PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (994634)

Clipboard (0)
None

Related Articles

1.  Human Prostate Stromal Cells Stimulate Increased PSA Production in DHEA-treated Prostate Cancer Epithelial Cells 
Dehydroepiandrosterone (DHEA) is commonly used as a dietary supplement and may affect prostate pathophysiology when metabolized to androgens and/or estrogens. Human prostate LAPC-4 cancer cells with a wild type androgen receptor (AR), were treated with DHEA, androgens (DHT, T, or R1881), and E2 and assayed for PSA protein and gene expression. In LAPC-4 monocultures, DHEA and E2 induced little or no increase in PSA protein or mRNA expression compared to androgen-treated cells. When prostate cancer-associated (6S) stromal cells were added in coculture, DHEA stimulated LAPC-4 cell PSA protein secretion to levels approaching induction by DHT. Also, DHEA induced 15-fold more PSA mRNA in LAPC-4 cocultures than in monocultures. LAPC-4 proliferation was increased 2–3 fold when cocultured with 6S stromal cells regardless of hormone treatment. DHEA-treated 6S stromal cells exhibited a dose- and time-dependent increase in T secretion, demonstrating stromal cell metabolism of DHEA to T. Coculture with non-cancerous stroma did not induce LAPC-4 PSA production, suggesting a differential modulation of DHEA effect in a cancer-associated prostate stromal environment. This coculture model provides a research approach to reveal detailed endocrine, intracrine, and paracrine signaling between stromal and epithelial cells that regulate tissue homeostasis within the prostate, and the role of the tumor microenvironment in cancer progression.
doi:10.1016/j.jsbmb.2008.06.008
PMCID: PMC2570207  PMID: 18621129
DHEA; stromal; prostate; PSA; coculture
2.  Endocrine-Immune-Paracrine Interactions In Prostate Cells: A Model For Mechanistic Studies Of Phytomedicines 
Dehydroepiandrosterone (DHEA) is used as a dietary supplement and can be metabolized to androgens and/or estrogens in the prostate. We investigated the hypothesis that DHEA metabolism may be increased in a reactive prostate stroma environment in the presence of pro-inflammatory cytokines such as TGFβ1 and further, whether red clover extract, which contains a variety of compounds including isoflavones, can reverse this effect. LAPC-4 prostate cancer cells were grown in coculture with prostate stromal cells (6S), and treated with DHEA +/- TGFβ1 or IL-6. PSA expression and testosterone (T) secretion in LAPC4/6S cocultures were compared with those in monocultured epithelial and stromal cells using real time PCR and/or ELISA. Combined administration of TGFβ1+DHEA to cocultures increased PSA protein secretion 2-4 times, and PSA gene expression up to 50-fold. DHEA + TGFβ1 also increased coculture production of testosterone over DHEA treatment alone. Red clover isoflavone treatment led to a dose-dependent decrease in PSA protein and gene expression and T metabolism induced by TGFβ1+DHEA in prostate LAPC-4/6S cocultures. In this coculture model of endocrine-immune-paracrine interactions in the prostate, TGFβ1 greatly increased stromal-mediated DHEA effects on T production and epithelial cell PSA production, whereas red clover isoflavones reversed these effects.
doi:10.1158/1940-6207.CAPR-08-0062
PMCID: PMC2757651  PMID: 19141600
DHEA; TGFβ1; stromal; prostate; PSA; testosterone; coculture; red clover isoflavones
3.  TGFβ1 alters androgenic metabolites and hydroxysteroid dehydrogenase enzyme expression in human prostate reactive stromal primary cells: Is steroid metabolism altered by prostate reactive stromal microenvironment? 
The Journal of steroid biochemistry and molecular biology  2013;138:10.1016/j.jsbmb.2013.05.016.
