with L-cystine. The effect of the nutritional regimen on infection was tested by inoculating the animals with either one of four pathogens (Mycobacterium tuberculosis var. bovis, Mycobacterium fortuitum, Staphylococcus aureus, Klebsiella pneumoniae type C), and by observing the survival time. The infective dose was administered by either one of three routes: intravenous, intraperitoneal, or air-borne (aerosol). In some experiments, the animals were maintained in groups of five throughout the tests. In other experiments they were housed in individual cages. This difference in housing did not affect the results in a detectable manner. Mice fed diets containing 5 or 8 per cent casein as sole source of amino acid (except for cystine supplementation) proved more susceptible to the experimental diseases than did mice fed diets containing 15 or 20 per cent of the same protein. Susceptibility to infection developed when wheat gluten, or soybean α-protein, was substituted for casein—even in high concentrations (15 or 20 per cent). In one experiment, mice were fed a diet containing as sole source of amino acids a mixture of soybean and rice flour, so designed as to provide a protein concentration of 15 per cent, with an amino acid pattern similar to that of casein. These animals gained weight at the same rate as those fed a diet containing 15 per cent casein and they exhibited a satisfactory level of resistance to bacterial infection. The infection-enhancing effect of low casein concentration (5 and 8 per cent) could be corrected by supplementing the diet with the proper mixture of amino acids. This could be done using either synthetic or natural amino acids. In contrast, susceptibility to infection developed when low casein diets were supplemented with unbalanced mixtures of amino acids. The infection-enhancing effect of gluten diets could not be corrected by supplementing the latter with lysine even though this supplementation markedly improved weight gains in uninfected animals. It appears in conclusion that the relative proportion of the various amino acids in the diet is as important a factor as their total amount in conditioning resistance to bacterial infections. This effect of nutrition on resistance can be detected irrespective of the route of infection: intravenous, intraperitoneal, or air-borne. Moreover, the effect has been observed with two strains of mice differing markedly in their natural resistance to bacterial infection.
PMCID: PMC2137029  PMID: 14442313
4.  Prenatal and Postnatal Flavor Learning by Human Infants 
Pediatrics  2001;107(6):E88.
Background. Flavors from the mother’s diet during pregnancy are transmitted to amniotic fluid and swallowed by the fetus. Consequently, the types of food eaten by women during pregnancy and, hence, the flavor principles of their culture may be experienced by the infants before their first exposure to solid foods. Some of these same flavors will later be experienced by infants in breast milk, a liquid that, like amniotic fluid, comprises flavors that directly reflect the foods, spices, and beverages eaten by the mother. The present study tested the hypothesis that experience with a flavor in amniotic fluid or breast milk modifies the infants’ acceptance and enjoyment of similarly flavored foods at weaning.
Methods. Pregnant women who planned on breast-feeding their infants were randomly assigned to 1 of 3 groups. The women consumed either 300 mL of carrot juice or water for 4 days per week for 3 consecutive weeks during the last trimester of pregnancy and then again during the first 2 months of lactation. The mothers in 1 group drank carrot juice during pregnancy and water during lactation; mothers in a second group drank water during pregnancy and carrot juice during lactation, whereas those in the control group drank water during both pregnancy and lactation. Approximately 4 weeks after the mothers began complementing their infants’ diet with cereal and before the infants had ever been fed foods or juices containing the flavor of carrots, the infants were videotaped as they fed, in counterbalanced order, cereal prepared with water during 1 test session and cereal prepared with carrot juice during another. Immediately after each session, the mothers rated their infants’ enjoyment of the food on a 9-point scale.
Results. The results demonstrated that the infants who had exposure to the flavor of carrots in either amniotic fluid or breast milk behaved differently in response to that flavor in a food base than did nonexposed control infants. Specifically, previously exposed infants exhibited fewer negative facial expressions while feeding the carrot-flavored cereal compared with the plain cereal, whereas control infants whose mothers drank water during pregnancy and lactation exhibited no such difference. Moreover, those infants who were exposed to carrots prenatally were perceived by their mothers as enjoying the carrot-flavored cereal more compared with the plain cereal. Although these same tendencies were observed for the amount of cereal consumed and the length of the feeds, these findings were not statistically significant.
Conclusions. Prenatal and early postnatal exposure to a flavor enhanced the infants’ enjoyment of that flavor in solid foods during weaning. These very early flavor experiences may provide the foundation for cultural and ethnic differences in cuisine. Pediatrics 2001;107(6). URL:; infant nutrition, prenatal, lactation, weaning, flavor, development, preferences.
PMCID: PMC1351272  PMID: 11389286
5.  Diabetes Acceleration or Prevention by a Coxsackievirus B4 Infection: Critical Requirements for both Interleukin-4 and Gamma Interferon 
Journal of Virology  2005;79(2):1045-1052.
