Search tips
Search criteria

Results 1-25 (847188)

Clipboard (0)

Related Articles

1.  Impaired perfusion after myocardial infarction is due to reperfusion-induced δPKC-mediated myocardial damage 
Cardiovascular research  2006;73(4):699-709.
To improve myocardial flow during reperfusion after acute myocardial infarction and to elucidate the molecular and cellular basis that impedes it. According to the AHA/ACC recommendation, an ideal reperfusion treatment in patients with acute myocardial infarction (AMI) should not only focus on restoring flow in the occluded artery, but should aim to reduce microvascular damage to improve blood flow in the infarcted myocardium.
Transgenic mouse hearts expressing the δPKC (protein kinase C) inhibitor, δV1-1, in their myocytes only were treated with or without the δPKC inhibitor after ischemia in an ex vivo AMI model. δV1-1 or vehicle was also delivered at reperfusion in an in vivo porcine model of AMI. Microvascular dysfunction was assessed by physiological and histological measurements.
δPKC inhibition in the endothelial cells improved myocardial perfusion in the transgenic mice. In the porcine in vivo AMI model, coronary flow reserve (CFR), which is impaired for 6 days following infarction, was improved immediately following a one-minute treatment at the end of the ischemic period with the δPKC-selective inhibitor, δV1-1 (∼250 ng/Kg), and was completely corrected by 24 hrs. Myocardial contrast echocardiography, electron microscopy studies, and TUNEL staining demonstrated δPKC-mediated microvascular damage. δPKC-induced preconditioning, which also reduces infarct size by >60%, did not improve microvascular function.
These data suggest that δPKC activation in the microvasculature impairs blood flow in the infarcted tissue after restoring flow in the occluded artery and that AMI patients with no-reflow may therefore benefit from treatment with a δPKC inhibitor given in conjunction with removal of the coronary occlusion.
PMCID: PMC2180159  PMID: 17234167
2.  Ischaemic preconditioning improves proteasomal activity and increases the degradation of δPKC during reperfusion 
Cardiovascular Research  2009;85(2):385-394.
The response of the myocardium to an ischaemic insult is regulated by two highly homologous protein kinase C (PKC) isozymes, δ and εPKC. Here, we determined the spatial and temporal relationships between these two isozymes in the context of ischaemia/reperfusion (I/R) and ischaemic preconditioning (IPC) to better understand their roles in cardioprotection.
Methods and results
Using an ex vivo rat model of myocardial infarction, we found that short bouts of ischaemia and reperfusion prior to the prolonged ischaemic event (IPC) diminished δPKC translocation by 3.8-fold and increased εPKC accumulation at mitochondria by 16-fold during reperfusion. In addition, total cellular levels of δPKC decreased by 60 ± 2.7% in response to IPC, whereas the levels of εPKC did not significantly change. Prolonged ischaemia induced a 48 ± 11% decline in the ATP-dependent proteasomal activity and increased the accumulation of misfolded proteins during reperfusion by 192 ± 32%; both of these events were completely prevented by IPC. Pharmacological inhibition of the proteasome or selective inhibition of εPKC during IPC restored δPKC levels at the mitochondria while decreasing εPKC levels, resulting in a loss of IPC-induced protection from I/R. Importantly, increased myocardial injury was the result, in part, of restoring a δPKC-mediated I/R pro-apoptotic phenotype by decreasing pro-survival signalling and increasing cytochrome c release into the cytosol.
Taken together, our findings indicate that IPC prevents I/R injury at reperfusion by protecting ATP-dependent 26S proteasomal function. This decreases the accumulation of the pro-apoptotic kinase, δPKC, at cardiac mitochondria, resulting in the accumulation of the pro-survival kinase, εPKC.
PMCID: PMC2797452  PMID: 19820255
Cardioprotection; Ischaemia/reperfusion; Apoptosis; Proteasome; PKC; Ischaemic preconditioning
3.  Activation of Protein Kinase C Delta following Cerebral Ischemia Leads to Release of Cytochrome C from the Mitochondria via Bad Pathway 
PLoS ONE  2011;6(7):e22057.
The release of cytochrome c from the mitochondria following cerebral ischemia is a key event leading to cell death. The goal of the present study was to determine the mechanisms involved in post-ischemic activation of protein kinase c delta (δPKC) that lead to cytochrome c release.
We used a rat model of cardiac arrest as an in vivo model, and an in vitro analog, oxygen glucose deprivation (OGD) in rat hippocampal synaptosomes. Cardiac arrest triggered translocation of δPKC to the mitochondrial fraction at 1 h reperfusion. In synaptosomes, the peptide inhibitor of δPKC blocked OGD-induced translocation to the mitochondria. We tested two potential pathways by which δPKC activation could lead to cytochrome c release: phosphorylation of phospholipid scramblase-3 (PLSCR3) and/or protein phosphatase 2A (PP2A). Cardiac arrest increased levels of phosphorlyated PLSCR3; however, inhibition of δPKC translocation failed to affect the OGD-induced increase in PLSCR3 in synaptosomal mitochondria suggesting the post-ischemic phosphorylation of PLSCR3 is not mediated by δPKC. Inhibition of either δPKC or PP2A decreased cytochrome c release from synaptosomal mitochondria. Cardiac arrest results in the dephosphorylation of Bad and Bax, both downstream targets of PP2A promoting apoptosis. Inhibition of δPKC or PP2A prevented OGD-induced Bad, but not Bax, dephosphorylation. To complement these studies, we used proteomics to identify novel mitochondrial substrates of δPKC.
We conclude that δPKC initiates cytochrome c release via phosphorylation of PP2A and subsequent dephosphorylation of Bad and identified δPKC, PP2A and additional mitochondrial proteins as potential therapeutic targets for ischemic neuroprotection.