The inflammatory tissue microenvironment can be an active promoter in preneoplastic cancer lesions. Altered steroid hormone metabolism as induced by the inflammatory microenvironment may contribute to epithelial cancer progression. Dehydroepiandrosterone sulfate (DHEAS) is the most abundant endogenous steroid hormone present in human serum and can be metabolized to DHEA, androgens and/or estrogens in peripheral tissues. We have previously reported that TGFβ1-induced reactive prostate stromal cells increase DHEA metabolism to active androgens and alter prostate cancer cell gene expression. While much of the focus on mechanisms of prostate cancer and steroid metabolism is in the epithelial cancer cells, this study focuses on TGFβ1-induced effects on DHEA metabolic pathways and enzymes in human prostate stromal cells. In DHEA-treated primary prostate stromal cells, TGFβ1 produced time- and dose-dependent increases in metabolism of DHEA to androstenedione and testosterone. Also TGFβ1-treated prostate stromal cells exhibited changes in the gene expression of enzymes involved in steroid metabolism including up-regulation of 3β hydroxysteroid dehydrogenase (HSD), and down-regulation of 17βHSD5, and 17βHSD2. These studies suggest that reactive prostate stroma and the inflammatory microenvironment may contribute to altered steroid metabolism and increased intratumoral androgens.
doi:10.1016/j.jsbmb.2013.05.016
PMCID: PMC3839662  PMID: 23770322
TGFβ1; Reactive prostate stroma; Androstenedione; Testosterone; DHEA; Steroid metabolism
4.  The EPI Bioassay identifies natural compounds with estrogenic activity that are potent inhibitors of androgenic pathways in human prostate stromal and epithelial cells 
The reactive stromal phenotype is an important factor for prostate cancer progression and may be a new target for treatment and prevention. A new high efficiency preclinical protocol, the EPI bioassay, reflects the interaction of endocrine, paracrine and immune, (EPI) factors on induced androgen metabolism in human prostate reactive stroma. The bioassay is based on co-culturing human primary prostate stromal cells and LAPC-4 prostatic adenocarcinoma cells in a downscaled format of 96-well-plates for testing multiple doses of multiple target compounds. Metabolism of dehydroepiandrosterone (DHEA) with or without TGFβ1–induced stimulation (D+T) of the reactive stroma phenotype was assessed by increased testosterone in the media and PSA production of the epithelial prostate cancer cells. By using the non-metabolizable androgen R1881, effects from direct androgen action were distinguished from stromal androgen production from DHEA. Stromal cell androgenic bioactivity was confirmed using conditioned media from D+T-treated stromal cell monocultures in an androgen-inducible AR screening assay. We further showed that both agonists to estrogen receptor (ER), DPN (ERβ) and PPT (ERα), as well as estrogenic natural compounds including soy isoflavones attenuated D+T-induced PSA production. Studies with the pure ER agonists showed that activating either ERα or ERβ could inhibit both D+T-mediated and R1881-mediated PSA production with the D+T effect being more pronounced. In conclusion, natural compounds with estrogenic activity and pure ER agonists are very potent inhibitors of stromal conversion of DHEA to androgenic metabolites. More studies are needed to characterize the mechanisms involved in estrogenic modulation of the endocrine-immune-paracrine balance of the prostate microenvironment.
doi:10.1016/j.jsbmb.2011.12.003
PMCID: PMC3311472  PMID: 22207083
5.  3β-HSD ACTIVATES DHEA IN THE SONGBIRD BRAIN 
Neurochemistry international  2007;52(4-5):611-620.
