Search tips
Search criteria

Results 1-25 (1257855)

Clipboard (0)

Related Articles

1.  Effects of Growth Hormone and Pioglitazone in Viscerally Obese Adults with Impaired Glucose Tolerance: A Factorial Clinical Trial 
PLoS Clinical Trials  2007;2(5):e21.
Recombinant human growth hormone (GH) and pioglitazone (PIO) in abdominally obese adults with impaired glucose tolerance were evaluated under the hypothesis that the combination attenuates GH-induced increases in glucose concentrations, reduces visceral adipose tissue (VAT), and improves insulin sensitivity over time.
Randomized, double-blind, placebo-controlled, 2 × 2 factorial design.
Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States.
62 abdominally obese adults aged 40–75 with impaired glucose tolerance.
GH (8 μg/kg/d, or placebo) and pioglitazone (30 mg/d, or placebo) for 40 wk.
Outcome Measures:
Baseline and after 40 wk of treatment, VAT content was quantified by CT scan, glucose tolerance was assessed using a 75-g oral glucose tolerance test, and insulin sensitivity was measured using steady-state plasma glucose levels obtained during insulin suppression test.
Baseline: body mass index (BMI), plasma glucose, and visceral fat content were similar. 40 wk: visceral fat area declined 23.9 ± 7.4 cm2 in GH group, mean difference from placebo: −28.1 cm2 (95% CI −49.9 to −6.3 cm2; p = 0.02). Insulin resistance declined 52 ± 11.8 mg/dl with PIO, mean difference from placebo of −58.8 mg/dl (95% CI −99.7 to −18.0 mg/dl; p = 0.01). VAT and SSPG declined with GH and PIO combined, mean differences from placebo of −31.4 cm2 (95% CI −56.5 cm2 to −6.3 cm2; p = 0.02) and −55.3 mg/dl (95% CI −103.9 to −6.7 mg/dl; p = 0.02), respectively. Fasting plasma glucose increased transiently in GH group. No significant changes in BMI were observed.
Addition of PIO to GH attenuated the short-term diabetogenic effect of GH; the drug combination reduced VAT and insulin resistance over time. GH plus PIO may have added benefit on body composition and insulin sensitivity in the metabolic syndrome.
Editorial Commentary
Background: People who are overweight are at higher risk of developing type 2 diabetes, particularly if they have impaired glucose tolerance (IGT). When an individual has IGT, their cells are not able to respond properly to insulin in the blood, which means that blood sugar levels can remain high, and fat cells do not take up fatty acids from blood at the rate they should. The term prediabetes is often used to refer to these linked characteristics. However, if such individuals are able to lose weight they can reduce their chances of becoming diabetic in the future. In particular, loss of a particular type of fat, the visceral fat (packed in around the internal organs, as opposed to fat immediately under the skin), is thought to be beneficial for people at risk of developing type 2 diabetes. Some researchers have suggested that giving human growth hormone (GH) to people who are overweight might help reduce their levels of visceral fat. At the same time, drugs known as thiazolidinediones are currently used, in combination with other drugs, diet, and exercise, as a treatment for type 2 diabetes. The researchers carrying out this study wanted to find out whether combining treatment with human GH and a thiazolidinedione, pioglitazone (PIO), would reduce levels of visceral fat and improve glucose metabolism in overweight adults with IGT. The researchers specifically planned to compare the changes in these primary outcomes amongst people receiving both human GH and PIO for 40 weeks with the changes in individuals receiving placebo only; additional comparisons were also done for individuals receiving either drug alone, as compared to placebo.
What this trial shows: A total of 76 participants were randomized and received the treatment allocated to them, but only 62 participants were included in the final analyses due to losses to follow-up. The primary outcomes being compared at baseline and after 40 weeks of treatment were the change in visceral fat levels and change in individuals' sensitivity to insulin. Individuals receiving GH experienced a drop in visceral fat area over the 40 weeks of the trial, as compared to placebo, whilst PIO alone did not seem to have an effect on visceral fat area. Individuals receiving both GH and PIO, however, also showed a decrease in visceral fat area. When examining the effect on insulin resistance, GH alone did not seem to have an effect on the ability to respond to insulin. However, administration of PIO alone did bring about a decrease in insulin resistance levels, as compared to placebo, and individuals receiving both GH and PIO together also experienced a drop in insulin resistance. The trial was not designed to detect statistically significant differences in side effects between the groups studied, but some side effects, such as build-up of fluid in the limbs and joint stiffness, seemed to be more common in the groups receiving drug treatment than in the placebo group.
Strengths and limitations: Although the trial was small, enough participants were recruited to detect statistically significant changes in the primary outcomes. Strengths of the trial include the use of appropriate techniques to conceal the randomization sequence from investigators recruiting participants into the trial and blinding of both participants and investigators to the treatments that an individual would receive. However, one limitation includes the fact that the likelihood of developing diabetes was not directly measured as an outcome in this trial, and it is therefore not possible to conclude from these results that administration of GH, PIO, or both combined, will help prevent diabetes amongst overweight people with IGT. Finally, this trial compared the drug interventions directly with placebo and not with behavioral interventions such as diet and exercise, which are normally recommended for the prevention of diabetes amongst overweight people. It would be important to further investigate the efficacy, harms, and costs of these drugs directly against nondrug interventions before making any recommendations about their clinical use.
Contribution to the evidence: Other studies have shown that PIO administration has beneficial effects on insulin sensitivity in people with type 2 diabetes. This study adds evidence confirming that PIO is likely to have similar effects in people who are not diabetic but who are overweight and who have IGT. The study also adds data regarding the effect of PIO and GH combined in such populations; giving both drugs together seemed to have beneficial effects on visceral fat area and insulin sensitivity, as compared to placebo.
PMCID: PMC1865086  PMID: 17479164
2.  Glucose tolerance, insulin resistance and insulin secretion in young south Indian adults; relationships to parental size, neonatal size and childhood body mass index 
To study the relationship of newborn size and post-natal growth to glucose intolerance in south Indian adults.
Research design and Methods
2,218 men and women (mean age 28 years) were studied from a population-based birth cohort born in a large town and adjacent rural villages. The prevalence of adult diabetes mellitus [DM] and impaired glucose tolerance [IGT], and insulin resistance and insulin secretion (calculated) were examined in relation to BMI and height at birth, and in infancy, childhood and adolescence and changes in BMI and height between these stages.
Sixty-two (2.8%) subjects had type 2 diabetes (DM) and 362 (16.3%) had impaired glucose tolerance (IGT). IGT and DM combined (IGT/DM) and insulin resistance were associated with low childhood body mass index (BMI) (p<0.001 for both) and above-average BMI gain between childhood or adolescence and adult life (p<0.001 for both). There were no direct associations between birthweight or infant size and IGT/DM; however, after adjusting for adult BMI, lower birthweight was associated with an increased risk.
The occurrence of IGT and Type 2 DM is associated with thinness at birth and in childhood followed by accelerated BMI gain through adolescence.
PMCID: PMC3428893  PMID: 20115937
Type 2 diabetes mellitus; impaired glucose tolerance; insulin resistance; childhood body mass index; young adulthood
3.  Adult metabolic syndrome and impaired glucose tolerance are associated with different patterns of body mass index gain during infancy; Data from the New Delhi birth cohort 
Diabetes care  2008;31(12):2349-2356.
To describe patterns of infant, childhood and adolescent body mass index (BMI) and weight associated with adult metabolic risk factors for cardiovascular disease.
Research Design and Methods:
We measured waist circumference, blood pressure, glucose, insulin and lipid concentrations, and the prevalence of metabolic syndrome (NCEP-ATPIII definition) in 1,492 men and women aged 26-32 years in Delhi, India, whose weight and height were recorded 6-monthly throughout infancy (0-2 years), childhood (2-11 years) and adolescence (11 years-adult).
Men and women with metabolic syndrome (29% overall), any of its component features, or higher (>upper quartile) insulin resistance (HOMA) had more rapid BMI or weight gain than the rest of the cohort throughout infancy, childhood and adolescence. Glucose intolerance (impaired glucose tolerance or diabetes) was, like metabolic syndrome, associated with rapid BMI gain in childhood and adolescence, but with lower BMI in infancy.
In this Indian population, patterns of infant BMI and weight gain differed for people who developed metabolic syndrome (rapid gain) compared with those who developed glucose intolerance (low infant BMI). Rapid BMI gain during childhood and adolescence was a risk factor for both disorders.
PMCID: PMC2584194  PMID: 18835958
Metabolic syndrome; diabetes; birthweight; infant weight; child growth
4.  Increased incidence of glucose disorders during pregnancy is not explained by pre-pregnancy obesity in London, Canada 
The increasing incidence of impaired glucose tolerance (IGT), gestational diabetes (GDM) and type 2 diabetes (T2D) during pregnancy was hypothesized to be associated with increases in pre-pregnancy body mass index (BMI). The aims were to 1) determine the prevalence of IGT/GDM/T2 D over a 10 year period; 2) examine the relationship between maternal overweight/obesity and IGT/GDM/T2D; and 3) examine the extent to which maternal metabolic complications impact maternal and fetal pregnancy outcomes.
Data arose from a perinatal database which contains maternal characteristics and perinatal outcome for all singleton infants born in London, Canada between January 1, 2000 and December 31, 2009. Univariable and multivariable odds ratios (OR) were estimated using logistic regression with IGT/GDM/T2 D being the outcome of interest.
A total of 36,597 women were included in the analyses. Population incidence of IGT, GDM and T2 D rose from 0.7%, 2.9% and 0.5% in 2000 to 1.2%, 4.2% and 0.9% in 2009. The univariable OR for IGT, GDM and T2 D were 1.65, 1.52 and 2.06, respectively, over the ten year period. After controlling for maternal age, parity and pre-pregnancy BMI the OR did not decrease. Although there was a positive relationship between pre-pregnancy BMI and prevalence of IGT/GDM/T2 D, this did not explain the time trends in the latter. Diagnosis of IGT/GDM/T2 D increased the risk of having an Apgar score <7 at 5 minutes, which was partially explained by gestational hypertension, high placental ratio, gestational age and large for gestational age babies.
We found a significant increase in the incidence of IGT/GDM/T2 D for the decade between 2000-2009 which was not explained by rising prevalence of maternal overweight/obesity.