PMCID: PMC3137627  PMID: 21789211
4.  δPKC inhibition or εPKC activation repairs endothelial vascular dysfunction by regulating eNOS post-translational modification 
The balance between endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) and reactive oxygen species (ROS) production determines endothelial-mediated vascular homeostasis. Activation of protein kinase C (PKC) has been linked to imbalance of the eNOS/ROS system, which leads to endothelial dysfunction. We previously found that selective inhibition of delta PKC (δPKC) or selective activation of epsilon PKC (εPKC) reduces oxidative damage in the heart following myocardial infarction. In this study we determined the effect of these PKC isozymes in the survival of coronary endothelial cells (CVEC). We demonstrate here that serum deprivation of CVEC increased eNOS-mediated ROS levels, activated caspase-3, reduced Akt phosphorylation and cell number. Treatment with either the δPKC inhibitor, δV1-1, or the εPKC activator, ψεRACK, inhibited these effects, restoring cell survival through inhibition of eNOS activity. The decrease in eNOS activity coincided with specific de-phosphorylation of eNOS at Ser1179, and eNOS phosphorylation at Thr497 and Ser116. Furthermore, δV1-1 or ψεRACK induced physical association of eNOS with caveolin-1, an additional marker of eNOS inhibition, and restored Akt activation by inhibiting its nitration. Together our data demonstrate that 1) in endothelial dysfunction, ROS and reactive nitrogen species (RNS) formation result from uncontrolled eNOS activity mediated by activation of δPKC or inhibition of εPKC 2) inhibition of δPKC or activation of εePKC correct the perturbed phosphorylation state of eNOS, thus increasing cell survival. Since endothelial health ensures better tissue perfusion and oxygenation, treatment with a δPKC inhibitor and/or an εPKC activator in diseases of endothelial dysfunction should be considered.
PMCID: PMC3760592  PMID: 19913548
5.  Subtype-Specific Translocation of the δ Subtype of Protein Kinase C and Its Activation by Tyrosine Phosphorylation Induced by Ceramide in HeLa Cells 
Molecular and Cellular Biology  2001;21(5):1769-1783.
We investigated the functional roles of ceramide, an intracellular lipid mediator, in cell signaling pathways by monitoring the intracellular movement of protein kinase C (PKC) subtypes fused to green fluorescent protein (GFP) in HeLa living cells. C2-ceramide but not C2-dihydroceramide induced translocation of δPKC-GFP to the Golgi complex, while αPKC- and ζPKC-GFP did not respond to ceramide. The Golgi-associated δPKC-GFP induced by ceramide was further translocated to the plasma membrane by phorbol ester treatment. Ceramide itself accumulated to the Golgi complex where δPKC was translocated by ceramide. Gamma interferon also induced the δPKC-specific translocation from the cytoplasm to the Golgi complex via the activation of Janus kinase and Mg2+-dependent neutral sphingomyelinase. Photobleaching studies showed that ceramide does not evoke tight binding of δPKC-GFP to the Golgi complex but induces the continuous association and dissociation of δPKC with the Golgi complex. Ceramide inhibited the kinase activity of δPKC-GFP in the presence of phosphatidylserine and diolein in vitro, while the kinase activity of δPKC-GFP immunoprecipitated from ceramide-treated cells was increased. The immunoprecipitated δPKC-GFP was tyrosine phosphorylated after ceramide treatment. Tyrosine kinase inhibitor abolished the ceramide-induced activation and tyrosine phosphorylation of δPKC-GFP. These results suggested that gamma interferon stimulation followed by ceramide generation through Mg2+-dependent sphingomyelinase induced δPKC-specific translocation to the Golgi complex and that translocation results in δPKC activation through tyrosine phosphorylation of the enzyme.
PMCID: PMC86731  PMID: 11238914
6.  Secretome of apoptotic peripheral blood cells (APOSEC) attenuates microvascular obstruction in a porcine closed chest reperfused acute myocardial infarction model: role of platelet aggregation and vasodilation 
Basic Research in Cardiology  2012;107(5):292.
Although epicardial blood flow can be restored by an early intervention in most cases, a lack of adequate reperfusion at the microvascular level is often a limiting prognostic factor of acute myocardial infarction (AMI). Our group has recently found that paracrine factors secreted from apoptotic peripheral blood mononuclear cells (APOSEC) attenuate the extent of myocardial injury. The aim of this study was to determine the influence of APOSEC on microvascular obstruction (MVO) in a porcine AMI model. A single dose of APOSEC was intravenously injected in a closed chest reperfused infarction model. MVO was determined by magnetic resonance imaging and cardiac catheterization. Role of platelet function and vasodilation were monitored by means of ELISA, flow cytometry, aggregometry, western blot and myographic experiments in vitro and in vivo. Treatment of AMI with APOSEC resulted in a significant reduction of MVO. Platelet activation markers were reduced in plasma samples obtained during AMI, suggesting an anti-aggregatory capacity of APOSEC. This finding was confirmed by in vitro tests showing that activation and aggregation of both porcine and human platelets were significantly impaired by co-incubation with APOSEC, paralleled by vasodilator-stimulated phosphoprotein (VASP)-mediated inhibition of platelets. In addition, APOSEC evidenced a significant vasodilatory capacity on coronary arteries via p-eNOS and iNOS activation. Our data give first evidence that APOSEC reduces the extent of MVO during AMI, and suggest that modulation of platelet activation and vasodilation in the initial phase after myocardial infarction contributes to the improved long-term outcome in APOSEC treated animals.
Electronic supplementary material
The online version of this article (doi:10.1007/s00395-012-0292-2) contains supplementary material, which is available to authorized users.
PMCID: PMC3442164  PMID: 22899170
Microvascular obstruction; Acute myocardial infarction; Platelet function; Vasodilation; No-reflow; PBMC; Paracrine factors
7.  Activating δPKC antagonizes the protective effect of ERK1/2 inhibition against stroke in rats 
Brain research  2008;1251:256-261.
