PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (694912)

Clipboard (0)
None

Related Articles

1.  Structures of Trypanosoma brucei Methionyl-tRNA Synthetase with Urea-Based Inhibitors Provide Guidance for Drug Design against Sleeping Sickness 
Methionyl-tRNA synthetase of Trypanosoma brucei (TbMetRS) is an important target in the development of new antitrypanosomal drugs. The enzyme is essential, highly flexible and displaying a large degree of changes in protein domains and binding pockets in the presence of substrate, product and inhibitors. Targeting this protein will benefit from a profound understanding of how its structure adapts to ligand binding. A series of urea-based inhibitors (UBIs) has been developed with IC50 values as low as 19 nM against the enzyme. The UBIs were shown to be orally available and permeable through the blood-brain barrier, and are therefore candidates for development of drugs for the treatment of late stage human African trypanosomiasis. Here, we expand the structural diversity of inhibitors from the previously reported collection and tested for their inhibitory effect on TbMetRS and on the growth of T. brucei cells. The binding modes and binding pockets of 14 UBIs are revealed by determination of their crystal structures in complex with TbMetRS at resolutions between 2.2 Å to 2.9 Å. The structures show binding of the UBIs through conformational selection, including occupancy of the enlarged methionine pocket and the auxiliary pocket. General principles underlying the affinity of UBIs for TbMetRS are derived from these structures, in particular the optimum way to fill the two binding pockets. The conserved auxiliary pocket might play a role in binding tRNA. In addition, a crystal structure of a ternary TbMetRS•inhibitor•AMPPCP complex indicates that the UBIs are not competing with ATP for binding, instead are interacting with ATP through hydrogen bond. This suggests a possibility that a general ‘ATP-engaging’ binding mode can be utilized for the design and development of inhibitors targeting tRNA synthetases of other disease-causing pathogen.
Author Summary
Infection by the protozoan parasite Trypanosoma brucei causes sleeping sickness, also called human African trypanosomiasis. Without treatment, the disease is fatal yet current therapeutic options are inadequate and better medicines are needed. We have previously reported several potent inhibitors of T. brucei methionyl-tRNA synthetase, an essential enzyme involved in the protein biosynthesis. Recently, a new series of the inhibitors was synthesized which has improved membrane permeability over the earlier inhibitors. When applied to mouse with T. brucei infection, the new compounds are orally available and reach the central nervous system to reduce parasite loads, and therefore are promising molecules to be developed into antitrypanosomal drug. Here, more inhibitors from this series are reported and tested for their activities. High resolution crystal structures were determined that revealed how these inhibitors bind to the target enzyme. The binding pockets of these inhibitors are thoroughly explored, providing profound insights which are beneficial for further development of MetRS inhibitors against sleeping sickness. A ternary complex of the enzyme, an inhibitor, and an ATP analogue was also determined, indicates that the inhibitor does not compete with ATP for binding. Based on this, a general approach to use inhibitors that engage ATP for binding to tRNA synthetases is proposed.
doi:10.1371/journal.pntd.0002775
PMCID: PMC3990509  PMID: 24743796
2.  Geobacillus stearothermophilus 6-phosphogluconate dehydrogenase complexed with 6-phosphogluconate 
The structure of 6-phosphogluconate dehydrogenase from a moderate thermophile, G. stearothermophilus, is presented and compared with those of orthologous enzymes.
Two crystal structures of recombinant Geobacillus stearothermophilus 6-phosphogluconate dehydrogenase (Gs6PDH) in complex with the substrate 6-­phosphogluconate have been determined at medium resolution. Gs6PDH shares significant sequence identity and structural similarity with the enzymes from Lactococcus lactis, sheep liver and the protozoan parasite Trypanosoma brucei, for which a range of structures have previously been reported. Comparisons indicate that amino-acid sequence conservation is more pronounced in the two domains that contribute to the architecture of the active site, namely the N-terminal and C-terminal domains, compared with the central domain, which is primarily involved in the subunit–subunit associations required to form a stable dimer. The active-site residues are highly conserved, as are the interactions with the 6-phosphogluconate. There is interest in 6PDH as a potential drug target for the protozoan parasite T. brucei, the pathogen responsible for African sleeping sickness. The recombinant T. brucei enzyme has proven to be recalcitrant to enzyme–ligand studies and a surrogate protein might offer new opportunities to investigate and characterize 6PDH inhibitors. The high degree of structural similarity, efficient level of expression and straightforward crystallization conditions mean that Gs6PDH may prove to be an appropriate model system for structure-based inhibitor design targeting the enzyme from Trypanosoma species.
doi:10.1107/S1744309109012767
PMCID: PMC2675582  PMID: 19407374
pentose phosphate pathway; 6-phosphogluconate dehydrogenase; Geobacillus stearothermophilus
3.  Perturbation of the Dimer Interface of Triosephosphate Isomerase and its Effect on Trypanosoma cruzi 
Background
Chagas disease affects around 18 million people in the American continent. Unfortunately, there is no satisfactory treatment for the disease. The drugs currently used are not specific and exert serious toxic effects. Thus, there is an urgent need for drugs that are effective. Looking for molecules to eliminate the parasite, we have targeted a central enzyme of the glycolytic pathway: triosephosphate isomerase (TIM). The homodimeric enzyme is catalytically active only as a dimer. Because there are significant differences in the interface of the enzymes from the parasite and humans, we searched for small molecules that specifically disrupt contact between the two subunits of the enzyme from Trypanosoma cruzi but not those of TIM from Homo sapiens (HTIM), and tested if they kill the parasite.
Methodology/Principal Findings
Dithiodianiline (DTDA) at nanomolar concentrations completely inactivates recombinant TIM of T. cruzi (TcTIM). It also inactivated HTIM, but at concentrations around 400 times higher. DTDA was also tested on four TcTIM mutants with each of its four cysteines replaced with either valine or alanine. The sensitivity of the mutants to DTDA was markedly similar to that of the wild type. The crystal structure of the TcTIM soaked in DTDA at 2.15 Å resolution, and the data on the mutants showed that inactivation resulted from alterations of the dimer interface. DTDA also prevented the growth of Escherichia coli cells transformed with TcTIM, had no effect on normal E. coli, and also killed T. cruzi epimastigotes in culture.
Conclusions/Significance
By targeting on the dimer interface of oligomeric enzymes from parasites, it is possible to discover small molecules that selectively thwart the life of the parasite. Also, the conformational changes that DTDA induces in the dimer interface of the trypanosomal enzyme are unique and identify a region of the interface that could be targeted for drug discovery.
