Search tips
Search criteria

Results 1-25 (1415899)

Clipboard (0)

Related Articles

1.  Dynamic Loss of Surface-Expressed AMPA Receptors in Mouse Cortical and Striatal Neurons During Anesthesia 
Journal of neuroscience research  2011;90(1):315-323.
Ionotropic glutamate receptors, especially the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subtype, undergo dynamic trafficking between the surface membrane and intracellular organelles. This trafficking activity determines the efficacy and strength of excitatory synapses and is subject to modulation by changing synaptic inputs. Given the possibility that glutamate receptors in the central nervous system might be a sensitive target of anesthetic agents, this study investigated the possible impact of anesthesia on trafficking and subcellular expression of AMPA receptors in adult mouse brain neurons in vivo. We found that anesthesia induced by a systemic injection of pentobarbital did not alter total protein levels of three AMPA receptor subunits (GluR1–3) in cortical neurons. However, an anesthetic dose of pentobarbital reduced GluR1 and GluR3 proteins in the surface pool and elevated these proteins in the intracellular pool of cortical neurons. The similar redistribution of GluR1/3 was observed in mouse striatal neurons. Pentobarbital did not significantly alter GluR2 expression in the two pools. Chloral hydrate at an anesthetic dose also reduced surface GluR1/3 expression and increased intracellular levels of these proteins. The effect of pentobarbital on subcellular distribution of AMPA receptors was reversible. Altered subcellular distribution of GluR1/3 returned to normal levels after the anesthesia subsided. These data indicate that anesthesia induced by pentobarbital and chloral hydrate can alter AMPA receptor trafficking in both cortical and striatal neurons. This alteration is characterized by the concurrent loss and addition of GluR1/3 subunits in the respective surface and intracellular pools.
PMCID: PMC3218204  PMID: 21932367
pentobarbital; chloral hydrate; glutamate; GluR1; GluR3; trafficking
2.  Natural Reward Experience Alters AMPA and NMDA Receptor Distribution and Function in the Nucleus Accumbens 
PLoS ONE  2012;7(4):e34700.
Natural reward and drugs of abuse converge upon the mesolimbic system which mediates motivation and reward behaviors. Drugs induce neural adaptations in this system, including transcriptional, morphological, and synaptic changes, which contribute to the development and expression of drug-related memories and addiction. Previously, it has been reported that sexual experience in male rats, a natural reward behavior, induces similar neuroplasticity in the mesolimbic system and affects natural reward and drug-related behavior. The current study determined whether sexual experience causes long-lasting changes in mating, or ionotropic glutamate receptor trafficking or function in the nucleus accumbens (NAc), following 3 different reward abstinence periods: 1 day, 1 week, or 1 month after final mating session. Male Sprague Dawley rats mated during 5 consecutive days (sexual experience) or remained sexually naïve to serve as controls. Sexually experienced males displayed facilitation of initiation and performance of mating at each time point. Next, intracellular and membrane surface expression of N-methyl-D-aspartate (NMDA: NR1 subunit) and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA: GluA1, GluA2 subunits) receptors in the NAc was determined using a bis(sulfosuccinimidyl)suberate (BS3) protein cross-linking assay followed by Western Blot analysis. NR1 expression was increased at 1 day abstinence both at surface and intracellular, but decreased at surface at 1 week of abstinence. GluA2 was increased intracellularly at 1 week and increased at the surface after 1 month of abstinence. Finally, whole-cell patch clamp electrophysiological recordings determined reduced AMPA/NMDA ratio of synaptic currents in NAc shell neurons following stimulation of cortical afferents in sexually experienced males after all reward abstinence periods. Together, these data show that sexual experience causes long-term alterations in glutamate receptor expression and function in the NAc. Although not identical, this sex experience-induced neuroplasticity has similarities to that caused by psychostimulants, suggesting common mechanisms for reinforcement of natural and drug reward.
PMCID: PMC3329487  PMID: 22529926
3.  Changes in surface expression of N-methyl-D-aspartate receptors in the striatum in a rat model of Parkinson’s disease 
N-methyl-D-aspartate (NMDA) receptors play a central role in glutamatergic synaptic transmission in the mammalian brain and are linked to the pathophysiology and symptomatology of Parkinson’s disease (PD). However, changes in NMDA receptor expression in distinct subcellular compartments in PD have not been elucidated. In this study, we investigated changes in subcellular expression of NMDA receptors in striatal neurons in a rodent PD model.
Intracranial injection of the neurotoxin 6-hydroxydopamine (6-OHDA) was selectively lesioned into the nigrostriatal dopaminergic pathway in adult Sprague Dawley rats, which is a common rat model of PD. A surface receptor crosslinking assay was conducted to examine the response of individual NMDA receptor subunits to dopamine depletion in isolated and confined surface and intracellular compartments of striatal neurons.
In PD rats where 6-OHDA was selectively lesioned, surface expression of NMDA receptor GluN1 subunits as detected by surface protein crosslinking assays was increased in the striatum. In contrast, intracellular levels of GluN1 were decreased in the lesioned region. The NMDA receptor GluN2B subunit was elevated in its abundance in the surface pool of the lesioned striatum, while intracellular GluN2B levels were not altered. GluN2A subunits in both surface and intracellular fractions remained stable. In addition, total cellular levels of striatal GluN1 and GluN2A were not changed in lesioned tissue, while total GluN2B proteins showed an increase.
These results demonstrate the differential sensitivity of principal NMDA receptor subunits to dopamine depletion. GluN1 and GluN2B expression in the distinct surface compartment underwent upregulation in striatal neurons after selective lesions of the dopaminergic pathway by 6-OHDA.
PMCID: PMC3900317  PMID: 24465126
glutamate; excitatory amino acid; NMDA; GluN; dopamine; 6-hydroxydopamine; caudate putamen; nucleus accumbens
4.  Metabotropic glutamate receptor 5 upregulates surface NMDA receptor expression in striatal neurons via CaMKII 
Brain research  2015;1624:414-423.
Metabotropic and ionotropic glutamate receptors are closely clustered in postsynaptic membranes and are believed to interact actively with each other to control excitatory synaptic transmission. Metabotropic glutamate receptor 5 (mGluR5), for example, has been well documented to potentiate ionotropic NMDA receptor activity, although underlying mechanisms are poorly understood. In this study, we investigated the role of mGluR5 in regulating trafficking and subcellular distribution of NMDA receptors in adult rat striatal neurons. We found that the mGluR1/5 agonist DHPG concentration-dependently increased NMDA receptor GluN1 and GluN2B subunit expression in the surface membrane. Meanwhile, DHPG reduced GluN1 and GluN2B levels in the intracellular compartment. The effect of DHPG was blocked by an mGluR5 selective antagonist MTEP but not by an mGluR1 selective antagonist 3-MATIDA. Pretreatment with an inhibitor or a specific inhibitory peptide for synapse-enriched Ca2+/calmodulin-dependent protein kinase II (CaMKII) also blocked the DHPG-stimulated redistribution of GluN1 and GluN2B. In addition, DHPG enhanced CaMKIIα activity and elevated GluN2B phosphorylation at a CaMKII-sensitive site (serine 1303). These results demonstrate that mGluR5 regulates trafficking of NMDA receptors in striatal neurons. Activation of mGluR5 appears to induce rapid trafficking of GluN1 and GluN2B to surface membranes through a signaling pathway involving CaMKII.