PMCID: PMC3022738  PMID: 21184681
5.  Allele Summation of Diabetes Risk Genes Predicts Impaired Glucose Tolerance in Female and Obese Individuals 
PLoS ONE  2012;7(6):e38224.
Single nucleotide polymorphisms (SNPs) in approximately 40 genes have been associated with an increased risk for type 2 diabetes (T2D) in genome-wide association studies. It is not known whether a similar genetic impact on the risk of prediabetes (impaired glucose tolerance [IGT] or impaired fasting glycemia [IFG]) exists.
In our cohort of 1442 non-diabetic subjects of European origin (normal glucose tolerance [NGT] n = 1046, isolated IFG n = 142, isolated IGT n = 140, IFG+IGT n = 114), an impact on glucose homeostasis has been shown for 9 SNPs in previous studies in this specific cohort. We analyzed these SNPs (within or in the vicinity of the genes TCF7L2, KCNJ11, HHEX, SLC30A8, WFS1, KCNQ1, MTNR1B, FTO, PPARG) for association with prediabetes.
The genetic risk load was significantly associated with the risk for IGT (p = 0.0006) in a model including gender, age, BMI and insulin sensitivity. To further evaluate potential confounding effects, we stratified the population on gender, BMI and insulin sensitivity. The association of the risk score with IGT was present in female participants (p = 0.008), but not in male participants. The risk score was significantly associated with IGT (p = 0.008) in subjects with a body mass index higher than 30 kg/m2 but not in non-obese individuals. Furthermore, only in insulin resistant subjects a significant association between the genetic load and the risk for IGT (p = 0.01) was found.
We found that T2D genetic risk alleles cause an increased risk for IGT. This effect was not present in male, lean and insulin sensitive subjects, suggesting a protective role of beneficial environmental factors on the genetic risk.
PMCID: PMC3387191  PMID: 22768041
6.  Anthropometric measurements in childhood and prediction of cardiovascular risk factors in adulthood: Kaunas cardiovascular risk cohort study 
BMC Public Health  2015;15:218.
This study aimed to examine the associations between anthropometric measurements in childhood and adulthood as well as the effect of childhood body mass index (BMI) and skinfold thickness in the prediction of adult cardiovascular risk factors.
The Study subjects were participants of the Kaunas Cardiovascular Risk Cohort study. They were 12–13 years old at the time of the baseline survey (1977) and 48–49 years old in the 35-year follow-up survey (2012, n = 506). In childhood, height, weight, subscapular and triceps skinfold thickness measurements were taken. In 2012, health examination involved measurements of blood pressure (BP), BMI, waist circumference, glucose, lipids, and high-sensitivity C-reactive protein (CRP) levels. Logistic regression models were fitted to assess the associations of childhood BMI and skinfold thicknesses as well as BMI gain with cardiovascular risk factors in middle age. All logistic regression models were adjusted for sex, physical activity level, alcohol consumption, smoking and family history of obesity.
Over 35 years of follow-up, BMI gain was greater in men than in women. Anthropometric measurements in childhood significantly correlated with values measured in adulthood. The highest correlation coefficients were defined for weight and BMI measurements (in girls r = 0.56 and r = 0.51 respectively; in boys r = 0.45 and r = 0.41 respectively, P < 0.001). Mean values of change in BMI were similar in all quintiles of childhood BMI; however, prevalence of adult obesity increased considerably with increasing quintiles. The risk of adult obesity, metabolic syndrome, hyperglycaemia or type 2 diabetes, and elevated level of high-sensitivity CRP increased with a rise in childhood BMI and skinfold thicknesses, irrespectively of BMI gain from childhood to adulthood. No relationship was found between childhood anthropometric measurements and arterial hypertension, raised level of triglycerides or reduced level of HDL cholesterol. Gain in BMI from childhood to adulthood was associated with increased odds of all above-mentioned risk factors independently of childhood BMI.
Risk of metabolic syndrome, hyperglycaemia and diabetes, and elevated high-sensitivity CRP may be affected by childhood BMI and skinfold thickness, while risk of hypertension, raised triglycerides and reduced HDL cholesterol is associated more strongly with BMI gain from childhood to adulthood.
PMCID: PMC4359556  PMID: 25880559
Body mass index; Skinfold thickness; Cardiovascular risk factors; Longitudinal cohort study
7.  Assessment of Insulin Resistance and Impaired Glucose Tolerance in Lean Women with Polycystic Ovary Syndrome 
Journal of Women's Health  2011;20(1):37-43.
To analyze insulin resistance (IR) and determine the need for a 2-hour oral glucose tolerance test (OGTT) for the identification of IR and impaired glucose tolerance (IGT) in lean nondiabetic women with polycystic ovary syndrome (PCOS).
This was a cross-sectional analysis of treatment-naive women with PCOS who enrolled in a university-based clinical trial. Nondiabetic women with PCOS based on the Eunice Kennedy Shriven National Institute of Child Health and Human Development (NICHD) definition, aged 18–43 years and weighing ≤113 kg, were evaluated. Glucose and insulin levels were assessed at times 0, 30, 60, 90, and 120 minutes after a 75-g glucose load. Lean was defined as body mass index (BMI) <25 kg/m2. Multiple linear regression was performed.
A cohort of 78 women was studied. The prevalence of IR was 0% among lean women vs. 21% among nonlean subjects based on fasting insulin I0 and 40%–68% based on two different homeostatic model assessment (HOMA) cutoff points (p < 0.005). All women with IR had a BMI ≥ 28. Controlling for age and race, BMI explained over 57% of the variation in insulin fasting (Io), glucose fasting/Io (Go/Io), the qualitative insulin sensitivity check index (QUICKI), and HOMA and was a highly significant predictor of these outcomes (p < 0.0001). Only 1 of 31 (3%) of the lean PCOS women had IGT based on a 2-hour OGTT, and no lean subjects had IGT based on their fasting blood glucose.
Diabetes mellitus, IGT, and IR are far less common in young lean women with PCOS compared with obese women with PCOS. These data imply that it is unnecessary to routinely perform either IR testing or 2-hour OGTT in lean women with PCOS; however, greater subject accumulation is needed to determine if OGTT is necessary in lean women with PCOS. BMI is highly predictive of both insulin and glucose levels in women with PCOS.
PMCID: PMC3026650  PMID: 21194310
8.  Different Pathophysiology of Impaired Glucose Tolerance in First Degree Relatives of Individuals with Type 2 Diabetes 
To assess whether an increased genetic predisposition for type 2 diabetes (T2DM) influences the contributions of insulin resistance and impaired insulin secretion to impaired glucose tolerance (IGT), 437 subjects not known to have T2DM underwent an OGTT and a 3-hour hyperglycemic clamp. Plasma insulin responses and insulin sensitivity were compared between all subjects (unselected for demographic or anthropometric characteristics) that had normal glucose homeostasis and no first degree T2DM relative (NGH; N=133), IGT with a first degree T2DM relative (IGT/FH+; N=74) or IGT without a first degree T2DM relative (IGT/FH−; N=50). Compared to NGH, first and second phase plasma insulin responses were reduced ~45% and 30%, respectively (both P<0.001) in IGT/FH+, whereas insulin sensitivity was only ~20% reduced (P=0.011). In contrast, in IGT/FH−, first phase plasma insulin responses were only ~20% reduced (P=0.016), second phase plasma insulin responses were not reduced, but insulin sensitivity was ~40% reduced (P<0.001). IGT/FH+ differed significantly from IGT/FH− by having 25–30% lower first phase plasma insulin responses (P=0.026) and 25–30% greater insulin sensitivity (P=0.027). Adjustment for obesity abolished the differences in insulin resistance but not plasma insulin responses. However, when the IGT groups were stratified into subgroups based on body mass index (BMI), first phase plasma insulin responses were ~30% lower in IGT/FH+ with a BMI ≥27 kg/m2 (P=0.018) but similar in IGT/FH+ with a BMI <27 kg/m2 compared to the corresponding IGT/FH− subgroups. We conclude that in IGT an increased genetic predisposition for T2DM increases the contribution of impaired insulin secretion to its pathophysiology. This effect is enhanced by obesity.
PMCID: PMC2713184  PMID: 19375581
impaired glucose tolerance; insulin resistance; insulin secretion
9.  Metabolic Signatures of Adiposity in Young Adults: Mendelian Randomization Analysis and Effects of Weight Change 
PLoS Medicine  2014;11(12):e1001765.
In this study, Wurtz and colleagues investigated to what extent elevated body mass index (BMI) within the normal weight range has causal influences on the detailed systemic metabolite profile in early adulthood using Mendelian randomization analysis.
Please see later in the article for the Editors' Summary
Increased adiposity is linked with higher risk for cardiometabolic diseases. We aimed to determine to what extent elevated body mass index (BMI) within the normal weight range has causal effects on the detailed systemic metabolite profile in early adulthood.
Methods and Findings
We used Mendelian randomization to estimate causal effects of BMI on 82 metabolic measures in 12,664 adolescents and young adults from four population-based cohorts in Finland (mean age 26 y, range 16–39 y; 51% women; mean ± standard deviation BMI 24±4 kg/m2). Circulating metabolites were quantified by high-throughput nuclear magnetic resonance metabolomics and biochemical assays. In cross-sectional analyses, elevated BMI was adversely associated with cardiometabolic risk markers throughout the systemic metabolite profile, including lipoprotein subclasses, fatty acid composition, amino acids, inflammatory markers, and various hormones (p<0.0005 for 68 measures). Metabolite associations with BMI were generally stronger for men than for women (median 136%, interquartile range 125%–183%). A gene score for predisposition to elevated BMI, composed of 32 established genetic correlates, was used as the instrument to assess causality. Causal effects of elevated BMI closely matched observational estimates (correspondence 87%±3%; R2 = 0.89), suggesting causative influences of adiposity on the levels of numerous metabolites (p<0.0005 for 24 measures), including lipoprotein lipid subclasses and particle size, branched-chain and aromatic amino acids, and inflammation-related glycoprotein acetyls. Causal analyses of certain metabolites and potential sex differences warrant stronger statistical power. Metabolite changes associated with change in BMI during 6 y of follow-up were examined for 1,488 individuals. Change in BMI was accompanied by widespread metabolite changes, which had an association pattern similar to that of the cross-sectional observations, yet with greater metabolic effects (correspondence 160%±2%; R2 = 0.92).