Type 1 diabetes acceleration in nonobese diabetic (NOD) mice through coxsackievirus B4 (CVB4) infection requires a preexisting critical mass of autoreactive T cells in pancreatic islets, and in the absence of this insulitic threshold, CVB4 infection leads to long-term disease protection. To understand this acceleration and protection process, we challenged 8- and 12-week-old NOD mice containing a disruption in interleukin-4 (IL-4) or gamma interferon (IFN-γ) genes (NOD IL-4−/− and NOD IFN-γ−/−, respectively) with a diabetogenic, pancreatropic Edwards strain of CVB4. The elimination of IL-4 did not alter the rate of insulitis or diabetes development in NOD mice, while the elimination of IFN-γ delayed these events several weeks. CVB4 infection in 8-week-old mice only significantly accelerated the onset of diabetes in a subset of standard, but not IL-4- or IFN-γ-deficient, NOD mice. Long-term diabetes protection was established in standard NOD mice as well as in the NOD IFN-γ−/− mice that did not rapidly develop disease following CVB4 infection at 8 weeks of age. When mice were infected at 12 weeks of age, the onset of diabetes was accelerated in NOD IL-4−/− mice, while neither acceleration nor long-term protection was elicited in NOD IFN-γ−/− mice. No differences were observed in the kinetics of CVB4 clearance in pancreases from NOD, NOD IL-4−/−, and NOD IFN-γ−/− mice. Collectively, these results suggest that at the insulitis threshold at which CVB4 infection can first accelerate the onset of diabetes in NOD mice, IL-4 as well as IFN-γ contributes to this pathogenic process. The protective mechanism against diabetes elicited in NOD mice infected with CVB4 prior to the development of a critical threshold level of insulitis requires neither IL-4 nor IFN-γ.
PMCID: PMC538592  PMID: 15613333
6.  Dietary gluten and the development of type 1 diabetes 
Diabetologia  2014;57(9):1770-1780.
Gluten proteins differ from other cereal proteins as they are partly resistant to enzymatic processing in the intestine, resulting in a continuous exposure of the proteins to the intestinal immune system. In addition to being a disease-initiating factor in coeliac disease (CD), gluten intake might affect type 1 diabetes development. Studies in animal models of type 1 diabetes have documented that the pathogenesis is influenced by diet. Thus, a gluten-free diet largely prevents diabetes in NOD mice while a cereal-based diet promotes diabetes development. In infants, amount, timing and mode of introduction have been shown to affect the diabetogenic potential of gluten, and some studies now suggest that a gluten-free diet may preserve beta cell function. Other studies have not found this effect. There is evidence that the intestinal immune system plays a primary role in the pathogenesis of type 1 diabetes, as diabetogenic T cells are initially primed in the gut, islet-infiltrating T cells express gut-associated homing receptors, and mesenteric lymphocytes transfer diabetes from NOD mice to NOD/severe combined immunodeficiency (SCID) mice. Thus, gluten may affect diabetes development by influencing proportional changes in immune cell populations or by modifying the cytokine/chemokine pattern towards an inflammatory profile. This supports an important role for gluten intake in the pathogenesis of type 1 diabetes and further studies should be initiated to clarify whether a gluten-free diet could prevent disease in susceptible individuals or be used with newly diagnosed patients to stop disease progression.
PMCID: PMC4119241  PMID: 24871322
Coeliac disease; Diet; Gluten; Gluten-free; Type 1 diabetes
7.  Abrogation of autoimmune diabetes in nonobese diabetic mice and protection against effector lymphocytes by transgenic paracrine TGF-beta1. 
Journal of Clinical Investigation  1998;102(3):499-506.
Paracrine effect of transforming growth factor-beta1 (TGF-beta1) on autoimmune insulitis and diabetes was studied by transgenic production of the active form of porcine TGF-beta1 (pTGF-beta1) in pancreatic islet (islet) alpha cells in nonobese diabetic (NOD) mice under the control of rat glucagon promoter (RGP) (NOD-RGP-TGF-beta1). None of 27 NOD-RGP-TGF- beta1 mice developed diabetes by 45 wk of age, in contrast to 40 and 71% in male and female nontransgenic mice, respectively. None of the NOD-RGP-TGF-beta1 mice developed diabetes after cyclophosphamide (CY) administration. Adoptive transfer of splenocytes of NOD-RGP-TGF-beta1 mice to neonatal NOD mice did not transfer diabetes after CY administration. Adoptive transfer of three types of diabetogenic lymphocytes to NOD-RGP-TGF-beta1 and nontransgenic mice after CY administration led to the lower incidence of diabetes in NOD-RGP-TGF-beta1 mice versus that in nontransgenic mice: 29 vs. 77% for diabetogenic splenocytes, 25 vs. 75% for islet beta cell-specific Th1 clone cells, and 0 vs. 50% for islet beta cell-specific CD8(+) clone cells, respectively. Based on these, it is concluded that autoimmune diabetes in NOD mice is not a systemic disease and it can be completely prevented by the paracrine TGF-beta1 in the islet compartment through protection against CD4(+) and CD8(+) effector lymphocytes.
PMCID: PMC508910  PMID: 9691086
8.  HLA-A2–Matched Peripheral Blood Mononuclear Cells From Type 1 Diabetic Patients, but Not Nondiabetic Donors, Transfer Insulitis to NOD-scid/γcnull/HLA-A2 Transgenic Mice Concurrent With the Expansion of Islet-Specific CD8+ T cells 
Diabetes  2011;60(6):1726-1733.
Type 1 diabetes is an autoimmune disease characterized by the destruction of insulin-producing β-cells. NOD mice provide a useful tool for understanding disease pathogenesis and progression. Although much has been learned from studies with NOD mice, increased understanding of human type 1 diabetes can be gained by evaluating the pathogenic potential of human diabetogenic effector cells in vivo. Therefore, our objective in this study was to develop a small-animal model using human effector cells to study type 1 diabetes.
We adoptively transferred HLA-A2–matched peripheral blood mononuclear cells (PBMCs) from type 1 diabetic patients and nondiabetic control subjects into transgenic NOD-scid/γcnull/HLA-A*0201 (NOD-scid/γcnull/A2) mice. At various times after adoptive transfer, we determined the ability of these mice to support the survival and proliferation of the human lymphoid cells. Human lymphocytes were isolated and assessed from the blood, spleen, pancreatic lymph node and islets of NOD-scid/γcnull/A2 mice after transfer.
