PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (616678)

Clipboard (0)
None

Related Articles

1.  Loss of DNMT1o Disrupts Imprinted X Chromosome Inactivation and Accentuates Placental Defects in Females 
PLoS Genetics  2013;9(11):e1003873.
The maintenance of key germline derived DNA methylation patterns during preimplantation development depends on stores of DNA cytosine methyltransferase-1o (DNMT1o) provided by the oocyte. Dnmt1omat−/− mouse embryos born to Dnmt1Δ1o/Δ1o female mice lack DNMT1o protein and have disrupted genomic imprinting and associated phenotypic abnormalities. Here, we describe additional female-specific morphological abnormalities and DNA hypomethylation defects outside imprinted loci, restricted to extraembryonic tissue. Compared to male offspring, the placentae of female offspring of Dnmt1Δ1o/Δ1o mothers displayed a higher incidence of genic and intergenic hypomethylation and more frequent and extreme placental dysmorphology. The majority of the affected loci were concentrated on the X chromosome and associated with aberrant biallelic expression, indicating that imprinted X-inactivation was perturbed. Hypomethylation of a key regulatory region of Xite within the X-inactivation center was present in female blastocysts shortly after the absence of methylation maintenance by DNMT1o at the 8-cell stage. The female preponderance of placental DNA hypomethylation associated with maternal DNMT1o deficiency provides evidence of additional roles beyond the maintenance of genomic imprints for DNA methylation events in the preimplantation embryo, including a role in imprinted X chromosome inactivation.
Author Summary
During oocyte growth and maturation, vital proteins and enzymes are produced to ensure that, when fertilized, a healthy embryo will arise. When this natural process is interrupted, one or more of these essential elements can fail to be produced thus compromising the health of the future embryo. We are using a mouse model, lacking an enzyme (DNMT1o) produced in the oocyte and only required post-fertilization in the early embryo for the maintenance of inherited DNA methylation marks. Here, we reveal that oocytes lacking DNMT1o, when fertilized, generated conceptuses with a wide variety of placental abnormalities. These placental abnormalities were more frequent and severe in females, and showed specific genomic regions constantly deprived of their normal methylation marks. The affected genomic regions were concentrated on the X chromosome. Interestingly, we also found that a region important for the regulation of the X chromosome inactivation process was hypomethylated in female blastocysts and was associated with sex-specific abnormalities in the placenta, relaxation of imprinted X chromosome inactivation, and disruption of DNA methylation later in development. Our findings provide a novel unanticipated role for DNA methylation events taking place within the first few days of life specifically in female preimplantation embryos.
doi:10.1371/journal.pgen.1003873
PMCID: PMC3836718  PMID: 24278026
2.  Regulation of Lineage Specific DNA Hypomethylation in Mouse Trophectoderm 
PLoS ONE  2013;8(6):e68846.
Background
DNA methylation is reprogrammed during early embryogenesis by active and passive mechanisms in advance of the first differentiation event producing the embryonic and extraembryonic lineage cells which contribute to the future embryo proper and to the placenta respectively. Embryonic lineage cells re-acquire a highly methylated genome dependent on the DNA methyltransferases (DNMTs) Dnmt3a and Dnmt3b that are required for de novo methylation. By contrast, extraembryonic lineage cells remain globally hypomethylated but the mechanisms that underlie this hypomethylation remain unknown.
Methodology/Principal Findings
We have employed an inducible system that supports differentiation between these two lineages and recapitulates the DNA methylation asymmetry generated in vivo. We find that in vitro down-regulation of Oct3/4 in ES cells recapitulates the decline in global DNA methylation associated with trophoblast. The de novo DNMTs Dnmt3a2 and Dnmt3b are down-regulated during trophoblast differentiation. Dnmt1, which is responsible for maintenance methylation, is expressed comparably in embryonic and trophoblast lineages, however importantly in trophoblast giant cells Dnmt1fails to be attracted to replication foci, thus allowing loss of DNA methylation while implicating a passive demethylation mechanism. Interestingly, Dnmt1 localization was restored by exogenous Np95/Uhrf1, a Dnmt1 chaperone required for Dnmt1-targeting to replication foci, yet DNA methylation levels remained low. Over-expression of de novo DNMTs also failed to increase DNA methylation in target sequences.
Conclusions/Significance
We propose that induced trophoblast cells may have a mechanism to resist genome-wide increases of DNA methylation, thus reinforcing the genome-wide epigenetic distinctions between the embryonic and extraembryonic lineages in the mouse. This resistance may be based on transcription factors or on global differences in chromatin structure.
doi:10.1371/journal.pone.0068846
PMCID: PMC3692478  PMID: 23825703
3.  Methyllysine Reader Plant Homeodomain (PHD) Finger Protein 20-like 1 (PHF20L1) Antagonizes DNA (Cytosine-5) Methyltransferase 1 (DNMT1) Proteasomal Degradation* 
The Journal of Biological Chemistry  2014;289(12):8277-8287.
Background: SET7 monomethylates DNMT1, promoting its proteasomal degradation, yet methylated DNMT1 still remains throughout the cell cycle.
Results: The methyllysine reader PHF20L1 stabilizes methylated DNMT1. Disruption of PHF20L1 induces DNMT1 degradation and genome hypomethylation.
Conclusion: PHF20L1, an epigenetic reader, cooperates with writer and eraser to regulate epigenetic inheritance.
Significance: PHF20L1 can be targeted as a means of regulating DNMT1 activity and DNA methylation in cells.
