Search tips
Search criteria

Results 1-25 (1274243)

Clipboard (0)

Related Articles

1.  Specificity of the STAT4 Genetic Association for Severe Disease Manifestations of Systemic Lupus Erythematosus 
PLoS Genetics  2008;4(5):e1000084.
Systemic lupus erythematosus (SLE) is a genetically complex disease with heterogeneous clinical manifestations. A polymorphism in the STAT4 gene has recently been established as a risk factor for SLE, but the relationship with specific SLE subphenotypes has not been studied. We studied 137 SNPs in the STAT4 region genotyped in 4 independent SLE case series (total n = 1398) and 2560 healthy controls, along with clinical data for the cases. Using conditional testing, we confirmed the most significant STAT4 haplotype for SLE risk. We then studied a SNP marking this haplotype for association with specific SLE subphenotypes, including autoantibody production, nephritis, arthritis, mucocutaneous manifestations, and age at diagnosis. To prevent possible type-I errors from population stratification, we reanalyzed the data using a subset of subjects determined to be most homogeneous based on principal components analysis of genome-wide data. We confirmed that four SNPs in very high LD (r2 = 0.94 to 0.99) were most strongly associated with SLE, and there was no compelling evidence for additional SLE risk loci in the STAT4 region. SNP rs7574865 marking this haplotype had a minor allele frequency (MAF) = 31.1% in SLE cases compared with 22.5% in controls (OR = 1.56, p = 10−16). This SNP was more strongly associated with SLE characterized by double-stranded DNA autoantibodies (MAF = 35.1%, OR = 1.86, p<10−19), nephritis (MAF = 34.3%, OR = 1.80, p<10−11), and age at diagnosis<30 years (MAF = 33.8%, OR = 1.77, p<10−13). An association with severe nephritis was even more striking (MAF = 39.2%, OR = 2.35, p<10−4 in the homogeneous subset of subjects). In contrast, STAT4 was less strongly associated with oral ulcers, a manifestation associated with milder disease. We conclude that this common polymorphism of STAT4 contributes to the phenotypic heterogeneity of SLE, predisposing specifically to more severe disease.
Author Summary
Systemic lupus erythematosus is a chronic disabling autoimmune disease, most commonly striking women in their thirties or forties. It can cause a wide variety of clinical manifestations, including kidney disease, arthritis, and skin disorders. Prognosis varies greatly depending on these clinical features, with kidney disease and related characteristics leading to greater morbidity and mortality. It is also complex genetically; while lupus runs in families, genes increase one’s risk for lupus but do not fully determine the outcome. It is thought that the interactions of multiple genes and/or interactions between genes and environmental factors may cause lupus, but the causes and disease pathways of this very heterogeneous disease are not well understood. By examining relationships between subtypes of lupus and specific genes, we hope to better understand how lupus is triggered and by what biological pathways it progresses. We show in this work that the STAT4 gene, very recently identified as a lupus risk gene, predisposes specifically to severe manifestations of lupus, including kidney disease.
PMCID: PMC2377340  PMID: 18516230
2.  A candidate gene study of the type I interferon pathway implicates IKBKE and IL8 as risk loci for SLE 
Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease in which the type I interferon pathway has a crucial role. We have previously shown that three genes in this pathway, IRF5, TYK2 and STAT4, are strongly associated with risk for SLE. Here, we investigated 78 genes involved in the type I interferon pathway to identify additional SLE susceptibility loci. First, we genotyped 896 single-nucleotide polymorphisms in these 78 genes and 14 other candidate genes in 482 Swedish SLE patients and 536 controls. Genes with P<0.01 in the initial screen were then followed up in 344 additional Swedish patients and 1299 controls. SNPs in the IKBKE, TANK, STAT1, IL8 and TRAF6 genes gave nominal signals of association with SLE in this extended Swedish cohort. To replicate these findings we extracted data from a genomewide association study on SLE performed in a US cohort. Combined analysis of the Swedish and US data, comprising a total of 2136 cases and 9694 controls, implicates IKBKE and IL8 as SLE susceptibility loci (Pmeta=0.00010 and Pmeta=0.00040, respectively). STAT1 was also associated with SLE in this cohort (Pmeta=3.3 × 10−5), but this association signal appears to be dependent of that previously reported for the neighbouring STAT4 gene. Our study suggests additional genes from the type I interferon system in SLE, and highlights genes in this pathway for further functional analysis.
PMCID: PMC3060320  PMID: 21179067
systemic lupus erythematosus; type I interferon system; candidate gene study; single nucleotide polymorphism; IKBKE; IL8
3.  Association of STAT4 Polymorphism with Severe Renal Insufficiency in Lupus Nephritis 
PLoS ONE  2013;8(12):e84450.
Lupus nephritis is a cause of significant morbidity in systemic lupus erythematosus (SLE) and its genetic background has not been completely clarified. The aim of this investigation was to analyze single nucleotide polymorphisms (SNPs) for association with lupus nephritis, its severe form proliferative nephritis and renal outcome, in two Swedish cohorts. Cohort I (n = 567 SLE cases, n =  512 controls) was previously genotyped for 5676 SNPs and cohort II (n = 145 SLE cases, n = 619 controls) was genotyped for SNPs in STAT4, IRF5, TNIP1 and BLK.
Case-control and case-only association analyses for patients with lupus nephritis, proliferative nephritis and severe renal insufficiency were performed. In the case-control analysis of cohort I, four highly linked SNPs in STAT4 were associated with lupus nephritis with genome wide significance with p = 3.7×10−9, OR 2.20 for the best SNP rs11889341. Strong signals of association between IRF5 and an HLA-DR3 SNP marker were also detected in the lupus nephritis case versus healthy control analysis (p <0.0001). An additional six genes showed an association with lupus nephritis with p <0.001 (PMS2, TNIP1, CARD11, ITGAM, BLK and IRAK1). In the case-only meta-analysis of the two cohorts, the STAT4 SNP rs7582694 was associated with severe renal insufficiency with p  = 1.6×10−3 and OR 2.22. We conclude that genetic variations in STAT4 predispose to lupus nephritis and a worse outcome with severe renal insufficiency.