PMCID: PMC4630094  PMID: 26256252
mGluR; striatum; GluN1; GluN2B; NR2B; G protein-coupled receptor; phosphorylation; DHPG
5.  GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine 
eLife  null;3:e03581.
A single, low dose of the NMDA receptor antagonist ketamine produces rapid antidepressant actions in treatment-resistant depressed patients. Understanding the cellular mechanisms underlying this will lead to new therapies for treating major depression. NMDARs are heteromultimeric complexes formed through association of two GluN1 and two GluN2 subunits. We show that in vivo deletion of GluN2B, only from principal cortical neurons, mimics and occludes ketamine's actions on depression-like behavior and excitatory synaptic transmission. Furthermore, ketamine-induced increases in mTOR activation and synaptic protein synthesis were mimicked and occluded in 2BΔCtx mice. We show here that cortical GluN2B-containing NMDARs are uniquely activated by ambient glutamate to regulate levels of excitatory synaptic transmission. Together these data predict a novel cellular mechanism that explains ketamine's rapid antidepressant actions. In this model, basal glutamatergic neurotransmission sensed by cortical GluN2B-containing NMDARs regulates excitatory synaptic strength in PFC determining basal levels of depression-like behavior.
eLife digest
Depression is the leading cause of disability worldwide, with hundreds of millions of people living with the condition. The ‘gold standard’ for depression treatment involves a combination of psychotherapy and medication. Unfortunately, current antidepressant medications do not help everyone, waiting lists for psychotherapy are often long, and both normally take a number of weeks of regular treatment before they begin to have an effect. As patients are often at a high risk of suicide, it is crucial that treatments that act more quickly, and that are safe and effective, are developed.
One substance that may fulfill these requirements is a drug called ketamine. Studies have shown that depression symptoms can be reduced within hours by a single low dose of ketamine, and this effect on mood can last for more than a week. However, progress has been hindered by a lack of knowledge about what ketamine actually does inside the brain.
Neurons communicate with one another by releasing chemicals known as neurotransmitters, which transfer information by binding to receptor proteins on the surface of other neurons. Drugs such as ketamine also bind to these receptors. Ketamine works by blocking a specific receptor called the n-methyl d-aspartate (NMDA) receptor, but how this produces antidepressant effects is not fully understood.
The NMDA receptor is actually formed from a combination of individual protein subunits, including one called GluN2B. Now Miller, Yang et al. have created mice that lack receptors containing these GluN2B subunits in neurons in their neocortex, including the prefrontal cortex, a brain region involved in complex mental processes such as decision-making. This allowed Miller, Yang et al. to discover that when the neurotransmitter glutamate binds to GluN2B-containing NMDA receptors, it limits the production of certain proteins that make it easier for signals to be transmitted between neurons. Suppressing the synthesis of these proteins too much may cause depressive effects by reducing communication between the neurons in the prefrontal cortex.
Both mice lacking GluN2B-containing receptors in their cortical neurons and normal mice treated with ketamine showed a reduced amount of depressive-like behavior. This evidence supports Miller, Yang et al.'s theory that by blocking these NMDA receptors, ketamine restricts their activation. This restores normal levels of protein synthesis, improves communication between neurons in the cortex, and reduces depression.
Understanding how ketamine works to alleviate depression is an important step towards developing it into a safe and effective treatment. Further research is also required to determine the conditions that cause overactivation of the GluN2B-containing NMDA receptors.
PMCID: PMC4270067  PMID: 25340958
depression; cortex; synapse; ketamine; electrophysiology; protein synthesis; mouse; rat
6.  Caldendrin–Jacob: A Protein Liaison That Couples NMDA Receptor Signalling to the Nucleus 
PLoS Biology  2008;6(2):e34.
NMDA (N-methyl-D-aspartate) receptors and calcium can exert multiple and very divergent effects within neuronal cells, thereby impacting opposing occurrences such as synaptic plasticity and neuronal degeneration. The neuronal Ca2+ sensor Caldendrin is a postsynaptic density component with high similarity to calmodulin. Jacob, a recently identified Caldendrin binding partner, is a novel protein abundantly expressed in limbic brain and cerebral cortex. Strictly depending upon activation of NMDA-type glutamate receptors, Jacob is recruited to neuronal nuclei, resulting in a rapid stripping of synaptic contacts and in a drastically altered morphology of the dendritic tree. Jacob's nuclear trafficking from distal dendrites crucially requires the classical Importin pathway. Caldendrin binds to Jacob's nuclear localization signal in a Ca2+-dependent manner, thereby controlling Jacob's extranuclear localization by competing with the binding of Importin-α to Jacob's nuclear localization signal. This competition requires sustained synapto-dendritic Ca2+ levels, which presumably cannot be achieved by activation of extrasynaptic NMDA receptors, but are confined to Ca2+ microdomains such as postsynaptic spines. Extrasynaptic NMDA receptors, as opposed to their synaptic counterparts, trigger the cAMP response element-binding protein (CREB) shut-off pathway, and cell death. We found that nuclear knockdown of Jacob prevents CREB shut-off after extrasynaptic NMDA receptor activation, whereas its nuclear overexpression induces CREB shut-off without NMDA receptor stimulation. Importantly, nuclear knockdown of Jacob attenuates NMDA-induced loss of synaptic contacts, and neuronal degeneration. This defines a novel mechanism of synapse-to-nucleus communication via a synaptic Ca2+-sensor protein, which links the activity of NMDA receptors to nuclear signalling events involved in modelling synapto-dendritic input and NMDA receptor–induced cellular degeneration.
Author Summary
Long-lasting changes in communication between nerve cells require the regulation of gene expression. The influx of calcium ions into the cell, particularly through membrane protein called NMDA receptors, plays a crucial role in this process by determining the type of gene expression induced. NMDA receptors can exert multiple and very divergent effects within neuronal cells by impacting opposing phenomena such as synaptic plasticity and neuronal degeneration. We identified a protein termed Jacob that appears to play a pivotal role in such processes by entering the nucleus in response to NMDA receptor activation and controlling gene expression that governs cell survival and the stability of synaptic cell contacts. Removal of Jacob from the nucleus protects neurons from NMDA receptor–induced cell death and increases phosphorylation of the transcription factor CREB, whereas the opposite occurs after targeting Jacob exclusively to the nucleus. The work defines a novel pathway of synapse-to-nucleus communication involved in modelling synapto-dendritic input and NMDA receptor–induced cellular degeneration.