Mendelian randomization indicates causal adverse effects of increased adiposity with multiple cardiometabolic risk markers across the metabolite profile in adolescents and young adults within the non-obese weight range. Consistent with the causal influences of adiposity, weight changes were paralleled by extensive metabolic changes, suggesting a broadly modifiable systemic metabolite profile in early adulthood.
Please see later in the article for the Editors' Summary
Editors' Summary
Adiposity—having excessive body fat—is a growing global threat to public health. Body mass index (BMI, calculated by dividing a person's weight in kilograms by their height in meters squared) is a coarse indicator of excess body weight, but the measure is useful in large population studies. Compared to people with a lean body weight (a BMI of 18.5–24.9 kg/m2), individuals with higher BMI have an elevated risk of developing life-shortening cardiometabolic diseases—cardiovascular diseases that affect the heart and/or the blood vessels (for example, heart failure and stroke) and metabolic diseases that affect the cellular chemical reactions that sustain life (for example, diabetes). People become unhealthily fat by consuming food and drink that contains more energy (calories) than they need for their daily activities. So adiposity can be prevented and reversed by eating less and exercising more.
Why Was This Study Done?
Epidemiological studies, which record the patterns of risk factors and disease in populations, suggest that the illness and death associated with excess body weight is partly attributable to abnormalities in how individuals with high adiposity metabolize carbohydrates and fats, leading to higher blood sugar and cholesterol levels. Further, adiposity is also associated with many other deviations in the metabolic profile than these commonly measured risk factors. However, epidemiological studies cannot prove that adiposity causes specific changes in a person's systemic (overall) metabolic profile because individuals with high BMI may share other characteristics (confounding factors) that are the actual causes of both adiposity and metabolic abnormalities. Moreover, having a change in some aspect of metabolism could also lead to adiposity, rather than vice versa (reverse causation). Importantly, if there is a causal effect of adiposity on cardiometabolic risk factor levels, it might be possible to prevent the progression towards cardiometabolic diseases by weight loss. Here, the researchers use “Mendelian randomization” to examine whether increased BMI within the normal and overweight range is causally influencing the metabolic risk factors from many biological pathways during early adulthood. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. Several gene variants are known to lead to modestly increased BMI. Thus, an investigation of the associations between these gene variants and risk factors across the systemic metabolite profile in a population of healthy individuals can indicate whether higher BMI is causally related to known and novel metabolic risk factors and higher cardiometabolic disease risk.
What Did the Researchers Do and Find?
The researchers measured the BMI of 12,664 adolescents and young adults (average BMI 24.7 kg/m2) living in Finland and the blood levels of 82 metabolites in these young individuals at a single time point. Statistical analysis of these data indicated that elevated BMI was adversely associated with numerous cardiometabolic risk factors. For example, elevated BMI was associated with raised levels of low-density lipoprotein, “bad” cholesterol that increases cardiovascular disease risk. Next, the researchers used a gene score for predisposition to increased BMI, composed of 32 gene variants correlated with increased BMI, as an “instrumental variable” to assess whether adiposity causes metabolite abnormalities. The effects on the systemic metabolite profile of a 1-kg/m2 increment in BMI due to genetic predisposition closely matched the effects of an observed 1-kg/m2 increment in adulthood BMI on the metabolic profile. That is, higher levels of adiposity had causal effects on the levels of numerous blood-based metabolic risk factors, including higher levels of low-density lipoprotein cholesterol and triglyceride-carrying lipoproteins, protein markers of chronic inflammation and adverse liver function, impaired insulin sensitivity, and elevated concentrations of several amino acids that have recently been linked with the risk for developing diabetes. Elevated BMI also causally led to lower levels of certain high-density lipoprotein lipids in the blood, a marker for the risk of future cardiovascular disease. Finally, an examination of the metabolic changes associated with changes in BMI in 1,488 young adults after a period of six years showed that those metabolic measures that were most strongly associated with BMI at a single time point likewise displayed the highest responsiveness to weight change over time.
What Do These Findings Mean?
These findings suggest that increased adiposity has causal adverse effects on multiple cardiometabolic risk markers in non-obese young adults beyond the effects on cholesterol and blood sugar. Like all Mendelian randomization studies, the reliability of the causal association reported here depends on several assumptions made by the researchers. Nevertheless, these findings suggest that increased adiposity has causal adverse effects on multiple cardiometabolic risk markers in non-obese young adults. Importantly, the results of both the causal effect analyses and the longitudinal study suggest that there is no threshold below which a BMI increase does not adversely affect the metabolic profile, and that a systemic metabolic profile linked with high cardiometabolic disease risk that becomes established during early adulthood can be reversed. Overall, these findings therefore highlight the importance of weight reduction as a key target for metabolic risk factor control among young adults.
Additional Information
Please access these websites via the online version of this summary at
The Computational Medicine Research Team of the University of Oulu has a webpage that provides further information on metabolite profiling by high-throughput NMR metabolomics
The World Health Organization provides information on obesity (in several languages)
The Global Burden of Disease Study website provides the latest details about global obesity trends
The UK National Health Service Choices website provides information about obesity, cardiovascular disease, and type 2 diabetes (including some personal stories)
The American Heart Association provides information on all aspects of cardiovascular disease and diabetes and on keeping healthy; its website includes personal stories about heart attacks, stroke, and diabetes
The US Centers for Disease Control and Prevention has information on all aspects of overweight and obesity and information about heart disease, stroke, and diabetes
MedlinePlus provides links to other sources of information on heart disease, vascular disease, and obesity (in English and Spanish)
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC4260795  PMID: 25490400
10.  Adult Metabolic Syndrome and Impaired Glucose Tolerance Are Associated With Different Patterns of BMI Gain During Infancy 
Diabetes Care  2008;31(12):2349-2356.
OBJECTIVE—The purpose of this study was to describe patterns of infant, childhood, and adolescent BMI and weight associated with adult metabolic risk factors for cardiovascular disease.
RESEARCH DESIGN AND METHODS—We measured waist circumference, blood pressure, glucose, insulin and lipid concentrations, and the prevalence of metabolic syndrome (National Cholesterol Education Program Adult Treatment Panel III definition) in 1,492 men and women aged 26–32 years in Delhi, India, whose weight and height were recorded every 6 months throughout infancy (0–2 years), childhood (2–11 years), and adolescence (11 years–adult).
RESULTS—Men and women with metabolic syndrome (29% overall), any of its component features, or higher (greater than upper quartile) insulin resistance (homeostasis model assessment) had more rapid BMI or weight gain than the rest of the cohort throughout infancy, childhood, and adolescence. Glucose intolerance (impaired glucose tolerance or diabetes) was, like metabolic syndrome, associated with rapid BMI gain in childhood and adolescence but with lower BMI in infancy.
CONCLUSIONS—In this Indian population, patterns of infant BMI and weight gain differed for individuals who developed metabolic syndrome (rapid gain) compared with those who developed glucose intolerance (low infant BMI). Rapid BMI gain during childhood and adolescence was a risk factor for both disorders.
PMCID: PMC2584194  PMID: 18835958
11.  Genetic Markers of Adult Obesity Risk Are Associated with Greater Early Infancy Weight Gain and Growth 
PLoS Medicine  2010;7(5):e1000284.
Ken Ong and colleagues genotyped children from the ALSPAC birth cohort and showed an association between greater early infancy gains in weight and length and genetic markers for adult obesity risk.
Genome-wide studies have identified several common genetic variants that are robustly associated with adult obesity risk. Exploration of these genotype associations in children may provide insights into the timing of weight changes leading to adult obesity.
Methods and Findings
Children from the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort were genotyped for ten genetic variants previously associated with adult BMI. Eight variants that showed individual associations with childhood BMI (in/near: FTO, MC4R, TMEM18, GNPDA2, KCTD15, NEGR1, BDNF, and ETV5) were used to derive an “obesity-risk-allele score” comprising the total number of risk alleles (range: 2–15 alleles) in each child with complete genotype data (n = 7,146). Repeated measurements of weight, length/height, and body mass index from birth to age 11 years were expressed as standard deviation scores (SDS). Early infancy was defined as birth to age 6 weeks, and early infancy failure to thrive was defined as weight gain between below the 5th centile, adjusted for birth weight. The obesity-risk-allele score showed little association with birth weight (regression coefficient: 0.01 SDS per allele; 95% CI 0.00–0.02), but had an apparently much larger positive effect on early infancy weight gain (0.119 SDS/allele/year; 0.023–0.216) than on subsequent childhood weight gain (0.004 SDS/allele/year; 0.004–0.005). The obesity-risk-allele score was also positively associated with early infancy length gain (0.158 SDS/allele/year; 0.032–0.284) and with reduced risk of early infancy failure to thrive (odds ratio  = 0.92 per allele; 0.86–0.98; p = 0.009).
The use of robust genetic markers identified greater early infancy gains in weight and length as being on the pathway to adult obesity risk in a contemporary birth cohort.
Please see later in the article for the Editors' Summary
Editors' Summary
The proportion of overweight and obese children is increasing across the globe. In the US, the Surgeon General estimates that, compared with 1980, twice as many children and three times the number of adolescents are now overweight. Worldwide, 22 million children under five years old are considered by the World Health Organization to be overweight.
Being overweight or obese in childhood is associated with poor physical and mental health. In addition, childhood obesity is considered a major risk factor for adult obesity, which is itself a major risk factor for cancer, heart disease, diabetes, osteoarthritis, and other chronic conditions.
The most commonly used measure of whether an adult is a healthy weight is body mass index (BMI), defined as weight in kilograms/(height in metres)2. However, adult categories of obese (>30) and overweight (>25) BMI are not directly applicable to children, whose BMI naturally varies as they grow. BMI can be used to screen children for being overweight and or obese but a diagnosis requires further information.
Why Was This Study Done?
As the numbers of obese and overweight children increase, a corresponding rise in future numbers of overweight and obese adults is also expected. This in turn is expected to lead to an increasing incidence of poor health. As a result, there is great interest among health professionals in possible pathways between childhood and adult obesity. It has been proposed that certain periods in childhood may be critical for the development of obesity.
In the last few years, ten genetic variants have been found to be more common in overweight or obese adults. Eight of these have also been linked to childhood BMI and/or obesity. The authors wanted to identify the timing of childhood weight changes that may be associated with adult obesity. Knowledge of obesity risk genetic variants gave them an opportunity to do so now, without following a set of children to adulthood.