PMCID: PMC3873995  PMID: 24386384
4.  A risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5 
Human Molecular Genetics  2008;17(18):2868-2876.
Systemic lupus erythematosus (SLE) is the prototype autoimmune disease where genes regulated by type I interferon (IFN) are over-expressed and contribute to the disease pathogenesis. Because signal transducer and activator of transcription 4 (STAT4) plays a key role in the type I IFN receptor signaling, we performed a candidate gene study of a comprehensive set of single nucleotide polymorphism (SNPs) in STAT4 in Swedish patients with SLE. We found that 10 out of 53 analyzed SNPs in STAT4 were associated with SLE, with the strongest signal of association (P = 7.1 × 10−8) for two perfectly linked SNPs rs10181656 and rs7582694. The risk alleles of these 10 SNPs form a common risk haplotype for SLE (P = 1.7 × 10−5). According to conditional logistic regression analysis the SNP rs10181656 or rs7582694 accounts for all of the observed association signal. By quantitative analysis of the allelic expression of STAT4 we found that the risk allele of STAT4 was over-expressed in primary human cells of mesenchymal origin, but not in B-cells, and that the risk allele of STAT4 was over-expressed (P = 8.4 × 10−5) in cells carrying the risk haplotype for SLE compared with cells with a non-risk haplotype. The risk allele of the SNP rs7582694 in STAT4 correlated to production of anti-dsDNA (double-stranded DNA) antibodies and displayed a multiplicatively increased, 1.82-fold risk of SLE with two independent risk alleles of the IRF5 (interferon regulatory factor 5) gene.
PMCID: PMC2525501  PMID: 18579578
5.  Role of STAT4 polymorphisms in systemic lupus erythematosus in a Japanese population: a case-control association study of the STAT1-STAT4 region 
Arthritis Research & Therapy  2008;10(5):R113.
Recent studies identified STAT4 (signal transducers and activators of transcription-4) as a susceptibility gene for systemic lupus erythematosus (SLE). STAT1 is encoded adjacently to STAT4 on 2q32.2-q32.3, upregulated in peripheral blood mononuclear cells from SLE patients, and functionally relevant to SLE. This study was conducted to test whether STAT4 is associated with SLE in a Japanese population also, to identify the risk haplotype, and to examine the potential genetic contribution of STAT1. To accomplish these aims, we carried out a comprehensive association analysis of 52 tag single nucleotide polymorphisms (SNPs) encompassing the STAT1-STAT4 region.
In the first screening, 52 tag SNPs were selected based on HapMap Phase II JPT (Japanese in Tokyo, Japan) data, and case-control association analysis was carried out on 105 Japanese female patients with SLE and 102 female controls. For associated SNPs, additional cases and controls were genotyped and association was analyzed using 308 SLE patients and 306 controls. Estimation of haplotype frequencies and an association study using the permutation test were performed with Haploview version 4.0 software. Population attributable risk percentage was estimated to compare the epidemiological significance of the risk genotype among populations.
In the first screening, rs7574865, rs11889341, and rs10168266 in STAT4 were most significantly associated (P < 0.01). Significant association was not observed for STAT1. Subsequent association studies of the three SNPs using 308 SLE patients and 306 controls confirmed a strong association of the rs7574865T allele (SLE patients: 46.3%, controls: 33.5%, P = 4.9 × 10-6, odds ratio 1.71) as well as TTT haplotype (rs10168266/rs11889341/rs7574865) (P = 1.5 × 10-6). The association was stronger in subgroups of SLE with nephritis and anti-double-stranded DNA antibodies. Population attributable risk percentage was estimated to be higher in the Japanese population (40.2%) than in Americans of European descent (19.5%).
The same STAT4 risk allele is associated with SLE in Caucasian and Japanese populations. Evidence for a role of STAT1 in genetic susceptibility to SLE was not detected. The contribution of STAT4 for the genetic background of SLE may be greater in the Japanese population than in Americans of European descent.
PMCID: PMC2592800  PMID: 18803832
6.  Cutting Edge: Autoimmune Disease Risk Variant of STAT4 Confers Increased Sensitivity to IFN-α in Lupus Patients In Vivo1 
Increased IFN-α signaling is a primary pathogenic factor in systemic lupus erythematosus (SLE). STAT4 is a transcription factor that is activated by IFN-α signaling, and genetic variation of STAT4 has been associated with risk of SLE and rheumatoid arthritis. We measured serum IFN-α activity and simultaneous IFN-α-induced gene expression in PBMC in a large SLE cohort. The risk variant of STAT4 (T allele; rs7574865) was simultaneously associated with both lower serum IFN-α activity and greater IFN-α-induced gene expression in PBMC in SLE patients in vivo. Regression analyses confirmed that the risk allele of STAT4 was associated with increased sensitivity to IFN-α signaling. The IFN regulatory factor 5 SLE risk genotype was associated with higher serum IFN-α activity; however, STAT4 showed dominant influence on the sensitivity of PBMC to serum IFN-α. These data provide biologic relevance for the risk variant of STAT4 in the IFN-α pathway in vivo.