A new signaling mechanism from NMDA receptors to the nucleus plays an important role in the phosphorylation of the transcription factor CREB and neuronal cell survival.
PMCID: PMC2253627  PMID: 18303947
7.  Increased Response to Glutamate in Small Diameter Dorsal Root Ganglion Neurons after Sciatic Nerve Injury 
PLoS ONE  2014;9(4):e95491.
Glutamate in the peripheral nervous system is involved in neuropathic pain, yet we know little how nerve injury alters responses to this neurotransmitter in primary sensory neurons. We recorded neuronal responses from the ex-vivo preparations of the dorsal root ganglia (DRG) one week following a chronic constriction injury (CCI) of the sciatic nerve in adult rats. We found that small diameter DRG neurons (<30 µm) exhibited increased excitability that was associated with decreased membrane threshold and rheobase, whereas responses in large diameter neurons (>30 µm) were unaffected. Puff application of either glutamate, or the selective ionotropic glutamate receptor agonists alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainic acid (KA), or the group I metabotropic receptor (mGluR) agonist (S)-3,5-dihydroxyphenylglycine (DHPG), induced larger inward currents in CCI DRGs compared to those from uninjured rats. N-methyl-D-aspartate (NMDA)-induced currents were unchanged. In addition to larger inward currents following CCI, a greater number of neurons responded to glutamate, AMPA, NMDA, and DHPG, but not to KA. Western blot analysis of the DRGs revealed that CCI resulted in a 35% increase in GluA1 and a 60% decrease in GluA2, the AMPA receptor subunits, compared to uninjured controls. mGluR1 receptor expression increased by 60% in the membrane fraction, whereas mGluR5 receptor subunit expression remained unchanged after CCI. These results show that following nerve injury, small diameter DRG neurons, many of which are nociceptive, have increased excitability and an increased response to glutamate that is associated with changes in receptor expression at the neuronal membrane. Our findings provide further evidence that glutamatergic transmission in the periphery plays a role in nociception.
PMCID: PMC3991716  PMID: 24748330
8.  Downregulation of Early Ionotrophic Glutamate Receptor Subunit Developmental Expression as a Mechanism for Observed Plasticity Deficits Following Gestational Exposure to Benzo(a)pyrene 
Neurotoxicology  2007;28(5):965-978.
The focus of this study was to characterize the impact of gestational exposure to benzo(a)pyrene, [B(a)P] on modulation of glutamate receptor subunit expression that is critical for the maintenance of synaptic plasticity mechanisms during hippocampal or cortical development in offspring. Previous studies have demonstrated that hippocampal and/or cortical synaptic plasticity (as measured by long-term potentiation and S1-cortex spontaneous/evoked neuronal activity) and learning behavior (as measured by fixed-ratio performance operant testing) is significantly impaired in polycyclic aromatic or halogenated aromatic hydrocarbon-exposed offspring as compared to controls. These previous studies have also revealed that brain to body weight ratios are greater in exposed offspring relative to controls indicative of intrauterine growth retardation which has been shown to manifest as low birth weight in offspring. Recent epidemiological studies have identified an effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 Years of life among inner-city children (Perera et al., 2006). The present study utilizes a well-characterized animal model to test the hypothesis that gestational exposure to B(a)P causes dysregulation of developmental ionotropic glutamate receptor subunit expression, namely the N-methyl-D-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptor (AMPAR) both critical to the expression of synaptic plasticity mechanisms. To mechanistically ascertain the basis of B(a)P-induced plasticity perturbations, timed pregnant Long-Evans rats were exposed in an oral subacute exposure regimen to 0, 25 and 150µg/kg BW B(a)P on gestation days 14–17. The first sub-hypothesis tested whether gestational exposure to B(a)P would result in significant disposition in offspring. The second sub-hypothesis tested whether gestational exposure to B(a)P would result in downregulation of early developmental expression of NMDA and AMPA receptor subunits in the hippocampus of offspring as well as in primary neuronal cultures. The results of these studies revealed significant: 1) disposition to the hippocampus and cortex, 2) down-regulation of developmental glutamate receptor mRNA and protein subunit expression and 3) voltage-dependent decreases in the amplitude of inward currents at negative potentials in B(a)P-treated cortical neuronal membranes.
These results suggest that plasticity and behavioral deficits produced as a result of gestational B(a)P exposure are at least, in part, a result of down-regulation of early developmental glutamate receptor subunit expression and function at a time when excitatory synapses are being formed for the first time in the developing central nervous system. The results also predict that in B(a)P-exposed offspring with reduced early glutamate receptor subunit expression, a parallel deficit in behaviors that depend on normal hippocampal or cortical functioning will be observed and that these deficits will be present throughout life.
PMCID: PMC2276633  PMID: 17606297
9.  LRP1 is critical for the surface distribution and internalization of the NR2B NMDA receptor subtype 
The N-methyl-D-aspartate receptors are key mediators of excitatory transmission and are implicated in many forms of synaptic plasticity. These receptors are heterotetrameres consisting of two obligatory NR1 and two regulatory subunits, usually NR2A or NR2B. The NR2B subunits are abundant in the early postnatal brain, while the NR2A/NR2B ratio increases during early postnatal development. This shift is driven by NMDA receptor activity. A functional interplay of the Low Density Lipoprotein Receptor Related Protein 1 (LRP1) NMDA receptor has already been reported. Such abilities as interaction of LRP1 with NMDA receptor subunits or its important role in tPa-mediated NMDA receptor signaling were already demonstrated. Moreover, mice harboring a conditional neuronal knock-out mutation of the entire Lrp1 gene display NMDA-associated behavioral changes. However, the exact role of LRP1 on NMDA receptor function remains still elusive.
To provide a mechanistic explanation for such effects we investigated whether an inactivating knock-in mutation into the NPxY2 motif of LRP1 might influence the cell surface expression of LRP1 and NMDA receptors in primary cortical neurons. Here we demonstrate that a knock-in into the NPxY2 motif of LRP1 results in an increased surface expression of LRP1 and NR2B NMDA receptor subunit due to reduced endocytosis rates of LRP1 and the NR2B subunit in primary neurons derived from LRP1ΔNPxY2 animals. Furthermore, we demonstrate an altered phosphorylation pattern of S1480 and Y1472 in the NR2B subunit at the surface of LRP1ΔNPxY2 neurons, while the respective kinases Fyn and casein kinase II are not differently regulated compared with wild type controls. Performing co-immunoprecipitation experiments we demonstrate that binding of LRP1 to NR2B might be linked by PSD95, is phosphorylation dependent and this regulation mechanism is impaired in LRP1ΔNPxY2 neurons. Finally, we demonstrate hyperactivity and changes in spatial and reversal learning in LRP1ΔNPxY2 mice, confirming the mechanistic interaction in a physiological readout.
