PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (902367)

Clipboard (0)
None

Related Articles

1.  The Lipin Family: Mutations and Metabolism 
Current opinion in lipidology  2009;20(3):165-170.
Purpose of review
The family of three lipin proteins act as phosphatidate phosphatase (PAP) enzymes required for glycerolipid biosynthesis, and also as transcriptional coactivators that regulate expression of lipid metabolism genes. The genes for lipin-1, lipin-2 and lipin-3 are expressed in key metabolic tissues, including adipose tissue, skeletal muscle, and liver, but the physiological functions of each member of the family have not been fully elucidated. Here we examine the most recent studies that provide information about the roles of lipin proteins in metabolism and human disease.
Recent findings
Recent studies have identified mutations that cause lipin-1 or lipin-2 deficiency in humans, leading to acute myoglobinuria in childhood or the inflammatory disorder Majeed syndrome, respectively. The effects of lipin-1 deficiency appear to include both the loss of glycerolipid building blocks and the accumulation of lipid intermediates that disrupt cellular function. Several studies have demonstrated that polymorphisms in the LPIN1 and LPIN2 genes are associated with metabolic disease traits, including insulin sensitivity, diabetes, blood pressure, and response to thiazolidinedione drugs. Furthermore, lipin-1 expression levels in adipose tissue and/or liver are positively correlated with insulin sensitivity. Studies of lipin-1 in adipocytes have shed some light on its relationship with insulin sensitivity.
Summary
Lipin-1 and lipin-2 are required for normal lipid homeostasis, and have unique physiological roles. Future studies, for example using engineered mouse models, will be required to fully elucidate their specific roles in normal physiology and disease.
doi:10.1097/MOL.0b013e32832adee5
PMCID: PMC2875192  PMID: 19369868
triglyceride; phosphatidic acid phosphatase; transcriptional coactivator; lipodystrophy; obesity; insulin resistance; myopathy
2.  Lipins, Lipinopathies, and the Modulation of Cellular Lipid Storage and Signaling 
Progress in lipid research  2013;52(3):10.1016/j.plipres.2013.04.001.
Summary
Members of the lipin protein family are phosphatidate phosphatase (PAP) enzymes, which catalyze the dephosphorylation of phosphatidic acid to diacylglycerol, the penultimate step in TAG synthesis. Lipins are unique among the glycerolipid biosynthetic enzymes in that they also promote fatty acid oxidation through their activity as co-regulators of gene expression by DNA-bound transcription factors. Lipin function has been evolutionarily conserved from a single ortholog in yeast to the mammalian family of three lipin proteins—lipin-1, lipin-2, and lipin-3. In mice and humans, the levels of lipin activity are a determinant of TAG storage in diverse cell types, and humans with deficiency in lipin-1 or lipin-2 have severe metabolic diseases. Recent work has highlighted the complex physiological interactions between members of the lipin protein family, which exhibit both overlapping and unique functions in specific tissues. The analysis of “lipinopathies” in mouse models and in humans has revealed an important role for lipin activity in the regulation of lipid intermediates (phosphatidate and diacylglycerol), which influence fundamental cellular processes including adipocyte and nerve cell differentiation, adipocyte lipolysis, and hepatic insulin signaling. The elucidation of lipin molecular and physiological functions could lead to novel approaches to modulate cellular lipid storage and metabolic disease.
doi:10.1016/j.plipres.2013.04.001
PMCID: PMC3830937  PMID: 23603613
3.  Lipin-1 and lipin-3 together determine adiposity in vivo☆ 
Molecular Metabolism  2013;3(2):145-154.
The lipin protein family of phosphatidate phosphatases has an established role in triacylglycerol synthesis and storage. Physiological roles for lipin-1 and lipin-2 have been identified, but the role of lipin-3 has remained mysterious. Using lipin single- and double-knockout models we identified a cooperative relationship between lipin-3 and lipin-1 that influences adipogenesis in vitro and adiposity in vivo. Furthermore, natural genetic variations in Lpin1 and Lpin3 expression levels across 100 mouse strains correlate with adiposity. Analysis of PAP activity in additional metabolic tissues from lipin single- and double-knockout mice also revealed roles for lipin-1 and lipin-3 in spleen, kidney, and liver, for lipin-1 alone in heart and skeletal muscle, and for lipin-1 and lipin-2 in lung and brain. Our findings establish that lipin-1 and lipin-3 cooperate in vivo to determine adipose tissue PAP activity and adiposity, and may have implications in understanding the protection of lipin-1-deficient humans from overt lipodystrophy.
doi:10.1016/j.molmet.2013.11.008
PMCID: PMC3953701  PMID: 24634820
Gene family; Knockout mouse; Adipogenesis; Triacylglycerol; Glycerolipid biosynthesis
4.  Lipins: Multifunctional Lipid Metabolism Proteins 
Annual review of nutrition  2010;30:257-272.