Inheritance of DNA cytosine methylation pattern during successive cell division is mediated by maintenance DNA (cytosine-5) methyltransferase 1 (DNMT1). Lysine 142 of DNMT1 is methylated by the SET domain containing lysine methyltransferase 7 (SET7), leading to its degradation by proteasome. Here we show that PHD finger protein 20-like 1 (PHF20L1) regulates DNMT1 turnover in mammalian cells. Malignant brain tumor (MBT) domain of PHF20L1 binds to monomethylated lysine 142 on DNMT1 (DNMT1K142me1) and colocalizes at the perinucleolar space in a SET7-dependent manner. PHF20L1 knockdown by siRNA resulted in decreased amounts of DNMT1 on chromatin. Ubiquitination of DNMT1K142me1 was abolished by overexpression of PHF20L1, suggesting that its binding may block proteasomal degradation of DNMT1K142me1. Conversely, siRNA-mediated knockdown of PHF20L1 or incubation of a small molecule MBT domain binding inhibitor in cultured cells accelerated the proteasomal degradation of DNMT1. These results demonstrate that the MBT domain of PHF20L1 reads and controls enzyme levels of methylated DNMT1 in cells, thus representing a novel antagonist of DNMT1 degradation.
doi:10.1074/jbc.M113.525279
PMCID: PMC3961655  PMID: 24492612
DNA-binding Protein; DNA Methylation; DNA Methyltransferase; Protein Degradation; Protein Methylation; MBT Domain; PHF20L1; SET7; UNC1215
4.  Depletion of DNMT3A Suppressed Cell Proliferation and Restored PTEN in Hepatocellular Carcinoma Cell 
Promoter hypermethylation mediated by DNA methyltransferases (DNMTs) is the main reason for epigenetic inactivation of tumor suppressor genes (TSGs). Previous studies showed that DNMT1 and DNMT3B play an important role in CpG island methylation in tumorigenesis. Little is known about the role of DNMT3A in this process, especially in hepatocellular carcinoma (HCC). In the present study, increased DNMT3A expression in 3 out of 6 HCC cell lines and 16/25 (64%) HCC tissues implied that DNMT3A is involved in hepatocellular carcinogenesis. Depletion of DNMT3A in HCC cell line SMMC-7721 inhibited cell proliferation and decreased the colony formation (about 65%). Microarray data revealed that 153 genes were upregulated in DNMT3A knockdown cells and that almost 71% (109/153) of them contain CpG islands in their 5′ region. 13 of them including PTEN, a crucial tumor suppressor gene in HCC, are genes involved in cell cycle and cell proliferation. Demethylation of PTEN promoter was observed in DNMT3A-depleted cells implying that DNMT3A silenced PTEN via DNA methylation. These results provide insights into the mechanisms of DNMT3A to regulate TSGs by an epigenetic approach in HCC.
doi:10.1155/2010/737535
PMCID: PMC2868982  PMID: 20467490
5.  DNA methyltransferase expression in odontogenic cysts and tumours 
Oncology Letters  2010;1(1):143-146.
Epigenetic silencing of gene expression by promoter CpG island hypermethylation is promoted by the enzymes, DNA methyltransferases (DNMTs). DNMT3a is mainly involved in de novo methylation, whereas DNMT1 acts mainly as a maintenance methyltransferase. The purpose of this study was to investigate the immunoexpression of DNMT1 and DNMT3a in a set of odontogenic cysts and tumours. Formalin-fixed and paraffin-embedded tissue samples of eight radicular cysts, 10 odontogenic keratocysts (OKC), eight adenomatoid odontogenic tumours (AOT), 16 ameloblastomas and eight samples of normal mucosae were included in the study. The DNMT1 and DNMT3a proteins were identified by using a highly sensitive polymer-based system. We found that the normal oral mucosa, OKC, AOT, radicular cyst and ameloblastomas samples showed a widespread nuclear and cytoplasmic immunopositivity for DNMT1. Some radicular cysts, ameloblastomas, AOT and OKC samples presented a positive cytoplasmic reaction for DNMT3a, while negative staining was observed in the normal oral mucosa. Nuclear positivity was found only in the suprabasal cell layers of three OKC samples. Our study shows an increased expression of DNMT3a in odontogenic cysts and tumours, confirming that epigenetic mechanisms are involved in the development of these tumours.
doi:10.3892/ol_00000026
PMCID: PMC3436390  PMID: 22966272
methylation; odontogenic tumours; odontogenic cysts; DNMT1; DNMT3a
6.  Generalized disruption of inherited genomic imprints leads to wide-ranging placental defects and dysregulated fetal growth 
Developmental biology  2012;373(1):72-82.
Monoallelic expression of imprinted genes, including ones solely expressed in the placenta, is essential for normal placental development and fetal growth. To better understand the role of placental imprinting in placental development and fetal growth, we examined conceptuses developing in the absence of maternally derived DNA (cytosine-5-)- methyltransferase 1o (DNMT1o). Absence of DNMT1o results in the partial loss of methylation at imprinted differentially methylated domain (DMD) sequences in the embryo and the placenta. Mid-gestation E9.5 DNMT1o-deficient placentas exhibited structural abnormalities of all tissue layers. At E17.5, all examined placentas had aberrant placental morphology, most notably in the spongiotrophoblast and labyrinth layers. Abnormalities included an expanded volume fraction of spongiotrophoblast tissue with extension of the spongiotrophoblast layer into the labyrinth. Many mutant placentas also demonstrated migration abnormalities of glycogen cells. Additionally, the volume fraction of the labyrinth was reduced, as was the surface area for maternal fetal gas exchange. Despite these placental morphologic abnormalities, approximately one-half of DNMT1o-deficient fetuses survived to late gestation (E17.5). Furthermore, DNMT1o- deficient placentas supported a broad range of fetal growth. The ability of some DNMT1o-deficient and morphologically abnormal placentas to support fetal growth in excess of wild type demonstrates the importance of differential methylation of DMDs and proper imprinting of discrete gene clusters to placental morphogenesis and fetal growth.