In summary, our data demonstrate that LRP1 plays a critical role in the regulation of NR2B expression at the cell surface and may provide a mechanistic explanation for the behavioral abnormalities detected in neuronal LRP1 knock-out animals reported earlier.
PMCID: PMC3722104  PMID: 23866919
LRP1; NPxY2 motif; NMDA receptor; NR1; NR2B receptor subunit; PSD95; Cell surface expression
10.  Ethanol Inhibition of Recombinant NMDA Receptors Is Not Altered by Co-Expression of CaMKII-α or CaMKII-β 
Alcohol (Fayetteville, N.Y.)  2008;42(5):425-432.
Previous studies have shown that the N-methyl-D-aspartate (NMDA) receptor is an important target for the actions of ethanol in the brain. NMDA receptors are glutamate-activated ion channels that are highly expressed in neurons. They are activated during periods of significant glutamatergic synaptic activity and are an important source of the signaling molecule calcium in the post-synaptic spine. Alterations in the function of NMDA receptors by drugs or disease are associated with deficits in motor, sensory and cognitive processes of the brain. Acutely, ethanol inhibits ion flow through NMDA receptors while sustained exposure to ethanol can induce compensatory changes in the density and localization of the receptor. Defining factors that govern the acute ethanol sensitivity of NMDA receptors is an important step in how an individual responds to ethanol. In the present study, we investigated the effect of calcium-calmodulin dependent protein kinase II (CaMKII) on the ethanol sensitivity of recombinant NMDA receptors. CaMKII is a major constituent of the post-synaptic density and is critically involved in various forms of learning and memory. NMDA receptor subunits were transiently expressed in human embryonic kidney 293 cells (HEK 293) along with CaMKII-α or CaMKII-β tagged with the green fluorescent protein (GFP). Whole cell currents were elicited by brief exposures to glutamate and were measured using patchclamp electrophysiology. Neither CaMKII-α or CaMKII-β had any significant effect on the ethanol inhibition of NR1/2A or NR1/2B receptors. Ethanol inhibition was also unaltered by deletion of CaMKII binding domains in NR1 or NR2 subunits or by phospho-site mutants that mimic or occlude CaMKII phosphorylation. Chronic treatment of cortical neurons with ethanol had no significant effect on the expression of CaMKII-α or CaMKII-β. The results of this study suggest that CaMKII is not involved in regulating the acute ethanol sensitivity of NMDA receptors.
PMCID: PMC2629600  PMID: 18562151
electrophysiology; alcohol; ion channel; kinase; phosphorylation
11.  Chloral Hydrate Treatment Induced Apoptosis of Macrophages via Fas Signaling Pathway 
There are recent reports on several anesthetics that have anti-inflammatory and anti-infective effects apart from their uses for pain relief and muscle relaxation. Chloral hydrate is a clinical anesthetic drug and sedative that has also been reported to attenuate inflammatory response, but the mechanisms are not clearly understood.
This study investigated the effect of chloral hydrate treatment on the apoptosis of macrophages and explored the underlying mechanisms. RAW264.7 macrophages were treated with various concentrations of chloral hydrate for various lengths of time. Morphological changes were observed under a light microscope and apoptosis was detected with annexin-V-FITC/PI double-staining assay, Hochest 33258 and DNA ladder assay, the expression of Fas/FasL was detected with a flow cytometer, and the Fas signaling pathway was assessed by Western blotting.
The results showed that chloral hydrate treatment induced the morphology of RAW264.7 macrophages to change shape from typical fusiform to round in a concentration- and time-dependent manner, and was finally suspended in the supernatant. For the induction of apoptosis, chloral hydrate treatment induced the apoptosis of RAW264.7 macrophages from early-to-late stage apoptosis in a concentration- and time-dependent manner. For the mechanism, chloral hydrate treatment induced higher expression of Fas on RAW264.7 macrophages, and was also associated with changes in the expression of proteins involved in Fas signaling pathways.
Chloral hydrate treatment can induce the apoptosis of RAW264.7 macrophages through the Fas signaling pathway, which may provide new options for adjunctive treatment of acute inflammation.
PMCID: PMC5167102  PMID: 27941708
Apoptosis; Chloral Hydrate; Fas Ligand Protein; Macrophages
12.  Diabetes changes expression of genes related to glutamate neurotransmission and transport in the Long-Evans rat retina 
Molecular Vision  2013;19:1538-1553.
This study investigated changes in the transcript levels of genes related to glutamate neurotransmission and transport as diabetes progresses in the Long-Evans rat retina. Transcript levels of vascular endothelial growth factor (VEGF), erythropoietin, and insulin-like growth factor binding protein 3 (IGFBP3) were also measured due to their protective effects on the retinal vasculature and neurons.
Diabetes was induced in Long-Evans rats with a single intraperitoneal (IP) injection of streptozotocin (STZ; 65 mg/kg) in sodium citrate buffer. Rats with blood glucose >300 mg/dl were deemed diabetic. Age-matched controls received a single IP injection of sodium citrate buffer only. The retinas were dissected at 4 and 12 weeks after induction of diabetes, and mRNA and protein were extracted from the left and right retinas of each rat, respectively. Gene expression was analyzed using quantitative real-time reverse-transcription PCR. Enzyme-linked immunosorbent assay was used to quantify the concentration of VEGF protein in each retina. Statistical significance was determined using 2×2 analysis of variance followed by post-hoc analysis using Fisher’s protected least squares difference.
Transcript levels of two ionotropic glutamate receptor subunits and one glutamate transporter increased after 4 weeks of diabetes. In contrast, 12 weeks of diabetes decreased the transcript levels of several genes, including two glutamate transporters, four out of five N-methyl-D-aspartate (NMDA) receptor subunits, and all five kainate receptor subunits. Diabetes had a greater effect on gene expression of NMDA and kainate receptor subunits than on the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits, for which only GRIA4 significantly decreased after 12 weeks. VEGF protein levels were significantly increased in 4-week diabetic rats compared to age-matched control rats whereas the increase was not significant after 12 weeks. Transcript levels of VEGF and VEGF receptors were unchanged with diabetes. Erythropoietin and IGFBP3 mRNA levels significantly increased at both time points, and IGFBP2 mRNA levels increased after 12 weeks.