Human T and B cells proliferate and survive for at least 6 weeks and were recovered from the blood, spleen, draining pancreatic lymph node, and most importantly, islets of NOD-scid/γcnull/A2 mice. Lymphocytes from type 1 diabetic patients preferentially infiltrate the islets of NOD-scid/γcnull/A2 mice. In contrast, PBMCs from nondiabetic HLA-A2–matched donors showed significantly less islet infiltration. Moreover, in mice that received PBMCs from type 1 diabetic patients, we identified epitope-specific CD8+ T cells among the islet infiltrates.
We show that insulitis is transferred to NOD-scid/γcnull/A2 mice that received HLA-A2–matched PBMCs from type 1 diabetic patients. In addition, many of the infiltrating CD8+ T cells are epitope-specific and produce interferon-γ after in vitro peptide stimulation. This indicates that NOD-scid/γcnull/A2 mice transferred with HLA-A2–matched PBMCs from type 1 diabetic patients may serve as a useful tool for studying epitope-specific T-cell–mediated responses in patients with type 1 diabetes.
PMCID: PMC3114397  PMID: 21521873
9.  Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat 
Diabetologia  2010;53(12):2621-2628.
Impaired intestinal barrier function is observed in type 1 diabetes patients and animal models of the disease. Exposure to diabetogenic antigens from the intestinal milieu due to a compromised intestinal barrier is considered essential for induction of the autoimmune process leading to type 1 diabetes. Since a hydrolysed casein (HC) diet prevents autoimmune diabetes onset in diabetes-prone (DP)-BioBreeding (BB) rats, we studied the role of the HC diet on intestinal barrier function and, therefore, prevention of autoimmune diabetes onset in this animal model.
DP-BB rats were fed the HC diet from weaning onwards and monitored for autoimmune diabetes development. Intestinal permeability was assessed in vivo by lactulose–mannitol test and ex vivo by measuring transepithelial electrical resistance (TEER). Levels of serum zonulin, a physiological tight junction modulator, were measured by ELISA. Ileal mRNA expression of Myo9b, Cldn1, Cldn2 and Ocln (which encode the tight junction-related proteins myosin IXb, claudin-1, claudin-2 and occludin) and Il-10, Tgf-ß (also known as Il10 and Tgfb, respectively, which encode regulatory cytokines) was analysed by quantitative PCR.
The HC diet reduced autoimmune diabetes by 50% in DP-BB rats. In DP-BB rats, prediabetic gut permeability negatively correlated with the moment of autoimmune diabetes onset. The improved intestinal barrier function that was induced by HC diet in DP-BB rats was visualised by decreasing lactulose:mannitol ratio, decreasing serum zonulin levels and increasing ileal TEER. The HC diet modified ileal mRNA expression of Myo9b, and Cldn1 and Cldn2, but left Ocln expression unaltered.
Improved intestinal barrier function might be an important intermediate in the prevention of autoimmune diabetes by the HC diet in DP-BB rats. Effects on tight junctions, ileal cytokines and zonulin production might be important mechanisms for this effect.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-010-1903-9) contains supplementary material, which is available to authorised users.
PMCID: PMC2974912  PMID: 20853098
BB rat; Cytokines; Hydrolysed casein diet; Intestinal barrier; Tight junctions; Type 1 diabetes
10.  Prevention of Cyclophosphamide-induced Accelerated Diabetes in the NOD Mouse by Nicotinamide or a Soy Protein-based Infant Formula 
Spontaneous diabetes in the NOD mouse can be prevented by nicotinamide or by an infant formula diet in which the protein source is replaced with casein hydrolysate (Pregestimil) or soy protein (Prosobee). NOD mice maintained on the standard diet (chow and water) and given cyclophosphamide (Cy) at day 95 develop accelerated and synchronised diabetes within 14 days. Here, we compared the ability of oral nicotinamide or Prosobee, either given alone or concurrently, from weaning, in preventing diabetes in the Cy model. The resulting insulitis and the expression of intra-islet inducible nitric oxide synthase (iNOS) were examined at days 0, 4, 7, 11 and 14 following Cy administration. Intra-islet CD4 and CD8 cells and macrophages were also enumerated at day 11. In mice given the standard diet and injected with Cy at day 95 (group 5), diabetes developed in 7/11 mice, 14 days later. Mice exposed to oral nicotinamide (group 2), Prosobee (group 3) or both (group 4), did not develop the disease during this period and until a further 30 days (p = 0.03). In mice exposed to the standard diet and without Cy treatment (group 1) the insulitis scores increased slowly until day 11 and then declined slightly at day 14 whereas mice exposed to the same diet but given Cy at day 95, showed a sharp decline at day 4 followed by a rapid increase between day 7–14. However, in mice given either nicotinamide, Prosobee or both, the insulitis scores at most time-points were generally lower than in Cy-teated animals on the standard diet. In the latter group, CD4 and CD8 cells and macrophages were also higher at day 11 than all other 4 groups (CD4: p < 0.05; CD8: p < 0.05; macrophages: p < 0.0001). The number of iNOS labelled cells increased progressively in mice on the standard diet and given Cy and were significantly higher at days 4, 7 and 11 than in the 3 dietary groups. Thus, oral nicotinamide or Prosobee, either alone or together, prevents Cy induced diabetes in the NOD mouse. The protective diets suppress Cyinduced intra-islet immune cell influx and iNOS expression.