Author Summary
Most of the enzymes of parasites have their counterpart in the host. Throughout evolution, the three-dimensional architecture of enzymes and their catalytic sites are highly conserved. Thus, identifying molecules that act exclusively on the active sites of the enzymes from parasites is a difficult task. However, it is documented that the majority of enzymes consist of various subunits, and that conservation in the interface of the subunits is lower than in the catalytic site. Indeed, we found that there are significant differences in the interface between the two subunits of triosephosphate isomerase from Homo sapiens and Trypanosoma cruzi (TcTIM), which causes Chagas disease in the American continent. In the search for agents that specifically inhibit TcTIM, we found that 2,2′-dithioaniline (DTDA) is far more effective in inactivating TcTIM than the human enzyme, and that its detrimental effect is due to perturbation of the dimer interface. Remarkably, DTDA prevented the growth of Escherichia coli cells that had TcTIM instead of their own TIM and killed T. cruzi epimastigotes in culture. Thus, this study highlights a new approach base of targeting molecular interfaces of dimers.
doi:10.1371/journal.pntd.0000001
PMCID: PMC2041813  PMID: 17989778
4.  Crystal structures of trypanosomal histidyl-tRNA synthetase illuminate differences between eukaryotic and prokaryotic homologs 
Journal of molecular biology  2010;397(2):481-494.
Crystal structures of histidyl-tRNA synthetase from the eukaryotic parasites Trypanosoma brucei and Trypanosoma cruzi provide a first structural view of a eukaryotic form of this enzyme, and reveal differences from bacterial homologs. Histidyl-tRNA synthetases in general contain an extra domain inserted between conserved motifs 2 and 3 of the Class II aminoacyl-tRNA synthetase catalytic core. The current structures show that the three dimensional topology of this domain is very different in bacterial and archaeal/eukaryotic forms of the enzyme. Comparison of apo and histidine-bound trypanosomal structures indicates substantial active site rearrangement upon histidine binding, but relatively little subsequent rearrangement after reaction of histidine with ATP to form the enzyme’s first reaction product, histidyladenylate. The specific residues involved in forming the binding pocket for the adenine moiety differ substantially both from the previously characterized binding site in bacterial structures and from the homologous residues in human histidyl-tRNA synthetases. The essentiality of the single histidyl-tRNA synthetase gene in T. brucei is shown by a severe depression of parasite growth rate that results from even partial suppression of expression by RNA interference.
doi:10.1016/j.jmb.2010.01.051
PMCID: PMC2834879  PMID: 20132829
aminoacyl-tRNA synthetase; protozoa; drug target; tropical disease; RNAi
5.  Genetic Validation of Aminoacyl-tRNA Synthetases as Drug Targets in Trypanosoma brucei 
Eukaryotic Cell  2014;13(4):504-516.
Human African trypanosomiasis (HAT) is an important public health threat in sub-Saharan Africa. Current drugs are unsatisfactory, and new drugs are being sought. Few validated enzyme targets are available to support drug discovery efforts, so our goal was to obtain essentiality data on genes with proven utility as drug targets. Aminoacyl-tRNA synthetases (aaRSs) are known drug targets for bacterial and fungal pathogens and are required for protein synthesis. Here we survey the essentiality of eight Trypanosoma brucei aaRSs by RNA interference (RNAi) gene expression knockdown, covering an enzyme from each major aaRS class: valyl-tRNA synthetase (ValRS) (class Ia), tryptophanyl-tRNA synthetase (TrpRS-1) (class Ib), arginyl-tRNA synthetase (ArgRS) (class Ic), glutamyl-tRNA synthetase (GluRS) (class 1c), threonyl-tRNA synthetase (ThrRS) (class IIa), asparaginyl-tRNA synthetase (AsnRS) (class IIb), and phenylalanyl-tRNA synthetase (α and β) (PheRS) (class IIc). Knockdown of mRNA encoding these enzymes in T. brucei mammalian stage parasites showed that all were essential for parasite growth and survival in vitro. The reduced expression resulted in growth, morphological, cell cycle, and DNA content abnormalities. ThrRS was characterized in greater detail, showing that the purified recombinant enzyme displayed ThrRS activity and that the protein localized to both the cytosol and mitochondrion. Borrelidin, a known inhibitor of ThrRS, was an inhibitor of T. brucei ThrRS and showed antitrypanosomal activity. The data show that aaRSs are essential for T. brucei survival and are likely to be excellent targets for drug discovery efforts.
doi:10.1128/EC.00017-14
PMCID: PMC4000095  PMID: 24562907
6.  Leishmania Trypanothione Synthetase-Amidase Structure Reveals a Basis for Regulation of Conflicting Synthetic and Hydrolytic Activities*S⃞ 
The Journal of Biological Chemistry  2008;283(25):17672-17680.
The bifunctional trypanothione synthetase-amidase catalyzes biosynthesis and hydrolysis of the glutathione-spermidine adduct trypanothione, the principal intracellular thiol-redox metabolite in parasitic trypanosomatids. These parasites are unique with regard to their reliance on trypanothione to determine intracellular thiol-redox balance in defense against oxidative and chemical stress and to regulate polyamine levels. Enzymes involved in trypanothione biosynthesis provide essential biological activities, and those absent from humans or for which orthologues are sufficiently distinct are attractive targets to underpin anti-parasitic drug discovery. The structure of Leishmania major trypanothione synthetase-amidase, determined in three crystal forms, reveals two catalytic domains. The N-terminal domain, a cysteine, histidine-dependent amidohydrolase/peptidase amidase, is a papain-like cysteine protease, and the C-terminal synthetase domain displays an ATP-grasp family fold common to C:N ligases. Modeling of substrates into each active site provides insight into the specificity and reactivity of this unusual enzyme, which is able to catalyze four reactions. The domain orientation is distinct from that observed in a related bacterial glutathionylspermidine synthetase. In trypanothione synthetase-amidase, the interactions formed by the C terminus, binding in and restricting access to the amidase active site, suggest that the balance of ligation and hydrolytic activity is directly influenced by the alignment of the domains with respect to each other and implicate conformational changes with amidase activity. The potential inhibitory role of the C terminus provides a mechanism to control relative levels of the critical metabolites, trypanothione, glutathionylspermidine, and spermidine in Leishmania.