PMCID: PMC2716754  PMID: 19109131
7.  Myeloid Dendritic Cells from B6.NZM Sle1/Sle2/Sle3 Lupus-prone Mice express an Interferon Signature that Precedes Disease Onset 
Patients with systemic lupus erythematosus (SLE) show an over-expression of Type I Interferon (IFN) responsive genes called “Interferon Signature”. We found that the B6.NZMSle1/Sle2/Sle3 (Sle1,2,3) lupus-prone mice also express an Interferon Signature compared to non autoimmune C57BL/6 mice. In vitro, myeloid dendritic cells (mDCs)(GM-CSF bone marrow-derived BMDCs) from Sle1,2,3 mice constitutively over-expressed IFN responsive genes such as IFNb, Oas-3, Mx-1, ISG-15 and CXCL10, and the members of IFN signaling pathway STAT1, STAT2, and IRF7. The Interferon Signature was similar in Sle1,2,3 BMDCs from young, pre-autoimmune mice and from mice with high titers of autoantibodies, suggesting that the Interferon Signature in mDCs precedes disease onset and it is independent from the autoantibodies. Sle1,2,3 BMDCs hyper-responded to stimulation with IFNa and the TLR7 and TLR9 agonists R848 and CpGs. We propose that this hyper-response is induced by the Interferon Signature and only partially contributes to the Signature, since oligonucleotides inhibitory for TLR7 and TLR9 only partially suppressed the constitutive Interferon Signature and pre-exposure to IFNa induced the same hyper-response in wild type BMDCs than in Sle1,2,3 BMDCs. In vivo, mDCs and with lesser extent T and B cells from young pre-diseased Sle1,2,3 mice also expressed the Interferon Signature, although they lacked the strength that BMDCs showed in vitro. Sle1,2,3 plasmacytoid DCs expressed the Interferon Signature in vitro but not in vivo, suggesting that mDCs may be more relevant before disease onset. We propose that Sle1,2,3 mice are useful tools to study the role of the Interferon Signature in lupus pathogenesis.
PMCID: PMC3381850  PMID: 22661089
Myeloid Dendritic cells; Type I Interferon; systemic lupus erythematosus; TLR; gene expression
8.  Genetic susceptibility to systemic lupus erythematosus in the genomic era 
Nature reviews. Rheumatology  2010;6(12):683-692.
Our understanding of the genetic basis of systemic lupus erythematosus (SLE) has been rapidly advanced using large-scale, case–control, candidate gene studies as well as genome-wide association studies during the past 3 years. These techniques have identified more than 30 robust genetic associations with SLE including genetic variants of HLA and Fcγ receptor genes, IRF5, STAT4, PTPN22, TNFAIP3, BLK, BANK1, TNFSF4 and ITGAM. Most SLE-associated gene products participate in key pathogenic pathways, including Toll-like receptor and type I interferon signaling pathways, immune regulation pathways and those that control the clearance of immune complexes. Disease-associated loci that have not yet been demonstrated to have important functions in the immune system might provide new clues to the underlying molecular mechanisms that contribute to the pathogenesis or progression of SLE. Of note, genetic risk factors that are shared between SLE and other immune-related diseases highlight common pathways in the pathophysiology of these diseases, and might provide innovative molecular targets for therapeutic interventions.
PMCID: PMC3135416  PMID: 21060334
9.  Evaluation of SLE Susceptibility Genes in Malaysians 
Autoimmune Diseases  2014;2014:305436.
Systemic Lupus Erythematosus (SLE) is a clinically heterogeneous autoimmune disease with strong genetic and environmental components. Our objective was to replicate 25 recently identified SLE susceptibility genes in two distinct populations (Chinese (CH) and Malays (MA)) from Malaysia. We genotyped 347 SLE cases and 356 controls (CH and MA) using the ImmunoChip array and performed an admixture corrected case-control association analysis. Associated genes were grouped into five immune-related pathways. While CH were largely homogenous, MA had three ancestry components (average 82.3% Asian, 14.5% European, and 3.2% African). Ancestry proportions were significantly different between cases and controls in MA. We identified 22 genes with at least one associated SNP (P < 0.05). The strongest signal was at HLA-DRA (PMeta = 9.96 × 10−9; PCH = 6.57 × 10−8, PMA = 6.73 × 10−3); the strongest non-HLA signal occurred at STAT4 (PMeta = 1.67 × 10−7; PCH = 2.88 × 10−6, PMA = 2.99 × 10−3). Most of these genes were associated with B- and T-cell function and signaling pathways. Our exploratory study using high-density fine-mapping suggests that most of the established SLE genes are also associated in the major ethnicities of Malaysia. However, these novel SNPs showed stronger association in these Asian populations than with the SNPs reported in previous studies.
PMCID: PMC3948475
10.  Contribution of STAT4 gene single-nucleotide polymorphism to systemic lupus erythematosus in the Polish population 
Molecular Biology Reports  2012;39(9):8861-8866.
The STAT4 has been found to be a susceptible gene in the development of systemic lupus erythematosus (SLE) in various populations. There are evident population differences in the context of clinical manifestations of SLE, therefore we investigated the prevalence of the STAT4 G > C (rs7582694) polymorphism in patients with SLE (n = 253) and controls (n = 521) in a sample of the Polish population. We found that patients with the STAT4 C/G and CC genotypes exhibited a 1.583-fold increased risk of SLE incidence (95 % CI = 1.168–2.145, p = 0.003), with OR for the C/C versus C/G and G/G genotypes was 1.967 (95 % CI = 1.152–3.358, p = 0.0119). The OR for the STAT4 C allele frequency showed a 1.539-fold increased risk of SLE (95 % CI = 1.209–1.959, p = 0.0004). We also observed an increased frequency of STAT4 C/C and C/G genotypes in SLE patients with renal symptoms OR = 2.259 (1.365–3.738, p = 0.0014), (pcorr = 0.0238) and in SLE patients with neurologic manifestations OR = 2.867 (1.467–5.604, p = 0.0016), (pcorr = 0.0272). Moreover, we found a contribution of STAT4 C/C and C/G genotypes to the presence of the anti-snRNP Ab OR = 3.237 (1.667–6.288, p = 0.0003), (pcorr = 0.0051) and the presence of the anti-Scl-70 Ab OR = 2.665 (1.380–5.147, p = 0.0028), (pcorr = 0.0476). Our studies confirmed an association of the STAT4 C (rs7582694) variant with the development of SLE and occurrence of some clinical manifestations of the disease.