The lipin proteins are evolutionarily conserved proteins with roles in lipid metabolism and disease. There are three lipin protein family members in mammals and one or two orthologs in plants, invertebrates, and single-celled eukaryotes. Studies in yeast and mouse led to the identification of two distinct molecular functions of lipin proteins. Lipin proteins have phosphatidate phosphatase activity and catalyze the formation of diacylglycerol in the glycerol-3-phosphate pathway, implicating them in the regulation of triglyceride and phospholipid biosynthesis. Mammalian lipin proteins also possess transcriptional coactivator activity and have been implicated in the regulation of metabolic gene expression. Here we review key findings in the field that demonstrate roles for lipin family members in metabolic homeostasis and in rare human diseases, and we examine evidence implicating genetic variations in lipin genes in common metabolic dysregulation such as obesity, hyperinsulinemia, hypertension, and type 2 diabetes.
doi:10.1146/annurev.nutr.012809.104729
PMCID: PMC3738581  PMID: 20645851
triglyceride; obesity; insulin resistance; phosphatidate phosphatase; transcriptional coactivator
5.  A Phosphatidic Acid Binding/Nuclear Localization Motif Determines Lipin1 Function in Lipid Metabolism and Adipogenesis 
Molecular Biology of the Cell  2010;21(18):3171-3181.
A polybasic motif in the metabolic regulator lipin1 is both a membrane anchor and a nuclear localization sequence required for lipin1 function in phospholipid metabolism and adipogenesis.
Lipins are phosphatidic acid phosphatases with a pivotal role in regulation of triglyceride and glycerophospholipid metabolism. Lipin1 is also an amplifier of PGC-1α, a nuclear coactivator of PPAR-α responsive gene transcription. Lipins do not contain recognized membrane-association domains, but interaction of these enzymes with cellular membranes is necessary for access to their phospholipid substrate. We identified a role for a conserved polybasic amino acid motif in an N-terminal domain previously implicated as a determinant of nuclear localization in selective binding of lipin1β to phosphatidic acid, using blot overlay assays and model bilayer membranes. Studies using lipin1β polybasic motif variants establish that this region is also critical for nuclear import and raise the possibility that nuclear/cytoplasmic shuttling of lipin1β is regulated by PA. We used pharmacological agents and lipin1β polybasic motif mutants to explore the role of PA-mediated membrane association and nuclear localization on lipin1β function in phospholipid metabolism and adipogenic differentiation. We identify a role for the lipin1 polybasic motif as both a lipid binding motif and a primary nuclear localization sequence. These two functions are necessary for full expression of the biological activity of the protein in intracellular lipid metabolism and transcriptional control of adipogenesis.
doi:10.1091/mbc.E10-01-0073
PMCID: PMC2938383  PMID: 20660155
6.  Combination of lipid metabolism alterations and their sensitivity to inflammatory cytokines in human lipin-1-deficient myoblasts 
Biochimica et biophysica acta  2013;1832(12):2103-2114.
Lipin-1 deficiency is associated with massive rhabdomyolysis episodes in humans, precipitated by febrile illnesses. Despite well-known roles of lipin-1 in lipid biosynthesis and transcriptional regulation, the pathogenic mechanisms leading to rhabdomyolysis remain unknown. Here we show that primary myoblasts from lipin-1-deficient patients exhibit a dramatic decrease in LPIN1 expression and phosphatidic acid phosphatase 1 activity, and a significant accumulation of lipid droplets (LD). The expression levels of LPIN1-target genes [peroxisome proliferator-activated receptors delta and alpha (PPARδ, PPARα), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), acyl-coenzyme A dehydrogenase, very long (ACADVL), carnitine palmitoyltransferase IB and 2 (CPT1B and CPT2)] were not affected while lipin-2 protein level, a closely related member of the family, was increased. Microarray analysis of patients’ myotubes identified 19 down-regulated and 51 up-regulated genes, indicating pleiotropic effects of lipin-1 deficiency. Special attention was paid to the up-regulated ACACB (acetyl-CoA carboxylase beta), a key enzyme in the fatty acid synthesis/oxidation balance. We demonstrated that overexpression of ACACB was associated with free fatty acid accumulation in patients’ myoblasts whereas malonyl-carnitine (as a measure of malonyl-CoA) and CPT1 activity were in the normal range in basal conditions accordingly to the normal daily activity reported by the patients. Remarkably ACACB invalidation in patients’ myoblasts decreased LD number and size while LPIN1 invalidation in controls induced LD accumulation. Further, pro-inflammatory treatments tumor necrosis factor alpha + Interleukin-1beta(TNF1α + IL-1β) designed to mimic febrile illness, resulted in increased malonyl-carnitine levels, reduced CPT1 activity and enhanced LD accumulation, a phenomenon reversed by dexamethasone and TNFα or IL-1β inhibitors. Our data suggest that the pathogenic mechanism of rhabdomyolysis in lipin-1-deficient patients combines the predisposing constitutive impairment of lipid metabolism and its exacerbation by pro-inflammatory cytokines.
doi:10.1016/j.bbadis.2013.07.021
PMCID: PMC4007099  PMID: 23928362
Rhabdomyolysis; Lipin-1; PAP1; ACACB; Lipid droplet; Inflammation
7.  Inactivation of the Host Lipin Gene Accelerates RNA Virus Replication through Viral Exploitation of the Expanded Endoplasmic Reticulum Membrane 
PLoS Pathogens  2014;10(2):e1003944.