Diabetes caused significant changes in the transcriptional expression of genes related to ionotropic glutamate neurotransmission, especially after 12 weeks. Most genes with decreased transcript levels after 12 weeks were expressed by retinal ganglion cells, which include glutamate transporters and ionotropic glutamate receptors. Two genes expressed by retinal ganglion cells but unrelated to glutamate neurotransmission, γ-synuclein (SNCG) and adenosine A1 receptor (ADORA1), also had decreased mRNA expression after 12 weeks. These findings may indicate ganglion cells were lost as diabetes progressed in the retina. Decreased expression of the glutamate transporter SLC1A3 would lead to decreased removal of glutamate from the extracellular space, suggesting that diabetes impairs this function of Müller cells. These findings suggest that ganglion cells were lost due to glutamate excitotoxicity. The changes at 12 weeks occurred without significant changes in retinal VEGF protein or mRNA, although higher VEGF protein levels at 4 weeks may be an early protective response. Increased transcript levels of erythropoietin and IGFBP3 may also be a protective response.
PMCID: PMC3716414  PMID: 23878504
13.  Role of Endogenous Sleep-Wake and Analgesic Systems in Anesthesia 
Classical anesthetics of the γ-aminobutyric acid type A receptor (GABAA)-enhancing class (e.g., pentobarbital, chloral hydrate, muscimol, and ethanol) produce analgesia and unconsciousness (sedation). Dissociative anesthetics that antagonize the N-methyl-D-aspartate (NMDA) receptor (e.g., ketamine, MK-801, dextromethorphan, and phencyclidine) produce analgesia but do not induce complete loss of consciousness. To understand the mechanisms underlying loss of consciousness and analgesia induced by general anesthetics, we examined the patterns of expression of c-Fos protein in the brain and correlated these with physiological effects of systemically administering GABAergic agents and ketamine at dosages used clinically for anesthesia in rats. We found that GABAergic agents produced predominantly delta activity in the electroencephalogram (EEG) and sedation. In contrast, anesthetic doses of ketamine induced sedation, followed by active arousal behaviors, and produced a faster EEG in the theta range. Consistent with its behavioral effects, ketamine induced Fos expression in cholinergic, monoaminergic, and orexinergic arousal systems and completely suppressed Fos immunoreactivity in the sleep-promoting ventrolateral preoptic nucleus (VLPO). In contrast, GABAergic agents suppressed Fos in the same arousal-promoting systems but increased the number of Fos-immunoreactive neurons in the VLPO compared with waking control animals. All anesthetics tested induced Fos in the spinally projecting noradrenergic A5–7 groups. 6-hydroxydopamine lesions of the A5–7 groups or ibotenic acid lesions of the ventrolateral periaqueductal gray matter (vlPAG) attenuated antinociceptive responses to noxious thermal stimulation (tail-flick test) by both types of anesthetics. We hypothesize that neural substrates of sleep-wake behavior are engaged by low-dose sedative anesthetics and that the mesopontine descending noradrenergic cell groups contribute to the analgesic effects of both NMDA receptor antagonists and GABAA receptor-enhancing anesthetics.
PMCID: PMC4924624  PMID: 18383504
sedation; antinociception; supraspinal analgesia; tail-flick
14.  Hippocampal N-Methyl-D-Aspartate Receptor Subunit Expression Profiles in a Mouse Model of Prenatal Alcohol Exposure 
Although several reports have been published showing prenatal ethanol exposure is associated with alterations in N-methyl-D-aspartate (NMDA) receptor subunit levels and, in a few cases, subcellular distribution, results of these studies are conflicting.
We used semi-quantitative immunoblotting techniques to analyze NMDA receptor NR1, NR2A, and NR2B subunit levels in the adult mouse hippocampal formation isolated from offspring of dams who consumed moderate amounts of ethanol throughout pregnancy. We employed subcellular fractionation and immunoprecipitation techniques to isolate synaptosomal membrane- and postsynaptic density protein-95 (PSD-95)-associated pools of receptor subunits.
We found that, compared to control animals, fetal alcohol-exposed (FAE) adult mice had: (i) increased synaptosomal membrane NR1 levels with no change in association of this subunit with PSD-95 and no difference in total NR1 expression in tissue homogenates; (ii) decreased NR2A subunit levels in hippocampal homogenates, but no alterations in synaptosomal membrane NR2A levels and no change in NR2A-PSD-95 association; and (iii) no change in tissue homogenate or synaptosomal membrane NR2B levels but a reduction in PSD-95-associated NR2B subunits. No alterations were found in mRNA levels of NMDA receptor subunits suggesting that prenatal alcohol-associated differences in subunit protein levels are the result of differences in post-transcriptional regulation of subunit localization.
Our results demonstrate that prenatal alcohol exposure induces selective changes in NMDA receptor subunit levels in specific subcellular locations in the adult mouse hippocampal formation. Of particular interest is the finding of decreased PSD-95-associated NR2B levels, suggesting that synaptic NR2B-containing NMDA receptor concentrations are reduced in FAE animals. This result is consistent with various biochemical, physiological, and behavioral findings that have been linked with prenatal alcohol exposure.
PMCID: PMC3600588  PMID: 19951292
NMDA Receptor; Prenatal Alcohol; Hippocampus; NR2A; NR2B
15.  Multiple effects of trichloroethanol on calcium handling in rat submandibular acinar cells 
British Journal of Pharmacology  2002;136(4):568-580.
The effect of trichloroethanol (TCEt), the active metabolite of chloral hydrate, on the intracellular concentration of calcium ([Ca2+]i) was investigated in rat submandibular glands (RSMG) acini loaded with fura-2.TCEt (1–10 mM) increased the [Ca2+]i independently of the presence of calcium in the extracellular medium. Dichloroethanol (DCEt) and monochloroethanol (MCEt) reproduced the stimulatory effect of TCEt but at much higher concentrations (about 6 fold higher for DCEt and 20 fold higher for MCEt).TCEt mobilized an intracellular pool of calcium, which was depleted by a pretreatment with thapsigargin, an inhibitor of the sarcoplasmic and endoplasmic reticulum calcium-dependent ATPases, but not with FCCP, an uncoupler of mitochondria.TCEt 10 mM inhibited by 50% the thapsigargin-sensitive microsomal Ca2+-ATPase. DCEt 10 mM and MCEt 10 mM inhibited the ATPase by 20 and 10%, respectively.TCEt inhibited the increase of the [Ca2+]i and the production of inositol phosphates in response to carbachol, epinephrine and substance P.TCEt inhibited the uptake of calcium mediated by the store-operated calcium channel (SOCC).ATP and Bz-ATP increased the [Ca2+]i in RSMG acini and this effect was blocked by extracellular magnesium, by Coomassie blue and by oxydized ATP (oATP).TCEt potentiated the increase of the [Ca2+]i and of the uptake of extracellular calcium in response to ATP and Bz-ATP.TCEt had no effect on the uptake of barium and of ethidium bromide in response to purinergic agonists.These results suggest that TCEt, at sedative concentrations, exerts various effects on the calcium regulation: (1) it mobilizes a thapsigargin-sensitive intracellular pool of calcium in RSMG acini; (2) it inhibits the uptake of calcium via the SOCC; (3) it inhibits the activation by G protein-coupled receptors of a polyphosphoinositide-specific phospholipase C. It does not interfere with the activation of the ionotropic P2X receptors.The use of chloral hydrate should be avoided in studies exploring the in vivo responses to sialagogues.