Electronic supplementary material
The online version of this article (doi:10.1007/s11033-012-1752-3) contains supplementary material, which is available to authorized users.
PMCID: PMC3404285  PMID: 22729903
SLE; STAT4; Polymorphism
11.  Analysis of Gender Differences in Genetic Risk: Association of TNFAIP3 Polymorphism with Male Childhood-Onset Systemic Lupus Erythematosus in the Japanese Population 
PLoS ONE  2013;8(8):e72551.
Systemic lupus erythematosus (SLE) is a systemic multisystem autoimmune disorder influenced by genetic background and environmental factors. Our aim here was to replicate findings of associations between 7 of the implicated single nucleotide polymorphisms (SNPs) in IRF5, BLK, STAT4, TNFAIP3, SPP1, TNIP1 and ETS1 genes with susceptibility to childhood-onset SLE in the Japanese population. In particular, we focused on gender differences in allelic frequencies.
Methodology/Principal Findings
The 7 SNPs were genotyped using TaqMan assays in 75 patients with childhood-onset SLE and in 190 healthy controls. The relationship between the cumulative number of risk alleles and SLE manifestations was explored in childhood-onset SLE. Logistic regression was used to test the effect of each polymorphism on susceptibility to SLE, and Wilcoxon rank sum testing was used for comparison of total risk alleles. Data on rs7574865 in the STAT4 gene and rs9138 in SPP1 were replicated for associations with SLE when comparing cases and controls (corrected P values ranging from 0.0043 to 0.027). The rs2230926 allele of TNFAIP3 was associated with susceptibility to SLE in males, but after Bonferroni correction there were no significant associations with any of the other four SNPs in IRF5, BLK, TNIP1 and ETS1 genes. The cumulative number of risk alleles was significantly increased in childhood-onset SLE relative to healthy controls (P = 0.0000041). Male SLE patients had a slightly but significantly higher frequency of the TNFAIP3 (rs2230926G) risk allele than female patients (odds ratio [OR] = 4.05, 95% confidence interval [95%CI] = 1.46–11.2 P<0.05).
Associations of polymorphisms in STAT4 and SPP1 with childhood-onset SLE were confirmed in a Japanese population. Although these are preliminary results for a limited number of cases, TNFAIP3 rs2230926G may be an important predictor of disease onset in males. We also replicated findings that the cumulative number of risk alleles was significantly increased in childhood-onset SLE.
PMCID: PMC3758304  PMID: 24023622
12.  Evidence for STAT4 as a Common Autoimmune Gene: rs7574865 Is Associated with Colonic Crohn's Disease and Early Disease Onset 
PLoS ONE  2010;5(4):e10373.
Recent studies demonstrated an association of STAT4 variants with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), indicating that multiple autoimmune diseases share common susceptibility genes. We therefore investigated the influence of STAT4 variants on the susceptibility and phenotype of inflammatory bowel diseases (IBD) in a large patient and control cohort.
Methodology/Principal Findings
Genomic DNA from 2704 individuals of Caucasian origin including 857 patients with Crohn's disease (CD), 464 patients with ulcerative colitis (UC), and 1383 healthy, unrelated controls was analyzed for seven SNPs in the STAT4 gene (rs11889341, rs7574865, rs7568275, rs8179673, rs10181656, rs7582694, rs10174238). In addition, a detailed genotype-phenotype analysis was performed. Our analysis revealed an association of the STAT4 SNP rs7574865 with overall decreased susceptibility to CD (p = 0.047, OR 0.86 [95% CI 0.74–0.99]). However, compared to CD patients carrying the wild type genotype, the STAT4 SNP rs7574865 was significantly associated with early CD onset (p = 0.021) and colonic CD (p = 0.008; OR = 4.60, 95% CI 1.63–12.96). For two other STAT4 variants, there was a trend towards protection against CD susceptibility (rs7568275, p = 0.058, OR 0.86 [95% CI 0.74–1.00]; rs10174238, p = 0.057, OR 0.86 [95% CI 0.75–1.00]). In contrast, we did not observe any association with UC susceptibility. Evidence for weak gene-gene interaction of STAT4 with the IL23R SNP rs11209026 was lost after Bonferroni correction.
Our results identified the STAT4 SNP rs7574865 as a disease-modifying gene variant in colonic CD. However, in contrast to SLE and RA, the effect of rs7574865 on CD susceptibility is only weak.
PMCID: PMC2861592  PMID: 20454450
13.  STAT4 and the Risk of Rheumatoid Arthritis and Systemic Lupus Erythematosus 
The New England journal of medicine  2007;357(10):977-986.
Rheumatoid arthritis is a chronic inflammatory disease with a substantial genetic component. Susceptibility to disease has been linked with a region on chromosome 2q.
We tested single-nucleotide polymorphisms (SNPs) in and around 13 candidate genes within the previously linked chromosome 2q region for association with rheumatoid arthritis. We then performed fine mapping of the STAT1-STAT4 region in a total of 1620 case patients with established rheumatoid arthritis and 2635 controls, all from North America. Implicated SNPs were further tested in an independent case-control series of 1529 patients with early rheumatoid arthritis and 881 controls, all from Sweden, and in a total of 1039 case patients and 1248 controls from three series of patients with systemic lupus erythematosus.