doi:10.1016/j.ydbio.2012.10.010
PMCID: PMC3508140  PMID: 23085235
Imprinting; Placenta; Fetal growth; DNMT1; Methylation
7.  Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis 
DNA methyltransferase 3B (Dnmt3b) belongs to a family of enzymes responsible for methylation of cytosine residues in mammals. DNA methylation contributes to the epigenetic control of gene transcription and is deregulated in virtually all human tumors. To better understand the generation of cancer-specific methylation patterns, we genetically inactivated Dnmt3b in a mouse model of MYC-induced lymphomagenesis. Ablation of Dnmt3b function using a conditional knockout in T cells accelerated lymphomagenesis by increasing cellular proliferation, which suggests that Dnmt3b functions as a tumor suppressor. Global methylation profiling revealed numerous gene promoters as potential targets of Dnmt3b activity, the majority of which were demethylated in Dnmt3b–/– lymphomas, but not in Dnmt3b–/– pretumor thymocytes, implicating Dnmt3b in maintenance of cytosine methylation in cancer. Functional analysis identified the gene Gm128 (which we termed herein methylated in normal thymocytes [Ment]) as a target of Dnmt3b activity. We found that Ment was gradually demethylated and overexpressed during tumor progression in Dnmt3b–/– lymphomas. Similarly, MENT was overexpressed in 67% of human lymphomas, and its transcription inversely correlated with methylation and levels of DNMT3B. Importantly, knockdown of Ment inhibited growth of mouse and human cells, whereas overexpression of Ment provided Dnmt3b+/+ cells with a proliferative advantage. Our findings identify Ment as an enhancer of lymphomagenesis that contributes to the tumor suppressor function of Dnmt3b and suggest it could be a potential target for anticancer therapies.
doi:10.1172/JCI57292
PMCID: PMC3248285  PMID: 22133874
8.  5-Aza-Deoxycytidine Induces Selective Degradation of DNA Methyltransferase 1 by a Proteasomal Pathway That Requires the KEN Box, Bromo-Adjacent Homology Domain, and Nuclear Localization Signal 
Molecular and Cellular Biology  2005;25(11):4727-4741.
5-Azacytidine- and 5-aza-deoxycytidine (5-aza-CdR)-mediated reactivation of tumor suppressor genes silenced by promoter methylation has provided an alternate approach in cancer therapy. Despite the importance of epigenetic therapy, the mechanism of action of DNA-hypomethylating agents in vivo has not been completely elucidated. Here we report that among three functional DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B), the maintenance methyltransferase, DNMT1, was rapidly degraded by the proteasomal pathway upon treatment of cells with these drugs. The 5-aza-CdR-induced degradation, which occurs in the nucleus, could be blocked by proteasomal inhibitors and required a functional ubiquitin-activating enzyme. The drug-induced degradation occurred even in the absence of DNA replication. Treatment of cells with other nucleoside analogs modified at C-5, 5-fluorodeoxyuridine and 5-fluorocytidine, did not induce the degradation of DNMT1. Mutation of cysteine at the catalytic site of Dnmt1 (involved in the formation of a covalent intermediate with cytidine in DNA) to serine (CS) did not impede 5-aza-CdR-induced degradation. Neither the wild type nor the catalytic site mutant of Dnmt3a or Dnmt3b was sensitive to 5-aza-CdR-mediated degradation. These results indicate that covalent bond formation between the enzyme and 5-aza-CdR-incorporated DNA is not essential for enzyme degradation. Mutation of the conserved KEN box, a targeting signal for proteasomal degradation, to AAA increased the basal level of Dnmt1 and blocked its degradation by 5-aza-CdR. Deletion of the catalytic domain increased the expression of Dnmt1 but did not confer resistance to 5-aza-CdR-induced degradation. Both the nuclear localization signal and the bromo-adjacent homology domain were essential for nuclear localization and for the 5-aza-CdR-mediated degradation of Dnmt1. Polyubiquitination of Dnmt1 in vivo and its stabilization upon treatment of cells with a proteasomal inhibitor indicate that the level of Dnmt1 is controlled by ubiquitin-dependent proteasomal degradation. Overexpression of the substrate recognition component, Cdh1 but not Cdc20, of APC (anaphase-promoting complex)/cyclosome ubiquitin ligase reduced the level of Dnmt1 in both untreated and 5-aza-CdR-treated cells. In contrast, the depletion of Cdh1 with small interfering RNA increased the basal level of DNMT1 that blocked 5-aza-CdR-induced degradation. Dnmt1 interacted with Cdh1 and colocalized in the nucleus at discrete foci. Both Dnmt1 and Cdh1 were phosphorylated in vivo, but only Cdh1 was significantly dephosphorylated upon 5-aza-CdR treatment, suggesting its involvement in initiating the proteasomal degradation of DNMT1. These results demonstrate a unique mechanism for the selective degradation of DNMT1, the maintenance DNA methyltransferase, by well-known DNA-hypomethylating agents.
doi:10.1128/MCB.25.11.4727-4741.2005
PMCID: PMC1140649  PMID: 15899874
9.  DNA Methyltransferase 1 and 3B Activate BAG-1 Expression via Recruitment of CTCFL/BORIS and Modulation of Promoter Histone Methylation 
Cancer research  2008;68(8):2726-2735.