What Did the Researchers Do and Find?
The authors analysed data gathered from a subset of 7,146 singleton white European children enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC) study, which is investigating associations between genetics, lifestyle, and health outcomes for a group of children in Bristol whose due date of birth fell between April 1991 and December 1992. They used knowledge of the children's genetic makeup to find associations between an obesity risk allele score—a measure of how many of the obesity risk genetic variants a child possessed—and the children's weight, height, BMI, levels of body fat (at nine years old), and rate of weight gain, up to age 11 years.
They found that, at birth, children with a higher obesity risk allele score were not any heavier, but in the immediate postnatal period they were less likely to be in the bottom 5% of the population for weight gain (adjusted for birthweight), often termed “failure to thrive.” At six weeks of age, children with a higher obesity risk allele score tended to be longer and heavier, even allowing for weight at birth.
After six weeks of age, the obesity risk allele score was not associated with any further increase in length/height, but it was associated with a more rapid weight gain between birth and age 11 years. BMI is derived from height and weight measurements, and the association between the obesity risk allele score and BMI was weak between birth and age three-and-a-half years, but after that age the association with BMI increased rapidly. By age nine, children with a higher obesity risk allele score tended to be heavier and taller, with more fat on their bodies.
What Do These Findings Mean?
The combined obesity allele risk score is associated with higher rates of weight gain and adult obesity, and so the authors conclude that weight gain and growth even in the first few weeks after birth may be the beginning of a pathway of greater adult obesity risk.
A study that tracks a population over time can find associations but it cannot show cause and effect. In addition, only a relatively small proportion (1.7%) of the variation in BMI at nine years of age is explained by the obesity risk allele score.
The authors' method of finding associations between childhood events and adult outcomes via genetic markers of risk of disease as an adult has a significant advantage: the authors did not have to follow the children themselves to adulthood, so their findings are more likely to be relevant to current populations. Despite this, this research does not yield advice for parents how to reduce their children's obesity risk. It does suggest that “failure to thrive” in the first six weeks of life is not simply due to a lack of provision of food by the baby's caregiver but that genetic factors also contribute to early weight gain and growth.
The study looked at the combined obesity risk allele score and the authors did not attempt to identify which individual alleles have greater or weaker associations with weight gain and overweight or obesity. This would require further research based on far larger numbers of babies and children. The findings may also not be relevant to children in other types of setting because of the effects of different nutrition and lifestyles.
Additional Information
Please access these Web sites via the online version of this summary at
Further information is available on the ALSPAC study
The UK National Health Service and other partners provide guidance on establishing a healthy lifestyle for children and families in their Change4Life programme
The International Obesity Taskforce is a global network of expertise and the advocacy arm of the International Association for the Study of Obesity. It works with the World Health Organization, other NGOs, and stakeholders and provides information on overweight and obesity
The Centers for Disease Control and Prevention (CDC) in the US provide guidance and tips on maintaining a healthy weight, including BMI calculators in both metric and Imperial measurements for both adults and children. They also provide BMI growth charts for boys and girls showing how healthy ranges vary for each sex at with age
The Royal College of Paediatrics and Child Health provides growth charts for weight and length/height from birth to age 4 years that are based on WHO 2006 growth standards and have been adapted for use in the UK
The CDC Web site provides information on overweight and obesity in adults and children, including definitions, causes, and data
The CDC also provide information on the role of genes in causing obesity.
The World Health Organization publishes a fact sheet on obesity, overweight and weight management, including links to childhood overweight and obesity
Wikipedia includes an article on childhood obesity (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC2876048  PMID: 20520848
12.  Pregnancy Weight Gain and Childhood Body Weight: A Within-Family Comparison 
PLoS Medicine  2013;10(10):e1001521.
David Ludwig and colleagues examine the within-family relationship between pregnancy weight gain and the offspring's childhood weight gain, thereby reducing the influence of genes and environment.
Please see later in the article for the Editors' Summary
Excessive pregnancy weight gain is associated with obesity in the offspring, but this relationship may be confounded by genetic and other shared influences. We aimed to examine the association of pregnancy weight gain with body mass index (BMI) in the offspring, using a within-family design to minimize confounding.
Methods and Findings
In this population-based cohort study, we matched records of all live births in Arkansas with state-mandated data on childhood BMI collected in public schools (from August 18, 2003 to June 2, 2011). The cohort included 42,133 women who had more than one singleton pregnancy and their 91,045 offspring. We examined how differences in weight gain that occurred during two or more pregnancies for each woman predicted her children's BMI and odds ratio (OR) of being overweight or obese (BMI≥85th percentile) at a mean age of 11.9 years, using a within-family design. For every additional kg of pregnancy weight gain, childhood BMI increased by 0.0220 (95% CI 0.0134–0.0306, p<0.0001) and the OR of overweight/obesity increased by 1.007 (CI 1.003–1.012, p = 0.0008). Variations in pregnancy weight gain accounted for a 0.43 kg/m2 difference in childhood BMI. After adjustment for birth weight, the association of pregnancy weight gain with childhood BMI was attenuated but remained statistically significant (0.0143 kg/m2 per kg of pregnancy weight gain, CI 0.0057–0.0229, p = 0.0007).
High pregnancy weight gain is associated with increased body weight of the offspring in childhood, and this effect is only partially mediated through higher birth weight. Translation of these findings to public health obesity prevention requires additional study.
Please see later in the article for the Editors' Summary
Editors' Summary
Childhood obesity has become a worldwide epidemic. For example, in the United States, the number of obese children has more than doubled in the past 30 years. 7% of American children aged 6–11 years were obese in 1980, compared to nearly 18% in 2010. Because of the rising levels of obesity, the current generation of children may have a shorter life span than their parents for the first time in 200 years.
Childhood obesity has both immediate and long-term effects on health. The initial problems are usually psychological. Obese children often experience discrimination, leading to low self-esteem and depression. Their physical health also suffers. They are more likely to be at risk of cardiovascular disease from high cholesterol and high blood pressure. They may also develop pre-diabetes or diabetes type II. In the long-term, obese children tend to become obese adults, putting them at risk of premature death from stroke, heart disease, or cancer.
There are many factors that lead to childhood obesity and they often act in combination. A major risk factor, especially for younger children, is having at least one obese parent. The challenge lies in unravelling the complex links between the genetic and environmental factors that are likely to be involved.
Why Was This Study Done?
Several studies have shown that a child's weight is influenced by his/her mother's weight before pregnancy and her weight gain during pregnancy. An obese mother, or a mother who puts on more pregnancy weight than average, is more likely to have an obese child.
One explanation for the effects of pregnancy weight gain is that the mother's overeating directly affects the baby's development. It may change the baby's brain and metabolism in such a way as to increase the child's long-term risk of obesity. Animal studies have confirmed that the offspring of overfed rats show these kinds of physiological changes. However, another possible explanation is that mother and baby share a similar genetic make-up and environment so that a child becomes obese from inheriting genetic risk factors, and growing up in a household where being overweight is the norm.
The studies in humans that have been carried out to date have not been able to distinguish between these explanations. Some have given conflicting results. The aim of this study was therefore to look for evidence of links between pregnancy weight gain and children's weight, using an approach that would separate the impact of genetic and environmental factors from a direct effect on the developing baby.
What Did the Researchers Do and Find?
The researchers examined data from the population of the US state of Arkansas recorded between 2003 and 2011. They looked at the health records of over 42,000 women who had given birth to more than one child during this period. This gave them information about how much weight the women had gained during each of their pregnancies. The researchers also looked at the school records of the children, over 91,000 in total, which included the children's body mass index (BMI, which factors in both height and weight). They analyzed the data to see if there was a link between the mothers' pregnancy weight gain and the child's BMI at around 12 years of age. Most importantly, they looked at these links within families, comparing children born to the same mother. The rationale for this approach was that these children would share a similar genetic make-up and would have grown up in similar environments. By taking genetics and environment into account in this manner, any remaining evidence of an impact of pregnancy weight gain on the children's BMI would have to be explained by other factors.
The results showed that the amount of weight each mother gained in pregnancy predicted her children's BMI and the likelihood of her children being overweight or obese. For every additional kg the mother gained during pregnancy, the children's BMI increased by 0.022. The children of mothers who put on the most weight had a BMI that was on average 0.43 higher than the children whose mothers had put on the least weight.
The study leaves some questions unanswered, including whether the mother's weight before pregnancy makes a difference to their children's BMI. The researchers were not able to obtain these measurements, nor the weight of the fathers. There may have also been other factors that weren't measured that might explain the links that were found.
What Do These Findings Mean?
This study shows that mothers who gain excessive weight during pregnancy increase the risk of their child becoming obese. This appears to be partly due to a direct effect on the developing baby.
These results represent a significant public health concern, even though the impact on an individual basis is relatively small. They could contribute to several hundred thousand cases of childhood obesity worldwide. Importantly, they also suggest that some cases could be prevented by measures to limit excessive weight gain during pregnancy. Such an approach could prove effective, as most mothers will not want to damage their child's health, and might therefore be highly motivated to change their behavior. However, because inadequate weight gain during pregnancy can also adversely affect the developing fetus, it will be essential for women to receive clear information about what constitutes optimal weight gain during pregnancy.
Additional Information
Please access these websites via the online version of this summary at
The US Centers for Disease Control and Prevention provide Childhood Obesity Facts
The UK National Health Service article “How much weight will I put on during my pregnancy?” provides information on pregnancy and weight gain and links to related resources
PMCID: PMC3794857  PMID: 24130460
13.  Earlier Mother's Age at Menarche Predicts Rapid Infancy Growth and Childhood Obesity 
PLoS Medicine  2007;4(4):e132.
Early menarche tends to be preceded by rapid infancy weight gain and is associated with increased childhood and adult obesity risk. As age at menarche is a heritable trait, we hypothesised that age at menarche in the mother may in turn predict her children's early growth and obesity risk.