A SNP haplotype in the third intron of STAT4 was associated with susceptibility to both rheumatoid arthritis and systemic lupus erythematosus. The minor alleles of the haplotype-defining SNPs were present in 27% of chromosomes of patients with established rheumatoid arthritis, as compared with 22% of those of controls (for the SNP rs7574865, P = 2.81×10-7; odds ratio for having the risk allele in chromosomes of patients vs. those of controls, 1.32). The association was replicated in Swedish patients with recent-onset rheumatoid arthritis (P = 0.02) and matched controls. The haplotype marked by rs7574865 was strongly associated with lupus, being present on 31% of chromosomes of case patients and 22% of those of controls (P = 1.87×10-9; odds ratio for having the risk allele in chromosomes of patients vs. those of controls, 1.55). Homozygosity of the risk allele, as compared with absence of the allele, was associated with a more than doubled risk for lupus and a 60% increased risk for rheumatoid arthritis.
A haplotype of STAT4 is associated with increased risk for both rheumatoid arthritis and systemic lupus erythematosus, suggesting a shared pathway for these illnesses.
PMCID: PMC2630215  PMID: 17804842
14.  Association of BANK1 and TNFSF4 with systemic lupus erythematosus in Hong Kong Chinese 
Genes and Immunity  2009;10(5):414-420.
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease with complex genetic inheritance. Recently, single nucleotide polymorphisms (SNPs) in BANK1 and TNFSF4 have been shown to be associated with SLE in Caucasian populations, but it is not known whether they are also involved in the disease in other ethnic groups. Recent data from our genome-wide association study (GWAS) for 314 SLE cases and 920 controls collected in Hong Kong identified SNPs in and around BANK1 and TNFSF4 to be associated with SLE risk. On the basis of the results of the reported studies and our GWAS, SNPs were selected for further genotyping in 949 SLE patients (overlapping with the 314 cases in our GWAS) and non-overlapping 1042 healthy controls. We confirmed the associations of BANK1 and TNFSF4 with SLE in Chinese (BANK1, rs3733197, odds ratio (OR)=0.84, P=0.021; BANK1, rs17266594, OR=0.61, P=4.67 × 10−9; TNFSF4, rs844648, OR=1.22, P=2.47 × 10−3; TNFSF4, rs2205960, OR=1.30, P=2.41 × 10−4). Another SNP located in intron 1 of BANK1, rs4522865, was separately replicated by Sequenom in 360 cases and 360 controls and was also confirmed to be associated with SLE (OR=0.725, P=2.93 × 10−3). Logistic regression analysis showed that rs3733197 (A383T in ankyrin domain) and rs17266594 (a branch point-site SNP) from BANK1 had independent contributions towards the disease association (P=0.037 and 6.63 × 10−8, respectively). In TNFSF4, rs2205960 was associated with SLE independently from the effect of rs844648 (P=6.26 × 10−3), but not vice versa (P=0.55). These findings suggest that multiple independent genetic variants may be present within the gene locus, which exert their effects on SLE pathogenesis through different mechanisms.
PMCID: PMC2834352  PMID: 19357697
SLE; BANK1; TNFSF4; Chinese; genetic association
15.  Activation of the Interferon Pathway is Dependent Upon Autoantibodies in African-American SLE Patients, but Not in European-American SLE Patients 
Background: In systemic lupus erythematosus (SLE), antibodies directed at RNA-binding proteins (anti-RBP) are associated with high serum type I interferon (IFN), which plays an important role in SLE pathogenesis. African-Americans (AA) are more likely to develop SLE, and SLE is also more severe in this population. We hypothesized that peripheral blood gene expression patterns would differ between AA and European-American (EA) SLE patients, and between those with anti-RBP antibodies and those who lack these antibodies.
Methods: Whole blood RNA from 33 female SLE patients and 16 matched female controls from AA and EA ancestral backgrounds was analyzed on Affymetrix Gene 1.0 ST gene expression arrays. Ingenuity Pathway Analysis was used to compare the top differentially expressed canonical pathways amongst the sample groups. An independent cohort of 116 SLE patients was used to replicate findings using quantitative real-time PCR (qPCR).
Results: Both AA and EA patients with positive anti-RBP antibodies showed over-expression of similar IFN-related canonical pathways, such as IFN Signaling (P = 1.3 × 10−7 and 6.3 × 10−11 in AA vs. EA respectively), Antigen Presenting Pathway (P = 1.8 × 10−5 and 2.5 × 10−6), and a number of pattern recognition receptor pathways. In anti-RBP negative (RBP−) patients, EA subjects demonstrated similar IFN-related pathway activation, whereas no IFN-related pathways were detected in RBP−AA patients. qPCR validation confirmed similar results.
Conclusion: Our data show that IFN-induced gene expression is completely dependent on the presence of autoantibodies in AA SLE patients but not in EA patients. This molecular heterogeneity suggests differences in IFN-pathway activation between ancestral backgrounds in SLE. This heterogeneity may be clinically important, as therapeutics targeting this pathway are being developed.
PMCID: PMC3787392  PMID: 24101921
systemic lupus erythematosus; interferon alpha; autoantibodies; ancestral background; interferon gamma
16.  Polymorphisms in the Hsp70 gene locus are genetically associated with systemic lupus erythematosus 
Annals of the Rheumatic Diseases  2010;69(11):1983-1989.
Heat shock proteins (Hsps) play a role in the delivery and presentation of antigenic peptides and are thought to be involved in the pathogenesis of multifactorial diseases.
To investigate genes encoding cytosolic Hsp70 proteins for associations of allelic variants with systemic lupus erythematosus (SLE).