In a previous genomic analysis, using somatic methyltransferase (DNMT) knockout cells, we showed that hypomethylation decreased the expression of as many genes as were observed to increase, suggesting a previously unknown mechanism for epigenetic regulation. To address this idea, the expression of the BAG family genes was used as a model. These genes were used because their expression was decreased in DNMT1−/−, DNMT3B−/−, and double knockout cells and increased in DNMT1-overexpressing and DNMT3B-overexpressing cells. Chromatin immunoprecipitation analysis of the BAG-1 promoter in DNMT1-overexpressing or DNMT3B-overexpressing cells showed a permissive dimethyl-H3-K4/dimethyl-H3-K9 chromatin status associated with DNA-binding of CTCFL/BORIS, as well as increased BAG-1 expression. In contrast, a nonpermissive dimethyl-H3-K4/dimethyl-H3-K9 chromatin status was associated with CTCF DNA-binding and decreased BAG-1 expression in the single and double DNMT knockout cells. BORIS short hairpin RNA knockdown decreased both promoter DNA-binding, as well as BAG-1 expression, and changed the dimethyl-H3-K4/dimethyl-H3-K9 ratio to that characteristic of a nonpermissive chromatin state. These results suggest that DNMT1 and DNMT3B regulate BAG-1 expression via insulator protein DNA-binding and chromatin dynamics by regulating histone dimethylation.
doi:10.1158/0008-5472.CAN-07-6654
PMCID: PMC2733164  PMID: 18413740
10.  The Role of DNA Methylation in Aging, Rejuvenation, and Age-Related Disease 
Rejuvenation Research  2012;15(5):483-494.
Abstract
DNA methylation is a major control program that modulates gene expression in a plethora of organisms. Gene silencing through methylation occurs through the activity of DNA methyltransferases, enzymes that transfer a methyl group from S-adenosyl-l-methionine to the carbon 5 position of cytosine. DNA methylation patterns are established by the de novo DNA methyltransferases (DNMTs) DNMT3A and DNMT3B and are subsequently maintained by DNMT1. Aging and age-related diseases include defined changes in 5-methylcytosine content and are generally characterized by genome-wide hypomethylation and promoter-specific hypermethylation. These changes in the epigenetic landscape represent potential disease biomarkers and are thought to contribute to age-related pathologies, such as cancer, osteoarthritis, and neurodegeneration. Some diseases, such as a hereditary form of sensory neuropathy accompanied by dementia, are directly caused by methylomic changes. Epigenetic modifications, however, are reversible and are therefore a prime target for therapeutic intervention. Numerous drugs that specifically target DNMTs are being tested in ongoing clinical trials for a variety of cancers, and data from finished trials demonstrate that some, such as 5-azacytidine, may even be superior to standard care. DNMTs, demethylases, and associated partners are dynamically shaping the methylome and demonstrate great promise with regard to rejuvenation.
doi:10.1089/rej.2012.1324
PMCID: PMC3482848  PMID: 23098078
11.  DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells 
The Journal of Cell Biology  2007;176(5):565-571.
DNA methylation plays a central role in the epigenetic regulation of gene expression in vertebrates. Genetic and biochemical data indicated that DNA methyltransferase 1 (Dnmt1) is indispensable for the maintenance of DNA methylation patterns in mice, but targeting of the DNMT1 locus in human HCT116 tumor cells had only minor effects on genomic methylation and cell viability. In this study, we identified an alternative splicing in these cells that bypasses the disrupting selective marker and results in a catalytically active DNMT1 protein lacking the proliferating cell nuclear antigen–binding domain required for association with the replication machinery. Using a mechanism-based trapping assay, we show that this truncated DNMT1 protein displays only twofold reduced postreplicative DNA methylation maintenance activity in vivo. RNA interference–mediated knockdown of this truncated DNMT1 results in global genomic hypomethylation and cell death. These results indicate that DNMT1 is essential in mouse and human cells, but direct coupling of the replication of genetic and epigenetic information is not strictly required.
doi:10.1083/jcb.200610062
PMCID: PMC2064015  PMID: 17312023
12.  Lack of involvement of known DNA methyltransferases in familial hydatidiform mole implies the involvement of other factors in establishment of imprinting in the human female germline 
BMC Genetics  2003;4:2.
Background
Differential methylation of the two alleles is a hallmark of imprinted genes. Correspondingly, loss of DNA methyltransferase function results in aberrant imprinting and abnormal post-fertilization development. In the mouse, mutations of the oocyte-specific isoform of the DNA methyltransferase Dnmt1 (Dnmt1o) and of the methyltransferase-like Dnmt3L gene result in specific failures of imprint establishment or maintenance, at multiple loci. We have previously shown in humans that an analogous inherited failure to establish imprinting at multiple loci in the female germline underlies a rare phenotype of recurrent hydatidiform mole.
Results
We have identified a human homologue of the murine Dnmt1o and assessed its pattern of expression. Human DNMT1o mRNA is detectable in mature oocytes and early fertilized embryos but not in any somatic tissues analysed. The somatic isoform of DNMT1 mRNA, in contrast, is not detectable in human oocytes. In the previously-described family with multi-locus imprinting failure, mutation of DNMT1o and of the other known members of this gene family has been excluded.