RNA viruses take advantage of cellular resources, such as membranes and lipids, to assemble viral replicase complexes (VRCs) that drive viral replication. The host lipins (phosphatidate phosphatases) are particularly interesting because these proteins play key roles in cellular decisions about membrane biogenesis versus lipid storage. Therefore, we examined the relationship between host lipins and tombusviruses, based on yeast model host. We show that deletion of PAH1 (phosphatidic acid phosphohydrolase), which is the single yeast homolog of the lipin gene family of phosphatidate phosphatases, whose inactivation is responsible for proliferation and expansion of the endoplasmic reticulum (ER) membrane, facilitates robust RNA virus replication in yeast. We document increased tombusvirus replicase activity in pah1Δ yeast due to the efficient assembly of VRCs. We show that the ER membranes generated in pah1Δ yeast is efficiently subverted by this RNA virus, thus emphasizing the connection between host lipins and RNA viruses. Thus, instead of utilizing the peroxisomal membranes as observed in wt yeast and plants, TBSV readily switches to the vastly expanded ER membranes in lipin-deficient cells to build VRCs and support increased level of viral replication. Over-expression of the Arabidopsis Pah2p in Nicotiana benthamiana decreased tombusvirus accumulation, validating that our findings are also relevant in a plant host. Over-expression of AtPah2p also inhibited the ER-based replication of another plant RNA virus, suggesting that the role of lipins in RNA virus replication might include several more eukaryotic viruses.
Author Summary
Genetic diseases alter cellular pathways and they likely influence pathogen-host interactions as well. To test the relationship between a key cellular gene, whose mutation causes genetic diseases, and a pathogen, the authors have chosen the cellular lipins. Lipins are involved in a key cellular decision on using lipids for membrane biogenesis or for storage. Spontaneous mutations in the LIPIN1 gene in mammals, which cause impaired lipin-1 function, contribute to common metabolic dysregulation and several major diseases, such as obesity, hyperinsulinemia, type 2 diabetes, fatty liver distrophy and hypertension. In this work, the authors tested if tomato bushy stunt virus (TBSV), which, similar to many (+)RNA viruses, depends on host membrane biogenesis, is affected by deletion of the single lipin gene (PAH1) in yeast model host. They show that pah1Δ yeast supports increased replication of TBSV. They demonstrate that TBSV takes advantage of the expanded ER membranes in lipin-deficient yeast to efficiently assemble viral replicase complexes. Their findings suggest possible positive effect of a genetic disease caused by mutation on the replication of an infectious agent.
doi:10.1371/journal.ppat.1003944
PMCID: PMC3930575  PMID: 24586157
8.  Lipin Is a Central Regulator of Adipose Tissue Development and Function in Drosophila melanogaster ▿  
Molecular and Cellular Biology  2011;31(8):1646-1656.
Lipins are evolutionarily conserved proteins found from yeasts to humans. Mammalian and yeast lipin proteins have been shown to control gene expression and to enzymatically convert phosphatidate to diacylglycerol, an essential precursor in triacylglcerol (TAG) and phospholipid synthesis. Loss of lipin 1 in the mouse, but not in humans, leads to lipodystrophy and fatty liver disease. Here we show that the single lipin orthologue of Drosophila melanogaster (dLipin) is essential for normal adipose tissue (fat body) development and TAG storage. dLipin mutants are characterized by reductions in larval fat body mass, whole-animal TAG content, and lipid droplet size. Individual cells of the underdeveloped fat body are characterized by increased size and ultrastructural defects affecting cell nuclei, mitochondria, and autophagosomes. Under starvation conditions, dLipin is transcriptionally upregulated and functions to promote survival. Together, these data show that dLipin is a central player in lipid and energy metabolism, and they establish Drosophila as a genetic model for further studies of conserved functions of the lipin family of metabolic regulators.
doi:10.1128/MCB.01335-10
PMCID: PMC3126333  PMID: 21300783
9.  Temporal and Spatial Regulation of the Phosphatidate Phosphatases Lipin 1 and 2*S⃞ 
The Journal of Biological Chemistry  2008;283(43):29166-29174.
Lipins are the founding members of a novel family of Mg2+-dependent phosphatidate phosphatases (PAP1 enzymes) that play key roles in fat metabolism and lipid biosynthesis. Despite their importance, there is still little information on how their activity is regulated. Here we demonstrate that the functions of lipin 1 and 2 are evolutionarily conserved from unicellular eukaryotes to mammals. The two lipins display distinct intracellular localization in HeLa M cells, with a pool of lipin 2 exhibiting a tight membrane association. Small interfering RNA-mediated silencing of lipin 1 leads to a dramatic decrease of the cellular PAP1 activity in HeLa M cells, whereas silencing of lipin 2 leads to an increase of lipin 1 levels and PAP1 activity. Consistent with their distinct functions in HeLa M cells, lipin 1 and 2 exhibit reciprocal patterns of protein expression in differentiating 3T3-L1 adipocytes. Lipin 2 levels increase in lipin 1-depleted 3T3-L1 cells without rescuing the adipogenic defects, whereas depletion of lipin 2 does not inhibit adipogenesis. Finally, we show that the PAP1 activity of both lipins is inhibited by phosphorylation during mitosis, leading to a decrease in the cellular PAP1 activity during cell division. We propose that distinct and non-redundant functions of lipin 1 and 2 regulate lipid production during the cell cycle and adipocyte differentiation.