Methods and Findings
We tested associations between mother's age at menarche, mother's adult body size and obesity risk, and her children's growth and obesity risk in 6,009 children from the UK population-based Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort who had growth and fat mass at age 9 y measured by dual-energy X-ray absorptiometry. A subgroup of 914 children also had detailed infancy and childhood growth data. In the mothers, earlier menarche was associated with shorter adult height (by 0.64 cm/y), increased weight (0.92 kg/y), and body mass index (BMI, 0.51 kg/m2/y; all p < 0.001). In contrast, in her children, earlier mother's menarche predicted taller height at 9 y (by 0.41 cm/y) and greater weight (0.80 kg/y), BMI (0.29 kg/m2/y), and fat mass index (0.22 kg/m2/year; all p < 0.001). Children in the earliest mother's menarche quintile (≤11 y) were more obese than the oldest quintile (≥15 y) (OR, 2.15, 95% CI 1.46 to 3.17; p < 0.001, adjusted for mother's education and BMI). In the subgroup, children in the earliest quintile showed faster gains in weight (p < 0.001) and height (p < 0.001) only from birth to 2 y, but not from 2 to 9 y (p = 0.3–0.8).
Earlier age at menarche may be a transgenerational marker of a faster growth tempo, characterised by rapid weight gain and growth, particularly during infancy, and leading to taller childhood stature, but likely earlier maturation and therefore shorter adult stature. This growth pattern confers increased childhood and adult obesity risks.
Earlier age at menarche may be a transgenerational marker of faster growth, particularly during infancy, leading to taller childhood stature but earlier maturation and hence shorter adult stature.
Editors' Summary
Childhood obesity is a rapidly growing problem. Twenty-five years ago, overweight children were rare. Now, 155 million of the world's children are overweight and 30–45 million are obese. Overweight and obese children—those having a higher than average body mass index (BMI; weight divided by height squared) for their age and sex—are at increased risk of becoming obese adults. Such people are more likely to develop heart disease, diabetes, and other health problems than lean people. Many factors are involved in the burgeoning size of children. Parental obesity, for example, predisposes children to being overweight. In part, this is because parents influence the eating habits of their offspring and the amount of exercise they do. In addition, though, children inherit genetic factors from their parents that make them more likely to put on weight.
Why Was This Study Done?
To prevent childhood obesity, health care professionals need ways to predict which infants are likely to become obese so that they can give parents advice on controlling their children's weight. In girls, early menarche (the start of menstruation) is associated with an increased risk of childhood and adult obesity and tends to be preceded by rapid weight gain in the first two years of life. Because age at menarche is inherited, the researchers in this study have investigated whether mothers' age at menarche predicts rapid growth in infancy and childhood obesity in their offspring using data from the Avon Longitudinal Study of Parents and Children (ALSPAC). In 1991–1992, this study recruited nearly 14,000 children born in Bristol, UK. Since then, the children have been regularly examined to investigate how their environment and genetic inheritance interact to affect their health.
What Did the Researchers Do and Find?
The researchers measured the growth and fat mass of 6,009 children from ALSPAC at 9 years of age. For 914 of these children, the researchers had detailed data on their growth during infancy and early childhood. They then looked for any associations between the mother's age at menarche (as recalled during pregnancy), mother's adult body size, and the children's growth and obesity risk. In the mothers, earlier menarche was associated with shorter adult height and increased weight and BMI. In the children, those whose mothers had earlier menarche were taller and heavier than those whose mothers had a later menarche. They also had a higher BMI and more body fat. The children whose mothers had their first period before they were 11 were twice as likely to be obese as those whose mothers did not menstruate until they were 15 or older. Finally, for the children with detailed early growth data, those whose mothers had the earliest menarche had faster weight and height gains in the first two years of life (but not in the next seven years) than those whose mothers had the latest menarche.
What Do These Findings Mean?
These findings indicate that earlier mother's menarche predicts a faster growth tempo (the speed at which an individual reaches their adult height) in their offspring, which is characterized by rapid weight and height gain during infancy. This faster growth tempo leads to taller childhood stature, earlier sexual maturity, and—because age at puberty determines adult height—shorter adult stature. An inherited growth pattern like this, the researchers write, confers an increased risk of childhood and adult obesity. As with all studies that look for associations between different measurements, these findings will be affected by the accuracy of the measurements—for example, how well the mothers recalled their age at menarche. Furthermore, because puberty, particularly in girls, is associated with an increase in body fat, a high BMI at age nine might indicate imminent puberty rather than a risk of long-standing obesity—further follow-up studies will clarify this point. Nevertheless, the current findings provide a new factor—earlier mother's menarche—that could help health care professionals identify which infants require early growth monitoring to avoid later obesity.
Additional Information.
Please access these Web sites via the online version of this summary at
The Avon Longitudinal Study of Parents and Children has a description of the study and results to date
The US Centers for Disease Control and Prevention provides information on overweight and obesity (in English and Spanish)
US Department of Health and Human Services's program, Smallstep Kids, is an interactive site for children about healthy eating (in English and Spanish)
The International Obesity Taskforce has information on obesity and its prevention
The World Heart Federation's Global Prevention Alliance provides details of international efforts to halt the obesity epidemic and its associated chronic diseases
The Child Growth Foundation has information on childhood growth and its measurement
PMCID: PMC1876410  PMID: 17455989
14.  High prevalence of undiagnosed diabetes and abnormal glucose tolerance in the Iranian urban population: Tehran Lipid and Glucose Study 
BMC Public Health  2008;8:176.
To estimate the prevalence of diagnosed and undiagnosed diabetes mellitus, impaired fasting glucose (IFG), impaired glucose tolerance (IGT), and combined IFG/IGT in a large urban Iranian population aged ≥ 20 years.
The study population included 9,489 participants of the Tehran Lipid and Glucose Study with full relevant clinical data. Age-standardized prevalence of diabetes and glucose intolerance categories were reported according to the 2003 American Diabetes Association definitions. Age-adjusted logistic regression models were used to estimate the numbers needed to screen (NNTS) to find one person with undiagnosed diabetes.
The prevalence of diagnosed and undiagnosed diabetes, isolated IFG, isolated IGT, and combined IFG/IGT were 8.1%, 5.1%, 8.7%, 5.4% and 4.0% in men and 10%, 4.7%, 6.3%, 7.6%, and 4.5% in women respectively. Participants with undiagnosed diabetes had higher age, body mass index (BMI), waist circumference, systolic and diastolic blood pressures, triglycerides (all p values <0.001) and lower HDL-cholesterol (only in women, p < 0.01) compared to normoglycemic subjects. Undiagnosed diabetes was associated with family history of diabetes, increased BMI (≥ 25 kg/m2), abdominal obesity, hypertriglyceridemia, hypertension and low HDL-cholesterol levels. Among men, a combination of increased BMI, hypertension, and family history of diabetes led to a NNTS of 1.6 (95% CI: 1.57–1.71) and among women a combination of family history of diabetes and abdominal obesity, yielded a NNTS of 2.2 (95% CI: 2.1–2.4).
In conclusion, about one third of Tehranian adults had disturbed glucose tolerance or diabetes. One- third of total cases with diabetes were undiagnosed. Screening individuals with BMI ≥ 25 kg/m2 (men), hypertension (men), abdominal obesity (women) and family history of diabetes may be more efficient.
PMCID: PMC2413226  PMID: 18501007
15.  Gestational Glucose Tolerance and Maternal Metabolic Profile at 3 Years Postpartum 
Obstetrics and Gynecology  2011;118(5):1065-1073.
To estimate the independent effect of gestational impaired glucose tolerance, defined as a single abnormal oral glucose tolerance test (OGTT) value, on metabolic dysfunction at 3 years postpartum.
We used multiple linear regression to measure associations between glucose testing during pregnancy and metabolic markers at 3 years postpartum in Project Viva, a prospective cohort study of maternal and infant health. We compared metabolic measures at 3 years postpartum among four groups: normal glucose challenge test (less than 140 mg/dL, n=461); abnormal glucose challenge test but normal glucose tolerance test (GTT) (n=39); impaired glucose tolerance (IGT) (a single abnormal GTT value, n=21); and gestational diabetes mellitus (GDM) (n=16).
Adjusting for age, race, parity, parental history of diabetes, and maternal BMI at 3 years postpartum, we found women with GDM had lower adiponectin (11.2 ng/mL vs. 20.7 ng/mL) and higher homeostatic model assessment – insulin resistance (3.1 vs. 1.3) and waist circumference (91.3 cm vs. 86.2 cm) compared with women with IGT or normal glucose tolerance. Women in both the IGT and GDM groups had lower high-density lipoprotein (GDM: 44.7 mg/dL; IGT: 45.4/dL vs normal glucose tolerance 55.8 mg/dL) and higher triglycerides (GDM: 136.1 mg/dL; IGT: 140.1 mg/dL, vs. normal glucose tolerance: 78.3), compared with women in the normal glucose tolerance group. We found the highest values for Hemoglobin A1c (GDM: 5.1%; IGT 5.3%, normal glucose tolerance 5.1%) and high-sensitivity c reactive protein (GDM 1.4 mg/dL IGT: 2.2 mg/dL; NGT 1.0 mg/dL) among women with IGT.
GDM and IGT during pregnancy are associated with persistent metabolic dysfunction at 3 years postpartum, independent of other clinical risk factors.
PMCID: PMC3268071  PMID: 22015874
16.  Patterns of Obesity Development before the Diagnosis of Type 2 Diabetes: The Whitehall II Cohort Study 
PLoS Medicine  2014;11(2):e1001602.
Examining patterns of change in body mass index (BMI) and other cardiometabolic risk factors in individuals during the years before they were diagnosed with diabetes, Kristine Færch and colleagues report that few of them experienced dramatic BMI changes.
Please see later in the article for the Editors' Summary
Patients with type 2 diabetes vary greatly with respect to degree of obesity at time of diagnosis. To address the heterogeneity of type 2 diabetes, we characterised patterns of change in body mass index (BMI) and other cardiometabolic risk factors before type 2 diabetes diagnosis.
Methods and Findings
We studied 6,705 participants from the Whitehall II study, an observational prospective cohort study of civil servants based in London. White men and women, initially free of diabetes, were followed with 5-yearly clinical examinations from 1991–2009 for a median of 14.1 years (interquartile range [IQR]: 8.7–16.2 years). Type 2 diabetes developed in 645 (1,209 person-examinations) and 6,060 remained free of diabetes during follow-up (14,060 person-examinations). Latent class trajectory analysis of incident diabetes cases was used to identify patterns of pre-disease BMI. Associated trajectories of cardiometabolic risk factors were studied using adjusted mixed-effects models. Three patterns of BMI changes were identified. Most participants belonged to the “stable overweight” group (n = 604, 94%) with a relatively constant BMI level within the overweight category throughout follow-up. They experienced slightly worsening of beta cell function and insulin sensitivity from 5 years prior to diagnosis. A small group of “progressive weight gainers” (n = 15) exhibited a pattern of consistent weight gain before diagnosis. Linear increases in blood pressure and an exponential increase in insulin resistance a few years before diagnosis accompanied the weight gain. The “persistently obese” (n = 26) were severely obese throughout the whole 18 years before diabetes diagnosis. They experienced an initial beta cell compensation followed by loss of beta cell function, whereas insulin sensitivity was relatively stable. Since the generalizability of these findings is limited, the results need confirmation in other study populations.