PMCID: PMC2477741  PMID: 11467420
11.  Nonobese Diabetic (NOD) Mice Congenic for a Targeted Deletion of 12/15-Lipoxygenase Are Protected From Autoimmune Diabetes 
Diabetes  2007;57(1):199-208.
12/15-lipoxygenase (12/15-LO), one of a family of fatty acid oxidoreductase enzymes, reacts with polyenoic fatty acids to produce proinflammatory lipids. 12/15-LO is expressed in macrophages and pancreatic β-cells. It enhances interleukin 12 production by macrophages, and several of its products induce apoptosis of β-cells at nanomolar concentrations in vitro. We had previously demonstrated a role for 12/15-LO in β-cell damage in the streptozotocin model of diabetes. Since the gene encoding 12/15-LO (gene designation Alox15) lies within the Idd4 diabetes susceptibility interval in NOD mice, we hypothesized that 12/15-LO is also a key regulator of diabetes susceptibility in the NOD mouse.
We developed NOD mice carrying an inactivated 12/15-LO locus (NOD-Alox15null) using a “speed congenic” protocol, and the mice were monitored for development of insulitis and diabetes.
NOD mice deficient in 12/15-LO develop diabetes at a markedly reduced rate compared with NOD mice (2.5 vs. >60% in females by 30 weeks). Nondiabetic female NOD-Alox15null mice demonstrate improved glucose tolerance, as well as significantly reduced severity of insulitis and improved β-cell mass, when compared with age-matched nondiabetic NOD females. Disease resistance is associated with decreased numbers of islet-infiltrating activated macrophages at 4 weeks of age in NOD-Alox15null mice, preceding the development of insulitis. Subsequently, islet-associated infiltrates are characterized by decreased numbers of CD4+ T cells and increased Foxp3+ cells.
These results suggest an important role for 12/15-LO in conferring susceptibility to autoimmune diabetes in NOD mice through its effects on macrophage recruitment or activation.
PMCID: PMC2993320  PMID: 17940120
12.  Enteropathy precedes type 1 diabetes in the BB rat 
Gut  2004;53(10):1437-1444.
Background and aims: There is increasing evidence implicating intestinal immune responses to dietary proteins in the pathogenesis of type 1 autoimmune diabetes (T1D). Here we investigated the association between intestinal pathology and dietary factors in T1D by examining the mucosal architecture in the BB rat model.
Methods: BB control (BBc) and diabetes prone (BBdp) rats were fed either a diabetes retardant hydrolysed casein based diet or one of two cereal based diets that promote the development of diabetes. Intestinal architecture was assessed in the jejunum by microdissection, histology, and immunohistology, and by measuring peroxidase activity and brush border invertase levels.
Results: Enteropathy was present in BBdp rats soon after weaning, as assessed by increases in crypt length and in the proliferative activity of crypt epithelial cells in the jejunum, and this remained constant until 120 days of age. There was also a decrease in invertase activity, as well as increased numbers of intraepithelial lymphocytes, increased levels of mucosal peroxidase activity, and infiltration of the mucosa by CD4+ T lymphocytes. Equivalent enteropathy was present at all times in BBdp rats and was not influenced by the nature of the diet or by thymectomy at three weeks at age, procedures which prevent the development of diabetes.
Conclusion: Enteropathy is a consistent feature in the diabetes prone BB rat but it precedes the onset of insulitis and appears to be due to mechanisms distinct from those which cause diabetes. The beneficial effects of the diabetes retardant hydrolysed casein diet on diabetes are not due to an effect on intestinal architecture per se but mucosal damage may be necessary for the development of autoreactivity in the pancreas.
PMCID: PMC1774253  PMID: 15361491
type 1 diabetes; enteropathy; diet; CD4+ T cells
13.  α/β–T Cell Receptor (TCR)+CD4−CD8− (NKT) Thymocytes Prevent Insulin-dependent Diabetes Mellitus in Nonobese Diabetic (NOD)/Lt Mice by the Influence of Interleukin (IL)-4 and/or IL-10  
The Journal of Experimental Medicine  1998;187(7):1047-1056.
We have previously shown that nonobese diabetic (NOD) mice are selectively deficient in α/β-T cell receptor (TCR)+CD4−CD8− NKT cells, a defect that may contribute to their susceptibility to the spontaneous development of insulin-dependent diabetes mellitus (IDDM). The role of NKT cells in protection from IDDM in NOD mice was studied by the infusion of thymocyte subsets into young female NOD mice. A single intravenous injection of 106 CD4−/lowCD8− or CD4−CD8− thymocytes from female (BALB/c × NOD)F1 donors protected intact NOD mice from the spontaneous onset of clinical IDDM. Insulitis was still present in some recipient mice, although the cell infiltrates were principally periductal and periislet, rather than the intraislet pattern characteristic of insulitis in unmanipulated NOD mice. Protection was not associated with the induction of “allogenic tolerance” or systemic autoimmunity. Accelerated IDDM occurs after injection of splenocytes from NOD donors into irradiated adult NOD recipients. When α/β-TCR+ and α/β-TCR− subsets of CD4−CD8− thymocytes were transferred with diabetogenic splenocytes and compared for their ability to prevent the development of IDDM in irradiated adult recipients, only the α/β-TCR+ population was protective, confirming that NKT cells were responsible for this activity. The protective effect in the induced model of IDDM was neutralized by anti–IL-4 and anti–IL-10 monoclonal antibodies in vivo, indicating a role for at least one of these cytokines in NKT cell-mediated protection. These results have significant implications for the pathogenesis and potential prevention of IDDM in humans.