doi:10.1074/jbc.M804278200
PMCID: PMC2570901  PMID: 18694939
10.  Cardiac lipin 1 expression is regulated by the peroxisome proliferator activated receptor γ coactivator 1α/estrogen related receptor axis 
Lipin family proteins (lipin 1, 2, and 3) are bifunctional intracellular proteins that regulate metabolism by acting as coregulators of DNA-bound transcription factors and also dephosphorylate phosphatidate to form diacylglycerol [phosphatidate phosphohydrolase activity] in the triglyceride synthesis pathway. Herein, we report that lipin 1 is enriched in heart and that hearts of mice lacking lipin 1 (fld mice) exhibit accumulation of phosphatidate. We also demonstrate that the expression of the gene encoding lipin 1 (Lpin1) is under the control of the estrogen-related receptors (ERRs) and their coactivator the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). PGC-1α, ERRα, or ERRγ overexpression increased Lpin1 transcription in cultured ventricular myocytes and the ERRs were associated with response elements in the first intron of the Lpin1 gene. Concomitant RNAi-mediated knockdown of ERRα and ERRγ abrogated the induction of lipin 1 expression by PGC-1α overexpression. Consistent with these data, 3-fold overexpression of PGC-1α in intact myocardium of transgenic mice increased cardiac lipin 1 and ERRα/γ expression. Similarly, injection of the β2-adrenergic agonist clenbuterol induced PGC-1α and lipin 1 expression, and the induction in lipin 1 after clenbuterol occurred in a PGC-1α-dependent manner. In contrast, expression of PGC-1α, ERRα, ERRγ, and lipin 1 was down-regulated in failing heart. Cardiac phosphatidic acid phosphohydrolase activity was also diminished, while cardiac phosphatidate content was increased, in failing heart. Collectively, these data suggest that lipin 1 is the principal lipin protein in the myocardium and is regulated in response to physiologic and pathologic stimuli that impact cardiac metabolism.
doi:10.1016/j.yjmcc.2011.04.009
PMCID: PMC3104300  PMID: 21549711
lipin; PGC-1α; metabolism; heart failure
11.  Distinct Roles of the Phosphatidate Phosphatases Lipin 1 and 2 during Adipogenesis and Lipid Droplet Biogenesis in 3T3-L1 Cells* 
The Journal of Biological Chemistry  2013;288(48):34502-34513.
Background: Lipins are phosphatidate phosphatases that generate diacylglycerol for lipid synthesis.
Results: Lipin 1 or lipin 2 depletion has distinct effects on differentiating adipocytes. Cells depleted of both lipins after initiation of adipogenesis accumulate triacylglycerol but display lipid droplet fragmentation.
Conclusion: Lipins have a role in lipid droplet biogenesis after initiation of adipogenesis.
Significance: Lipins play multiple roles during adipocyte differentiation.
Lipins are evolutionarily conserved Mg2+-dependent phosphatidate phosphatase (PAP) enzymes with essential roles in lipid biosynthesis. Mammals express three paralogues: lipins 1, 2, and 3. Loss of lipin 1 in mice inhibits adipogenesis at an early stage of differentiation and results in a lipodystrophic phenotype. The role of lipins at later stages of adipogenesis, when cells initiate the formation of lipid droplets, is less well characterized. We found that depletion of lipin 1, after the initiation of differentiation in 3T3-L1 cells but before the loading of lipid droplets with triacylglycerol, results in a reciprocal increase of lipin 2, but not lipin 3. We generated 3T3-L1 cells where total lipin protein and PAP activity levels are down-regulated by the combined depletion of lipins 1 and 2 at day 4 of differentiation. These cells still accumulated triacylglycerol but displayed a striking fragmentation of lipid droplets without significantly affecting their total volume per cell. This was due to the lack of the PAP activity of lipin 1 in adipocytes after day 4 of differentiation, whereas depletion of lipin 2 led to an increase of lipid droplet volume per cell. We propose that in addition to their roles during early adipogenesis, lipins also have a role in lipid droplet biogenesis.
doi:10.1074/jbc.M113.488445
PMCID: PMC3843065  PMID: 24133206
Adipocyte; Lipids; Mouse; Phosphatase; Phosphatidate; Triacylglycerol; Lipin
12.  Lipin 1 Represses NFATc4 Transcriptional Activity in Adipocytes To Inhibit Secretion of Inflammatory Factors ▿ †  
Molecular and Cellular Biology  2010;30(12):3126-3139.
Lipin 1 is a bifunctional protein that regulates gene transcription and, as a Mg2+-dependent phosphatidic acid phosphatase (PAP), is a key enzyme in the biosynthesis of phospholipids and triacylglycerol. We describe here the functional interaction between lipin 1 and the nuclear factor of activated T cells c4 (NFATc4). Lipin 1 represses NFATc4 transcriptional activity through protein-protein interaction, and lipin 1 is present at the promoters of NFATc4 transcriptional targets in vivo. Catalytically active and inactive lipin 1 can suppress NFATc4 transcriptional activity, and this suppression may involve recruitment of histone deacetylases to target promoters. In fat pads from mice deficient for lipin 1 (fld mice) and in 3T3-L1 adipocytes depleted of lipin 1 there is increased expression of several NFAT target genes including tumor necrosis factor alpha, resistin, FABP4, and PPARγ. Finally, both lipin 1 protein and total PAP activity are decreased with increasing adiposity in the visceral, but not subcutaneous, fat pads of ob/ob mice. These observations place lipin 1 as a potentially important link between triacylglycerol synthesis and adipose tissue inflammation.
doi:10.1128/MCB.01671-09
PMCID: PMC2876672  PMID: 20385772
13.  Lipin proteins form homo- and hetero-oligomers 
The Biochemical journal  2010;432(1):65-76.