Three patterns of obesity changes prior to diabetes diagnosis were accompanied by distinct trajectories of insulin resistance and other cardiometabolic risk factors in a white, British population. While these results should be verified independently, the great majority of patients had modest weight gain prior to diagnosis. These results suggest that strategies focusing on small weight reductions for the entire population may be more beneficial than predominantly focusing on weight loss for high-risk individuals.
Please see later in the article for the Editors' Summary
Editors' Summary
Worldwide, more than 350 million people have diabetes, a metabolic disorder characterized by high amounts of glucose (sugar) in the blood. Blood sugar levels are normally controlled by insulin, a hormone released by the pancreas after meals (digestion of food produces glucose). In people with type 2 diabetes (the commonest form of diabetes) blood sugar control fails because the fat and muscle cells that normally respond to insulin by removing sugar from the blood become insulin resistant. Type 2 diabetes, which was previously called adult-onset diabetes, can be controlled with diet and exercise, and with drugs that help the pancreas make more insulin or that make cells more sensitive to insulin. Long-term complications, which include an increased risk of heart disease and stroke, reduce the life expectancy of people with diabetes by about 10 years compared to people without diabetes. The number of people with diabetes is expected to increase dramatically over the next decades, coinciding with rising obesity rates in many countries. To better understand diabetes development, to identify people at risk, and to find ways to prevent the disease are urgent public health goals.
Why Was This Study Done?
It is known that people who are overweight or obese have a higher risk of developing diabetes. Because of this association, a common assumption is that people who experienced recent weight gain are more likely to be diagnosed with diabetes. In this prospective cohort study (an investigation that records the baseline characteristics of a group of people and then follows them to see who develops specific conditions), the researchers tested the hypothesis that substantial weight gain precedes a diagnosis of diabetes and explored more generally the patterns of body weight and composition in the years before people develop diabetes. They then examined whether changes in body weight corresponded with changes in other risk factors for diabetes (such as insulin resistance), lipid profiles and blood pressure.
What Did the Researchers Do and Find?
The researchers studied participants from the Whitehall II study, a prospective cohort study initiated in 1985 to investigate the socioeconomic inequalities in disease. Whitehall II enrolled more than 10,000 London-based government employees. Participants underwent regular health checks during which their weight and height were measured, blood tests were done, and they filled out questionnaires for other relevant information. From 1991 onwards, participants were tested every five years for diabetes. The 6,705 participants included in this study were initially free of diabetes, and most of them were followed for at least 14 years. During the follow-up, 645 participants developed diabetes, while 6,060 remained free of the disease.
The researchers used a statistical tool called “latent class trajectory analysis” to study patterns of changes in body mass index (BMI) in the years before people developed diabetes. BMI is a measure of human obesity based on a person's weight and height. Latent class trajectory analysis is an unbiased way to subdivide a number of people into groups that differ based on specified parameters. In this case, the researchers wanted to identify several groups among all the people who eventually developed diabetes each with a distinct pattern of BMI development. Having identified such groups, they also examined how a variety of tests associated with diabetes risk, and risks for heart disease and stroke changed in the identified groups over time.
They identified three different patterns of BMI changes in the 645 participants who developed diabetes. The vast majority (606 individuals, or 94%) belonged to a group they called “stable-overweight.” These people showed no dramatic change in their BMI in the years before they were diagnosed. They were overweight when they first entered the study and gained or lost little weight during the follow-up years. They showed only minor signs of insulin-resistance, starting five years before they developed diabetes. A second, much smaller group of 15 people gained weight consistently in the years before diagnosis. As they were gaining weight, these people also had raises in blood pressure and substantial gains in insulin resistance. The 26 remaining participants who formed the third group were persistently obese for the entire time they participated in the study, in some cases up to 18 years before they were diagnosed with diabetes. They had some signs of insulin resistance in the years before diagnosis, but not the substantial gain often seen as the hallmark of “pre-diabetes.”
What Do These Findings Mean?
These results suggest that diabetes development is a complicated process, and one that differs between individuals who end up with the disease. They call into question the common notion that most people who develop diabetes have recently gained a lot of weight or are obese. A substantial rise in insulin resistance, another established risk factor for diabetes, was only seen in the smallest of the groups, namely the people who gained weight consistently for years before they were diagnosed. When the scientists applied a commonly used predictor of diabetes called the “Framingham diabetes risk score” to their largest “stably overweight” group, they found that these people were not classified as having a particularly high risk, and that their risk scores actually declined in the last five years before their diabetes diagnosis. This suggests that predicting diabetes in this group might be difficult.
The researchers applied their methodology only to this one cohort of white civil servants in England. Before drawing more firm conclusions on the process of diabetes development, it will be important to test whether similar results are seen in other cohorts and among more diverse individuals. If the three groups identified here are found in other cohorts, another question is whether they are as unequal in size as in this example. And if they are, can the large group of stably overweight people be further subdivided in ways that suggest specific mechanisms of disease development? Even without knowing how generalizable the provocative findings of this study are, they should stimulate debate on how to identify people at risk for diabetes and how to prevent the disease or delay its onset.
Additional Information
Please access these Web sites via the online version of this summary at
The US National Diabetes Information Clearinghouse provides information about diabetes for patients, health-care professionals, and the general public, including information on diabetes prevention (in English and Spanish)
The UK National Health Service Choices website provides information for patients and carers about type 2 diabetes; it includes people's stories about diabetes
The charity Diabetes UK also provides detailed information about diabetes for patients and carers, including information on healthy lifestyles for people with diabetes, and has a further selection of stories from people with diabetes; the charity Healthtalkonline has interviews with people about their experiences of diabetes
MedlinePlus provides links to further resources and advice about diabetes (in English and Spanish)
More information about the Whitehall II study is available
PMCID: PMC3921118  PMID: 24523667
17.  Prevalence and determinants of diabetes mellitus among Iranian patients with chronic liver disease 
Alterations in carbohydrate metabolism are frequently observed in cirrhosis. We conducted this study to define the prevalence of diabetes mellitus (DM) and impaired glucose tolerance (IGT) in Iranian patients with chronic liver disease (CLD), and explore the factors associated with DM in these patients.
One hundred and eighty-five patients with CLD were enrolled into the study. Fasting plasma glucose and two-hour plasma glucose were measured in patients' sera. DM and IGT were diagnosed according to the latest American Diabetes Association criteria.
The subjects included 42 inactive HBV carriers with a mean age of 42.2 ± 12.0 years, 102 patients with HBV or HCV chronic hepatitis with a mean age of 41.2 ± 10.9 years, and 41 cirrhotic patients with a mean age of 52.1 ± 11.4 years. DM and IGT were diagnosed in 40 (21.6%) and 21 (11.4%) patients, respectively. Univariate analysis showed that age (P = 0.000), CLD status (P = 0.000), history of hypertension (P = 0.007), family history of DM (P = 0.000), and body mass index (BMI) (P = 0.009) were associated with DM. Using Multivariate analysis, age (OR = 4.7, 95%CI: 1.8–12.2), family history of DM (OR = 6.6, 95%CI: 2.6–17.6), chronic hepatitis (OR = 11.6, 95%CI: 2.9–45.4), and cirrhosis (OR = 6.5, 95%CI: 2.4–17.4) remained as the factors independently associated with DM. When patients with cirrhosis and chronic hepatitis were analyzed separately, higher Child-Pugh's score in cirrhotic patients (OR = 9.6, 95%CI: 1.0–88.4) and older age (OR = 7.2, 95%CI: 1.0–49.1), higher fibrosis score (OR = 59.5, 95%CI: 2.9–1211.3/ OR = 11.9, 95%CI: 1.0–132.2), and higher BMI (OR = 30.3, 95%CI: 3.0–306.7) in patients with chronic hepatitis were found to be associated with higher prevalence of DM.
Our findings indicate that patients with cirrhosis and chronic hepatitis are at the increased risk of DM occurrence. Older age, severe liver disease, and obesity were associated with DM in these patients.
PMCID: PMC538272  PMID: 15555059
18.  Elevated 1 h postload plasma glucose levels identify adults with normal glucose tolerance but increased risk of non-alcoholic fatty liver disease 
To determine the ability of the proposed diagnostic value of a 1-h OGTT glucose ≥155mg/dL to identify individuals with non-alcoholic fatty liver disease (NAFLD) diagnosed by ultrasonography in a cohort of adult white individuals.
The study group comprised 710 white individuals participating to the CATAnzaro MEtabolic RIsk factors (CATAMERI) Study, a cross-sectional study assessing cardio-metabolic risk factors in individuals carrying at least one risk factor including dysglycemia, overweight/obesity, hypertension, dyslipidemia. a 75 g oral Oral Glucose Tolerance Test (OGTT) was performed with 0, 30, 60, 90 and 120 min sampling for plasma glucose and insulin measurements. Cardio-metabolic risk factors including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyltransferase (GGT) were assessed in the whole cohort.
Of the 710 participants examined, 295 had normal glucose tolerance (NGT) with 1-hour post-load plasma glucose <155 mg/dL (NGT 1h-low), 109 individuals had NGT 1h-high, 104 had isolated impaired fasting glucose (IFG), and 202 had impaired glucose tolerance (IGT). As compared with NGT 1h-low, NGT 1h-high and IGT subjects exhibited significantly higher body mass index (BMI), triglycerides, high sensitivity C reactive protein, ALT, GGT, and hepatic insulin resistance (IR), assessed by the liver IR index, as well as lower high density lipoprotein, and insulin-like growth factor-1 (IGF-1) levels. In a logistic regression analysis adjusted for age, gender, and BMI, NGT 1h-high participants had a 1.5-fold increased risk of having NAFLD and an even increased risk was observed in subjects with IGT (1.8-fold), but not in the isolated IFG group (1.01-fold).