PMCID: PMC2212199  PMID: 9529321
14.  Low Incidence of Spontaneous Type 1 Diabetes in Non-Obese Diabetic Mice Raised on Gluten-Free Diets Is Associated with Changes in the Intestinal Microbiome 
PLoS ONE  2013;8(11):e78687.
Human and animal studies strongly suggest that dietary gluten could play a causal role in the etiopathogenesis of type 1 diabetes (T1D). However, the mechanisms have not been elucidated. Recent reports indicate that the intestinal microbiome has a major influence on the incidence of T1D. Since diet is known to shape the composition of the intestinal microbiome, we investigated using non-obese diabetic (NOD) mice whether changes in the intestinal microbiome could be attributed to the pro- and anti-diabetogenic effects of gluten-containing and gluten-free diets, respectively. NOD mice were raised on gluten-containing chows (GCC) or gluten-free chows (GFC). The incidence of diabetes was determined by monitoring blood glucose levels biweekly using a glucometer. Intestinal microbiome composition was analyzed by sequencing 16S rRNA amplicons derived from fecal samples. First of all, GCC-fed NOD mice had the expected high incidence of hyperglycemia whereas NOD mice fed with a GFC had significantly reduced incidence of hyperglycemia. Secondly, when the fecal microbiomes were compared, Bifidobacterium, Tannerella, and Barnesiella species were increased (p = 0.03, 0.02, and 0.02, respectively) in the microbiome of GCC mice, where as Akkermansia species was increased (p = 0.02) in the intestinal microbiomes of NOD mice fed GFC. Thirdly, both of the gluten-free chows that were evaluated, either egg white based (EW-GFC) or casein based (C-GFC), significantly reduced the incidence of hyperglycemia. Interestingly, the gut microbiome from EW-GFC mice was similar to C-GFC mice. Finally, adding back gluten to the gluten-free diet reversed its anti-diabetogenic effect, reduced Akkermansia species and increased Bifidobacterium, Tannerella, and Barnesiella suggesting that the presence of gluten is directly responsible for the pro-diabetogenic effects of diets and it determines the gut microflora. Our novel study thus suggests that dietary gluten could modulate the incidence of T1D by changing the gut microbiome.
PMCID: PMC3827256  PMID: 24236037
15.  Genetic control of diabetes and insulitis in the nonobese diabetic (NOD) mouse 
The Journal of Experimental Medicine  1987;165(6):1639-1654.
Genetic analysis of the development of diabetes and insulitis has been performed in the nonobese diabetic (NOD) mouse strain, a model of insulin-dependent (type I) diabetes mellitus. (NOD X C57BL/10)F1, F2, and (F1 X NOD) first-, second-, and third-backcross generations were studied. The data obtained were consistent with the hypothesis that diabetes is controlled by at least three functionally recessive diabetogenic genes, or gene complexes, one of which is linked to the MHC of the NOD. In contrast, pancreatic inflammation leading to insulitis was found to be controlled by a single incompletely dominant gene. One of the two diabetogenic loci that is not linked to the MHC appears to be essential for the development of severe insulitis. This diabetogenic gene may be identical to the gene that controls the initiation of the autoimmune response that progresses to insulitis. Although this gene appears to be functionally recessive in its control of diabetes, it is incompletely dominant in its control of insulitis. The MHC-linked diabetogenic gene, although not required for the development of insulitis, apparently influences the progression of the autoimmune response since NOD MHC homozygotes in the backcross generations displayed the highest incidence and most severe cases of insulitis. Interestingly, we have found two MHC heterozygous backcross females that have become diabetic, suggesting that either the MHC- linked diabetogenic gene is not strictly recessive or that a recombination event has occurred between the diabetogenic gene and the K or I-A regions of the MHC. The third diabetogenic locus appears to influence the progression of severe insulitis to overt diabetes. In animals homozygous at this locus, diabetes may result from a decreased ability to develop a protective suppressor response to the autoimmune process.
PMCID: PMC2188363  PMID: 3585250
16.  Pancreatic expression of interleukin-4 abrogates insulitis and autoimmune diabetes in nonobese diabetic (NOD) mice 
The Journal of Experimental Medicine  1996;184(3):1093-1099.
Diabetes in nonobese diabetic (NOD) mice is a T cell-dependent autoimmune disease. The destructive activities of autoreactive T cells have been shown to be tightly regulated by effector molecules. In particular, T helper (Th) 1 cytokines have been linked to diabetes pathogenesis, whereas Th2 cytokines and the cells that release them have been postulated to be protective from disease. To test this hypothesis, we generated transgenic NOD mice that express interleukin (IL) 4 in their pancreatic beta cells under the control of the human insulin promoter. We found that transgenic NOD-IL-4 mice, both females and males, were completely protected from insulitis and diabetes. Induction of functional tolerance to islet antigens in these mice was indicated by their inability to reject syngeneic pancreatic islets and the failure of diabetogenic spleen cells to induce diabetes in transgenic NOD-IL-4 recipients. Interestingly, however, islet expression of IL-4 was incapable of preventing islet rejection in overtly diabetic NOD recipient mice. These results demonstrate that the Th2 cytokine IL-4 can prevent the development of autoimmunity and destructive autoreactivity in the NOD mouse. Its ability to regulate the disease process in the periphery also indicates that autoimmune diabetes in NOD mice is not a systemic disease, and it can be modulated from the islet compartment.
PMCID: PMC2192796  PMID: 9064326
17.  T cell populations in the pancreatic lymph node naturally and consistently expand and contract in NOD mice as disease progresses 
Molecular immunology  2012;52(1):9-18.