doi:10.1074/jbc.M801850200
PMCID: PMC2427367  PMID: 18420578
7.  Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase 
Tryptophanyl-tRNA synthetase (TrpRS) is an essential enzyme that is recognizably conserved across all forms of life. It is responsible for activating and attaching tryptophan to a cognate tRNATrp molecule for use in protein synthesis. In some eukaryotes this original core function has been supplemented or modified through the addition of extra domains or the expression of variant TrpRS isoforms. The three TrpRS structures from pathogenic protozoa described here represent three illustrations of this malleability in eukaryotes. The Cryptosporidium parvum genome contains a single TrpRS gene, which codes for an N-terminal domain of uncertain function in addition to the conserved core TrpRS domains. Sequence analysis indicates that this extra domain, conserved among several apicomplexans, is related to the editing domain of some AlaRS and ThrRS. The C. parvum enzyme remains fully active in charging tRNATrp after truncation of this extra domain. The crystal structure of the active, truncated enzyme is presented here at 2.4 Å resolution. The Trypanosoma brucei genome contains separate cytosolic and mitochondrial isoforms of TrpRS that have diverged in their respective tRNA recognition domains. The crystal structure of the T. brucei cytosolic isoform is presented here at 2.8 Å resolution. The Entamoeba histolytica genome contains three sequences that appear to be TrpRS homologs. However one of these, whose structure is presented here at 3.0 Å resolution, has lost the active site motifs characteristic of the Class I aminoacyl-tRNA synthetase catalytic domain while retaining the conserved features of a fully formed tRNATrp recognition domain. The biological function of this variant E. histolytica TrpRS remains unknown, but, on the basis of a completely conserved tRNA recognition region and evidence for ATP but not tryptophan binding, it is tempting to speculate that it may perform an editing function. Together with a previously reported structure of an unusual TrpRS from Giardia, these protozoan structures broaden our perspective on the extent of structural variation found in eukaryotic TrpRS homologs.
doi:10.1016/j.molbiopara.2011.01.003
PMCID: PMC3066001  PMID: 21255615
aminoacyl-tRNA synthetase
8.  The Crystal Structures of the Tryparedoxin-Tryparedoxin Peroxidase Couple Unveil the Structural Determinants of Leishmania Detoxification Pathway 
Leishmaniasis is a neglected disease caused by Leishmania, an intracellular protozoan parasite which possesses a unique thiol metabolism based on trypanothione. Trypanothione is used as a source of electrons by the tryparedoxin/tryparedoxin peroxidase system (TXN/TXNPx) to reduce the hydroperoxides produced by macrophages during infection. This detoxification pathway is not only unique to the parasite but is also essential for its survival; therefore, it constitutes a most attractive drug target. Several forms of TXNPx, with very high sequence identity to one another, have been found in Leishmania strains, one of which has been used as a component of a potential anti-leishmanial polyprotein vaccine. The structures of cytosolic TXN and TXNPx from L. major (LmTXN and LmTXNPx) offer a unique opportunity to study peroxide reduction in Leishmania parasites at a molecular level, and may provide new tools for multienzyme inhibition-based drug discovery. Structural analyses bring out key structural features to elucidate LmTXN and LmTXNPx function. LmTXN displays an unusual N-terminal α-helix which allows the formation of a stable domain-swapped dimer. In LmTXNPx, crystallized in reducing condition, both the locally unfolded (LU) and fully folded (FF) conformations, typical of the oxidized and reduced protein respectively, are populated. The structural analysis presented here points to a high flexibility of the loop that includes the peroxidatic cysteine which facilitates Cys52 to form an inter-chain disulfide bond with the resolving cysteine (Cys173), thereby preventing over-oxidation which would inactivate the enzyme. Analysis of the electrostatic surface potentials of both LmTXN and LmTXNPx unveils the structural elements at the basis of functionally relevant interaction between the two proteins. Finally, the structural analysis of TXNPx allows us to identify the position of the epitopes that make the protein antigenic and therefore potentially suitable to be used in an anti-leishmanial polyprotein vaccine.
Author Summary
Leishmania spp. are protozoa responsible for Leishmaniases, neglected diseases killing up to 60,000 people every year. Current therapies rely mainly on antimonial drugs that are inadequate due to poor drug efficacy and safety, combined with increasing drug resistance. To overcome these problems, there is an urgent need to find new and more affordable drugs. Leishmania reduces the hydrogen peroxide produced by macrophages during the infection by means of the tryparedoxin/tryparedoxin peroxidase couple. The two enzymes are potentially suitable drug targets since they are both necessary for parasite survival and absent in the human host. To understand the molecular basis of peroxide reduction in the Leishmania parasites, we have solved the X-ray crystal structures of both enzymes. Structural analyses highlight oligomerization of the two proteins and allow the regions responsible for their interaction to be identified. Moreover, based on the X-ray structures and on electronic microscopy data present in literature for the homologous proteins from Trypanosoma brucei, we have generated a model of interaction between tryparedoxin and tryparedoxin peroxidase from L. major. From the X-ray structure and from this model, we have identified the epitopes of tryparedoxin peroxidase, which is part of a potential threecomponent vaccine that is presently being studied in animal models and in human.
doi:10.1371/journal.pntd.0001781
PMCID: PMC3424247  PMID: 22928053
9.  Structure, substrate recognition and reactivity of Leishmania major mevalonate kinase 
Background
Isoprenoid precursor synthesis via the mevalonate route in humans and pathogenic trypanosomatids is an important metabolic pathway. There is however, only limited information available on the structure and reactivity of the component enzymes in trypanosomatids. Since isoprenoid biosynthesis is essential for trypanosomatid viability and may provide new targets for therapeutic intervention it is important to characterize the pathway components.
Results
Putative mevalonate kinase encoding genes from Leishmania major (LmMK) and Trypanosoma brucei (TbMK) have been cloned, over-expressed in and proteins isolated from procyclic-form T. brucei. A highly sensitive radioactive assay was developed and shows ATP-dependent phosphorylation of mevalonate. Apo and (R)-mevalonate bound crystal structures of LmMK, from a bacterial expression system, have been determined to high resolution providing, for the first time, information concerning binding of mevalonate to an MK. The mevalonate binds in a deep cavity lined by highly conserved residues. His25 is key for binding and for discrimination of (R)- over (S)-mevalonate, with the main chain amide interacting with the C3 hydroxyl group of (R)-mevalonate, and the side chain contributing, together with Val202 and Thr283, to the construction of a hydrophobic binding site for the C3 methyl substituent. The C5 hydroxyl, where phosphorylation occurs, points towards catalytic residues, Lys18 and Asp155. The activity of LmMK was significantly reduced compared to MK from other species and we were unable to obtain ATP-binding data. Comparisons with the rat MK:ATP complex were used to investigate how this substrate might bind. In LmMK, helix α2 and the preceding polypeptide adopt a conformation, not seen in related kinase structures, impeding access to the nucleotide triphosphate binding site suggesting that a conformational rearrangement is required to allow ATP binding.