Two pathways that have been shown to mediate cerebral ischemic damage are the MEK/ERK cascade and the pro-apoptotic δPKC pathway. We investigated the relationship between these pathways in a rat model of focal ischemia by observing and modifying the activation state of each pathway. The ERK1/2 inhibitor, U0126, injected at ischemia onset, attenuated the increase in phosphorylated ERK1/2 (P-ERK1/2) after reperfusion. The δPKC inhibitor, δV1-1, delivered at reperfusion, did not significantly change P-ERK1/2 levels. In contrast, the δPKC activator, ψδRACK, injected at reperfusion, reduced ERK1/2 phosphorylation measured 4 h after reperfusion. Additionally, U0126 pretreatment at ischemia onset reduced infarct size compared with vehicle, but U0126 injected at the onset of reperfusion had no protection. Finally, combination of U0126 injection at ischemia onset plus δV1-1 injection at reperfusion further reduced infarct size, while combination of U0126 delivered at ischemia onset with ψδRACK injected at reperfusion increased infarct size compared with U0126 alone. In conclusion, we find that inhibiting both the MEK/ERK and the δPKC pathways offers greater protection than either alone, indicating they likely act independently.
PMCID: PMC2746701  PMID: 19063870
Cerebral ischemia; MEK/ERK cascade; δPKC; ERK1/2
8.  Reperfusion after acute coronary occlusion in dogs impairs endothelium-dependent relaxation to acetylcholine and augments contractile reactivity in vitro. 
Journal of Clinical Investigation  1987;79(1):265-274.
Endothelial injury may contribute to the augmented coronary vascular tone seen in myocardial ischemia by impairing endothelial production or release of vasodilators. In vitro reactivity of arterial rings was studied after 60 min of coronary occlusion and 60 min of reperfusion in anesthetized dogs. Ischemia without reperfusion blunted contractile reactivity to potassium chloride (KCl), whereas ischemia plus reperfusion augmented contractile responses to both KCl and ergonovine. The response to acetylcholine, an endothelium-dependent vasodilator, was abolished in reperfused arteries, whereas the response to nitroprusside, an endothelium-independent vasodilator, was intact. Verapamil pretreatment restored KCl contractile responses to normal in reperfused coronary rings and partially restored endothelium-dependent relaxation. Electron microscopy revealed a nondenuding epicardial coronary endothelial injury in reperfused arteries. These data support the hypothesis that reperfusion of ischemic myocardium augments reactivity to vasoconstrictor agents by causing endothelial cell damage, excessive calcium influx, and loss of modulating vasodilator function.
PMCID: PMC424037  PMID: 3793926
9.  Derangements of Post-ischemic Cerebral Blood Flow by Protein Kinase C Delta 
Neuroscience  2010;171(2):566-576.
Cerebral ischemia causes blood flow derangements characterized by hyperemia (increased cerebral blood flow, CBF) and subsequent hypoperfusion (decreased CBF). We previously demonstrated that protein kinase C delta (δPKC) plays an important role in hippocampal neuronal death after ischemia. However, whether part of this protection is due to the role of δPKC on CBF following cerebral ischemia remains poorly understood. We hypothesized that δPKC exacerbates hyperemia and subsequent hypoperfusion resulting in CBF derangements following ischemia. Sprague-Dawley (SD) rats pretreated with a δPKC specific inhibitor (δV1-1, 0.5 mg/kg) exhibited attenuation of hyperemia and latent hypoperfusion characterized by vasoconstriction followed by vasodilation of microvessels after 2-vessel occlusion plus hypotension measured by 2-photon microscopy. In an asphyxial cardiac arrest model (ACA), SD rats treated with δV1-1 (pre- and post-ischemia) exhibited improved perfusion after 24 hrs and less hippocampal CA1 neuronal death 7 days after ACA. These results suggest possible therapeutic potential of δPKC in modulating CBF and neuronal damage after cerebral ischemia.
PMCID: PMC2981031  PMID: 20813167
Protein Kinase C Delta; Asphyxial Cardiac Arrest; Neuroprotection; Two-vessel Occlusion; Two-photon Microscopy; Cerebral Ischemia
10.  Sustained pharmacological inhibition of δPKC protects against hypertensive encephalopathy through prevention of blood-brain barrier breakdown in rats 
Hypertensive encephalopathy is a potentially fatal condition associated with cerebral edema and the breakdown of the blood-brain barrier (BBB). The molecular pathways leading to this condition, however, are unknown. We determined the role of δPKC, which is thought to regulate microvascular permeability, in the development of hypertensive encephalopathy using δV1-1 — a selective peptide inhibitor of δPKC. As a model of hypertensive encephalopathy, Dahl salt-sensitive rats were fed an 8% high-salt diet from 6 weeks of age and then were infused s.c. with saline, control TAT peptide, or δV1-1 using osmotic minipumps. The mortality rate and the behavioral symptoms of hypertensive encephalopathy decreased significantly in the δV1-1–treated group relative to the control-treated group, and BBB permeability was reduced by more than 60%. Treatment with δV1-1 was also associated with decreased δPKC accumulation in capillary endothelial cells and in the endfeet of capillary astrocytes, which suggests decreased microvasculature disruption. Treatment with δV1-1 prevented hypertension-induced tight junction disruption associated with BBB breakdown, which suggests that δPKC may specifically act to dysregulate tight junction components. Together, these results suggest that δPKC plays a role in the development of hypertension-induced encephalopathy and may be a therapeutic target for the prevention of BBB disruption.
PMCID: PMC2147668  PMID: 18097471
11.  δPKC mediates microcerebrovascular dysfunction in acute ischemia and in chronic hypertensive stress in vivo 
Brain research  2007;1144:146-155.