SUMMARY
Lipin family members (lipin 1, 2, 3) are bi-functional proteins that dephosphorylate phosphatidic acid (PA) to produce diacylglycerol (DAG) and act in the nucleus to regulate gene expression. Although other components of the triglyceride synthesis pathway can form oligomeric complexes, it is unknown whether lipin proteins also exist as oligomers. In this study, by using various approaches, we revealed that lipin 1 formed stable homo-oligomers with itself and hetero-oligomers with lipin 2/3. Both the N- and C-terminal regions of lipin 1 mediate its oligomerization in a head-to-head/tail-to-tail manner. We also show that lipin 1 subcellular localization can be influenced through oligomerization, and the individual lipin 1 monomers in the oligomer function independently in catalyzing dephosphorylation of PA. This study provides evidence that lipin proteins function as oligomeric complexes and that the three mammalian lipin isoforms can form combinatorial units.
doi:10.1042/BJ20100584
PMCID: PMC3117669  PMID: 20735359
lipin; oligomer; FRET; phosphatidic acid phosphatase
14.  ASSEMBLY OF HIGH MOLECULAR WEIGHT COMPLEXES OF LIPIN ON A SUPPORTED LIPID BILAYER OBSERVED BY ATOMIC FORCE MICROSCOPY 
Biochemistry  2013;52(30):5092-5102.
Lipins are phosphatidic acid phosphatases involved in the biosynthesis of triacylglycerols and phospholipids. They are associated with the endoplasmic reticulum but can also travel into the nucleus and alter gene expression. Previous studies indicate lipins in solution form high molecular weight complexes, possibly tetramers. This study was undertaken to determine if lipins form complexes on membranes as well. Murine lipin 1b was applied to a supported bilayer of phosphatidylcholine, phosphatidylserine, and cholesterol and examined by atomic force microscopy (AFM) over time. Lipin on bare mica appeared as a symmetric particle with a volume consistent with the size of a monomer. On the bilayer lipin initially bound as asymmetric, curved particles which sometimes assembled into circular structures with an open center. Subsequently, lipin assemblies grew into large, symmetric particles with an average volume twelve times that of the monomer. Over time some of the lipin assemblies were removed from the bilayer by the AFM probe leaving behind “footprints” composed of complex patterns that may reflect the substructure of the lipin assemblies. The lipin complexes appeared very flat, with a diameter 20 times their height. The footprints had a similar diameter, providing confirmation of the extensive deformation of the protein under the AFM probe. The ability of lipin to form large complexes on membranes may have significant implications for the local concentrations of the product, diacylglycerol, formed during hydrolysis of phosphatidic acid and for cooperative hormonal regulation of lipin activity through phosphorylation of one or more monomers in the complexes.
doi:10.1021/bi4004765
PMCID: PMC4041088  PMID: 23862673
15.  Dietary Cholesterol Reduces Plasma Triacylglycerol in Apolipoprotein E-Null Mice: Suppression of Lipin-1 and -2 in the Glycerol-3-Phosphate Pathway 
PLoS ONE  2011;6(8):e22917.
Background
Cholesterol metabolism is tightly regulated by both cholesterol and its metabolites in the mammalian liver, but the regulatory mechanism of triacylglycerol (TG) synthesis remains to be elucidated. Lipin, which catalyzes the conversion of phosphatidate to diacylglycerol, is a key enzyme involved in de novo TG synthesis in the liver via the glycerol-3-phosphate (G3P) pathway. However, the regulatory mechanisms for the expression of lipin in the liver are not well understood.
Methodology/Principal Findings
Apolipoprotein E-knock out (apoE-KO) mice were fed a chow supplemented with 1.25% cholesterol (high-Chol diet). Cholesterol and bile acids were highly increased in the liver within a week. However, the amount of TG in very low-density lipoprotein (VLDL), but not in the liver, was reduced by 78%. The epididymal adipose tissue was almost eradicated in the long term. DNA microarray and real-time RT-PCR analyses revealed that the mRNA expression of all the genes in the G3P pathway in the liver was suppressed in the high-Chol diet apoE-KO mice. In particular, the mRNA and protein expression of lipin-1 and lipin-2 was markedly decreased, and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), which up-regulates the transcription of lipin-1, was also suppressed. In vitro analysis using HepG2 cells revealed that the protein expression of lipin-2 was suppressed by treatment with taurocholic acid.