Conclusion
Our new structural information, consistent with data on homologous enzymes allows a detailed description of how mevalonate is recognized and positioned for catalysis in MK. The mevalonate-binding site is highly conserved yet the ATP-binding site is structurally distinct in LmMK. We are unable to provide a definitive explanation for the low activity of recombinant protein isolated from a bacterial expression system compared to material isolated from procyclic-form Trypanosoma brucei.
doi:10.1186/1472-6807-7-20
PMCID: PMC1851959  PMID: 17397541
10.  Phosphorylation-Dependent Protein Interaction with Trypanosoma brucei 14-3-3 Proteins that Display Atypical Target Recognition 
PLoS ONE  2010;5(12):e15566.
Background
The 14-3-3 proteins are structurally conserved throughout eukaryotes and participate in protein kinase signaling. All 14-3-3 proteins are known to bind to evolutionally conserved phosphoserine-containing motifs (modes 1 and/or 2) with high affinity. In Trypanosoma brucei, 14-3-3I and II play pivotal roles in motility, cytokinesis and the cell cycle. However, none of the T. brucei 14-3-3 binding proteins have previously been documented.
Methodology/Principal Findings
Initially we showed that T. brucei 14-3-3 proteins exhibit far lower affinity to those peptides containing RSxpSxP (mode 1) and RxY/FxpSxP (mode 2) (where x is any amino acid residue and pS is phosphoserine) than human 14-3-3 proteins, demonstrating the atypical target recognition by T. brucei 14-3-3 proteins. We found that the putative T. brucei protein phosphatase 2C (PP2c) binds to T. brucei 14-3-3 proteins utilizing its mode 3 motif (–pS/pTx1-2-COOH, where x is not Pro). We constructed eight chimeric PP2c proteins replacing its authentic mode 3 motif with potential mode 3 sequences found in Trypanosoma brucei genome database, and tested their binding. As a result, T. brucei 14-3-3 proteins interacted with three out of eight chimeric proteins including two with high affinity. Importantly, T. brucei 14-3-3 proteins co-immunoprecipitated with an uncharacterized full-length protein containing identified high-affinity mode 3 motif, suggesting that both proteins form a complex in vivo. In addition, a synthetic peptide derived from this mode 3 motif binds to T. brucei 14-3-3 proteins with high affinity.
Conclusion/Significance
Because of the atypical target recognition of T. brucei 14-3-3 proteins, no 14-3-3-binding proteins have been successfully identified in T. brucei until now whereas over 200 human 14-3-3-binding proteins have been identified. This report describes the first discovery of the T. brucei 14-3-3-binding proteins and their binding motifs. The high-affinity phosphopeptide will be a powerful tool to identify novel T. brucei 14-3-3-binding proteins.
doi:10.1371/journal.pone.0015566
PMCID: PMC3006207  PMID: 21203569
11.  Crystal Structures of Trypanosoma brucei Oligopeptidase B Broaden the Paradigm of Catalytic Regulation in Prolyl Oligopeptidase Family Enzymes 
PLoS ONE  2013;8(11):e79349.
Oligopeptidase B cleaves after basic amino acids in peptides up to 30 residues. As a virulence factor in bacteria and trypanosomatid pathogens that is absent in higher eukaryotes, this is a promising drug target. Here we present ligand-free open state and inhibitor-bound closed state crystal structures of oligopeptidase B from Trypanosoma brucei, the causative agent of African sleeping sickness. These (and related) structures show the importance of structural dynamics, governed by a fine enthalpic and entropic balance, in substrate size selectivity and catalysis. Peptides over 30 residues cannot fit the enzyme cavity, preventing the complete domain closure required for a key propeller Asp/Glu to fix the catalytic His and Arg in the catalytically competent conformation. This size exclusion mechanism protects larger peptides and proteins from degradation. Similar bacterial prolyl endopeptidase and archael acylaminoacyl peptidase structures demonstrate this mechanism is conserved among oligopeptidase family enzymes across all three domains of life.
doi:10.1371/journal.pone.0079349
PMCID: PMC3827171  PMID: 24265767
12.  Dissecting the essentiality of the bifunctional trypanothione synthetase-amidase in Trypanosoma brucei using chemical and genetic methods 
Molecular Microbiology  2009;74(3):529-540.
The bifunctional trypanothione synthetase-amidase (TRYS) comprises two structurally distinct catalytic domains for synthesis and hydrolysis of trypanothione (N1,N8-bis(glutathionyl)spermidine). This unique dithiol plays a pivotal role in thiol-redox homeostasis and in defence against chemical and oxidative stress in trypanosomatids. A tetracycline-dependent conditional double knockout of TRYS (cDKO) was generated in bloodstream Trypanosoma brucei. Culture of cDKO parasites without tetracycline induction resulted in loss of trypanothione and accumulation of glutathione, followed by growth inhibition and cell lysis after 6 days. In the absence of inducer, cDKO cells were unable to infect mice, confirming that this enzyme is essential for virulence in vivo as well as in vitro. To establish whether both enzymatic functions were essential, an amidase-dead mutant cDKO line was generated. In the presence of inducer, this line showed decreased growth in vitro and decreased virulence in vivo, indicating that the amidase function is not absolutely required for viability. The druggability of TRYS was assessed using a potent small molecule inhibitor developed in our laboratory. Growth inhibition correlated in rank order cDKO, single KO, wild-type and overexpressing lines and produced the predicted biochemical phenotype. The synthetase function of TRYS is thus unequivocally validated as a drug target by both chemical and genetic methods.
doi:10.1111/j.1365-2958.2009.06761.x
PMCID: PMC2784880  PMID: 19558432
13.  Biochemical, Mutational and In Silico Structural Evidence for a Functional Dimeric Form of the Ornithine Decarboxylase from Entamoeba histolytica 
Background
Entamoeba histolytica is responsible for causing amoebiasis. Polyamine biosynthesis pathway enzymes are potential drug targets in parasitic protozoan diseases. The first and rate-limiting step of this pathway is catalyzed by ornithine decarboxylase (ODC). ODC enzyme functions as an obligate dimer. However, partially purified ODC from E. histolytica (EhODC) is reported to exist in a pentameric state.