Case–control studies of two independent Caucasian SLE cohorts were performed. In a haplotype-tagging single-nucleotide polymorphism approach, common variants of HspA1L, HspA1A and HspA1B were genotyped and principal component analyses were performed for the cohort from the Oklahoma Medical Research Foundation (OMRF). Relative quantification of mRNA was carried out for each Hsp70 gene in healthy controls. Conditional regression analysis was performed to determine if allelic variants in Hsp70 act independently of HLA-DR3.
On analysis of common genetic variants of HspA1L, HspA1A and HspA1B, a haplotype significantly associated with SLE in the Erlangen-SLE cohort was identified, which was confirmed in the OMRF cohort. Depending on the cohorts, OR ranging from 1.43 to 1.88 and 2.64 to 3.16 was observed for individuals heterozygous and homozygous for the associated haplotype, respectively. Patients carrying the risk haplotype or the risk allele more often displayed autoantibodies to Ro and La in both cohorts. In healthy controls bearing this haplotype, the amount of HspA1A mRNA was significantly increased, whereas total Hsp70 protein concentration was not altered.
Allelic variants of the Hsp70 genes are significantly associated with SLE in Caucasians, independently of HLA-DR3, and correlate with the presence of autoantibodies to Ro and La. Hence, the Hsp70 gene locus appears to be involved in SLE pathogenesis.
PMCID: PMC3002760  PMID: 20498198
17.  Constitutive Phosphorylation of Interferon Receptor A-Associated Signaling Proteins in Systemic Lupus Erythematosus 
PLoS ONE  2012;7(7):e41414.
Overexpression of type I interferon (IFN-I)-induced genes is a common feature of systemic lupus erythematosus (SLE) and its experimental models, but the participation of endogenous overproduction of IFN-I on it is not clear. To explore the possibility that abnormally increased IFN-I receptor (IFNAR) signaling could participate in IFN-I-induced gene overexpression of SLE, we examined the phosphorylation status of the IFNAR-associated signaling partners Jak1 and STAT2, and its relation with expression of its physiologic inhibitor SOCS1 and with plasma levels of IFNα and IFN-like activity.
Methodology/Principal Findings
Peripheral blood mononuclear cells (PBMC) from SLE patients with or without disease activity and healthy controls cultured in the presence or in the absence of IFNβ were examined by immunoprecipitation and/or western blotting for expression of the two IFNAR chains, Jak1, Tyk2, and STAT2 and their phosphorylated forms. In SLE but not in healthy control PBMC, Jak1 and STAT2 were constitutively phosphorylated, even in the absence of disease activity (basal pJak1: controls vs. active SLE p<0.0001 and controls vs. inactive SLE p = 0.0006; basal pSTAT2: controls vs. active and inactive SLE p<0.0001). Although SOCS1 protein was slightly but significantly decreased in SLE in the absence or in the presence of IFNβ (p = 0.0096 to p<0.0001), in SOCS1 mRNA levels were markedly decreased (p = 0.036 to p<0.0001). IFNβ induced higher levels of the IFN-I-dependent MxA protein mRNA in SLE than in healthy controls, whereas the opposite was observed for SOCS1. Although there was no relation to increased serum IFNα, active SLE plasma could induce expression of IFN-dependent genes by normal PBMC.
These findings suggest that in some SLE patients IFN-I dependent gene expression could be the result of a low IFNAR signaling threshold.
PMCID: PMC3408474  PMID: 22859983
18.  Genetic Risk Factors in Lupus Nephritis and IgA Nephropathy – No Support of an Overlap 
PLoS ONE  2010;5(5):e10559.
IgA nephropathy (IgAN) and nephritis in Systemic Lupus Erythematosus (SLE) are two common forms of glomerulonephritis in which genetic findings are of importance for disease development. We have recently reported an association of IgAN with variants of TGFB1. In several autoimmune diseases, particularly in SLE, IRF5, STAT4 genes and TRAF1-C5 locus have been shown to be important candidate genes. The aim of this study was to compare genetic variants from the TGFB1, IRF5, STAT4 genes and TRAF1-C5 locus with susceptibility to IgAN and lupus nephritis in two Swedish cohorts.
Patients and Methods
We genotyped 13 single nucleotide polymorphisms (SNPs) in four genetic loci in 1252 DNA samples from patients with biopsy proven IgAN or with SLE (with and without nephritis) and healthy age- and sex-matched controls from the same population in Sweden.
Genotype and allelic frequencies for SNPs from selected genes did not differ significantly between lupus nephritis patients and SLE patients without nephritis. In addition, haplotype analysis for seven selected SNPs did not reveal a difference for the SLE patient groups with and without nephritis. Moreover, none of these SPNs showed a significant difference between IgAN patients and healthy controls. IRF5 and STAT4 variants remained significantly different between SLE cases and healthy controls. In addition, the data did not show an association of TRAF1-C5 polymorphism with susceptibility to SLE in this Swedish population.
Our data do not support an overlap in genetic susceptibility between patients with IgAN or SLE and reveal no specific importance of SLE associated SNPs for the presence of lupus nephritis.
PMCID: PMC2866667  PMID: 20479942
19.  Transancestral mapping of the MHC region in systemic lupus erythematosus identifies new independent and interacting loci at MSH5, HLA-DPB1 and HLA-G 
Annals of the Rheumatic Diseases  2012;71(5):777-784.
Systemic lupus erythematosus (SLE) is a chronic multisystem genetically complex autoimmune disease characterised by the production of autoantibodies to nuclear and cellular antigens, tissue inflammation and organ damage. Genome-wide association studies have shown that variants within the major histocompatibility complex (MHC) region on chromosome 6 confer the greatest genetic risk for SLE in European and Chinese populations. However, the causal variants remain elusive due to tight linkage disequilibrium across disease-associated MHC haplotypes, the highly polymorphic nature of many MHC genes and the heterogeneity of the SLE phenotype.