Maintaining cerebrovascular function is a priority for reducing damage following acute ischemic events such as stroke, and under chronic stress in diseases such as hypertension. Ischemic episodes lead to endothelial cell damage, deleterious inflammatory responses, and altered neuronal and astrocyte regulation of vascular function. These, in turn, can lead to impaired cerebral blood flow and compromised blood–brain barrier function, promoting microvascular collapse, edema, hemorrhagic transformation, and worsened neurological recovery. Multiple studies demonstrate that protein kinase C (PKC), a widely expressed serine/threonine kinase, is involved in mediating arterial tone and microvascular function. However, there is no clear understanding about the role of individual PKC isozymes. We show that intraperitoneal injection of δV1-1–TAT47–57 (0.2 mg/kg in 1 mL), an isozymespecific peptide inhibitor of δPKC, improved microvascular pathology, increased the number of patent microvessels by 92% compared to control-treated animals, and increased cerebral blood flow by 26% following acute focal ischemia induced by middle cerebral artery occlusion in normotensive rats. In addition, acute delivery of δV1-1–TAT47–57 in hypertensive Dahl rats increased cerebral blood flow by 12%, and sustained delivery δV1-1–TAT47–57 (5 uL/h, 1 mM), reduced infarct size by 25% following an acute stroke induced by MCA occlusion for 90 min. Together, these findings demonstrate that δPKC is an important therapeutic target for protection of microvascular structure and function under both acute and chronic conditions of cerebrovascular stress.
PMCID: PMC3742377  PMID: 17350602
Cerebral blood flow; Hypertension; Microvasculature; Protein kinase C; Stroke; Vasculature
12.  The Akt signaling pathway contributes to postconditioning’s protection against stroke; the protection is associated with the MAPK and PKC pathways 
Journal of neurochemistry  2008;105(3):943-955.
We previously reported that ischemic postconditioning with a series of mechanical interruptions of reperfusion reduced infarct volume 2 days after focal ischemia in rats. Here, we extend this data by examining long-term protection and exploring underlying mechanisms involving the Akt, mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) signaling pathways. Post-conditioning reduced infarct and improved behavioral function assessed 30 days after stroke. Additionally, postconditioning increased levels of phosphorylated Akt (Ser473) as measured by western blot and Akt activity as measured by an in vitro kinase assay. Inhibiting Akt activity by a phosphoinositide 3-kinase inhibitor, LY294002, enlarged infarct in postconditioned rats. Postconditioning did not affect protein levels of phosphorylated-phosphatase and tensin homologue deleted on chromosome 10 or -phosphoinositide-dependent protein kinase-1 (molecules upstream of Akt) but did inhibit an increase in phosphorylated-glycogen synthase kinase 3β, an Akt effector. In addition, postconditioning blocked β-catenin phosphorylation subsequent to glycogen synthase kinase, but had no effect on total or non-phosphorylated active β-catenin protein levels. Furthermore, postconditioning inhibited increases in the amount of phosphorylated-c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2 in the MAPK pathway. Finally, postconditioning blocked death-promoting δPKC cleavage and attenuated reduction in phosphorylation of survival-promoting εPKC. In conclusion, our data suggest that postconditioning provides long-term protection against stroke in rats. Additionally, we found that Akt activity contributes to postconditioning’s protection; furthermore, increases in εPKC activity, a survival-promoting pathway, and reductions in MAPK and δPKC activity; two putative death-promoting pathways correlate with postconditioning’s protection.
PMCID: PMC2746404  PMID: 18182053
Akt; cerebral ischemia; mitogen-activated protein kinase; postconditioning; protein kinase C; β-catenin
13.  Differential Effects of Delta and Epsilon Protein Kinase C in Modulation of Postischemic Cerebral Blood Flow 
Cerebral ischemia causes cerebral blood flow (CBF) derangements resulting in neuronal damage by enhanced protein kinase C delta (δPKC) levels leading to hippocampal and cortical neuronal death after ischemia. Contrarily, activation of εPKC mediates ischemic tolerance by decreasing vascular tone providing neuroprotection. However, whether part of this protection is due to the role of differential isozymes of PKCs on CBF following cerebral ischemia remains poorly understood. Rats pretreated with a δPKC specific inhibitor (δV1-1, 0.5 mg/kg) exhibited attenuation of hyperemia and latent hypoperfusion characterized by vasoconstriction followed by vasodilation of microvessels after two-vessel occlusion plus hypotension. In an asphyxial cardiac arrest (ACA) model, rats treated with δ V1-1 (pre- and postischemia) exhibited improved perfusion after 24 h and less hippocampal CA1 and cortical neuronal death 7 days after ACA. On the contrary, εPKC-selective peptide activator, conferred neuroprotection in the CA1 region of the rat hippocampus 30 min before induction of global cerebral ischemia and decreased regional CBF during the reperfusion phase. These opposing effects of δ v. εPKC suggest a possible therapeutic potential by modulating CBF preventing neuronal damage after cerebral ischemia.
PMCID: PMC4086166  PMID: 22259083
14.  C-Reactive Protein Impairs Coronary Arteriolar Dilation to Prostacyclin Synthase Activation: Role of Peroxynitrite 
Endothelium-derived vasodilators, i.e., nitric oxide (NO), prostacyclin (PGI2) and prostaglandin E2 (PGE2), play important roles in maintaining cardiovascular homeostasis. C-reactive protein (CRP), a biomarker of inflammation and cardiovascular disease, has been shown to inhibit NO-mediated vasodilation. The goal of this study was to determine whether CRP also affects endothelial arachidonic acid (AA)-prostanoid pathways for vasomotor regulation. Porcine coronary arterioles were isolated and pressurized for vasomotor study, as well as for molecular and biochemical analysis. AA elicited endothelium-dependent vasodilation and PGI2 release. PGI2 synthase (PGI2-S) inhibitor trans-2-phenyl cyclopropylamine blocked vasodilation to AA but not to serotonin (endothelium-dependent NO-mediated vasodilator). Intraluminal administration of a pathophysiological level of CRP (7 μg/mL, 60 minutes) attenuated vasodilations to serotonin and AA but not to nitroprusside, exogenous PGI2, or hydrogen peroxide (endothelium-dependent PGE2 activator). CRP also reduced basal NO production, caused tyrosine nitration of endothelial PGI2-S, and inhibited AA-stimulated PGI2 release from arterioles. Peroxynitrite scavenger urate failed to restore serotonin dilation, but preserved AA-stimulated PGI2 release/dilation and prevented PGI2-S nitration. NO synthase inhibitor L-NAME and superoxide scavenger TEMPOL also protected AA-induced vasodilation. Collectively, our results suggest that CRP stimulates superoxide production and the subsequent formation of peroxynitrite from basal released NO compromises PGI2 synthesis, and thus endothelium-dependent PGI2-mediated dilation, by inhibiting PGI2-S activity through tyrosine nitration. By impairing PGI2-S function, and thus PGI2 release, CRP could promote endothelial dysfunction and participate in the development of coronary artery disease.