Methodology and Results
In present study, the oligomeric state of EhODC was re-investigated. The enzyme was over-expressed in Escherichia coli and purified. Pure protein was used for determination of secondary structure content using circular dichroism spectroscopy. The percentages of α-helix, β-sheets and random coils in EhODC were estimated to be 39%, 25% and 36% respectively. Size-exclusion chromatography and mass spectrophotometry analysis revealed that EhODC enzyme exists in dimeric form. Further, computational model of EhODC dimer was generated. The homodimer contains two separate active sites at the dimer interface with Lys57 and Cys334 residues of opposite monomers contributing to each active site. Molecular dynamic simulations were performed and the dimeric structure was found to be very stable with RMSD value ∼0.327 nm. To gain insight into the functional role, the interface residues critical for dimerization and active site formation were identified and mutated. Mutation of Lys57Ala or Cys334Ala completely abolished enzyme activity. Interestingly, partial restoration of the enzyme activity was observed when inactive Lys57Ala and Cys334Ala mutants were mixed confirming that the dimer is the active form. Furthermore, Gly361Tyr and Lys157Ala mutations at the dimer interface were found to abolish the enzyme activity and destabilize the dimer.
Conclusion
To our knowledge, this is the first report which demonstrates that EhODC is functional in the dimeric form. These findings and availability of 3D structure model of EhODC dimer opens up possibilities for alternate enzyme inhibition strategies by targeting the dimer disruption.
Author Summary
E. histolytica genome sequence divulged the existence of ornithine decarboxylase enzyme that performs the first-rate limiting catalytic step of polyamine biosynthetic pathway. ODC enzyme is a potent therapeutic target in many eukaryotic disease causing pathogens. DFMO, a potent substrate analogue inhibitor, is widely used for the treatment of various diseases including Trypanosoma brucei infections. However, DFMO does not inhibit E. histolytica ODC. As ODC is a validated drug target for protozoan disease, an alternate strategy to inhibit the EhODC enzyme may be developed. In our study, we have evidently proved that the purified recombinant EhODC is functional as an active homodimer. Molecular modeling and simulation studies indicate that two independent active sites are present at the dimer interface. Our mutational studies indicate that the enzyme activity can be abolished by targeting the dimer interface and this in turn suggests the alternative inhibitory mechanism for the enzyme. Our investigation yields that disruption of dimer disrupts the active site pocket and renders the enzyme inactive. As EhODC crystal structure is unavailable, the 3D structure model of EhODC homodimer may assist in designing structure based anti-amoebiasis peptides or agents that disrupt the active site by destabilizing the dimer.
doi:10.1371/journal.pntd.0001559
PMCID: PMC3289617  PMID: 22389745
14.  A Global Comparison of the Human and T. brucei Degradomes Gives Insights about Possible Parasite Drug Targets 
We performed a genome-level computational study of sequence and structure similarity, the latter using crystal structures and models, of the proteases of Homo sapiens and the human parasite Trypanosoma brucei. Using sequence and structure similarity networks to summarize the results, we constructed global views that show visually the relative abundance and variety of proteases in the degradome landscapes of these two species, and provide insights into evolutionary relationships between proteases. The results also indicate how broadly these sequence sets are covered by three-dimensional structures. These views facilitate cross-species comparisons and offer clues for drug design from knowledge about the sequences and structures of potential drug targets and their homologs. Two protease groups (“M32” and “C51”) that are very different in sequence from human proteases are examined in structural detail, illustrating the application of this global approach in mining new pathogen genomes for potential drug targets. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it. These sequence and structure data, along with interactive versions of the protein similarity networks generated in this study, are available at http://babbittlab.ucsf.edu/resources.html.
Author Summary
Human African trypanosomiasis (HAT) is caused by the protozoan parasite Trypanosoma brucei. HAT is fatal unless treated, yet the current treatment itself can cause death. New treatments are urgently needed. Our study focuses on proteases, which are enzymes that break down proteins. Because of their roles in many centrally important biological processes, proteases are targets for drugs to treat a variety of diseases including parasite infection. The recent explosion of protein sequence and structure information in public databases has made surveys of proteins on a genomic scale possible. However, collecting specific data of interest from diverse databases and synthesizing them in a way that is easy to interpret can be difficult. We used T. brucei and human protease sequences, crystal structures, and models to create network views that show how proteases cluster by similarity. Such views are valuable not only for understanding the evolution of the protein repertoire in each species, but also can give important clues for drug design. Two T. brucei protease groups (“M32” and “C51”) that are very different in sequence from human proteases were examined in structural detail. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it.
doi:10.1371/journal.pntd.0001942
PMCID: PMC3516576  PMID: 23236535
15.  Functional and Structural Insights Revealed by Molecular Dynamics Simulations of an Essential RNA Editing Ligase in Trypanosoma brucei 
RNA editing ligase 1 (TbREL1) is required for the survival of both the insect and bloodstream forms of Trypanosoma brucei, the parasite responsible for the devastating tropical disease African sleeping sickness. The type of RNA editing that TbREL1 is involved in is unique to the trypanosomes, and no close human homolog is known to exist. In addition, the high-resolution crystal structure revealed several unique features of the active site, making this enzyme a promising target for structure-based drug design. In this work, two 20 ns atomistic molecular dynamics (MD) simulations are employed to investigate the dynamics of TbREL1, both with and without the ATP substrate present. The flexibility of the active site, dynamics of conserved residues and crystallized water molecules, and the interactions between TbREL1 and the ATP substrate are investigated and discussed in the context of TbREL1's function. Differences in local and global motion upon ATP binding suggest that two peripheral loops, unique to the trypanosomes, may be involved in interdomain signaling events. Notably, a significant structural rearrangement of the enzyme's active site occurs during the apo simulations, opening an additional cavity adjacent to the ATP binding site that could be exploited in the development of effective inhibitors directed against this protozoan parasite. Finally, ensemble averaged electrostatics calculations over the MD simulations reveal a novel putative RNA binding site, a discovery that has previously eluded scientists. Ultimately, we use the insights gained through the MD simulations to make several predictions and recommendations, which we anticipate will help direct future experimental studies and structure-based drug discovery efforts against this vital enzyme.