PMCID: PMC1573375  PMID: 12055135
Anaesthetics, Ca2+-ATPase; calcium channels, chloral hydrate; fura-2; purinergic; salivary glands; thapsigargin
16.  The glutamate story 
British Journal of Pharmacology  2006;147(Suppl 1):S100-S108.
Glutamatergic synaptic transmission in the mammalian central nervous system was slowly established over a period of some 20 years, dating from the 1950s. Realisation that glutamate and like amino acids (collectively known as excitatory amino acids (EAA)) mediated their excitatory actions via multiple receptors preceded establishment of these receptors as synaptic transmitter receptors. EAA receptors were initially classified as N-methyl-D-aspartate (NMDA) and non-NMDA receptors, the latter subdivided into quisqualate (later AMPA) and kainate receptors after agonists that appeared to activate these receptors preferentially, and by their sensitivity to a range of differentially acting antagonists developed progressively during the 1970s. NMDA receptors were definitively shown to be synaptic receptors on spinal neurones by the sensitivity of certain excitatory pathways in the spinal cord to a range of specific NMDA receptor antagonists. Importantly, specific NMDA receptor antagonists appeared to be less effective at synapses in higher centres. In contrast, antagonists that also blocked non-NMDA as well as NMDA receptors were almost universally effective at blocking synaptic excitation within the brain and spinal cord, establishing both the existence and ubiquity of non-NMDA synaptic receptor systems throughout the CNS. In the early 1980s, NMDA receptors were shown to be involved in several central synaptic pathways, acting in concert with non-NMDA receptors under conditions where a protracted excitatory postsynaptic potential was effected in response to intense stimulation of presynaptic fibres. Such activation of NMDA receptors together with non-NMDA receptors led to the phenomenon of long-term potentiation (LTP), associated with lasting changes in synaptic efficacy (synaptic plasticity) and considered to be an important process in memory and learning. During the 1980s, it was shown that certain glutamate receptors in the brain mediated biochemical changes that were not susceptible to NMDA or non-NMDA receptor antagonists. This dichotomy was resolved in the early 1990s by the techniques of molecular biology, which identified two families of glutamate-binding receptor proteins (ionotropic (iGlu) and metabotropic (mGlu) receptors). Development of antagonists binding to specific protein subunits is currently enabling precise identification of discrete iGlu or mGlu receptor subtypes that participate in a range of central synaptic processes, including synaptic plasticity.
PMCID: PMC1760733  PMID: 16402093
L-Glutamate; excitatory amino acids; ionotropic glutamate receptors; metabotropic glutamate receptors; synaptic transmission
17.  CXCL12 inhibits expression of the NMDA receptor's NR2B subunit through a histone deacetylase-dependent pathway contributing to neuronal survival 
Cell Death & Disease  2010;1(4):e33-.
Homeostatic chemokines, such as CXCL12, can affect neuronal activity by the regulation of inhibitory and excitatory neurotransmission, but the mechanisms involved are still undefined. Our previous studies have shown that CXCL12 protects cortical neurons from excitotoxicity by promoting the function of the gene-repressor protein Rb, which is involved in the recruitment of chromatin modifiers (such as histone deacetylases (HDACs)) to gene promoters. In neurons, Rb controls activity-dependent genes essential to neuronal plasticity and survival, such as the N-methyl--aspartic acid (NMDA) receptor's subunit NR2B, the expression of which in the tetrameric ion channel largely affects calcium signaling by glutamate. In this study, we report that CXCL12 differentially modulates intracellular responses after stimulation of synaptic and extrasynaptic NMDA receptors, by a specific regulation of the NR2B gene that involves HDACs. Our results show that CXCL12 selectively inhibits NR2B expression in vitro and in vivo altering NMDA-induced calcium responses associated with neuronal death, while promoting prosurvival pathways that depend on stimulation of synaptic receptors. Along with previous studies, these findings underline the role of CXCL12/CXCR4 in the regulation of crucial components of glutamatergic transmission. These novel effects of CXCL12 may be involved in the physiological function of the chemokine in both developing and mature brains.
PMCID: PMC3032300  PMID: 21364640
chemokine; neuron; CXCR4; cell death; calcium
18.  Roles of Ca2+/calmodulin-dependent protein kinase II in subcellular expression of striatal N-Methyl-D-aspartate receptors in l-3, 4-dihydroxyphenylalanine-induced dyskinetic rats 
The role of N-Methyl-D-aspartate (NMDA) receptors is critical to the development of l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia (LID) in Parkinson’s disease (PD). Ca2+/calmodulin-dependent protein kinase II (CaMKII) is thought to regulate the expression and activation of NMDA receptors in LID, but the interaction between LID and CaMKII-modulated NMDA receptor activity is not clear so far.
We used 6-hydroxydopamine-lesioned rats to create PD rat model, and at least 21 days of l-DOPA was administrated followed with or without microinjection of CaMKII inhibitor KN-93 into the lesioned striatum of all the PD rats and sham rats. A surface receptor cross-linking assay was used to distinguish expression of striatal NMDA receptors in surface and intracellular compartments.
l-DOPA treatment enhanced surface levels of GluN1 expression and reduced its intracellular expression, but did not change total levels of GluN1 protein in the lesioned striatum. In contrast, l-DOPA decreased GluN2A surface expression but increased its intracellular expression. l-DOPA increased GluN2B expression preferentially in the surface compartment. We also found that l-DOPA increased CaMKII autophosphorylation at T286 in striatal neurons. The inhibition of CaMKII by microinjecting CaMKII inhibitor KN-93 into the lesioned striatum largely reversed the l-DOPA-induced changes in three subunits. In addition, dyskinetic behaviors of animals were observed alleviated after treatment of KN-93.
Our research indicates that long-term l-DOPA administration activates CaMKII in striatal neurons. Activated CaMKII is involved at least in part in mediating l-DOPA-induced changes of NMDA receptors surface/intracellular expression.
PMCID: PMC4403745  PMID: 25926720
glutamate; GluN1; GluN2A; GluN2B; dopamine; KN-93
19.  Altered NMDA Receptor Function in Primary Cultures of Hippocampal Neurons from Mice Lacking the Homer2 Gene 
Synapse (New York, N.Y.)  2015;70(1):33-39.