Nonobese diabetic (NOD) mice develop spontaneous autoimmune Type 1 diabetes (T1D) that results from the destruction of insulin secreting β cells by diabetogenic T cells. The activation of autoreactive T cells occurs in the pancreatic lymph nodes (PLN) from where effector T cells migrate to the pancreas. This study was designed to explore whether T cell populations in the NOD PLN expand in a predictable and reproducible way during disease progression. Complementary determining region (CDR) 3 length spectratype analysis of 19 TCR Vβ families was used to identify the relative frequency of T populations in PLN of 4 and 10 week old NOD mice and mice at T1D onset. Significant and highly reproducible changes in specific T cell populations were detected in 14 of Vβ families tested at all stages of disease. However, of these, the CDR3 spectratype of only four Vβ families was significantly more perturbed at T1D onset than in 10 week old mice. Intriguingly, when diabetes was induced in 10 week old mice with cyclophosphamide (CYP) the same four Vβ families, Vβ5.1, Vβ9, Vβ10, and Vβ15, were again significantly more perturbed than in the untreated non-diabetic age matched mice. Taken together the data show that while T cell responses in PLN of NOD mice are heterogeneous, they are ordered and consistent throughout disease development. The finding that within this heterogeneous response four Vβ families are significantly more perturbed in diabetic mice, whether spontaneous or induced, strongly suggests their selection as part of the disease process.
PMCID: PMC3774157  PMID: 22580347
Autoimmune disease; TCR; CDR3; Diabetes; Pancreatic lymph nodes; Perturbation
18.  Protective Role of Programmed Death 1 Ligand 1 (PD-L1)in Nonobese Diabetic Mice  
Diabetes  2008;57(7):1861-1869.
OBJECTIVE—Coinhibitory signals mediated via programmed death 1 (PD-1) receptor play a critical role in downregulating immune responses and in maintaining peripheral tolerance. Programmed death 1 ligand 1 (PD-L1), the interacting ligand for PD-1, widely expressed in many cell types, acts as a tissue-specific negative regulator of pathogenic T-cell responses. We investigated the protective potential of PD-L1 on autoimmune diabetes by transgenically overexpressing PD-L1 in pancreatic β-cells in nonobese diabetic (NOD) mice.
RESEARCH DESIGN AND METHODS—We established an insulin promoter–driven murine PD-L1 transgenic NOD mouse model to directly evaluate the protective effect of an organ-specific PD-L1 transgene against autoimmune diabetes. Transgene expression, insulitis, and diabetic incidence were characterized in these transgenic NOD mice. Lymphocyte development, Th1 cells, and regulatory T-cells were analyzed in these transgenic mice; and T-cell proliferation, adoptive transfer, and islet transplantation were performed to evaluate the PD-L1 transgene–mediated immune-protective mechanisms.
RESULTS—The severity of insulitis in these transgenic mice is significantly decreased, disease onset is delayed, and the incidence of diabetes is markedly decreased compared with littermate controls. NOD/SCID mice that received lymphocytes from transgenic mice became diabetic at a slower rate than mice receiving control lymphocytes. Moreover, lymphocytes collected from recipients transferred by lymphocytes from transgenic mice revealed less proliferative potential than lymphocytes obtained from control recipients. Transgenic islets transplanted in diabetic recipients survived moderately longer than control islets.
CONCLUSIONS—Our results demonstrate the protective potential of transgenic PD-L1 in autoimmune diabetes and illustrate its role in downregulating diabetogenic T-cells in NOD mice.
PMCID: PMC2453619  PMID: 18420489
19.  Nutritional correlates and dynamics of diabetes in the Nile rat (Arvicanthis niloticus): a novel model for diet-induced type 2 diabetes and the metabolic syndrome 
The prevalence of Metabolic Syndrome and related chronic diseases, among them non-insulin-dependent (type 2) diabetes mellitus, are on the rise in the United States and throughout the world. Animal models that respond to environmental stressors, such as diet, are useful for investigating the outcome and development of these related diseases.
Within this context, growth and energy relationships were characterized in the Nile rat, an exotic African rodent, as a potential animal model for diet-induced type 2 diabetes mellitus and Metabolic Syndrome.
Compiled data from several studies established the relationship between age, body weight gain (including abdominal adiposity), food and water consumption, and blood glucose levels as determinants of diabetes in male and female Nile rats. Glucose Tolerance Testing, insulin, HbA1c, blood pressure measurements and plasma lipids further characterized the diabetes in relation to criteria of the Metabolic Syndrome, while diet modification with high-fat, low-fiber or food restriction attempted to modulate the disease.
The Nile rat fed lab chow demonstrates signs of the Metabolic Syndrome that evolve into diet-induced non-insulin-dependent (type 2) diabetes mellitus characterized by hyperinsulinemia with rising blood glucose (insulin resistance), abdominal adiposity, and impaired glucose clearance that precedes increased food and water intake, as well as elevated HbA1c, marked elevation in plasma triglycerides and cholesterol, microalbuminuria, and hypertension. Males are more prone than females with rapid progression to diabetes depending on the challenge diet. In males diabetes segregated into early-onset and late-onset groups, the former related to more rapid growth and greater growth efficiency for the calories consumed. Interestingly, no correlation was found between blood glucose and body mass index (overall adiposity) in older male Nile rats in long term studies, whereas blood glucose and the perirenal fat pad, as well as liver and kidney weight, were positively related to early-onset diabetes. Rats weaned early (4-5 wks) and challenged with a high-fat Western-type diet developed diabetes faster, and body fat accumulation was more apparent, whereas food restriction curtailed it.