Author Summary
RNA editing ligase 1 (TbREL1) is required for the survival of both the insect and bloodstream forms of Trypanosoma brucei, the parasite responsible for the devastating tropical disease African sleeping sickness. The type of RNA editing that TbREL1 is involved in is unique to the trypanosomes, and no close human homolog is known to exist. Here we use molecular dynamics simulations to investigate the dynamics of TbREL1, both with and without the ATP substrate present. The flexibility of the active site, dynamics of conserved residues and crystallized water molecules, and the interactions between TbREL1 and the ATP substrate are investigated and discussed. During the apo simulations, a significant structural rearrangement of the enzyme's active site opens an additional cavity adjacent to the ATP binding site that could be exploited in the development of effective inhibitors against this protozoan parasite. State-of-the-art electrostatics calculations reveal a novel putative RNA binding site, a discovery that has previously eluded scientists. Ultimately, we use the insights gained through the MD simulations to make several predictions, which we anticipate will help direct future experimental studies and structure-based drug discovery efforts against this vital enzyme.
doi:10.1371/journal.pntd.0000068
PMCID: PMC2100368  PMID: 18060084
16.  CYP51 structures and structure-based development of novel, pathogen-specific inhibitory scaffolds 
Graphical abstract
Highlights
► CYP51s (sterol 14alpha-demethylases) are efficient drug target enzymes. ► CYP51s have a highly rigid substrate binding cavity. ► CYP51 structure-based development of a new inhibitory scaffold is described.
CYP51 (sterol 14α-demethylase) is a cytochrome P450 enzyme essential for sterol biosynthesis and the primary target for clinical and agricultural antifungal azoles. The azoles that are currently in clinical use for systemic fungal infections represent modifications of two basic scaffolds, ketoconazole and fluconazole, all of them being selected based on their antiparasitic activity in cellular experiments. By studying direct inhibition of CYP51 activity across phylogeny including human pathogens Trypanosoma brucei, Trypanosoma cruzi and Leishmania infantum, we identified three novel protozoa-specific inhibitory scaffolds, their inhibitory potency correlating well with antiprotozoan activity. VNI scaffold (carboxamide containing β-phenyl-imidazoles) is the most promising among them: killing T. cruzi amastigotes at low nanomolar concentration, it is also easy to synthesize and nontoxic. Oral administration of VNI (up to 400 mg/kg) neither leads to mortality nor reveals significant side effects up to 48 h post treatment using an experimental mouse model of acute toxicity. Trypanosomatidae CYP51 crystal structures determined in the ligand-free state and complexed with several azole inhibitors as well as a substrate analog revealed high rigidity of the CYP51 substrate binding cavity, which must be essential for the enzyme strict substrate specificity and functional conservation. Explaining profound potency of the VNI inhibitory scaffold, the structures also outline guidelines for its further development. First steps of the VNI scaffold optimization have been undertaken; the results presented here support the notion that CYP51 structure-based rational design of more efficient, pathogen-specific inhibitors represents a highly promising direction.
doi:10.1016/j.ijpddr.2012.06.001
PMCID: PMC3596085  PMID: 23504044
Sterol 14α-demethylase; CYP51; Inhibition; Crystal structure
17.  Selective Inhibitors of Methionyl-tRNA Synthetase Have Potent Activity against Trypanosoma brucei Infection in Mice▿† 
Human African trypanosomiasis continues to be an important public health threat in extensive regions of sub-Saharan Africa. Treatment options for infected patients are unsatisfactory due to toxicity, difficult administration regimes, and poor efficacy of available drugs. The aminoacyl-tRNA synthetases were selected as attractive drug targets due to their essential roles in protein synthesis and cell survival. Comparative sequence analysis disclosed differences between the trypanosome and mammalian methionyl-tRNA synthetases (MetRSs) that suggested opportunities for selective inhibition using drug-like molecules. Experiments using RNA interference on the single MetRS of Trypanosoma brucei demonstrated that this gene product was essential for normal cell growth. Small molecules (diaryl diamines) similar to those shown to have potent activity on prokaryotic MetRS enzymes were synthesized and observed to have inhibitory activity on the T. brucei MetRS (50% inhibitory concentration, <50 nM) and on bloodstream forms of T. brucei cultures (50% effective concentration, as low as 4 nM). Twenty-one compounds had a close correlation between enzyme binding/inhibition and T. brucei growth inhibition, indicating that they were likely to be acting on the intended target. The compounds had minimal effects on mammalian cell growth at 20 μM, demonstrating a wide therapeutic index. The most potent compound was tested in the murine model of trypanosomiasis and demonstrated profound parasite suppression and delayed mortality. A homology model of the T. brucei MetRS based on other MetRS structures was used to model binding of the lead diaryl diamine compounds. Future studies will focus on improving the pharmacological properties of the MetRS inhibitors.
doi:10.1128/AAC.01796-10
PMCID: PMC3088252  PMID: 21282428
18.  Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites☆ 
Graphical abstract
Highlights
•Aminoacyl-tRNA synthetases are essential and many aaRS inhibitors kill parasites.•We examine compound inhibitors tested experimentally against parasite aaRSs.•Successful inhibitors were discovered by both phenotype and target-based approaches.•Selectivity and resistance are ongoing challenges for development of parasite drugs.
Aminoacyl-tRNA synthetases are central enzymes in protein translation, providing the charged tRNAs needed for appropriate construction of peptide chains. These enzymes have long been pursued as drug targets in bacteria and fungi, but the past decade has seen considerable research on aminoacyl-tRNA synthetases in eukaryotic parasites. Existing inhibitors of bacterial tRNA synthetases have been adapted for parasite use, novel inhibitors have been developed against parasite enzymes, and tRNA synthetases have been identified as the targets for compounds in use or development as antiparasitic drugs. Crystal structures have now been solved for many parasite tRNA synthetases, and opportunities for selective inhibition are becoming apparent. For different biological reasons, tRNA synthetases appear to be promising drug targets against parasites as diverse as Plasmodium (causative agent of malaria), Brugia (causative agent of lymphatic filariasis), and Trypanosoma (causative agents of Chagas disease and human African trypanosomiasis). Here we review recent developments in drug discovery and target characterisation for parasite aminoacyl-tRNA synthetases.
doi:10.1016/j.ijpddr.2013.10.001
PMCID: PMC3940080  PMID: 24596663
Aminoacyl-tRNA synthetase; Drug target; Parasite; Protein translation
19.  Dihydroquinazolines as a Novel Class of Trypanosoma brucei Trypanothione Reductase Inhibitors: Discovery, Synthesis, and Characterization of their Binding Mode by Protein Crystallography 
Journal of Medicinal Chemistry  2011;54(19):6514-6530.