Conclusions
Mutation of the known DNMT genes does not underlie familial hydatidiform mole, at least in the family under study. This suggests that trans-acting factors other than the known methyltransferases are required for imprint establishment in humans, a concept that has indirect support from recent biochemical studies of DNMT3L.
doi:10.1186/1471-2156-4-2
PMCID: PMC149328  PMID: 12546714
autozygosity; hydatidiform mole; imprinting; oogenesis
13.  Domain-Specific Response of Imprinted Genes to Reduced DNMT1 ▿  
Molecular and Cellular Biology  2010;30(16):3916-3928.
Imprinted genes are expressed in a monoallelic, parent-of-origin-specific manner. Clusters of imprinted genes are regulated by imprinting control regions (ICRs) characterized by DNA methylation of one allele. This methylation is critical for imprinting; a reduction in the DNA methyltransferase DNMT1 causes a widespread loss of imprinting. To better understand the role of DNA methylation in the regulation of imprinting, we characterized the effects of Dnmt1 mutations on the expression of a panel of imprinted genes in the embryo and placenta. We found striking differences among imprinted domains. The Igf2 and Peg3 domains showed imprinting perturbations with both null and partial loss-of-function mutations, and both domains had pairs of coordinately regulated genes with opposite responses to loss of DNMT1 function, suggesting these domains employ similar regulatory mechanisms. Genes in the Kcnq1 domain were less sensitive to the absence of DNMT1. Cdkn1c exhibited imprinting perturbations only in null mutants, while Kcnq1 and Ascl2 were largely unaffected by a loss of DNMT1 function. These results emphasize the critical role for DNA methylation in imprinting and reveal the different ways it controls gene expression.
doi:10.1128/MCB.01278-09
PMCID: PMC2916450  PMID: 20547750
14.  Coordinate regulation of DNA methyltransferase expression during oogenesis 
Background
Normal mammalian development requires the action of DNA methyltransferases (DNMTs) for the establishment and maintenance of DNA methylation within repeat elements and imprinted genes. Here we report the expression dynamics of Dnmt3a and Dnmt3b, as well as a regulator of DNA methylation, Dnmt3L, in isolated female germ cells.
Results
Our results indicate that these enzymes are coordinately regulated and that their expression peaks during the stage of postnatal oocyte development when maternal methylation imprints are established. We find that Dnmt3a, Dnmt3b, Dnmt3L and Dnmt1o transcript accumulation is related to oocyte diameter. Furthermore, DNMT3L deficient 15 dpp oocytes have aberrantly methylated Snrpn, Peg3 and Igf2r DMRs, but normal IAP and LINE-1 methylation levels, thereby highlighting a male germ cell specific role for DNMT3L in the establishment of DNA methylation at repeat elements. Finally, real-time RT-PCR analysis indicates that the depletion of either DNMT3L or DNMT1o in growing oocytes results in the increased expression of the de novo methyltransferase Dnmt3b, suggesting a potential compensation mechanism by this enzyme for the loss of one of the other DNA methyltransferases.
Conclusion
Together these results provide a better understanding of the developmental regulation of Dnmt3a, Dnmt3b and Dnmt3L at the time of de novo methylation during oogenesis and demonstrate that the involvement of DNMT3L in retrotransposon silencing is restricted to the male germ line. This in turn suggests the existence of other factors in the oocyte that direct DNA methylation to transposons.
doi:10.1186/1471-213X-7-36
PMCID: PMC1878483  PMID: 17445268
15.  Breast Cancer Epigenetics: From DNA Methylation to microRNAs 
Both appropriate DNA methylation and histone modifications play a crucial role in the maintenance of normal cell function and cellular identity. In cancerous cells these “epigenetic belts” become massively perturbed, leading to significant changes in expression profiles which confer advantage to the development of a malignant phenotype. DNA (cytosine-5)-methyltransferase 1 (Dnmt1), Dnmt3a and Dnmt3b are the enzymes responsible for setting up and maintaining DNA methylation patterns in eukaryotic cells. Intriguingly, DNMTs were found to be overexpressed in cancerous cells, which is believed to partly explain the hypermethylation phenomenon commonly observed in tumors. However, several lines of evidence indicate that further layers of gene regulation are critical coordinators of DNMT expression, catalytic activity and target specificity. Splice variants of DNMT transcripts have been detected which seem to modulate methyltransferase activity. Also, the DNMT mRNA 3′UTR as well as the coding sequence harbors multiple binding sites for trans-acting factors guiding post-transcriptional regulation and transcript stabilization. Moreover, microRNAs targeting DNMT transcripts have recently been discovered in normal cells, yet expression of these microRNAs was found to be diminished in breast cancer tissues. In this review we summarize the current knowledge on mechanisms which potentially lead to the establishment of a DNA hypermethylome in cancer cells.
doi:10.1007/s10911-010-9165-1
PMCID: PMC2824126  PMID: 20101446
Breast cancer; DNA methylation; Dnmt3b; HuR; MicroRNA; TARBP2
16.  Mahanine restores RASSF1A expression by down-regulating DNMT1 and DNMT3B in prostate cancer cells 
Molecular Cancer  2013;12:99.
Background
Hypermethylation of the promoter of the tumor suppressor gene RASSF1A silences its expression and has been found to be associated with advanced grade prostatic tumors. The DNA methyltransferase (DNMT) family of enzymes are known to be involved in the epigenetic silencing of gene expression, including RASSF1A, and are often overexpressed in prostate cancer. The present study demonstrates how mahanine, a plant-derived carbazole alkaloid, restores RASSF1A expression by down-regulating specific members of the DNMT family of proteins in prostate cancer cells.