N-Methyl-D-Aspartate (NMDA) receptors are inhibited during acute exposure to ethanol and are involved in changes in neuronal plasticity following repeated ethanol exposure. The postsynaptic scaffolding protein Homer2 can regulate the cell surface expression of NMDA receptors in vivo, and mice with a null mutation of the Homer2 gene exhibit an alcohol-avoiding and –intolerant phenotype that is accompanied by a lack of ethanol-induced glutamate sensitization. Thus, Homer2 deletion may perturb the function or acute ethanol sensitivity of the NMDA receptor. In this study, the function and ethanol sensitivity of glutamate receptors in cultured hippocampal neurons from wild-type (WT) and Homer2 knock-out (KO) mice were examined at 7 and 14 days in vitro (DIV) using standard whole-cell voltage-clamp electrophysiology. As compared to wild-type controls, NMDA receptor current density was reduced in cultured hippocampal neurons from Homer2 KO mice at 14 DIV, but not at 7 DIV. There were no genotype-dependent changes in whole-cell capacitance or in currents evoked by kainic acid. The GluN2B-selective antagonist ifenprodil inhibited NMDA-evoked currents to a similar extent in both wild-type and Homer2 KO neurons and inhibition was greater at 7 versus 14 DIV. NMDA receptor currents from both WT and KO mice were inhibited by ethanol (10–100 mM) and the degree of inhibition did not differ as a function of genotype. In conclusion, NMDA receptor function, but not ethanol sensitivity, is reduced in hippocampal neurons lacking the Homer2 gene.
PMCID: PMC4654643  PMID: 26426435
Ethanol; Alcohol; Glutamate; Electrophysiology
20.  Diabetes changes the levels of ionotropic glutamate receptors in the rat retina 
Molecular Vision  2009;15:1620-1630.
Diabetic retinopathy (DR) is a leading cause of vision loss and blindness among adults between the age 20 to 74. Changes in ionotropic glutamate receptor subunit composition can affect retinal glutamatergic neurotransmission and, therefore, contribute to visual impairment. The purpose of this study was to investigate whether diabetes leads to changes in ionotropic glutamate receptor subunit expression at the protein and mRNA level in the rat retina.
Changes in the expression of ionotropic glutamate receptor subunits were investigated at the mRNA and protein levels in retinas of streptozotocin (STZ)-induced diabetic and age-matched control rats. Animals were euthanized one, four and 12 weeks after the onset of diabetes. Retinal protein extracts were prepared, and the receptor subunit levels were assessed by western blotting. Transcript levels were assessed by real-time quantitative PCR.
Transcript levels of most ionotropic glutamate receptor subunits were not significantly changed in the retinas of diabetic rats, as compared to age-matched controls but protein levels of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA), kainate, and N-methyl-D-aspartic acid receptors (NMDA) receptors were found to be altered.
The results provide evidence that diabetes affects the retinal content of ionotropic glutamate receptor subunits at the protein level. The possible implications of these changes on retinal physiology and visual impairment in DR are discussed.
PMCID: PMC2728563  PMID: 19693289
21.  Ethanol self-administration modulation of NMDA receptor subunit and related synaptic protein mRNA expression in prefrontal cortical fields 
Brain Research  2010;1318:144-154.
Functional impairment of the orbital and medial prefrontal cortex underlies deficits in executive control that characterize addictive disorders, including alcohol addiction. Previous studies indicate that alcohol alters glutamate neurotransmission and one substrate of these effects may be through the reconfiguration of the subunits constituting ionotropic glutamate receptor (iGluR) complexes. Glutamatergic transmission is integral to cortico-cortical and cortico-subcortical communication, and alcohol-induced changes in the abundance of the receptor subunits and/or their splice variants may result in critical functional impairments of prefrontal cortex in the alcohol-addicted state.
Methods and results
The effects of chronic ethanol self-administration on glutamate receptor ionotropic NMDA (GRIN), as well as GRIN1 splice variant mRNA expression was studied in the orbitofrontal cortex (OFC; Area 13), dorsolateral prefrontal cortex (DLPFC; Area 46) and anterior cingulate cortex (ACC; Area 24) of male cynomolgus monkeys. Chronic ethanol self-administration resulted in significant changes in the expression of NMDA subunit mRNA expression in the DLPFC and OFC, but not the ACC. In DLPFC, the overall expression of NMDA subunits was significantly decreased in ethanol treated monkeys. Slight but significant changes were observed for synaptic associated protein 102 kD (SAP102) and neuronal nitric oxide synthase (nNOS) mRNAs. In OFC, the NMDAR1 variant GRIN1-1 was reduced while GRIN1-2 was increased. Furthermore, no significant changes in GFAP protein levels were observed in either the DLPFC or OFC.
Results from these studies provide the first demonstration of post-transcriptional regulation of iGluR subunits in the primate brain following long-term ethanol self-administration. Furthermore, changes in these transcripts do not appear to reflect changes in glial activation or loss. Further studies examining the expression and cellular localization of subunit proteins and receptor pharmacology would shed more light on the findings reported here.
PMCID: PMC3272763  PMID: 20043891
Ethanol; Glutamate; messenger RNA; Prefrontal Cortex; qPCR; Primate
22.  Enhanced NMDA Receptor-Mediated Modulation of Excitatory Neurotransmission in the Dorsal Vagal Complex of Streptozotocin-Treated, Chronically Hyperglycemic Mice 
PLoS ONE  2015;10(3):e0121022.
A variety of metabolic disorders, including complications experienced by diabetic patients, have been linked to altered neural activity in the dorsal vagal complex. This study tested the hypothesis that augmentation of N-Methyl-D-Aspartate (NMDA) receptor-mediated responses in the vagal complex contributes to increased glutamate release in the dorsal motor nucleus of the vagus nerve (DMV) in mice with streptozotocin-induced chronic hyperglycemia (i.e., hyperglycemic mice), a model of type 1 diabetes. Antagonism of NMDA receptors with AP-5 (100 μM) suppressed sEPSC frequency in vagal motor neurons recorded in vitro, confirming that constitutively active NMDA receptors regulate glutamate release in the DMV. There was a greater relative effect of NMDA receptor antagonism in hyperglycemic mice, suggesting that augmented NMDA effects occur in neurons presynaptic to the DMV. Effects of NMDA receptor blockade on mEPSC frequency were equivalent in control and diabetic mice, suggesting that differential effects on glutamate release were due to altered NMDA function in the soma-dendritic membrane of intact afferent neurons. Application of NMDA (300 μM) resulted in greater inward current and current density in NTS neurons recorded from hyperglycemic than control mice, particularly in glutamatergic NTS neurons identified by single-cell RT-PCR for VGLUT2. Overall expression of NR1 protein and message in the dorsal vagal complex were not different between the two groups. Enhanced postsynaptic NMDA responsiveness of glutamatergic NTS neurons is consistent with tonically-increased glutamate release in the DMV in mice with chronic hyperglycemia. Functional augmentation of NMDA-mediated responses may serve as a physiological counter-regulatory mechanism to control pathological disturbances of homeostatic autonomic function in type 1 diabetes.