Trypanothione reductase (TryR) is a genetically validated drug target in the parasite Trypanosoma brucei, the causative agent of human African trypanosomiasis. Here we report the discovery, synthesis, and development of a novel series of TryR inhibitors based on a 3,4-dihydroquinazoline scaffold. In addition, a high resolution crystal structure of TryR, alone and in complex with substrates and inhibitors from this series, is presented. This represents the first report of a high resolution complex between a noncovalent ligand and this enzyme. Structural studies revealed that upon ligand binding the enzyme undergoes a conformational change to create a new subpocket which is occupied by an aryl group on the ligand. Therefore, the inhibitor, in effect, creates its own small binding pocket within the otherwise large, solvent exposed active site. The TryR–ligand structure was subsequently used to guide the synthesis of inhibitors, including analogues that challenged the induced subpocket. This resulted in the development of inhibitors with improved potency against both TryR and T. brucei parasites in a whole cell assay.
doi:10.1021/jm200312v
PMCID: PMC3188286  PMID: 21851087
20.  Crystal structure of Saccharomyces cerevisiae 6-phosphogluconate dehydrogenase Gnd1 
Background
As the third enzyme of the pentose phosphate pathway, 6-phosphogluconate dehydrogenase (6PGDH) is the main generator of cellular NADPH. Both thioredoxin reductase and glutathione reductase require NADPH as the electron donor to reduce oxidized thioredoxin or glutathione (GSSG). Since thioredoxin and GSH are important antioxidants, it is not surprising that 6PGDH plays a critical role in protecting cells from oxidative stress. Furthermore the activity of 6PGDH is associated with several human disorders including cancer and Alzheimer's disease. The 3D structural investigation would be very valuable in designing small molecules that target this enzyme for potential therapeutic applications.
Results
The crystal structure of 6-phosphogluconate dehydrogenase (6PGDH/Gnd1) from Saccharomyces cerevisiae has been determined at 2.37 Å resolution by molecular replacement. The overall structure of Gnd1 is a homodimer with three domains for each monomer, a Rossmann fold NADP+ binding domain, an all-α helical domain contributing the majority to hydrophobic interaction between the two subunits and a small C-terminal domain penetrating the other subunit. In addition, two citrate molecules occupied the 6PG binding pocket of each monomer. The intact Gnd1 had a Km of 50 ± 9 μM for 6-phosphogluconate and of 35 ± 6 μM for NADP+ at pH 7.5. But the truncated mutants without the C-terminal 35, 39 or 53 residues of Gnd1 completely lost their 6PGDH activity, despite remaining the homodimer in solution.
Conclusion
The overall tertiary structure of Gnd1 is similar to those of 6PGDH from other species. The substrate and coenzyme binding sites are well conserved, either from the primary sequence alignment, or from the 3D structural superposition. Enzymatic activity assays suggest a sequential mechanism of catalysis, which is in agreement with previous studies. The C-terminal domain of Gnd1 functions as a hook to further tighten the dimer, but it is not necessary for the dimerization. This domain also works as a lid on the substrate binding pocket to control the binding of substrate and the release of product, so it is indispensable for the 6PGDH activity. Moreover, the co-crystallized citrate molecules, which mimic the binding mode of the substrate 6-phosphogluconate, provided us a novel strategy to design the 6PDGH inhibitors.
doi:10.1186/1472-6807-7-38
PMCID: PMC1919378  PMID: 17570834
21.  Crystal Structures of TbCatB and Rhodesain, Potential Chemotherapeutic Targets and Major Cysteine Proteases of Trypanosoma brucei 
Background
Trypanosoma brucei is the etiological agent of Human African Trypanosomiasis, an endemic parasitic disease of sub-Saharan Africa. TbCatB and rhodesain are the sole Clan CA papain-like cysteine proteases produced by the parasite during infection of the mammalian host and are implicated in the progression of disease. Of considerable interest is the exploration of these two enzymes as targets for cysteine protease inhibitors that are effective against T. brucei.
Methods and Findings
We have determined, by X-ray crystallography, the first reported structure of TbCatB in complex with the cathepsin B selective inhibitor CA074. In addition we report the structure of rhodesain in complex with the vinyl-sulfone K11002.
Conclusions
The mature domain of our TbCat•CA074 structure contains unique features for a cathepsin B-like enzyme including an elongated N-terminus extending 16 residues past the predicted maturation cleavage site. N-terminal Edman sequencing reveals an even longer extension than is observed amongst the ordered portions of the crystal structure. The TbCat•CA074 structure confirms that the occluding loop, which is an essential part of the substrate-binding site, creates a larger prime side pocket in the active site cleft than is found in mammalian cathepsin B-small molecule structures. Our data further highlight enhanced flexibility in the occluding loop main chain and structural deviations from mammalian cathepsin B enzymes that may affect activity and inhibitor design. Comparisons with the rhodesain•K11002 structure highlight key differences that may impact the design of cysteine protease inhibitors as anti-trypanosomal drugs.
Author Summary
Proteases are ubiquitous in all forms of life and catalyze the enzymatic degradation of proteins. These enzymes regulate and coordinate a vast number of cellular processes and are therefore essential to many organisms. While serine proteases dominate in mammals, parasitic organisms commonly rely on cysteine proteases of the Clan CA family throughout their lifecycle. Clan CA cysteine proteases are therefore regarded as promising targets for the selective design of drugs to treat parasitic diseases, such as Human African Trypanosomiasis caused by Trypanosoma brucei. The genomes of kinetoplastids such as Trypanosoma spp. and Leishmania spp. encode two Clan CA C1 family cysteine proteases and in T. brucei these are represented by rhodesain and TbCatB. We have determined three-dimensional structures of these two enzymes as part of our ongoing efforts to synthesize more effective anti-trypanosomal drugs.
doi:10.1371/journal.pntd.0000701
PMCID: PMC2882330  PMID: 20544024
22.  CYP51 structures and structure-based development of novel, pathogen-specific inhibitory scaffolds 
CYP51 (sterol 14α-demethylase) is a cytochrome P450 enzyme essential for sterol biosynthesis and the primary target for clinical and agricultural antifungal azoles. The azoles that are currently in clinical use for systemic fungal infections represent modifications of two basic scaffolds, ketoconazole and fluconazole, all of them being selected based on their antiparasitic activity in cellular experiments. By studying direct inhibition of CYP51 activity across phylogeny including human pathogens Trypanosoma brucei, Trypanosoma cruzi and Leishmania infantum, we identified three novel protozoa-specific inhibitory scaffolds, their inhibitory potency correlating well with antiprotozoan activity. VNI scaffold (carboxamide containing β-phenyl-imidazoles) is the most promising among them: killing T. cruzi amastigotes at low nanomolar concentration, it is also easy to synthesize and nontoxic. Oral administration of VNI (up to 400 mg/kg) neither leads to mortality nor reveals significant side effects up to 48 h post treatment using an experimental mouse model of acute toxicity. Trypanosomatidae CYP51 crystal structures determined in the ligand-free state and complexed with several azole inhibitors as well as a substrate analog revealed high rigidity of the CYP51 substrate binding cavity, which must be essential for the enzyme strict substrate specificity and functional conservation. Explaining profound potency of the VNI inhibitory scaffold, the structures also outline guidelines for its further development. First steps of the VNI scaffold optimization have been undertaken; the results presented here support the notion that CYP51 structure-based rational design of more efficient, pathogen-specific inhibitors represents a highly promising direction.