Results
Using methylation-specific PCR we establish that mahanine restores the expression of RASSF1A by inducing the demethylation of its promoter in prostate cancer cells. Furthermore, we show that mahanine treatment induces the degradation of DNMT1 and DNMT3B, but not DNMT3A, via the ubiquitin-proteasome pathway; an effect which is rescued in the presence of a proteasome inhibitor, MG132. The inactivation of Akt by wortmannin, a PI3K inhibitor, results in a similar down-regulation in the levels DNMT1 and DNMT3B. Mahanine treatment results in a decline in phospho-Akt levels and a disruption in the interaction of Akt with DNMT1 and DNMT3B. Conversely, the exogenous expression of constitutively active Akt inhibits the ability of mahanine to down-regulate these DNMTs, suggesting that the degradation of DNMT1 and DNMT3B by mahanine occurs via Akt inactivation.
Conclusions
Taken together, we show that mahanine treatment induces the proteasomal degradation of DNMT1 and DNMT3B via the inactivation of Akt, which facilitates the demethylation of the RASSF1A promoter and restores its expression in prostate cancer cells. Therefore, mahanine could be a potential therapeutic agent for advanced prostate cancer in men when RASSF1A expression is silenced.
doi:10.1186/1476-4598-12-99
PMCID: PMC3851847  PMID: 24001151
Epigenetic silencing; RASSF1A; Tumor suppressor gene; DNMTs; Prostate cancer
17.  Insufficient maintenance DNA methylation is associated with abnormal embryonic development 
BMC Medicine  2012;10:26.
Background
Early pregnancy loss (EPL) is a frustrating clinical problem, whose mechanisms are not completely understood. DNA methylation, which includes maintenance methylation and de novo methylation directed by DNA methyltransferases (DNMTs), is important for embryo development. Abnormal function of these DNMTs may have serious consequences for embryonic development.
Methods
To evaluate the possible involvement of DNA methylation in human EPL, the expression of DNMT proteins and global methylation of DNA were assessed in villous or decidua from EPL patients. The association of maintenance methylation with embryo implantation and development was also examined.
Results
We found that DNMT1 and DNMT3A were both expressed in normal human villous and decidua. DNMT1 expression and DNA global methylation levels were significantly down-regulated in villous of EPL. DNMT3A expression was not significantly changed in the EPL group compared to controls in either villous or decidua. We also found that disturbance of maintenance methylation with a DNMT1 inhibitor may result in a decreased global DNA methylation level and impaired embryonic development in the mouse model, and inhibit in vitro embryo attachment to endometrial cells.
Conclusions
Our results demonstrate that defects in DNA maintenance methylation in the embryo, not in the mother, are associated with abnormal embryonic implantation and development. The findings of the current study provide new insights into the etiology of EPL.
doi:10.1186/1741-7015-10-26
PMCID: PMC3355050  PMID: 22413869
18.  Interactions within the mammalian DNA methyltransferase family 
Background
In mammals, epigenetic information is established and maintained via the postreplicative methylation of cytosine residues by the DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Dnmt1 is required for maintenance methylation whereas Dnmt3a and Dnmt3b are responsible for de novo methylation. Contrary to Dnmt3a or Dnmt3b, the isolated C-terminal region of Dnmt1 is catalytically inactive, despite the presence of the sequence motifs typical of active DNA methyltransferases. Deletion analysis has revealed that a large part of the N-terminal domain is required for enzymatic activity.
Results
The role played by the N-terminal domain in this regulation has been investigated using the yeast two-hybrid system. We show here the presence of an intra-molecular interaction in Dnmt1 but not in Dnmt3a or Dnmt3b. This interaction was confirmed by immunoprecipitation and was localized by deletion mapping. Furthermore, a systematic analysis of interactions among the Dnmt family members has revealed that DNMT3L interacts with the C-terminal domain of Dnmt3a and Dnmt3b.
Conclusions
The lack of methylating ability of the isolated C-terminal domain of Dnmt1 could be explained in part by a physical interaction between N- and C-terminal domains that apparently is required for activation of the catalytic domain. Our deletion analysis suggests that the tertiary structure of Dnmt1 is important in this process rather than a particular sequence motif. Furthermore, the interaction between DNMT3L and the C-terminal domains of Dnmt3a and Dnmt3b suggests a mechanism whereby the enzymatically inactive DNMT3L brings about the methylation of its substrate by recruiting an active methylase.
doi:10.1186/1471-2199-4-7
PMCID: PMC166133  PMID: 12777184
19.  Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors 
Oncogene  2006;25(18):2636-2645.
How hypermethylation and hypomethylation of different parts of the genome in cancer are related to each other and to DNA methyltransferase (DNMT) gene expression is ill defined. We used ovarian epithelial tumors of different malignant potential to look for associations between 5’ gene region or promoter hypermethylation, satellite or global DNA hypomethylation, and RNA levels for ten DNMT isoforms. In the quantitative MethyLight assay, 6 of the 55 examined gene loci (LTB4R, MTHFR, CDH13, PGR, CDH1, and IGSF4) were significantly hypermethylated relative to the degree of malignancy (after adjustment for multiple comparisons; P<0.001). Importantly, hypermethylation of these genes was associated with degree of malignancy independently of the association of satellite or global DNA hypomethylation with degree of malignancy. Cancer-related increases in methylation of only two studied genes, LTB4R and MTHFR, which were appreciably methylated even in control tissues, were associated with DNMT1 RNA levels. Cancer-linked satellite DNA hypomethylation was independent of RNA levels for all DNMT3B isoforms, despite the ICF syndrome-linked DNMT3B deficiency causing juxtacentromeric satellite DNA hypomethylation. Our results suggest that there is not a simple association of gene hypermethylation in cancer with altered DNMT RNA levels, and that this hypermethylation is neither the result nor cause of satellite and global DNA hypomethylation.
doi:10.1038/sj.onc.1209145
PMCID: PMC1449872  PMID: 16532039
DNA hypomethylation; DNA hypermethylation; DNA methyltransferases; ovarian tumors
20.  Expression Patterns and miRNA Regulation of DNA Methyltransferases in Chicken Primordial Germ Cells 
PLoS ONE  2011;6(5):e19524.