PMCID: PMC2703687  PMID: 19410579
prostaglandins; microcirculation; free radicals; vasodilation
15.  Epicardial perivascular adipose-derived leptin exacerbates coronary endothelial dysfunction in metabolic syndrome via a PKC-β pathway 
Factors released by perivascular adipose tissue (PVAT) disrupt coronary endothelial function via phosphorylation of eNOS by PKC-β. However, our understanding of how PVAT potentially contributes to coronary disease as a complication of obesity/metabolic syndrome (MetS) remains limited. The current study investigated whether PVAT derived leptin impairs coronary vascular function via PKC-β in MetS.
Methods and Results
Coronary arteries with and without PVAT were collected from lean or MetS Ossabaw miniature swine for isometric tension studies. Endothelial-dependent vasodilation to bradykinin was significantly reduced in MetS. PVAT did not affect bradykinin-mediated dilation in arteries from lean swine, but significantly exacerbated endothelial dysfunction in arteries from MetS swine. PVAT-induced impairment was reversed by inhibition of either PKC-β with ruboxistaurin or leptin receptor signaling with a recombinant, pegylated leptin antagonist. Western and immunohistochemical analysis demonstrated increased PVAT-derived leptin and coronary leptin receptor (ObR) density with MetS. Coronary PKC-β activity was increased in both MetS arteries exposed to PVAT and lean arteries exposed to leptin. Finally, leptin-induced endothelial dysfunction was reversed by ruboxistaurin.
Increases in epicardial PVAT leptin exacerbate coronary endothelial dysfunction in MetS via a PKC-β-dependent pathway. These findings implicate PVAT-derived leptin as a potential contributor to coronary atherogenesis in MetS.
PMCID: PMC2924445  PMID: 20576943
epicardial perivascular adipose tissue; obesity; coronary artery disease; endothelium
16.  In Vivo Human Lower Extremity Saphenous Vein Bypass Grafts Manifest Flow Mediated Vasodilation 
As in arteries, venous endothelium modulates vessel homeostasis and tone. The effect of an arterialized environment on venous endothelial function remains poorly understood. In particular, regulation of saphenous vein graft (SVG) blood flow and lumen caliber remains undefined. We hypothesized that mature SVGs would exhibit endothelium-dependent, flow-mediated vasodilation. We further hypothesized that endothelium-derived nitric oxide (NO) was an important mediator of vascular tone.
Patients with femoral to popliteal artery SVGs that had maintained primary patency and were at least one year from surgery were enrolled. High-resolution, B-mode ultrasound was used to measure vein graft diameter before and one minute after reactive hyperemia (RH) to determine flow-mediated vasodilation (FMD). RH was created through application of 220 mm Hg to the calf for 5 minutes with a sphygmomanometric cuff. After a 10 minute recovery period, nitroglycerin-mediated, endothelium-independent vasodilation was measured 3 minutes after administration of nitroglycerin 0.4 mg SL. Brachial artery FMD was also measured. L-NG monomethyl arginine (L-NMMA; 1 mg/kg infusion over ten minutes) was used in a subset of patients (N=6) to competitively inhibit endothelial nitric oxide synthase.
Nineteen subjects were enrolled. The median age of the SVGs was 34.6 (21.0–49.7) months. SVG flow-mediated, endothelium-dependent vasodilation was measured at 5.28% ± 3.1% mean change in lumen diameter (range 1.99% – 9.36%, p<.0001 for diameter change). Nitroglycerin-mediated, vasodilation was 3.7% ± 1.0%, (range .16% – 10.04%, P<.005). Intravenous administration of L-NMMA abolished SVG FMD (5.7 ± 1.4% before L-NMMA vs 0.01 ± 0.01% during L-NMMA infusion, p=.0088) and attenuated brachial artery FMD (7.54% ± 1.0% vs 5.7± 1.4; p=.05).
SVGs manifest flow-mediated, endothelium-dependent and nitroglycerin-mediated, endothelium-independent vasodilation. Vein graft endothelium-dependent FMD is likely mediated by NO. Further investigation will be required to determine the role of endothelial function in vein graft patency.
PMCID: PMC2783575  PMID: 19679424
17.  Acute Retinal Ischemia Inhibits Endothelium-Dependent Nitric Oxide–Mediated Dilation of Retinal Arterioles via Enhanced Superoxide Production 
In this report it is demonstrated that retinal ischemia elicited by 90-minute elevation of intraocular pressure impairs endothelium-dependent nitric oxide-mediated dilation of isolated porcine retinal arterioles. The inhibitory mechanism of retinal ischemia involves enhanced levels of superoxide in arterioles.
Because retinal vascular disease is associated with ischemia and increased oxidative stress, the vasodilator function of retinal arterioles was examined after retinal ischemia induced by elevated intraocular pressure (IOP). The role of superoxide anions in the development of vascular dysfunction was assessed.