PMCID: PMC3596085  PMID: 23504044
Sterol 14α-demethylase; CYP51; Inhibition; Crystal structure
23.  Chemical Validation of Trypanothione Synthetase 
The Journal of Biological Chemistry  2009;284(52):36137-36145.
In the search for new therapeutics for the treatment of human African trypanosomiasis, many potential drug targets in Trypanosoma brucei have been validated by genetic means, but very few have been chemically validated. Trypanothione synthetase (TryS; EC 6.3.1.9; spermidine/glutathionylspermidine:glutathione ligase (ADP-forming)) is one such target. To identify novel inhibitors of T. brucei TryS, we developed an in vitro enzyme assay, which was amenable to high throughput screening. The subsequent screen of a diverse compound library resulted in the identification of three novel series of TryS inhibitors. Further chemical exploration resulted in leads with nanomolar potency, which displayed mixed, uncompetitive, and allosteric-type inhibition with respect to spermidine, ATP, and glutathione, respectively. Representatives of all three series inhibited growth of bloodstream T. brucei in vitro. Exposure to one of our lead compounds (DDD86243; 2 × EC50 for 72 h) decreased intracellular trypanothione levels to <10% of wild type. In addition, there was a corresponding 5-fold increase in the precursor metabolite, glutathione, providing strong evidence that DDD86243 was acting on target to inhibit TryS. This was confirmed with wild-type, TryS single knock-out, and TryS-overexpressing cell lines showing expected changes in potency to DDD86243. Taken together, these data provide initial chemical validation of TryS as a drug target in T. brucei.
doi:10.1074/jbc.M109.045336
PMCID: PMC2794729  PMID: 19828449
24.  Inborn errors in the metabolism of glutathione 
Glutathione is a tripeptide composed of glutamate, cysteine and glycine. Glutathione is present in millimolar concentrations in most mammalian cells and it is involved in several fundamental biological functions, including free radical scavenging, detoxification of xenobiotics and carcinogens, redox reactions, biosynthesis of DNA, proteins and leukotrienes, as well as neurotransmission/neuromodulation. Glutathione is metabolised via the gamma-glutamyl cycle, which is catalyzed by six enzymes. In man, hereditary deficiencies have been found in five of the six enzymes. Glutathione synthetase deficiency is the most frequently recognized disorder and, in its severe form, it is associated with hemolytic anemia, metabolic acidosis, 5-oxoprolinuria, central nervous system (CNS) damage and recurrent bacterial infections. Gamma-glutamylcysteine synthetase deficiency is also associated with hemolytic anemia, and some patients with this disorder show defects of neuromuscular function and generalized aminoaciduria. Gamma-glutamyl transpeptidase deficiency has been found in patients with CNS involvement and glutathionuria. 5-Oxoprolinase deficiency is associated with 5-oxoprolinuria but without a clear association with other symptoms. Dipeptidase deficiency has been described in one patient. All disorders are very rare and inherited in an autosomal recessive manner. Most of the mutations are leaky so that many patients have residual enzyme activity. Diagnosis is made by measuring the concentration of different metabolites in the gamma-glutamyl cycle, enzyme activity and in glutathione synthetase and gamma-glutamylcysteine synthetase deficiency, also by mutation analysis. Prenatal diagnosis has been preformed in glutathione synthetase deficiency. The prognosis is difficult to predict, as few patients are known, but seems to vary significantly between different patients. The aims of the treatment of glutathione synthesis defects are to avoid hemolytic crises and to increase the defense against reactive oxygen species. No treatment has been recommended for gamma-glutamyl transpeptidase, 5-oxoprolinase and dipeptidase deficiency.
doi:10.1186/1750-1172-2-16
PMCID: PMC1852094  PMID: 17397529
25.  The crystal structure of Leishmania major N5,N10-methylenetetrahydrofolate dehydrogenase/cyclohydrolase and assessment of a potential drug target☆ 
Molecular and Biochemical Parasitology  2012;181(2-6):178-185.
Graphical abstract
The crystal structure of Leishmania major N5,N10-methylenetetrahydrofolate dehydrogenase/N5,N10-methenyltetrahydrofolate cyclohydrolase is used to assess the potential of this bifunctional enzyme as a drug target.
Highlights
► We report the structure of Leishmania major methylenetetrahydrofolate dehydrogenase/cyclohydrolase. ► Sequence–structure comparisons are carried out with homologues from kinetoplastids and the human host. ► The potential of this bifunctional enzyme as a drug target is assessed. ► The similarities between parasite and human enzymes suggest a difficult target for drug discovery.
Three enzyme activities in the protozoan Leishmania major, namely N5,N10-methylenetetrahydrofolate dehydrogenase/N5,N10-methenyltetrahydrofolate cyclohydrolase (DHCH) and N10-formyltetrahydrofolate ligase (FTL) produce the essential intermediate N10-formyltetrahydrofolate. Although trypanosomatids possess at least one functional DHCH, the same is not true for FTL, which is absent in Trypanosoma brucei. Here, we present the 2.7 Å resolution crystal structure of the bifunctional apo-DHCH from L. major, which is a potential drug target. Sequence alignments show that the cytosolic enzymes found in trypanosomatids share a high level of identity of approximately 60%. Additionally, residues that interact and participate in catalysis in the human homologue are conserved amongst trypanosomatid sequences and this may complicate attempts to derive potent, parasite specific DHCH inhibitors.
doi:10.1016/j.molbiopara.2011.11.004
PMCID: PMC3368264  PMID: 22108435
Antifolate; Cyclohydrolase; Dehydrogenase; Drug target; Leishmania; Trypanosoma

Results 1-25 (694912)