DNA methylation is widespread in most species, from bacteria to mammals, and is crucial for genomic imprinting, gene expression, and embryogenesis. DNA methylation occurs via two major classes of enzymatic reactions: maintenance-type methylation catalyzed by DNA (cytosine-5-)-methyltransferase (DNMT) 1, and de novo methylation catalyzed by DNMT 3 alpha (DNMT3A) and -beta (DNMT3B). The expression pattern and regulation of DNMT genes in primordial germ cells (PGCs) and germ line cells has not been sufficiently established in birds. Therefore, we employed bioinformatics, RT-PCR, real-time PCR, and in situ hybridization analyses to examine the structural conservation and conserved expression patterns of chicken DNMT family genes. We further examined the regulation of a candidate de novo DNA methyltransferase gene, cDNMT3B by cotransfection of cDNMT3B 3′UTR- and cDNMT3B 3′UTR-specific miRNAs through a dual fluorescence reporter assay. All cDNMT family members were differentially detected during early embryonic development. Of interest, cDNMT3B expression was highly detected in early embryos and in PGCs. During germ line development and sexual maturation, cDNMT3B expression was reestablished in a female germ cell-specific manner. In the dual fluorescence reporter assay, cDNMT3B expression was significantly downregulated by four miRNAs: gga-miR-15c (25.82%), gga-miR-29b (30.01%), gga-miR-383 (30.0%), and gga-miR-222 (31.28%). Our data highlight the structural conservation and conserved expression patterns of chicken DNMTs. The miRNAs investigated in this study may induce downregulation of gene expression in chicken PGCs and germ cells.
doi:10.1371/journal.pone.0019524
PMCID: PMC3086922  PMID: 21559294
21.  DNA Methylation Regulates Cocaine-Induced Behavioral Sensitization in Mice 
Neuropsychopharmacology  2010;35(12):2450-2461.
The behavioral sensitization produced by repeated cocaine treatment represents the neural adaptations underlying some of the features of addiction in humans. Cocaine administrations induce neural adaptations through regulation of gene expression. Several studies suggest that epigenetic modifications, including DNA methylation, are the critical regulators of gene expression in the adult central nervous system. DNA methylation is catalyzed by DNA methyltransferases (DNMTs) and consequent promoter region hypermethylation is associated with transcriptional silencing. In this study a potential role for DNA methylation in a cocaine-induced behavioral sensitization model in mice was explored. We report that acute cocaine treatment caused an upregulation of DNMT3A and DNMT3B gene expression in the nucleus accumbens (NAc). Using methylated DNA immunoprecipitation, DNA bisulfite modification, and chromatin immunoprecipitation assays, we observed that cocaine treatment resulted in DNA hypermethylation and increased binding of methyl CpG binding protein 2 (MeCP2) at the protein phosphatase-1 catalytic subunit (PP1c) promoter. These changes are associated with transcriptional downregulation of PP1c in NAc. In contrast, acute and repeated cocaine administrations induced hypomethylation and decreased binding of MeCP2 at the fosB promoter, and these are associated with transcriptional upregulation of fosB in NAc. We also found that pharmacological inhibition of DNMT by zebularine treatment decreased cocaine-induced DNA hypermethylation at the PP1c promoter and attenuated PP1c mRNA downregulation in NAc. Finally, zebularine and cocaine co-treatment delayed the development of cocaine-induced behavioral sensitization. Together, these results suggest that dynamic changes of DNA methylation may be an important gene regulation mechanism underlying cocaine-induced behavioral sensitization.
doi:10.1038/npp.2010.128
PMCID: PMC3055323  PMID: 20720536
DNA methylation; DNA methyltransferase; cocaine; behavioral sensitization; nucleus accumbens; zebularine; psychostimulants; addiction & substance abuse; molecular & cellular neurobiology; plasticity; DNA methylation; DNA methyltransferase; cocaine; behavioural sensitization; nucleus accumbens
22.  AUF1 Cell Cycle Variations Define Genomic DNA Methylation by Regulation of DNMT1 mRNA Stability▿ †  
Molecular and Cellular Biology  2006;27(1):395-410.
DNA methylation is a major determinant of epigenetic inheritance. DNA methyltransferase 1 (DNMT1) is the enzyme responsible for the maintenance of DNA methylation patterns during cell division, and deregulated expression of DNMT1 leads to cellular transformation. We show herein that AU-rich element/poly(U)-binding/degradation factor 1 (AUF1)/heterogenous nuclear ribonucleoprotein D interacts with an AU-rich conserved element in the 3′ untranslated region of the DNMT1 mRNA and targets it for destabilization by the exosome. AUF1 protein levels are regulated by the cell cycle by the proteasome, resulting in cell cycle-specific destabilization of DNMT1 mRNA. AUF1 knock down leads to increased DNMT1 expression and modifications of cell cycle kinetics, increased DNA methyltransferase activity, and genome hypermethylation. Concurrent AUF1 and DNMT1 knock down abolishes this effect, suggesting that the effects of AUF1 knock down on the cell cycle are mediated at least in part by DNMT1. In this study, we demonstrate a link between AUF1, the RNA degradation machinery, and maintenance of the epigenetic integrity of the cell.
doi:10.1128/MCB.01236-06
PMCID: PMC1800664  PMID: 17030625
23.  Hypermethylation and Post-Transcriptional Regulation of DNA Methyltransferases in the Ovarian Carcinomas of the Laying Hen 
PLoS ONE  2013;8(4):e61658.