IOP was increased and maintained at 80 to 90 mm Hg for 30, 60, or 90 minutes by infusing saline into the anterior chamber of a porcine eye. The fellow eye with normal IOP (10–20 mm Hg) served as control. In some pigs, superoxide dismutase mimetic TEMPOL (1 mM) or vehicle (saline) was injected intravitreally before IOP elevation. After enucleation, retinal arterioles were isolated and pressurized without flow for functional analysis by recording diameter changes using videomicroscopic techniques. Dihydroethidium (DHE) was used to detect superoxide production in isolated retinal arterioles.
Isolated retinal arterioles developed stable basal tone and the vasodilations to endothelium-dependent nitric oxide (NO)-mediated agonists bradykinin and L-lactate were significantly reduced only by 90 minutes of ischemia. However, vasodilation to endothelium-independent NO donor sodium nitroprusside was unaffected after all time periods of ischemia. DHE staining showed that 90 minutes of ischemia significantly increased superoxide levels in retinal arterioles. Intravitreal injection of membrane-permeable radical scavenger but not vehicle before ischemia prevented elevation of vascular superoxide and preserved bradykinin-induced dilation.
Endothelium-dependent NO-mediated dilation of retinal arterioles is impaired by 90 minutes of ischemia induced by elevated IOP. The inhibitory effect appears to be mediated by the alteration of NO signaling via vascular superoxide.
PMCID: PMC3292365  PMID: 22110081
18.  Evaluation of coronary microvascular function in patients with vasospastic angina 
AIM: To investigate endothelium-dependent and -independent coronary microvascular functions in patients with vasospastic angina (VSA).
METHODS: Thirty-six patients with VSA (30 men and 6 women; mean age, 58 years) were enrolled in this study. VSA was defined as ≥ 90% narrowing of the epicardial coronary arteries on angiography performed during a spasm provocation test, presence of chest pain, and/or ST-segment deviation on an electrocardiogram (ECG). Patients (n = 36) with negative spasm provocation test results and those matched for age and sex were enrolled as a control group (nonVSA group). Low-dose acetylcholine (ACh; 3 μg/min) was infused into the left coronary ostium for 2 min during the spasm provocation test. Following the spasm provocation test, nitroglycerin (0.2 mg) was administered intracoronally. Coronary blood flow (was calculated from quantitative angiography and Doppler flow velocity measurements, and the coronary flow reserve was calculated as the ratio of coronary flow velocity after injection of adenosine triphosphate (20 μg) to the baseline value. Changes in the coronary artery diameter in response to ACh and nitroglycerin infusion were expressed as percentage changes from baseline measurements.
RESULTS: Body mass index was significantly lower in the VSA group than in the nonVSA group. The frequency of conventional coronary risk factors and the rate of statin use were similar between the 2 groups. The left ventricular ejection fraction as evaluated by echocardiography was similar between the 2 groups. The duration of angina was 9 ± 2 mo. The results of blood chemistry analysis were similar between the 2 groups. Low-dose ACh did not cause coronary spasms. The change in coronary artery diameter in response to ACh was lower in the VSA group (-1.4% ± 9.3%) than in the nonVSA group (3.1% ± 6.5%, P < 0.05), whereas nitroglycerin-induced coronary artery dilatation and coronary blood flow increase in response to ACh or coronary flow reserve did not differ significantly between the 2 groups.
CONCLUSION: These findings suggest that microvascular coronary function may be preserved despite endothelial dysfunction of the epicardial coronary arteries in patients with VSA.
PMCID: PMC3565162  PMID: 23390571
Coronary spasm; Endothelial function; Acetylcholine
19.  Correlation of epicardial and systemic flow-mediated vasodilation in patients with atypical angina but no evidence of atherosclerotic disease 
The Canadian Journal of Cardiology  2007;23(13):1054-1060.
Atypical angina represents a diagnostic challenge and can be observed in the absence of significant coronary atherosclerosis. Endothelial dysfunction is a relevant marker of prognosis, considering cardiovascular events. The aim of the present study was to compare flow-mediated vasodilation (FMD) in systemic peripheral and epicardial coronary arteries. If noninvasive measurements of FMD in systemic arteries correlated with invasive measurements of coronary FMD, this may facilitate diagnostic approaches and determination of prognosis in patients with atypical angina in the future. Patients with atherosclerosis were excluded, because structural changes of coronary vessels may impair adequate comparison.
Endothelial function (ENF) of epicardial and systemic arteries was examined in 61 consecutive patients with atypical angina in whom significant atherosclerosis was excluded by coronary angiography. ENF of the epicardial arteries was examined during heart catheterization, measuring diameter changes of the proximal left anterior descending coronary artery (LAD) in response to reactive hyperemia, induced by locally administered adenosine via infusion catheter to the mid-segment of the LAD (coronary FMD [FMDc]). ENF of the radial artery was examined with high-resolution ultrasound, measuring peripheral FMD (FMDp) in response to reactive hyperemia induced by distal cuff occlusion. Endothelium-independent vasoreactivity to glycerol trinitrate was assessed.
In patients with atypical angina in the absence of atherosclerosis, there was a significant correlation in ENF between coronary and systemic arteries (r=0.437; P=0.001). The underlying disease was myocardial inflammation (Inf) in 48 patients, in whom the mean (± SD) ENF of epicardial (FMDc-Inf 3.40±5.55%) and systemic (FMDp-Inf 3.69±2.93%) arteries was significantly impaired (P<0.001), compared with 13 control (Co) patients who had normal myocardial biopsies (FMDc-Co 14.51±8.62%; FMDp-Co 7.69±3.42%). FMD of coronary (r=–0.353; P=0.005) and systemic (r=–0.542; P<0.001) arteries correlated significantly with myocardial inflammation and endothelial activation.
There was a significant correlation in FMD between coronary and systemic arteries in patients with atypical angina but without significant atherosclerosis. Inflammatory processes are associated with endothelial dysfunction of both vascular regions.