PMCID: PMC4370733  PMID: 25799386
23.  Acute 5-HT7 receptor activation increases NMDA-evoked currents and differentially alters NMDA receptor subunit phosphorylation and trafficking in hippocampal neurons 
Molecular Brain  2013;6:24.
N-methyl-D-aspartate (NMDA) receptors are regulated by several G protein-coupled receptors (GPCRs) as well as receptor tyrosine kinases. Serotonin (5-HT) type 7 receptors are expressed throughout the brain including the thalamus and hippocampus. Long-term (2–24 h) activation of 5-HT7 receptors promotes the expression of neuroprotective growth factor receptors, including the platelet-derived growth factor (PDGF) β receptors which can protect neurons against NMDA-induced neurotoxicity.
In contrast to long-term activation of 5-HT7 receptors, acute (5 min) treatment of isolated hippocampal neurons with the 5-HT7 receptor agonist 5-carboxamidotryptamine (5-CT) enhances NMDA-evoked peak currents and this increase in peak currents is blocked by the 5-HT7 receptor antagonist, SB 269970. In hippocampal slices, acute 5-HT7 receptor activation increases NR1 NMDA receptor subunit phosphorylation and differentially alters the phosphorylation state of the NR2B and NR2A subunits. NMDA receptor subunit cell surface expression is also differentially altered by 5-HT7 receptor agonists: NR2B cell surface expression is decreased whereas NR1 and NR2A surface expression are not significantly altered.
In contrast to the negative regulatory effects of long-term activation of 5-HT7 receptors on NMDA receptor signaling, acute activation of 5-HT7 receptors promotes NMDA receptor activity. These findings highlight the potential for temporally differential regulation of NMDA receptors by the 5-HT7 receptor.
PMCID: PMC3661375  PMID: 23672716
5-HT7; NMDA; Hippocampus; Isolated neurons; Phosphorylation; Trafficking
24.  The Role of Functional Postsynaptic NMDA Receptors in the Central Nucleus of the Amygdala in Opioid Dependence 
Vitamins and hormones  2010;82:145-166.
Activation of ionotropic N-methyl-D-aspartate (NMDA)-type glutamate receptors in limbic system nuclei, such as the central nucleus of the amygdala (CeA), plays an essential role in autonomic, behavioral, and affective processes that are profoundly impacted by exposure to opioids. However, the heterogeneous ultrastructural distribution of the NMDA receptor, its complex pharmacology, and the paucity of genetic models have hampered the development of linkages between functional amygdala NMDA receptors and opioid dependence. To overcome these shortcomings, high-resolution imaging and molecular pharmacology were used to (1) Identify the ultrastructural localization of the essential NMDA-NR1 receptor (NR1) subunit and its relationship to the mu-opioid receptor (μOR), the major cellular target of abused opioids like morphine, in the CeA and (2) Determine the effect of CeA NR1 deletion on the physical, and particularly, psychological aspects of opioid dependence. Combined immunogold and immuoperoxidase electron microscopic analysis showed that NR1 was prominently expressed in postsynaptic (i.e., somata, dendrites) locations of CeA neurons, where they were also frequently colocalized with the μOR. A spatial–temporal deletion of NR1 in postsynaptic sites of CeA neurons was produced by local microinjection of a neurotropic recombinant adeno-associated virus (rAAV), expressing the green fluorescent protein (GFP) reporter and Cre recombinase (rAAV–GFP–Cre), in adult “floxed” NR1 (fNR1) mice. Mice with deletion of NR1 in the CeA showed no obvious impairments in sensory, motor, or nociceptive function. In addition, when administered chronic morphine, these mice also displayed an acute physical withdrawal syndrome precipitated by naloxone. However, opioid-dependent CeA NR1 knockout mice failed to exhibit a conditioned place aversion induced by naloxone-precipitated withdrawal. These results indicate that postsynaptic NMDA receptor activity in central amygdala neurons is required for the expression of a learned affective behavior associated with opioid withdrawal. The neurogenetic dissociation of physical and psychological properties of opioid dependence demonstrates the value of combined ultrastructural analysis and molecular pharmacology in clarifying the neurobiological mechanisms subserving opioid-mediated plasticity.
PMCID: PMC4589221  PMID: 20472137
25.  Direct pharmacological monitoring of the developmental switch in NMDA receptor subunit composition using TCN 213, a GluN2A-selective, glycine-dependent antagonist 
British Journal of Pharmacology  2012;166(3):924-937.
Developmental switches in NMDA receptor subunit expression have been inferred from studies of GluN2 expression levels, changes in kinetics of glutamatergic synaptic currents and sensitivity of NMDA receptor-mediated currents to selective GluN2B antagonists. Here we use TCN 213, a novel GluN2A-selective antagonist to identify the presence of this subunit in functional NMDA receptors in developing cortical neurones.
Two-electrode voltage-clamp (TEVC) recordings were made from Xenopus laevis oocytes to determine the pharmacological activity of TCN 213 at recombinant NMDA receptors. TCN 213 antagonism was studied in cultures of primary cortical neurones, assessing the NMDA receptor dependency of NMDA-induced excitotoxicity and monitoring developmental switches in NMDA receptor subunit composition.
TCN 213 antagonism of GluN1/GluN2A NMDA receptors was dependent on glycine but independent of glutamate concentrations in external recording solutions. Antagonism by TCN 213 was surmountable and gave a Schild plot with unity slope. TCN 213 block of GluN1/GluN2B NMDA receptor-mediated currents was negligible. In cortical neurones, at a early developmental stage predominantly expressing GluN2B-containing NMDA receptors, TCN 213 failed to antagonize NMDA receptor-mediated currents or to prevent GluN2B-dependent, NMDA-induced excitoxicity. In older cultures (DIV 14) or in neurones transfected with GluN2A subunits, TCN 213 antagonized NMDA-evoked currents. Block by TCN 213 of NMDA currents inversely correlated with block by ifenprodil, a selective GluN2B antagonist.
TCN 213 selectively blocked GluN1/GluN2A over GluN1/GluN2B NMDA receptors allowing direct dissection of functional NMDA receptors and pharmacological profiling of developmental changes in native NMDA receptor subunit composition.
PMCID: PMC3417419  PMID: 22022974
NMDA; glutamate; glycine; antagonism; oocyte; two-electrode voltage clamp; electrophysiology; neurotoxicity; development

Results 1-25 (1415899)