DNA methyltransferases (DNMTs) are key regulators of DNA methylation and have crucial roles in carcinogenesis, embryogenesis and epigenetic modification. In general, DNMT1 has enzymatic activity affecting maintenance of DNA methylation, whereas DNMT3A and DNMT3B are involved in de novo methylation events. Although DNMT genes are well known in mammals including humans and mice, they are not well studied in avian species, especially the laying hen which is recognized as an excellent animal model for research on human ovarian carcinogenesis. Results of the present study demonstrated that expression of DNMT1, DNMT3A and DNMT3B genes was significantly increased, particularly in the glandular epithelia (GE) of cancerous ovaries, but not normal ovaries. Consistent with this result, immunoreactive 5-methylcytosine protein was predominantly abundant in nuclei of stromal and GE cells of cancerous ovaries, but it was also found that, to a lesser extent, in nuclei of stromal cells of normal ovaries. Methylation-specific PCR analysis detected hypermethylation of the promoter regions of the tumor suppressor genes in the initiation and development of chicken ovarian cancer. Further, several microRNAs, specifically miR-1741, miR-16c, and miR-222, and miR-1632 were discovered to influence expression of DNMT3A and DNMT3B, respectively, via their 3′-UTR which suggests post-transcriptional regulation of their expression in laying hens. Collectively, results of the present study demonstrated increased expression of DNMT genes in cancerous ovaries of laying hens and post-transcriptional regulation of those genes by specific microRNAs, as well as control of hypermethylation of the promoters of tumor suppressor genes.
doi:10.1371/journal.pone.0061658
PMCID: PMC3629126  PMID: 23613894
24.  The DNMT3B C→T promoter polymorphism and risk of breast cancer in a British population: a case-control study 
Breast Cancer Research  2004;6(4):R390-R394.
Background
Gene promoter methylation is an important regulator of expression and is a key epigenetic factor in tumorigenesis. DNA methylation is mediated by DNA methyltransferases (DNMTs), of which three active forms have been identified: DNMT1, DNM3A and DNMT3B. The C→T transition polymorphism (C46359T) in the promoter of the DNMT3B gene, which significantly increases transcriptional activity, has been postulated to increase the propensity for promoter-hypermethylation-mediated silencing of tumour suppressor genes.
Methods
To determine the role of this polymorphism in breast cancer, we genotyped 352 cases and 258 controls from a British population. The breast cancer cases were selected on the basis of either an age at onset of less than 40 years, a family history of breast cancer irrespective of age at onset, or bilateral breast cancer diagnosed after 39 years of age irrespective of family history.
Results
The C allele was found to be more common in case subjects than in control subjects (cases, 0.59; controls, 0.54) corresponding to a nominally significant increase in breast cancer risk to heterozygotes and CC homozygotes (odds ratio 1.51, 95% confidence interval 1.01–2.25) in the dominant inheritance model.
Conclusions
Our findings contrast with those of a previous study, which showed that individuals carrying at least one T allele have a significantly increased risk of developing lung cancer. This discrepancy might be an artefact resulting from a chance variation, or it might point to differing influences of promoter hypermethylation in these cancer types.
doi:10.1186/bcr807
PMCID: PMC468658  PMID: 15217506
breast cancer; DNMT3B; methylation; polymorphism
25.  Unfaithful Maintenance of Methylation Imprints Due to Loss of Maternal Nuclear Dnmt1 during Somatic Cell Nuclear Transfer 
PLoS ONE  2011;6(5):e20154.
The low success rate of somatic cell nuclear transfer (SCNT) in mammalian cloning is largely due to imprinting problems. However, little is known about the mechanisms of reprogramming imprinted genes during SCNT. Parental origin-specific DNA methylation regulates the monoallelic expression of imprinted genes. In natural fertilization, methylation imprints are established in the parental germline and maintained throughout embryonic development. However, it is unclear whether methylation imprints are protected from global changes of DNA methylation in cloned preimplantation embryos. Here, we demonstrate that cloned porcine preimplantation embryos exhibit demethylation at differentially methylated regions (DMRs) of imprinted genes; in particular, demethylation occurs during the first two cell cycles. By RNAi-mediated knockdown, we found that Dnmt1 is required for the maintenance of methylation imprints in porcine preimplantation embryos. However, no clear signals were detected in the nuclei of oocytes and preimplantation embryos by immunofluorescence. Thus, Dnmt1 is present at very low levels in the nuclei of porcine oocytes and preimplantation embryos and maintains methylation imprints. We further showed that methylation imprints were rescued in nonenucleated metaphase II (MII) oocytes. Our results indicate that loss of Dnmt1 in the maternal nucleus during SCNT significantly contributes to the unfaithful maintenance of methylation imprints in cloned embryos.
doi:10.1371/journal.pone.0020154
PMCID: PMC3098883  PMID: 21625467

Results 1-25 (616678)