Conclusions/Significance
These data using apoE-KO mice indicate that cholesterol and its metabolites are involved in regulating TG metabolism through a suppression of lipin-1 and lipin-2 in the liver. This research provides evidence for the mechanism of lipin expression in the liver.
doi:10.1371/journal.pone.0022917
PMCID: PMC3153461  PMID: 21857965
16.  Lipin1 regulates PPARγ transcriptional activity 
The Biochemical journal  2013;453(1):49-60.
PPARγ (peroxisome proliferator-activated receptor-γ) is a master transcription factor involved in adipogenesis through regulating adipocyte-specific gene expression. Recently, lipin1 was found to act as a key factor for adipocyte maturation and maintenance by modulating the C/EBPα (CCAAT/enhancer-binding protein α) and PPARγ network; however, the precise mechanism by which lipin1 affects the transcriptional activity of PPARγ is largely unknown. The results of the present study show that lipin1 activates PPARγ by releasing co-repressors, NcoR1 (nuclear receptor co-repressor 1) and SMRT (silencing mediator of retinoid and thyroid hormone receptor), from PPARγ in the absence of the ligand rosiglitazone. We also identified a novel lipin1 TAD (transcriptional activation domain), between residues 217 and 399, which is critical for the activation of PPARγ, but not PPARα. Furthermore, this TAD is unique to lipin1 since this region does not show any homology with the other lipin isoforms, lipin2 and lipin3. The activity of the lipin1 TAD is enhanced by p300 and SRC-1 (steroid receptor co-activator 1), but not by PCAF (p300/CBP-associated factor) and PGC-1α (PPAR co-activator 1α). The physical interaction between lipin1 and PPARγ occurs at the lipin1 C-terminal region from residues 825 to 926, and the VXXLL motif at residue 885 is critical for binding with and the activation of PPARγ. The action of lipin1 as a co-activator of PPARγ enhanced adipocyte differentiation; the TAD and VXXLL motif played critical roles, but the catalytic activity of lipin1 was not directly involved. Collectively, these data suggest that lipin1 functions as a key regulator of PPARγ activity through its ability to release co-repressors and recruit co-activators via a mechanism other than PPARα activation.
doi:10.1042/BJ20121598
PMCID: PMC3690191  PMID: 23627357
co-activator; co-repressor; lipin1; peroxisome proliferator-activated receptor (PPAR)
17.  Regulation of Hepatic Lipin-1 by Ethanol: Role of AMPK-SREBP-1 Signaling 
Hepatology (Baltimore, Md.)  2011;55(2):437-446.
Lipin-1 is a protein that exhibits dual functions as a phosphatidic acid phosphohydrolase (PAP) enzyme in the triglyceride synthesis pathways and a transcriptional co-regulator. Our previous studies have shown that ethanol causes fatty liver by activation of sterol regulatory element-binding protein 1 (SREBP-1) and inhibition of hepatic AMP-activated kinase (AMPK) in mice. Here, we tested the hypothesis that AMPK-SREBP-1 signaling may be involved in ethanol-mediated up-regulation of lipin-1 gene expression. The effects of ethanol on lipin-1 were investigated in cultured hepatic cells and in the livers of chronic ethanol-fed mice. Ethanol exposure robustly induced activity of a mouse lipin-1 promoter, promoted cytoplasmic localization of lipin-1 and caused excess lipid accumulation both in cultured hepatic cells and in mouse livers. Mechanistic studies showed that ethanol-mediated induction of lipin-1 gene expression was inhibited by a known activator of AMPK or overexpression of a constitutively active form of AMPK. Importantly, overexpression of processed nuclear form of SREBP-1c (nSREBP-1c) abolished the ability of AICAR to suppress ethanol-mediated induction of lipin-1 gene expression level. Chromatin immunoprecipitation (ChIP) assays further revealed that ethanol exposure significantly increased association of acetylated Histone H3 at lysine 9 (Lys9) with the SRE-containing region in the promoter of the lipin-1 gene. In conclusion, ethanol-induced up-regulation of lipin-1 gene expression is mediated through inhibition of AMPK and activation of SREBP-1.
doi:10.1002/hep.24708
PMCID: PMC3253249  PMID: 21953514
Alcoholic fatty liver; signal transduction; lipid metabolism; acetylation; sumoylation
18.  Sumoylation Regulates Nuclear Localization of Lipin-1α in Neuronal Cells 
PLoS ONE  2009;4(9):e7031.
Lipin-1 is a protein that has dual functions as a phosphatidic acid phosphohydrolase (PAP) and a nuclear transcriptional coactivator. It remains unknown how the nuclear localization and coactivator functions of lipin-1 are regulated. Here, we show that lipin-1 (including both the alpha and beta isoforms) is modified by sumoylation at two consensus sumoylation sites. We are unable to detect sumoylation of the related proteins lipin-2 and lipin-3. Lipin-1 is sumoylated at relatively high levels in brain, where lipin-1α is the predominant form. In cultured embryonic cortical neurons and SH-SY5Y neuronal cells, ectopically expressed lipin-1α is localized in both the nucleus and the cytoplasm, and the nuclear localization is abrogated by mutating the consensus sumyolation motifs. The sumoylation site mutant of lipin-1α loses the capacity to coactivate the transcriptional (co-) activators PGC-1α and MEF2, consistent with its nuclear exclusion. Thus, these results show that sumoylation facilitates the nuclear localization and transcriptional coactivator behavior of lipin-1α that we observe in cultured neuronal cells, and suggest that lipin-1α may act as a sumoylation-regulated transcriptional coactivator in brain.
doi:10.1371/journal.pone.0007031
PMCID: PMC2737637  PMID: 19753306
19.  Lipin-1 gamma isoform is a novel lipid droplet-associated protein highly expressed in the brain 
FEBS letters  2011;585(12):1979-1984.