These data suggest that the value of a 1-hour OGTT glucose ≥155 mg/dL may be helpful to identify a subset of NGT individuals at risk for NAFLD.
PMCID: PMC4212569  PMID: 25452862
19.  How Has the Age-Related Process of Overweight or Obesity Development Changed over Time? Co-ordinated Analyses of Individual Participant Data from Five United Kingdom Birth Cohorts 
PLoS Medicine  2015;12(5):e1001828.
There is a paucity of information on secular trends in the age-related process by which people develop overweight or obesity. Utilizing longitudinal data in the United Kingdom birth cohort studies, we investigated shifts over the past nearly 70 years in the distribution of body mass index (BMI) and development of overweight or obesity across childhood and adulthood.
Methods and Findings
The sample comprised 56,632 participants with 273,843 BMI observations in the 1946 Medical Research Council National Survey of Health and Development (NSHD; ages 2–64 years), 1958 National Child Development Study (NCDS; 7–50), 1970 British Cohort Study (BCS; 10–42), 1991 Avon Longitudinal Study of Parents and Children (ALSPAC; 7–18), or 2001 Millennium Cohort Study (MCS; 3–11). Growth references showed a secular trend toward positive skewing of the BMI distribution at younger ages. During childhood, the 50th centiles for all studies lay in the middle of the International Obesity Task Force normal weight range, but during adulthood, the age when a 50th centile first entered the overweight range (i.e., 25–29.9 kg/m2) decreased across NSHD, NCDS, and BCS from 41 to 33 to 30 years in males and 48 to 44 to 41 years in females. Trajectories of overweight or obesity showed that more recently born cohorts developed greater probabilities of overweight or obesity at younger ages. Overweight or obesity became more probable in NCDS than NSHD in early adulthood, but more probable in BCS than NCDS and NSHD in adolescence, for example. By age 10 years, the estimated probabilities of overweight or obesity in cohorts born after the 1980s were 2–3 times greater than those born before the 1980s (e.g., 0.229 [95% CI 0.219–0.240] in MCS males; 0.071 [0.065–0.078] in NSHD males). It was not possible to (1) model separate trajectories for overweight and obesity, because there were few obesity cases at young ages in the earliest-born cohorts, or (2) consider ethnic minority groups. The end date for analyses was August 2014.
Our results demonstrate how younger generations are likely to accumulate greater exposure to overweight or obesity throughout their lives and, thus, increased risk for chronic health conditions such as coronary heart disease and type 2 diabetes mellitus. In the absence of effective intervention, overweight and obesity will have severe public health consequences in decades to come.
In a longitudinal analysis, William Johnson and colleagues examine how individual lifetime BMI trajectories among white citizens of the UK have changed from 1946 to 2014.
Editors' Summary
Overweight and obesity are major threats to global health. The global prevalence of obesity (the proportion of the world's population that is obese) has more than doubled since 1980; 13% of the adult population, or 0.6 billion people, are now classified as obese, while an additional 1.3 billion adults are overweight. Both classifications are determined by body mass index (BMI), which is calculated by dividing a person's weight in kilograms by the square of their height in meters. Obese individuals have a BMI of 30 kg/m2 or more, while overweight individuals have a BMI of 25–30 kg/m2. BMI values above 25 kg/m2 increase the risk of developing non-communicable diseases (NCDs), including cardiovascular diseases, cancers and diabetes. Each year, NCDs kill 38 million people (including 28 million people in low- and middle-income countries and 9 million people under 60 years of age), thereby accounting for more than 75% of the world's annual deaths.
In the United Kingdom, studies report that roughly one quarter of adults are obese, and a further third or more are overweight. This “obesity epidemic” extends to children; according to the National Child Measurement Programme for England (NCMP), about 9% of 4–5-year-olds and 19% of 10–11-year-olds were obese in 2013. In parallel, the UK has not seen the improvements in child and young adult mortality seen in comparable European states.
Why Was This Study Done?
Cross-sectional surveys in the UK, United States, and elsewhere have documented the obesity epidemic, but longitudinal data—drawn from periodic BMI measurements from individuals over their lifetimes—are needed to clarify the time course, or trajectory, of overweight and obesity. Longitudinal data can answer practical questions important for designing health policy interventions. Is the age at which individuals develop overweight or obesity changing over time? In which individuals are the greatest increases in BMI occurring? The authors leveraged longitudinal data from five birth cohort studies (studies that follow a selected group of individuals born during a short window of time), incepted in 1946, 1958, 1970, 1991, and 2001. These large cohort projects were funded by the UK government for the purpose of providing data for long-term health analyses such as this one; in total, the current study’s included sample comprised 56,632 participants with 273,843 BMI observations from participants aged 2 through 64.
What Did the Researchers Do and Find?
The present study aimed to investigate (1) shifts from the 1940s to the 2000s in the distribution of BMI across age and (2) shifts over the same period in the probability of developing overweight or obesity across age. For each of the five cohorts, subdivided by sex and childhood versus adulthood (thus, a total of 20 datasets), the authors applied statistical models to produce trajectories for each BMI centile (subset that results from dividing the distribution of BMI measurements into 100 groups with equal frequency; here, the 90th centile is the group for which 90% of the relevant population has lower BMI). They then investigated secular trends (long-term, non-periodic variations) at different centiles of the BMI distribution. For example, by comparing the trajectories of the 50th centile for adult males across the five cohorts, the researchers could see how the age at which BMI values reached the obese range varied between eras among this group.
The data revealed that most of the between-cohort, and thus between-era, increases in BMI took place in the highest centiles, indicating that overall gains in BMI mainly comprised very high BMI individuals carrying even more weight. Across the 1946, 1958, and 1970 cohorts, the age at which the 50th centile of adults entered the overweight range decreased from 41 to 33 to 30 years in males and 48 to 44 to 41 years in females. The probabilities of overweight and obesity across adulthood also increased. While children in the 50th BMI centile have remained at normal weight through the decades, the overall childhood probability of developing overweight or obesity has increased 2–3-fold from before to after the 1980s.
What Do These Findings Mean?
These findings describe the changing pattern of age-related progression of overweight and obesity from early childhood in white citizens of the UK. The findings may not be generalizable because other populations have distinct genetic predispositions, environmental exposures, and access to health care. In addition, the accuracy of the findings may be affected by differences between cohorts in how weight and height (and thus BMI) were measured. Nevertheless, these findings—in particular, the increased risk of overweight and obesity at younger ages—suggest that compared to previous generations, current and future generations will accumulate greater overweight or obesity exposure across their lives, likely resulting in increased risk for NCDs. Further research is now needed to determine whether lifestyle factors in the UK have affected the trajectory of BMI and to discover the extent to which these shifting weight trajectories have contributed to morbidity and mortality.
Additional Information
This list of resources contains links that can be accessed when viewing the PDF on a device or via the online version of the article at The World Health Organization provides information on obesity and non-communicable diseases around the world (in several languages)The UK National Health Service Choices website also provides detailed information about obesity and a link to a personal story about losing weightThe International Obesity Taskforce provides information about the global obesity epidemicThe US Centers for Disease Control and Prevention provides information on non-communicable diseases around the world and on overweight and obesity and diabetes (including some information in Spanish)The US Department of Agriculture's website provides a personal healthy eating planThe Weight-control Information Network is an information service provided for the general public and health professionals by the US National Institute of Diabetes and Digestive and Kidney Diseases (in English and Spanish)MedlinePlus has links to further information about obesity (in English and Spanish)
PMCID: PMC4437909  PMID: 25993005
20.  Increased Skeletal Muscle Capillarization After Aerobic Exercise Training and Weight Loss Improves Insulin Sensitivity in Adults With IGT 
Diabetes Care  2014;37(5):1469-1475.
Transcapillary transport of insulin is one determinant of glucose uptake by skeletal muscle; thus, a reduction in capillary density (CD) may worsen insulin sensitivity. Skeletal muscle CD is lower in older adults with impaired glucose tolerance (IGT) compared with those with normal glucose tolerance and may be modifiable through aerobic exercise training and weight loss (AEX+WL). We tested the hypothesis that 6-month AEX+WL would increase CD to improve insulin sensitivity and glucose tolerance in older adults with IGT.
Sixteen sedentary, overweight-obese (BMI 27–35 kg/m2), older (63 ± 2 years) men and women with IGT underwent hyperinsulinemic-euglycemic clamps to measure insulin sensitivity, oral glucose tolerance tests, exercise and body composition testing, and vastus lateralis muscle biopsies to determine CD before and after 6-month AEX+WL.
Insulin sensitivity (M) and 120-min postprandial glucose (G120) correlated with CD at baseline (r = 0.58 and r = −0.60, respectively, P < 0.05). AEX+WL increased maximal oxygen consumption (VO2max) 18% (P = 0.02) and reduced weight and fat mass 8% (P < 0.02). CD increased 15% (264 ± 11 vs. 304 ± 14 capillaries/mm2, P = 0.01), M increased 21% (42.4 ± 4.0 vs. 51.4 ± 4.3 µmol/kg FFM/min, P < 0.05), and G120 decreased 16% (9.35 ± 0.5 vs. 7.85 ± 0.5 mmol/L, P = 0.008) after AEX+WL. Regression analyses showed that the AEX+WL-induced increase in CD independently predicted the increase in M (r = 0.74, P < 0.01) as well as the decrease in G120 (r = −0.55, P < 0.05).
Six-month AEX+WL increases skeletal muscle CD in older adults with IGT. This represents one mechanism by which AEX+WL improves insulin sensitivity in older adults with IGT.
PMCID: PMC3994928  PMID: 24595633
21.  Prevalence of non-insulin-dependent diabetes mellitus and impaired glucose tolerance in two Algonquin communities in Quebec. 