Dehydroepiandrosterone (DHEA) is an abundant circulating prohormone in humans, with a variety of reported actions on central and peripheral tissues. Despite its abundance, the functions of DHEA are relatively unknown because common animal models (laboratory rats and mice) have very low DHEA levels in the blood. Over the past decade, we have obtained considerable evidence from avian studies demonstrating that (1) DHEA is an important circulating prohormone in songbirds and (2) the enzyme 3β-hydroxysteroid dehydrogenase/isomerase (3β-HSD), responsible for converting DHEA into a more active androgen, is expressed at high levels in the songbird brain. Here, we first review biochemical and molecular studies demonstrating the widespread activity and expression of 3β-HSD in the adult and developing songbird brain. Studies examining neural 3β-HSD activity show effects of sex, stress, and season that are region-specific. Second, we review studies showing seasonal and stress-related changes in circulating DHEA in captive and wild songbird species. Third, we describe evidence that DHEA treatment can stimulate song behavior and the growth of neural circuits controlling song behavior. Importantly, brain 3β-HSD and aromatase can work in concert to locally metabolize DHEA into active androgens and estrogens, which are critical for controlling behavior and robust adult neuroplasticity in songbirds. DHEA is likely secreted by the avian gonads and/or adrenals, as is the case in humans, but DHEA may also be synthesized de novo in the songbird brain from cholesterol or other precursors. Irrespective of its source, DHEA seems to be an important neurohormone in songbirds, and 3β-HSD is a key enzyme in the songbird brain.
doi:10.1016/j.neuint.2007.05.003
PMCID: PMC2441539  PMID: 17643555
3beta-HSD; adrenal; aggression; aromatase; brain; DHEA; estrogen; neurosteroid; season; song; sparrow; stress; testosterone; zebra finch
6.  Aldo-keto Reductase Family 1 Member C3 (AKR1C3) Is a Biomarker and Therapeutic Target for Castration-Resistant Prostate Cancer 
Molecular Medicine  2012;18(1):1449-1455.
Current endocrine treatment for advanced prostate cancer does not result in a complete ablation of adrenal androgens. Adrenal androgens can be metabolized by prostate cancer cells, which is one of the mechanisms associated with progression to castration-resistant prostate cancer (CRPC). Aldo-keto reductase family 1 member C3 (AKR1C3) is a steroidogenic enzyme that plays a crucial role in the conversion of adrenal androgen dehydroepiandrosterone (DHEA) into high-affinity ligands for the androgen receptor (testosterone [T] and dihydrotestosterone [DHT]). The aim of this study was to examine whether AKR1C3 could be used as a marker and therapeutic target for CRPC. AKR1C3 mRNA and protein levels were upregulated in CRPC tissue, compared with benign prostate and primary prostate cancer tissue. High AKR1C3 levels were found only in a subset of CRPC patients. AKR1C3 can be used as a biomarker for active intratumoral steroidogenesis and can be measured in biopsy or transurethral resection of the prostate specimens. DuCaP (a CRPC cell line that has high AKR1C3 expression levels) used and converted DHEA under hormone-depleted conditions into T and DHT. The DHEA-induced growth of DuCaP could be antagonized by indomethacine, an inhibitor of AKR1C3. This study indicates that AKR1C3 can be considered a therapeutic target in a subgroup of patients with high AKR1C3 expression.
doi:10.2119/molmed.2012.00296
PMCID: PMC3563708  PMID: 23196782
7.  Dehydroepiandrosterone (DHEA) Inhibition of Monocyte Binding by Vascular Endothelium Is Associated With Sialylation of Neural Cell Adhesion Molecule 
Reproductive Sciences  2012;19(1):86-91.
Rationale: Adhesion of monocytes to vascular endothelium is necessary for atheroma formation. This adhesion requires binding of endothelial neural cell adhesion molecule (NCAM) to monocyte NCAM. NCAM:NCAM binding is blocked by sialylation of NCAM (polysialylated NCAM; PSA-NCAM). Since estradiol (E2) and dihydrotestosterone (DHT) induced PSA-NCAM and decreased monocyte adhesion, in consideration of possible clinical applications we tested whether their prohormone dehydroepiandrosterone (DHEA) has similar effects. Experimental: (1) DHEA was administered to cultured human coronary artery endothelial cells (HCAECs) from men and women. Monocyte binding was assessed using fluorescence-labeled monocytes. (2) HCEACs were incubated with E2, DHT, DHEA alone, or with trilostane, fulvestrant or flutamide. Expression of PSA-NCAM was assessed by immunohistochemistry and Western blotting. Results: Dehydroepiandrosterone inhibited monocyte adhesion to HCAECs by ≥50% (P < .01). Fulvestrant or flutamide blockade of DHEA’s inhibition of monocyte binding appeared to be gender dependent. The DHEA-induced expression of PSA-NCAM was completely blocked by trilostane. Conclusions: In these preliminary in vitro studies, DHEA increased PSA-NCAM expression and inhibited monocyte binding in an estrogen- and androgen receptor-dependent manner. Dehydroepiandrosteroneappears to act via its end metabolites, E2 and DHT. Dehydroepiandrosterone could furnish clinical prevention against atherogenesis and arteriosclerosis.