The Nile rat fed typical rodent diets develops hyperinsulinemia that precedes hyperglycemia (insulin resistance) leading to diet-induced type 2 diabetes associated with hypertriglyceridemia, hypercholesterolemia, and hypertension. Dietary modulation affected growth rate (weight gain and central adiposity) to impact disease progression. This rodent model represents a novel system of gene-diet interactions affecting energy utilization that can provide insight into the prevention and treatment of the type 2 diabetes and Metabolic Syndrome.
PMCID: PMC2868017  PMID: 20398338
20.  Rotavirus Infection Accelerates Type 1 Diabetes in Mice with Established Insulitis▿  
Journal of Virology  2008;82(13):6139-6149.
Infection modulates type 1 diabetes, a common autoimmune disease characterized by the destruction of insulin-producing islet β cells in the pancreas. Childhood rotavirus infections have been associated with exacerbations in islet autoimmunity. Nonobese diabetic (NOD) mice develop lymphocytic islet infiltration (insulitis) and then clinical diabetes, whereas NOD8.3 TCR mice, transgenic for a T-cell receptor (TCR) specific for an important islet autoantigen, show more rapid diabetes onset. Oral infection of infant NOD mice with the monkey rotavirus strain RRV delays diabetes development. Here, the effect of RRV infection on diabetes development once insulitis is established was determined. NOD and NOD8.3 TCR mice were inoculated with RRV aged ≥12 and 5 weeks, respectively. Diabetes onset was significantly accelerated in both models (P < 0.024), although RRV infection was asymptomatic and confined to the intestine. The degree of diabetes acceleration was related to the serum antibody titer to RRV. RRV-infected NOD mice showed a possible trend toward increased insulitis development. Infected males showed increased CD8+ T-cell proportions in islets. Levels of β-cell major histocompatibility complex class I expression and islet tumor necrosis factor alpha mRNA were elevated in at least one model. NOD mouse exposure to mouse rotavirus in a natural experiment also accelerated diabetes. Thus, rotavirus infection after β-cell autoimmunity is established affects insulitis and exacerbates diabetes. A possible mechanism involves increased exposure of β cells to immune recognition and activation of autoreactive T cells by proinflammatory cytokines. The timing of infection relative to mouse age and degree of insulitis determines whether diabetes onset is delayed, unaltered, or accelerated.
PMCID: PMC2447104  PMID: 18417562
21.  Maternal consumption of canola oil suppressed mammary gland tumorigenesis in C3(1) TAg mice offspring 
BMC Cancer  2010;10:81.
Maternal consumption of a diet high in omega 6 polyunsaturated fats (n-6 PUFA) has been shown to increase risk whereas a diet high in omega 3 polyunsaturated fats (n-3 PUFA) from fish oil has been shown to decrease risk for mammary gland cancer in female offspring of rats. The aim of this study was to determine whether increasing n-3 PUFA and reducing n-6 PUFA by using canola oil instead of corn oil in the maternal diet might reduce the risk for breast cancer in female offspring.
Female SV 129 mice were divided into two groups and placed on diets containing either 10% w/w corn oil (which is 50% n-6 PUFA, control diet) or 10% w/w canola oil (which is 20% n-6 PUFA, 10% n-3 PUFA, test diet). After two weeks on the diets the females were bred with homozygous C3(1) TAg transgenic mice. Mother mice consumed the assigned diet throughout gestation and nursing of the offspring. After weaning, all female offspring were maintained on the control diet.
Compared to offspring of mothers fed the corn oil diet (CO/CO group), offspring of mothers fed the canola oil diet (CA/CO group) had significantly fewer mammary glands with tumors throughout the experiment. At 130 days of age, the CA/CO group had significantly fewer tumors per mouse (multiplicity); the tumor incidence (fraction of mice with any tumor) and the total tumor weight (per mouse that developed tumor) was less than one half that of the CO/CO group. At 170 days of age, the total tumor weight per mouse was significantly less in the CA/CO group and if a tumor developed the rate of tumor growth rate was half that of CO/CO group. These results indicate that maternal consumption of canola oil was associated with delayed appearance of mammary gland tumors and slowed growth of the tumors that developed.
Substituting canola oil for corn oil is an easy dietary change for people to make; such a change to the maternal diet may decrease risk for breast cancer in the daughter.
PMCID: PMC2846884  PMID: 20205934
22.  Development of inexpensive and globally available larval diet for rearing Anopheles stephensi (Diptera: Culicidae) mosquitoes 
Parasites & Vectors  2013;6:90.
Success of sterile insect technique (SIT) is dependent upon the mass rearing and release of quality insects, the production of which is directly related to the suitability of the diet ingredients used. Commercial diets used for small-scale culture of mosquitoes are expensive and thus not feasible for mass production.
A series of low cost globally available diet ingredients including, wheat, rice, corn, chickpeas, and beans along with liver, were provided to 4 h larvae (L1) of Anopheles stephensi (Liston) to see their effect on fitness parameters including larval duration, percent emergence, survival, adult wing size and female fecundity. Different quantities of the candidate diet ingredients were then mixed together to work out a combination diet with a balanced nutritive value that can be used for efficient rearing of the mosquito larvae at relatively lower costs.
Fastest larval and pupal development and highest survival rates were recorded using a combination diet of bean, corn, wheat, chickpea, rice, and bovine liver at 5 mg/day. The diet is easy to prepare, and much cheaper than the diets reported earlier. The estimated cost of the reported diet is 14.7 US$/ 1.3 kg for rearing one million larvae.