OBJECTIVE: To assess and compare the prevalence of non-insulin-dependent diabetes mellitus (NIDDM) and impaired glucose tolerance (IGT) in two native Indian communities. DESIGN: Population-based study. SETTING: Two Algonquin communities in Quebec: River Desert and Lac Simon. PARTICIPANTS: All native Indian residents aged at least 15 years were eligible; 621 (59%) of them volunteered to enroll in the study. The participation rate was 49% in River Desert and 76% in Lac Simon. MAIN OUTCOME MEASURES: Fasting blood glucose level and serum glucose level 2 hours after 75-g oral glucose tolerance test, as described by the World Health Organization, in all subjects except those with confirmed diabetes. Other measures included body mass index (BMI), fat distribution and blood pressure. MAIN RESULTS: The age-sex standardized prevalence rate of NIDDM was 19% in Lac Simon (95% confidence interval [CI] 16% to 21%); this was more than twice the rate of 9% in River Desert (95% CI 7% to 11%). The IGT rates were comparable in the two communities (River Desert 5%, Lac Simon 6%). NIDDM and IGT were uncommon under the age of 35 years. Only in Lac Simon was the NIDDM prevalence rate significantly higher among the women than among the men (23% v. 14%); almost half of the women aged 35 years or more had diabetes. In Lac Simon the rate of marked obesity (BMI greater than 30) was significantly higher among the women than among the men (37% v. 19%; p < 0.001); this sex-related difference was not found in River Desert (rates 31% and 23% respectively). Previously undiagnosed NIDDM accounted for 25% of all the cases. NIDDM and IGT were significantly associated with high BMI, sum of skinfold thicknesses and waist:hip circumference ratio (p < 0.001). The subscapular:triceps skinfold ratio, however, did not display such an association, nor did the age-adjusted systolic blood pressure. CONCLUSIONS: The prevalence of NIDDM is high in Algonquin communities and may vary markedly between communities. Although widespread, particularly in women, obesity cannot entirely explain the much higher rate of NIDDM in Lac Simon. Family and lifestyle risk factors, in particular diet and activity patterns, are being analysed in the two communities.
PMCID: PMC1488604  PMID: 8439889
22.  Skin Autofluorescence Based Decision Tree in Detection of Impaired Glucose Tolerance and Diabetes 
PLoS ONE  2013;8(6):e65592.
Diabetes (DM) and impaired glucose tolerance (IGT) detection are conventionally based on glycemic criteria. Skin autofluorescence (SAF) is a noninvasive proxy of tissue accumulation of advanced glycation endproducts (AGE) which are considered to be a carrier of glycometabolic memory. We compared SAF and a SAF-based decision tree (SAF-DM) with fasting plasma glucose (FPG) and HbA1c, and additionally with the Finnish Diabetes Risk Score (FINDRISC) questionnaire±FPG for detection of oral glucose tolerance test (OGTT)- or HbA1c-defined IGT and diabetes in intermediate risk persons.
Participants had ≥1 metabolic syndrome criteria. They underwent an OGTT, HbA1c, SAF and FINDRISC, in adition to SAF-DM which includes SAF, age, BMI, and conditional questions on DM family history, antihypertensives, renal or cardiovascular disease events (CVE).
218 persons, age 56 yr, 128M/90F, 97 with previous CVE, participated. With OGTT 28 had DM, 46 IGT, 41 impaired fasting glucose, 103 normal glucose tolerance. SAF alone revealed 23 false positives (FP), 34 false negatives (FN) (sensitivity (S) 68%; specificity (SP) 86%). With SAF-DM, FP were reduced to 18, FN to 16 (5 with DM) (S 82%; SP 89%). HbA1c scored 48 FP, 18 FN (S 80%; SP 75%). Using HbA1c-defined DM-IGT/suspicion ≥6%/42 mmol/mol, SAF-DM scored 33 FP, 24 FN (4 DM) (S76%; SP72%), FPG 29 FP, 41 FN (S71%; SP80%). FINDRISC≥10 points as detection of HbA1c-based diabetes/suspicion scored 79 FP, 23 FN (S 69%; SP 45%).
SAF-DM is superior to FPG and non-inferior to HbA1c to detect diabetes/IGT in intermediate-risk persons. SAF-DM’s value for diabetes/IGT screening is further supported by its established performance in predicting diabetic complications.
PMCID: PMC3672176  PMID: 23750268
23.  Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study 
Impaired glucose tolerance (IGT) is a pre-diabetic state of hyperglycemia that is associated with insulin resistance, increased risk of type II diabetes, and cardiovascular pathology. Recently, investigators hypothesized that decreased vagus nerve activity may be the underlying mechanism of metabolic syndrome including obesity, elevated glucose levels, and high blood pressure.
In this pilot randomized clinical trial, we compared the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) and sham taVNS on patients with IGT. 72 participants with IGT were single-blinded and were randomly allocated by computer-generated envelope to either taVNS or sham taVNS treatment groups. In addition, 30 IGT adults were recruited as a control population and not assigned treatment so as to monitor the natural fluctuation of glucose tolerance in IGT patients. All treatments were self-administered by the patients at home after training at the hospital. Patients were instructed to fill in a patient diary booklet each day to describe any side effects after each treatment. The treatment period was 12 weeks in duration. Baseline comparison between treatment and control group showed no difference in weight, BMI, or measures of systolic blood pressure, diastolic blood pressure, fasting plasma glucose (FPG), 2-hour plasma glucose (2hPG), or glycosylated hemoglobin (HbAlc).
100 participants completed the study and were included in data analysis. Two female patients (one in the taVNS group, one in the sham taVNS group) dropped out of the study due to stimulation-evoked dizziness. The symptoms were relieved after stopping treatment. Compared with sham taVNS, taVNS significantly reduced the two-hour glucose tolerance (F(2) = 5.79, p = 0.004). In addition, we found that taVNS significantly decreased (F(1) = 4.21, p = 0.044) systolic blood pressure over time compared with sham taVNS. Compared with the no-treatment control group, patients receiving taVNS significantly differed in measures of FPG (F(2) = 10.62, p < 0.001), 2hPG F(2) = 25.18, p < 0.001) and HbAlc (F(1) = 12.79, p = 0.001) over the course of the 12 week treatment period.
Our study suggests that taVNS is a promising, simple, and cost-effective treatment for IGT/ pre-diabetes with only slight risk of mild side-effects.
PMCID: PMC4227038  PMID: 24968966
24.  Association of Alanine Aminotransferase Levels (ALT) with the Hepatic Insulin Resistance Index (HIRI): a cross-sectional study 
The association between serum alanine aminotransferase (ALT) levels and hepatic insulin resistance (IR) has been evaluated with the hyperinsulinemic-euglycemic clamp. However, there is no information about the association of ALT with the Hepatic Insulin Resistance Index (HIRI). The aim of this study was to evaluate the association between serum ALT levels and HIRI in subjects with differing degrees of impaired glucose metabolism.
This cross-sectional study included subjects that had an indication for testing for type 2 diabetes mellitus (T2DM) with an oral glucose tolerance test (OGTT). Clinical and biochemical evaluations were carried out including serum ALT level quantification. HIRI was calculated for each participant. Correlation analyses and lineal regression models were used to evaluate the association between ALT levels and HIRI.
A total of 324 subjects (37.6% male) were included. The mean age was 40.4 ± 14.3 years and the mean body mass index (BMI) was 32.0 ± 7.3 kg/m2. Individuals were divided into 1 of 5 groups: without metabolic abnormalities (n = 113, 34.8%); with the metabolic syndrome (MetS, n = 179, 55.2%), impaired fasting glucose (IFG, n = 85, 26.2%); impaired glucose tolerance (IGT, n = 91, 28.0%), and T2DM (n = 23, 7.0%). The ALT (p < 0.001) and HOMA2-IR (p < 0.001) values progressively increased with HIRI quartiles, while ISI-Matsuda (p < 0.001) progressively decreased. After adjustment for sex, age, and BMI, we identified a significant correlation between HIRI and ALT in persons with the MetS (r = 0.22, p = 0.003), IFG (r = 0.33, p < 0.001), IGT (r = 0.37, p < 0.001), and T2DM (r = 0.72, p < 0.001). Lineal regression analysis adjusting for age, HDL-C, TG and waist circumference (WC) showed an independent association between ALT and HIRI in subjects with the MetS (beta = 0.07, p = 0.01), IFG (beta = 0.10, p = 0.02), IGT (beta = 0.09, p = 0.007), and T2DM (beta = 0.31, p = 0.003). This association was not identified in subjects without metabolic abnormalities.
ALT levels are independently associated with HIRI in subjects with the MetS, IFG, IGT, and T2DM. The ALT value in these subjects may be an indirect parameter to evaluate hepatic IR.
PMCID: PMC3515498  PMID: 22947097
Alanine aminotransferase; ALT; Hepatic insulin resistance; HIRI
25.  Resistin - the link between adipose tissue dysfunction and insulin resistance in patients with obstructive sleep apnea 
Resistin is an adipocytokine, associated with obesity and inflammation. Its exact role in insulin resistance and diabetes in the general population is still controversial. The relation between resistin plasma levels, insulin resistance and risk of impaired glucose metabolism in OSA patients has not been investigated.
Materials and methods
Plasma levels of resistin were measured in 67 patients with OSA and impaired glucose metabolism. 34,7% (23/67) had diabetes; 40% (27/67) patients had impаired glucose tolerance(IGT); 25,3%(17/67) had normal glucose metabolism (NGM). The association between resistin, BMI, obesity, markers of insulin resistance, oxidative stress and sleep study characteristics was analysed. The different groups of patients were compared in regards to glucometabolic parameters and biomarkers of oxidative stress – isoprostanes and insulin resistance – free fatty acids (FFA).
Plasma levels of resistin were higher in patients with diabetes (6,12 ±5,93ng/ml), compared to those with IGT (3,85±2,81ng/ml, p-0,021) and NGM (3,77±3,23, p-0,043). Resistin did not differ between patients with IGT and NGM (p-0,954). In OSA patients with BMI>40 resistin plasma levels correlated neither to the clinical parameters (BMI, IRI, HOMA-I, HbA1C, AHI, desaturation index), nor to the biomarkers of oxidative stress and insulin resistance. Free fatty acids (0,232>0,177mmol/l, p-0,037) were higher in diabetics in comparison to NGM.
Plasma resistin levels in OSA patients with BMI>40 are independent of insulin resistance and are not associated with the parameters, characterising the oxidative stress or severity of OSA. Resistin could be used in a multiple panel of clinical and biomarkers to discern patients with diabetes from those with IGT; in OSA patients with BMI >40 resistin together with HbA1C could discern patients with diabetes from those with NGM. In OSA patients with BMI >40 FFA and HbA1C are useful clinical markers in assessing the risk of dysglycaemia among patients with normal and IGT.
PMCID: PMC3598160  PMID: 23497617
Resistin; Insulin resistance; OSA; Diabetes; Normal glucose metabolism; Impaired glucose tolerance

Results 1-25 (1257855)