Lipin-1 proteins are phosphatidic acid phosphatases catalyzing the conversion from phosphatidic acid to diacylglycerol. Two alternative splicing isoforms, lipin-1α and -1β, are localized at different subcellular compartments. A third splicing isoform, lipin-1γ was recently cloned and its subcellular localization is unknown. Here, we demonstrate that lipin-1γ is localized to lipid droplets, an association mediated by a hydrophobic, lipin-1γ-specific domain. Additional expression of lipin-1γ altered lipid droplet morphology without affecting the triacylglycerol level. In human tissues, lipin-1γ is the main lipin-1 isoform expressed in normal human brain, suggesting a specialized role in regulating brain lipid metabolism.
doi:10.1016/j.febslet.2011.05.035
PMCID: PMC3117272  PMID: 21616074
Lipin; phosphatidic acid phosphatase; lipid droplets; brain
20.  Glucose-6-phosphate isomerase deficiency results in mTOR activation, failed translocation of lipin 1α to the nucleus and hypersensitivity to glucose: Implications for the inherited glycolytic disease 
Biochimica et biophysica acta  2011;1812(11):1393-1402.
Inherited glucose-6-phosphate isomerase (GPI) deficiency is the second most frequent glycolytic erythroenzymopathy in humans. Patients present with non-spherocytic anemia of variable severity and with neuromuscular dysfunction. We previously described Chinese hamster (CHO) cell lines with mutations in GPI and loss of GPI activity. This resulted in a temperature sensitivity and severe reduction in the synthesis of glycerolipids due to a reduction in phosphatidate phosphatase (PAP). In the current article we attempt to describe the nature of this pleiotropic effect. We cloned and sequenced the CHO lipin 1 cDNA, a gene that codes for PAP activity. Overexpression of lipin 1 in the GPI-deficient cell line, GroD1 resulted in increased PAP activity, however it failed to restore glycerolipid biosynthesis. Fluorescent microscopy showed a failure of GPI-deficient cells to localize lipin 1α to the nucleus. We also found that glucose-6-phosphate levels in GroD1 cells were 10-fold over normal. Lowering glucose levels in the growth medium partially restored glycerolipid biosynthesis and nuclear localization of lipin 1α. Western blot analysis of the elements within the mTOR pathway, which influences lipin 1 activity, was consistent with an abnormal activation of this system. Combined, these data suggest that GPI deficiency results in an accumulation of glucose-6-phosphate, and possibly other glucose-derived metabolites, leading to activation of mTOR and sequestration of lipin 1 to the cytosol, preventing its proper functioning. These results shed light on the mechanism underlying the pathologies associated with inherited GPI deficiency and the variability in the severity of the symptoms observed in these patients.
doi:10.1016/j.bbadis.2011.07.007
PMCID: PMC3185221  PMID: 21787864
21.  Regulation of lipid droplet and membrane biogenesis by the acidic tail of the phosphatidate phosphatase Pah1p 
Molecular Biology of the Cell  2013;24(13):2124-2133.
Binding and dephosphorylation of the yeast lipin Pah1p by its phosphatase Nem1p-Spo7p is essential for its membrane targeting and is mediated by a C-terminal acidic stretch on Pah1p. This results in the recruitment of Pah1p to the vicinity of lipid droplets, where it controls triglyceride and droplet biogenesis in an acidic tail–dependent manner.
Lipins are evolutionarily conserved phosphatidate phosphatases that perform key functions in phospholipid, triglyceride, and membrane biogenesis. Translocation of lipins on membranes requires their dephosphorylation by the Nem1p-Spo7p transmembrane phosphatase complex through a poorly understood mechanism. Here we identify the carboxy-terminal acidic tail of the yeast lipin Pah1p as an important regulator of this step. Deletion or mutations of the tail disrupt binding of Pah1p to the Nem1p-Spo7p complex and Pah1p membrane translocation. Overexpression of Nem1p-Spo7p drives the recruitment of Pah1p in the vicinity of lipid droplets in an acidic tail–dependent manner and induces lipid droplet biogenesis. Genetic analysis shows that the acidic tail is essential for the Nem1p-Spo7p–dependent activation of Pah1p but not for the function of Pah1p itself once it is dephosphorylated. Loss of the tail disrupts nuclear structure, INO1 gene expression, and triglyceride synthesis. Similar acidic sequences are present in the carboxy-terminal ends of all yeast lipin orthologues. We propose that acidic tail–dependent binding and dephosphorylation of Pah1p by the Nem1p-Spo7p complex is an important determinant of its function in lipid and membrane biogenesis.