A combination diet with ingredients from cereals and legumes mixed with liver is a low cost balanced larval diet with the potential for use in both small scale laboratory rearing and mass production of Anopheles in SIT control programs.
PMCID: PMC3626612  PMID: 23570246
Anopheles; Mass rearing; SIT; Wolbachia; Larval diet; Combination diet; Cereals; Legumes
23.  Pancreatic Lymph Nodes Are Required for Priming of β Cell Reactive T Cells in NOD Mice 
Nonobese diabetic (NOD) mice develop spontaneous autoimmune diabetes that results from the destruction of insulin secreting β cells by diabetogenic T cells. The time and location of the encounter of autoantigen(s) by naive autoreactive T cells in normal NOD mice are still elusive. To address these issues, we analyzed diabetes development in mice whose spleen or pancreatic lymph nodes (panLNs) had been removed. Excision of panLNs (panLNx) at 3 wk protected mice against insulin autoantibodies (IAAs), insulitis, and diabetes development almost completely, but had no effect when performed at 10 wk. The protection afforded by panLNx at weaning was not due to modifications of the immune system, the absence of autoreactive T cells, or the increase in the potency of regulatory T cells. That panLNs are dispensable during adult life was confirmed by the capacity of 10-wk-old panLNx irradiated recipients to develop diabetes upon transfer of diabetogenic T cells. In contrast, splenectomy had no effect at any age. Partial excision of mesenteric LN at 3 wk did not prevent accelerated diabetes by cyclophosphamide as panLNx did. Thus, in normal NOD mice, autoreactive T cell initial priming occurs in LNs draining the target organ of the disease from 3 wk of age.
PMCID: PMC2193939  PMID: 12163565
insulin-dependent diabetes mellitus; lymph node excision; splenectomy; T cell activation; autoimmunity
24.  Pancreatic islet beta cells drive T cell-immune responses in the nonobese diabetic mouse model 
The Journal of Experimental Medicine  1995;181(5):1635-1642.
The role of autoantigens and that of target organs in which tissue lesions develop remains elusive in most spontaneous models of autoimmune diseases. Whether the presence of target autoantigens is required for the recruitment of autoreactive lymphocytes is unknown in most cases. To evaluate the importance of islet cells in the development of autoimmunity in the nonobese diabetic (NOD) mouse, we generated beta cell-deprived mice by injecting a high dose of alloxan, a toxic agent specific for beta cells. In contrast with spleen cells from 6-mo-old naive NOD mice which transfer diabetes in irradiated 8-mo- old male recipients, spleen cells from age-matched NOD mice which received a single injection of alloxan at 3 wk of age did not transfer diabetes. With the exception of the ability to transfer diabetes, beta cell-deprived NOD mice showed maintained immune competence. Furthermore, sialitis developed with the expected intensity and prevalence in beta cell-deprived mice. Already committed "diabetogenic" spleen cells collected from spontaneously diabetic mice also showed a reduced capacity to transfer diabetes after their removal from the diabetic mice and transient "parking" in beta cell-deprived mice. Taken together, our data bring evidence that involvement of autoreactive T cells detected by the capacity to transfer diabetes requires the presence of target beta cells.
PMCID: PMC2192008  PMID: 7722443
Groups of young albino mice were fed continuously four different types of diets and were compared with regard to (1) rate of weight gain; (2) resistance to experimental bacterial infections. The protein content of the four diets was as follows: (a) pellets: a minimum of 21 per cent "crude" protein (according to the manufacturer); (b) diet 20 C: 20 per cent casein; (c) diet 8 C: 8 per cent casein; (d) diet 8 C + AA: 8 per cent casein supplemented with 12 per cent of a mixture of essential amino acids. All diets provided an adequate supply of minerals and vitamins. They were administered ad lib. Three strains of pathogens virulent for mice were used for the infection tests, namely: Staphylococcus aureus, Mycobacterium fortuitum, and Mycobacterium tuberculosis bovis. The bacteria were injected by the intravenous route. The experimental regimens were begun at different times before infection, and were continued until death of the animal, or until termination of the experiment. It was found that mice on the 8 C diet exhibited much greater susceptibility to infection than did mice on the 20 C diet; mice receiving pellets were intermediate between these two groups. The infection-enhancing effect of the 8 C diet could be entirely corrected by amino acid supplementation (diet 8 C + AA). Indeed, mice fed diet 8 C + AA proved the most resistant to infection. The fact that animals fed pellets (which contain a minimum of 21 per cent protein) consistently died faster following infection than did animals fed diets 20 C or 8 C + AA suggests that qualitative characteristics of the protein in the regimen are as important as the quantity of protein fed in determining susceptibility to infection. The differences in susceptibility exhibited by the mice on the four experimental diets were the same whatever the species of bacterial pathogen used for the infection test, the size of the infective dose, and the duration of the disease. There was no apparent relation between the effects of the diets on the weight curves of the animals, and on resistance to infection. Mice on diet 8 C (which were most susceptible) gained weight as rapidly as those on 20 C and more rapidly than those fed 8 C + AA (which were most resistant). All the tests reported in the present paper were carried out with young mice, which were placed on experimental diets within 1 to 2 weeks after weaning. Preliminary experiments suggest that the relation between dietary factors and susceptibility to infection was more difficult to bring out in older animals. There was evidence also that this relation was most apparent during the first weeks that the animals were fed the experimental diets, and became less striking after several weeks.
PMCID: PMC2136890  PMID: 13549642

Results 1-25 (955911)