doi:10.1177/1933719111414210
PMCID: PMC3343126  PMID: 22228741
atherosclerosis; heart disease; coronary; estrogen; androgen; adhesion; NCAM; PSA-NCAM
8.  EFFECT OF SEX STEROIDS AND INSULIN ON DEHYDROEPIANDROSTERONE SULFATE (DHEAS) PRODUCTION BY HEPG2 CELLS 
Fertility and sterility  2008;91(6):2551-2556.
OBJECTIVE
To test the hypothesis that DHEAS production from DHEA occurs in hepatic cells, and that this production is augmented by the presence of sex steroids or insulin (INS).
DESIGN
In-vitro prospective experiment
SETTING
Academic medical center.
INTERVENTIONS
Hepatoma (Hep) G2 cells cultured in media supplemented with: i) DHEA (10−5M) only, ii) DHEA (10−5M) + testosterone (T, 10−6M), iii) DHEA (10−5M) + estradiol (E2, 10−6M), iv) DHEA (10−5M) + dihydrotestosterone (DHT 10−6M), v) DHEA (10−5M) + insulin (INS 10 ng/mL), or vi) DHEA (10−5M) + insulin 100 ng/mL,
OUTCOME MEASURES
DHEAS levels in the media were measured at 0, 2, 4, 6, 8, 12, 24, 48, and 72 h after adding treatments at time-point 0.
RESULTS
DHEAS was first detected in the HepG2 cell culture media at 12h incubation. The cumulative production rate of DHEAS increased linearly until 72h incubation. When compared to the effect of treatment with DHEA only, treatment with DHEA plus T, DHT, or E2 delayed the cumulative DHEAS production; alternatively, the addition of INS did not alter DHEAS production.
CONCLUSION
These data suggest that while hepatic cells have the ability of converting DHEA to DHEAS, neither sex steroids nor INS result in the increased hepatic production of DHEAS.
doi:10.1016/j.fertnstert.2008.03.049
PMCID: PMC2744856  PMID: 18554595
Adrenal androgen excess; DHEA sulphotransferase; HepG2 cells; dehydroepiandrosterone; DHEAS; SULT2A1
9.  Transforming growth factor β1 increase of hydroxysteroid dehydrogenase proteins is partly suppressed by red clover isoflavones in human primary prostate cancer-derived stromal cells 
Carcinogenesis  2011;32(11):1648-1654.