doi:10.1091/mbc.E13-01-0021
PMCID: PMC3694796  PMID: 23657815
22.  Dual Function Lipin Proteins and Glycerolipid Metabolism 
Lipin family proteins are emerging as critical regulators of lipid metabolism. In triglyceride synthesis, lipins act as lipid phosphatase enzymes at the endoplasmic reticular membrane, catalyzing the dephosphorylation of phosphatidic acid to form diacylglycerol, which is the penultimate step in this process. However, lipin proteins are not integral membrane proteins and can rapidly translocate within the cell. In fact, emerging evidence suggests that lipins also play critical roles in the nucleus as transcriptional regulatory proteins. Thus, lipins are poised to regulate cellular lipid metabolism at multiple regulatory nodal points. This review summarizes the history of lipin proteins and discusses the current state of our understanding of lipin biology.
doi:10.1016/j.tem.2011.02.006
PMCID: PMC3118913  PMID: 21470873
23.  The human lipodystrophy protein seipin is an ER membrane adaptor for the adipogenic PA phosphatase lipin 1 
Molecular Metabolism  2012;2(1):38-46.
Disruption of the gene BSCL2 causes a severe, generalised lipodystrophy, demonstrating the critical role of its protein product, seipin, in human adipose tissue development. Seipin is essential for adipocyte differentiation, whilst the study of seipin in non-adipose cells has suggested a role in lipid droplet formation. However, its precise molecular function remains poorly understood. Here we demonstrate that seipin can inducibly bind lipin 1, a phosphatidic acid (PA) phosphatase important for lipid synthesis and adipogenesis. Knockdown of seipin during early adipogenesis decreases the association of lipin 1 with membranes and increases the accumulation of its substrate PA. Conversely, PA levels are reduced in differentiating cells by overexpression of wild-type seipin but not by expression of a mutated seipin that is unable to bind lipin 1. Together our data identify lipin as the first example of a seipin-interacting protein and reveals a novel molecular function for seipin in developing adipocytes.
doi:10.1016/j.molmet.2012.11.002
PMCID: PMC3757660  PMID: 24024128
Seipin; Adipogenesis; Lipodystrophy; Lipin; Endoplasmic reticulum
24.  Complex Interplay between the Lipin 1 and the Hepatocyte Nuclear Factor 4 α (HNF4α) Pathways to Regulate Liver Lipid Metabolism 
PLoS ONE  2012;7(12):e51320.
Lipin 1 is a bifunctional protein that serves as a metabolic enzyme in the triglyceride synthesis pathway and regulates gene expression through direct protein-protein interactions with DNA-bound transcription factors in liver. Herein, we demonstrate that lipin 1 is a target gene of the hepatocyte nuclear factor 4α (HNF4α), which induces lipin 1 gene expression in cooperation with peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) through a nuclear receptor response element in the first intron of the lipin 1 gene. The results of a series of gain-of-function and loss-of-function studies demonstrate that lipin 1 coactivates HNF4α to activate the expression of a variety of genes encoding enzymes involved in fatty acid catabolism. In contrast, lipin 1 reduces the ability of HNF4α to induce the expression of genes encoding apoproteins A4 and C3. Although the ability of lipin to diminish HNF4α activity on these promoters required a direct physical interaction between the two proteins, lipin 1 did not occupy the promoters of the repressed genes and enhances the intrinsic activity of HNF4α in a promoter-independent context. Thus, the induction of lipin 1 by HNF4α may serve as a mechanism to affect promoter selection to direct HNF4α to promoters of genes encoding fatty acid oxidation enzymes.
doi:10.1371/journal.pone.0051320
PMCID: PMC3517414  PMID: 23236470
25.  Hepatic-Specific Lipin-1 Deficiency Exacerbates Experimental Alcohol-Induced Steatohepatitis in Mice 
Hepatology (Baltimore, Md.)  2013;58(6):10.1002/hep.26589.
Lipin-1 regulates lipid metabolism via its function as an enzyme in the triglyceride synthesis pathway and as a transcriptional co-regulatory protein and is highly up-regulated in alcoholic fatty liver disease. In the present study, using a liver specific lipin-1-deficient (lipin-1LKO) mouse model, we aimed to investigate the functional role of lipin-1 in the development of alcoholic steatohepatitis and explore the underlying mechanisms. Alcoholic liver injury was achieved by pair feeding wild-type (WT) and lipin-1LKO mice with modified Lieber-DeCarli ethanol-containing low fat diets for 4-wks. Surprisingly, chronically ethanol-fed lipin-1LKO mice showed markedly greater hepatic triglyceride and cholesterol accumulation, and augmented elevation of serum liver enzymes accompanied by increased hepatic pro-inflammatory cytokine expression. Our studies further revealed that hepatic removal of lipin-1 in mice augmented ethanol-induced impairment of hepatic fatty acid oxidation and lipoprotein production likely via deactivation of PGC-1α, a prominent transcriptional regulator of lipid metabolism. Our findings demonstrate that liver-specific lipin-1 deficiency in mice exacerbates the development and progression of experimental alcohol-induced steatohepatitis. Pharmacological or nutritional modulation of hepatic lipin-1 may be beneficial for the prevention or treatment of human alcoholic fatty liver disease.
doi:10.1002/hep.26589
PMCID: PMC3835749  PMID: 23787969
Alcoholic liver steatosis; Lipid metabolism; Inflammmation; Lipin-1; Signal transduction

Results 1-25 (902367)