A high-density case-control single nucleotide polymorphism (SNP) study of the MHC region was undertaken in SLE cohorts of Spanish and Filipino ancestry using a custom Illumina chip in order to fine-map association signals in these haplotypically diverse populations. In addition, comparative analyses were performed between these two datasets and a northern European UK SLE cohort. A total of 1433 cases and 1458 matched controls were examined.
Using this transancestral SNP mapping approach, novel independent loci were identified within the MHC region in UK, Spanish and Filipino patients with SLE with some evidence of interaction. These loci include HLA-DPB1, HLA-G and MSH5 which are independent of each other and HLA-DRB1 alleles. Furthermore, the established SLE-associated HLA-DRB1*15 signal was refined to an interval encompassing HLA-DRB1 and HLA-DQA1. Increased frequencies of MHC region risk alleles and haplotypes were found in the Filipino population compared with Europeans, suggesting that the greater disease burden in non-European SLE may be due in part to this phenomenon.
These data highlight the usefulness of mapping disease susceptibility loci using a transancestral approach, particularly in a region as complex as the MHC, and offer a springboard for further fine-mapping, resequencing and transcriptomic analysis.
PMCID: PMC3329227  PMID: 22233601
20.  IRF5 activation in monocytes of SLE patients is triggered by circulating autoantigens independent of type I IFN 
Arthritis and Rheumatism  2012;64(3):788-798.
Genetic variants of interferon regulatory factor 5 (IRF5) are associated with susceptibility to systemic lupus erythematosus (SLE). IRF5 regulates the expression of proinflammatory cytokines and type I interferons (IFN) believed to be involved in SLE pathogenesis. The aim of this study was to determine the activation status of IRF5 by assessing its nuclear localization in immune cells of SLE patients and healthy donors, and to identify SLE triggers of IRF5 activation.
IRF5 nuclear localization in subpopulations of peripheral blood mononuclear cells (PBMC) from 14 genotyped SLE patients and 11 healthy controls was assessed using imaging flow cytometry. IRF5 activation and function were examined after ex vivo stimulation of healthy donor monocytes with SLE serum or components of SLE serum. Cellular localization was determined by ImageStream and cytokine expression by Q-PCR and ELISA.
IRF5 was activated in a cell type-specific manner; monocytes of SLE patients had constitutively elevated levels of nuclear IRF5 compared to NK and T cells. SLE serum was identified as a trigger for IRF5 nuclear accumulation; however, neither IFNα nor SLE immune complexes could induce nuclear localization. Instead, autoantigens comprised of apoptotic/necrotic material triggered IRF5 nuclear accumulation in monocytes. Production of cytokines IFNα, TNFα and IL6 in monocytes stimulated with SLE serum or autoantigens was distinct yet correlated with the kinetics of IRF5 nuclear localization.
This study provides the first formal proof that IRF5 activation is altered in monocytes of SLE patients that is in part contributed by the SLE blood environment.
PMCID: PMC3288585  PMID: 21968701
21.  Effects of IRF5 Lupus Risk Haplotype on Pathways Predicted to Influence B Cell Functions 
Both genetic and environmental interactions affect systemic lupus erythematosus (SLE) development and pathogenesis. One known genetic factor associated with lupus is a haplotype of the interferon regulatory factor 5 (IRF5) gene. Analysis of global gene expression microarray data using gene set enrichment analysis identified multiple interferon- and inflammation-related gene sets significantly overrepresented in cells with the risk haplotype. Pathway analysis using expressed genes from the significant gene sets impacted by the IRF5 risk haplotype confirmed significant correlation with the interferon pathway, Toll-like receptor pathway, and the B-cell receptor pathway. SLE patients with the IRF5 risk haplotype have a heightened interferon signature, even in an unstimulated state (P = 0.011), while patients with the IRF5 protective haplotype have a B cell interferon signature similar to that of controls. These results identify multiple genes in functionally significant pathways which are affected by IRF5 genotype. They also establish the IRF5 risk haplotype as a key determinant of not only the interferon response, but also other B-cell pathways involved in SLE.
PMCID: PMC3304673  PMID: 22500098
22.  1 Estradiol Targets T Cell Signaling Pathways in Human Systemic Lupus 
Clinical immunology (Orlando, Fla.)  2009;133(3):428-436.
The major risk factor for developing systemic lupus erythematosus (SLE) is being female. The present study utilized gene profiles of activated T cells from females with SLE and healthy controls to identify signaling pathways uniquely regulated by estradiol that could contribute to SLE pathogenesis. Selected downstream pathway genes (+/− estradiol) were measured by real time polymerase chain amplification. Estradiol uniquely upregulated six pathways in SLE T cells that control T cell function including interferon-α signaling. Measurement of interferon-α pathway target gene expression revealed significant differences (p = 0.043) in DRIP150 (+/− estradiol) in SLE T cell samples while IFIT1 expression was bimodal and correlated moderately (r = 0.55) with disease activity. The results indicate that estradiol alters signaling pathways in activated SLE T cells that control T cell function. Differential expression of transcriptional coactivators could influence estrogen-dependent gene regulation in T cell signaling and contribute to SLE onset and disease pathogenesis.
PMCID: PMC2783703  PMID: 19793680
SLE; estradiol; interferon-α; T cell signaling; microarray
23.  The Systemic Lupus Erythematosus IRF5 Risk Haplotype Is Associated with Systemic Sclerosis 
PLoS ONE  2013;8(1):e54419.