PMCID: PMC2651929  PMID: 17985007
Cardiomyopathy; Coronary circulation; Endothelium-dependent vasodilation; Flow-mediated vasodilation; Inflammation; Peripheral circulation
20.  Effect of Arginase Inhibition on Ischemia-Reperfusion Injury in Patients with Coronary Artery Disease with and without Diabetes Mellitus 
PLoS ONE  2014;9(7):e103260.
Arginase competes with nitric oxide synthase for their common substrate L-arginine. Up-regulation of arginase in coronary artery disease (CAD) and diabetes mellitus may reduce nitric oxide bioavailability contributing to endothelial dysfunction and ischemia-reperfusion injury. Arginase inhibition reduces infarct size in animal models. Therefore the aim of the current study was to investigate if arginase inhibition protects from endothelial dysfunction induced by ischemia-reperfusion in patients with CAD with or without type 2 diabetes (Clinical trial registration number: NCT02009527).
Male patients with CAD (n = 12) or CAD + type 2 diabetes (n = 12), were included in this cross-over study with blinded evaluation. Endothelium-dependent vasodilatation was assessed by flow-mediated dilatation (FMD) of the radial artery before and after 20 min ischemia-reperfusion during intra-arterial infusion of the arginase inhibitor (Nω-hydroxy-nor-L-arginine, 0.1 mg/min) or saline.
The forearm ischemia-reperfusion was well tolerated. Endothelium-independent vasodilatation was assessed by sublingual nitroglycerin. Ischemia-reperfusion decreased FMD in patients with CAD from 12.7±5.2% to 7.9±4.0% during saline administration (P<0.05). Nω-hydroxy-nor-L-arginine administration prevented the decrease in FMD in the CAD group (10.3±4.3% at baseline vs. 11.5±3.6% at reperfusion). Ischemia-reperfusion did not significantly reduce FMD in patients with CAD + type 2 diabetes. However, FMD at reperfusion was higher following nor-NOHA than following saline administration in both groups (P<0.01). Endothelium-independent vasodilatation did not differ between the occasions.
Inhibition of arginase protects against endothelial dysfunction caused by ischemia-reperfusion in patients with CAD. Arginase inhibition may thereby be a promising therapeutic strategy in the treatment of ischemia-reperfusion injury.
PMCID: PMC4114552  PMID: 25072937
21.  δPKC Participates in the Endoplasmic Reticulum Stress-Induced Response in Cultured Cardiac Myocytes and Ischemic Heart 
The cellular response to excessive endoplasmic reticulum (ER) stress includes the activation of signaling pathways, which lead to apoptotic cell death. Here we show that treatment of cultured cardiac myocytes with tunicamycin, an agent that induces ER stress, causes the rapid translocation of δPKC to the ER. We further demonstrate that inhibition of δPKC using the δPKC-specific antagonist peptide, δV1-1, reduces tunicamycin-induced apoptotic cell death, and inhibits expression of specific ER stress response markers such as CHOP, GRP78 and phosphorylation of JNK. The physiological importance of δPKC in this event is further supported by our findings that the ER stress response is also induced in hearts subjected to ischemia and reperfusion injury and that this response also involves δPKC translocation to the ER. We found that the levels of the ER chaperone, GRP78, the spliced XBP-1 and the phosphorylation of JNK are all increased following ischemia and reperfusion and that δPKC inhibition by δV1-1 blocks these events. Therefore, ischemia-reperfusion injury induces ER stress in the myocardium in a mechanism that requires δPKC activity. Taken together, our data show for the first time that δPKC activation plays a critical role in the ER stress-mediated response and the resultant cell death.
PMCID: PMC2185772  PMID: 17825316
22.  Antibody to CD-18 exerts endothelial and cardiac protective effects in myocardial ischemia and reperfusion. 
Journal of Clinical Investigation  1991;88(4):1237-1243.
We studied the effects of MAbR15.7, an antibody directed against the common beta-chain (CD-18) of a family of neutrophil adherence glycoproteins, on endothelial dysfunction and myocardial injury in a model of myocardial ischemia and reperfusion in cats. Pentobarbital-anesthetized cats were subjected to 1.5 h occlusion of the left anterior descending coronary artery (LAD) and 4.5 h of reperfusion. MI + R resulted in severe myocardial injury and endothelial dysfunction, including significant elevation of plasma creatine kinase (CK) activity, marked myocardial necrosis, high cardiac myeloperoxidase (MPO) activity in ischemic cardiac tissue, and loss of response of LAD coronary rings to the endothelium-dependent vasodilators, acetylcholine (ACh) and A-23187. In contrast, MAbR15.7-treated cats exhibited a lower plasma CK activity at every time point observed after 2 h, a reduced area of cardiac necrosis (2 +/- 1 vs. 30.8 +/- 2.5% of area-at-risk, P less than 0.001), lower MPO activity in the ischemic region (P less than 0.01), and significantly preserved vasorelaxant responses of LAD coronary rings to endothelium-dependent vasodilators, ACh (P less than 0.001), and A-23187 (P less than 0.001). These results indicate that myocardial ischemia and reperfusion induces significant myocardial injury and endothelial dysfunction in the cat involving a CD18-dependent neutrophil adherence mechanism. Inhibition of neutrophil adherence to the endothelium exerts significant protective effects in this model of reperfusion injury.
PMCID: PMC295592  PMID: 1680879
23.  Effects of nitroglycerin on transmural myocardial blood flow in the unanesthetized dog. 
Journal of Clinical Investigation  1975;55(6):1219-1228.