Systemic sclerosis (SSc) is a fibrotic autoimmune disease in which the genetic component plays an important role. One of the strongest SSc association signals outside the human leukocyte antigen (HLA) region corresponds to interferon (IFN) regulatory factor 5 (IRF5), a major regulator of the type I IFN pathway. In this study we aimed to evaluate whether three different haplotypic blocks within this locus, which have been shown to alter the protein function influencing systemic lupus erythematosus (SLE) susceptibility, are involved in SSc susceptibility and clinical phenotypes. For that purpose, we genotyped one representative single-nucleotide polymorphism (SNP) of each block (rs10488631, rs2004640, and rs4728142) in a total of 3,361 SSc patients and 4,012 unaffected controls of Caucasian origin from Spain, Germany, The Netherlands, Italy and United Kingdom. A meta-analysis of the allele frequencies was performed to analyse the overall effect of these IRF5 genetic variants on SSc. Allelic combination and dependency tests were also carried out. The three SNPs showed strong associations with the global disease (rs4728142: P  = 1.34×10−8, OR  = 1.22, CI 95%  = 1.14–1.30; rs2004640: P  = 4.60×10−7, OR  = 0.84, CI 95%  = 0.78–0.90; rs10488631: P  = 7.53×10−20, OR  = 1.63, CI 95%  = 1.47–1.81). However, the association of rs2004640 with SSc was not independent of rs4728142 (conditioned P  = 0.598). The haplotype containing the risk alleles (rs4728142*A-rs2004640*T-rs10488631*C: P  = 9.04×10−22, OR  = 1.75, CI 95%  = 1.56–1.97) better explained the observed association (likelihood P-value  = 1.48×10−4), suggesting an additive effect of the three haplotypic blocks. No statistical significance was observed in the comparisons amongst SSc patients with and without the main clinical characteristics. Our data clearly indicate that the SLE risk haplotype also influences SSc predisposition, and that this association is not sub-phenotype-specific.
PMCID: PMC3553151  PMID: 23372721
24.  APOH Promoter Polymorphisms in Relation to Lupus and Lupus-Related Phenotypes 
The Journal of rheumatology  2009;36(2):315-322.
Sequence variation in gene promoters is often associated with disease risk. In this study, we tested the hypothesis that common promoter variation in the APOH gene (encoding for β2-glycoprotein I) is associated with systemic lupus erythematosus (SLE) risk and SLE-related clinical phenotypes in a Caucasian cohort.
We used a case-control design and genotyped 345 SLE women and 454 healthy control women for 8 APOH promoter single nucleotide polymorphisms (SNPs) (−1284C>G, −1219G>A, −1190G>C, −759 A>G, − 700C>A, −643T>C, −38G>A, and −32C>A). Association analyses were performed on single SNPs and haplotypes. Haplotype analyses were performed using EH (Estimate Haplotype-frequencies) and Haploview programs. In vitro reporter gene assay was performed in COS-1 cells. Electrophoretic mobility shift assay (EMSA) was performed using HepG2 nuclear cells.
Overall haplotype distribution of the APOH promoter SNPs was significantly different between cases and controls (P = 0.009). The −643C allele was found to be protective against carotid plaque formation (adjusted OR = 0.37, P = 0.013) among SLE patients. The −643C allele was associated with a ~ 2-fold decrease in promoter activity as compared to wild-type −643T allele (mean ± standard deviation: 3.94 ± 0.05 vs. 6.99 ± 0.68, P = 0.016). EMSA showed that the −643T>C SNP harbors a binding site for a nuclear factor. The −1219G>A SNP showed a significant association with the risk of lupus nephritis (age-adjusted OR = 0.36, P = 0.016).
Our data indicate that APOH promoter variants may be involved in the etiology of SLE, especially the risk for autoimmune-mediated cardiovascular disease.
PMCID: PMC2667221  PMID: 19132787
APOH; β2-glycoprotein I; promoter; SLE; lupus; polymorphism
25.  Association of the IRF5 Risk Haplotype With High Serum Interferon-α Activity in Systemic Lupus Erythematosus Patients 
Arthritis and rheumatism  2008;58(8):2481-2487.
A haplotype of the interferon regulatory factor 5 (IRF5) gene has been associated with the risk of developing systemic lupus erythematosus (SLE), and our previous studies have demonstrated that high levels of serum interferon-α (IFNα) activity are a heritable risk factor for SLE. The aim of this study was to determine whether the IRF5 SLE risk haplotype mediates the risk of SLE by predisposing patients to the development of high levels of serum IFNα activity.
IFNα levels in 199 SLE patients of European and Hispanic ancestry were measured with a sensitive functional reporter cell assay. The rs2004640, rs3807306, rs10488631, and rs2280714 single-nucleotide polymorphisms (SNPs) in IRF5 were genotyped in these patients. Haplotypes were categorized as SLE risk, neutral, or protective based on published data.
SLE patients with risk/risk and risk/neutral IRF5 genotypes had higher serum IFNα activity than did those with protective/protective and neutral/protective genotypes (P = 0.025). This differential effect of IRF5 genotype on serum IFNα levels was driven largely by SLE patients who were positive for either anti–RNA binding protein (anti-RBP) or anti–double-stranded DNA (anti-dsDNA) autoantibodies (P = 0.012 for risk/risk or risk/neutral versus protective/protective or neutral/protective). The rs3807306 genotype was independently associated with high serum IFNα in this autoantibody group. We found no difference in IFNα activity according to IRF5 genotype in patients lacking either type of autoantibody or in patients positive for both classes of autoantibody.
The IRF5 SLE risk haplotype is associated with higher serum IFNα activity in SLE patients, and this effect is most prominent in patients positive for either anti-RBP or anti-dsDNA autoantibodies. This study demonstrates the biologic relevance of the SLE risk haplotype of IRF5 at the protein level.
PMCID: PMC2621107  PMID: 18668568

Results 1-25 (1274243)