This study was designed to determin the effect of nitroglycerin upon transmural distribution of myocardial blood flow in the awake dog during normal conditions and in the presence of ischemia-induced coronary vasodilation. Studies were performed in chronically prepared dogs with electromagnetic flowmeters and hydraulic occluders on the left circumflex coronary artery. Regional myocardial blood flow was estimated by using radionuclide-labeled microspheres, 7-10 mum in diameter, injected into the left atrium. During control conditions endocardial flow (0.86 plus or minus SEM 0.05 ml/min per g) slightly exceeded epicardial flow (0.72 plus or minus 0.03 ml/min per g, P smaller than 0.05), and this distribution of flow was not significantly altered by nitroglycerin. After a 5-s coronary artery occlusion, reactive hyperemia occurred with excess inflow of arterial blood effecting 360 plus or minus 15% repayment of the blood flow debt incurred during occlusion. When arterial inflow was limited to the preocclusion rate during coronary vasodilation after a 5-s total coronary artery occlusion, flow to the subepicardial myocardium was increased at the expense of underperfusion of the subendocardial myocardium, and the delayed reactive hyperemia was markedly augmented (mean blood flow debt repayment =775plus or minus 105%, P smaller than 0.01). Tese data suggested that subendocardial underperfusion during the interval of coronary vasodilation in the presence of a flow-limiting proximal coronary artery stenosis caused continuing subendocardial ischemia which resulted in augmentation of the reactive hyperemic response. In this experimental model both the redistribution of myocardial blood flow which occurred during an interval of restricted arterial inflow after a 5-s coronary artery occlusion and augmentation of the subsequent reactive hyperemic response were returned toward normal by nitroglycerin. This effect of nitroglycerin may have resulted, at least in part, from its ability to vasodilate the penetrating arteries which deliver blood from the epicardial surface to the subendocardium.
PMCID: PMC301876  PMID: 805796
24.  Ischemia-Reperfusion Increases Transfection Efficiency of Intracoronary Adenovirus Type 5 in Pig Heart In Situ 
Human Gene Therapy Methods  2012;23(3):204-212.
Efficiency of intracoronary (IC) adenoviral vector transfection is impaired by the vascular endothelium. Ischemia and substances that increase vascular permeability (sodium nitroprusside, nitroglycerin) may augment adenoviral vector transfection efficiency (TE). We tested whether TE of adenoviral vector following IC infusion is improved by nitrates or by ischemia. Fluoroscopically guided angioplasty balloon catheters occluded the coronary artery in Yorkshire pigs and delivered adenoviral type 5 vector encoding the luciferase gene (Ad5Luc, 1011 viral particles). TE (luciferase activity) was minimal and was not augmented by IC co-administration of 50 μg/min sodium nitroprusside to nonischemic myocardium. Two (but not one) 3-min episodes of occlusion tended to increase luciferase activity (p=0.06), and luciferase activity was further increased by IC co-administration of nitroglycerin (p<0.001). After 75 min of coronary artery occlusion, luciferase activity was greater than with shorter periods of ischemia, and was significantly greater in the ischemia-reperfused zone compared to the border zone 3 and 14 days after infusion; there was no transfection in nonischemic myocardium. IC delivery of Ad5Luc into post-ischemic myocardium caused no local inflammation or hemodynamic instability. We conclude that the uptake of IC Ad5 to ischemic reperfused myocardium validates use of IC Ad5 delivery protocols in future human gene therapy trials in patients following myocardial ischemia.
Shi and colleagues evaluate whether the transfection efficiency of adenovirus type 5 vector following intracoronary infusion in Yorkshire pigs can be improved either by increasing vascular permeability with nitrates or by ischemia. Transgene activity increased with two 3-minute periods of ischemia as well as with co-administration of nitroglycerin. Longer ischemic periods that result in myocardial infarction led to significantly greater transfection activity in the ischemia-reperfused area, at both 3 and 14 days after infusion.
PMCID: PMC4015071  PMID: 22816318
25.  Evidence of partially preserved endothelial dilator function in diseased coronary arteries 
Heart  1999;82(4):471-476.
OBJECTIVE—To examine the effects of substance P (endothelium dependent vasodilator) and glyceryl trinitrate (endothelium independent vasodilator) on epicardial coronary arteries in patients with normal coronary angiograms and patients with coronary artery disease.
DESIGN—Intracoronary infusions of normal saline, the receptor mediated nitric oxide stimulant substance P (5.6 and 27.8 pmol/min each for five minutes), and glyceryl trinitrate (250 µg bolus) were given in 24 patients with coronary artery disease and stable angina, and in nine patients with normal angiograms. The diameter of proximal and distal coronary segments was measured by computerised quantitative angiography
RESULTS—Proximal segments of patients with coronary artery disease dilated less than those of patients with normal angiograms in response to 27.8 pmol/min substance P (mean (SEM): 7.9 (1.3)% v 15 (2.3)% respectively, p < 0.01). The proximal segments of diseased arteries also dilated less than those of "normal" arteries in response to glyceryl trinitrate (10.2 (1.6)% v 18.4 (2.9)%, respectively, p < 0.01). The responses of distal segments to substance P and glyceryl trinitrate were similar in the two patient groups. There were correlations (all p < 0.001) between the coronary diameter after substance P and after glyceryl trinitrate in normal proximal segments (r = 0.94) and normal distal segments (r = 0.64), in diseased proximal segments (r = 0.95) and diseased distal segments (r = 0.89), and for coronary stenoses (r = 0.93).
CONCLUSIONS—Proximal segments of patients with coronary disease dilated less than the proximal segments of "normal" patients in response to substance P and glyceryl trinitrate. The response to substance P is substantial and closely correlated with the response to glyceryl trinitrate in both "normal" patients and those with coronary disease. This suggests that although the proximal segments of diseased coronary arteries have a reduced capacity to dilate in response to direct stimulation of smooth muscle cell relaxation, they retain much of their endothelium dependent vasodilator function.

Keywords: endothelium; nitric oxide; coronary artery disease; glyceryl trinitrate
PMCID: PMC1760290  PMID: 10490563

Results 1-25 (847188)