Transforming growth factor β1 (TGF-β1) increases dehydro-epiandrosterone (DHEA) metabolism to androgens and prostate-specific antigen (PSA) in a prostate tissue model where stromal (6S) cells and epithelial (LAPC-4) cells are cocultured. Red clover (RC) isoflavones inhibits transforming growth factor (TGF)-β-induced androgenicity. Mechanisms controlling those activities were explored. Three hydroxysteroid dehydrogenases (HSDs), 3β-HSD, HSD-17β1 and HSD-17β5 involved in metabolizing DHEA to testosterone (TESTO) were investigated. Individual depletion of HSDs in 6S cells significantly reduced TGF-β1/DHEA-induced PSA in LAPC-4 cells in cocultures. Monomer amounts of 3β-HSD were similar without or with TGF-β1 in both cell types but aggregates of 3β-HSD in 6S cells were much higher than those in LAPC-4 cells and were upregulated by TGFβ in 6S cells. Basal and TGF-β1-treated levels of HSD-17β1 and HSD-17β5 in LAPC-4 cells were significantly lower than in 6S cells, whereas levels of HSD-17β1 but not HSD-17β5 were TGFβ inducible. 6S cell HSD genes expression induced by TGFβ or androgen signaling was insignificant to contribute TGF-β1/DHEA-upregulated protein levels of HSDs. RC decreased TGF-β1- upregulation of aggregates of 3β-HSD but not HSD-17β1. Depletion of TGFβ receptors (TGFβ Rs) reduced TGF-β1/DHEA-upregulated HSDs and TESTO. Immunoprecipitation studies demonstrated that TGF-β1 disrupted associations of TGFβ Rs/HSDs aggregates, whereas RC suppressed the dissociations of aggregates of 3β-HSD but not HSD-17β1 from the receptors. Given that TGFβ Rs are recycled with or without ligand, TGF-β1-induced disassociation of the HSDs from TGFβ Rs may increase stability and activity of the HSDs. These data suggest a pathway connecting overproduction of TGFβ with increased PSA in prostate cancer.
doi:10.1093/carcin/bgr206
PMCID: PMC3218644  PMID: 21914638
10.  Dehydroepiandrosterone and age-related cognitive decline 
Age  2009;32(1):61-67.
In humans the circulating concentrations of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) decrease markedly during aging, and have been implicated in age-associated cognitive decline. This has led to the hypothesis that DHEA supplementation during aging may improve memory. In rodents, a cognitive anti-aging effect of DHEA and DHEAS has been observed but it is unclear whether this effect is mediated indirectly through conversion of these steroids to estradiol. Moreover, despite the demonstration of correlations between endogenous DHEA concentrations and cognitive ability in certain human patient populations, such correlations have yet to be convincingly demonstrated during normal human aging. This review highlights important differences between rodents and primates in terms of their circulating DHEA and DHEAS concentrations, and suggests that age-related changes within the human DHEA metabolic pathway may contribute to the relative inefficacy of DHEA replacement therapies in humans. The review also highlights the value of using nonhuman primates as a pragmatic animal model for testing the therapeutic potential of DHEA for age-associate cognitive decline in humans.
doi:10.1007/s11357-009-9113-4
PMCID: PMC2829637  PMID: 19711196
Dehydroepiandrosterone; Cognitive decline; Intracrinology; Neurosteroidogenesis
11.  Dehydroepiandrosterone and age-related cognitive decline 
Age (Dordrecht, Netherlands)  2009;32(1):61-67.
In humans the circulating concentrations of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) decrease markedly during aging, and have been implicated in age-associated cognitive decline. This has led to the hypothesis that DHEA supplementation during aging may improve memory. In rodents, a cognitive anti-aging effect of DHEA and DHEAS has been observed but it is unclear whether this effect is mediated indirectly through conversion of these steroids to estradiol. Moreover, despite the demonstration of correlations between endogenous DHEA concentrations and cognitive ability in certain human patient populations, such correlations have yet to be convincingly demonstrated during normal human aging. This review highlights important differences between rodents and primates in terms of their circulating DHEA and DHEAS concentrations, and suggests that age-related changes within the human DHEA metabolic pathway may contribute to the relative inefficacy of DHEA replacement therapies in humans. The review also highlights the value of using nonhuman primates as a pragmatic animal model for testing the therapeutic potential of DHEA for age-associate cognitive decline in humans.
doi:10.1007/s11357-009-9113-4
PMCID: PMC2829637  PMID: 19711196
Dehydroepiandrosterone; Cognitive decline; Intracrinology; Neurosteroidogenesis
12.  In rats, oral oleoyl-DHEA is rapidly hydrolysed and converted to DHEA-sulphate 
BMC Pharmacology  2007;7:4.
Background
Dehydroepiandrosterone (DHEA) released by adrenal glands may be converted to androgens and estrogens mainly in the gonadal, adipose, mammary, hepatic and nervous tissue. DHEA is also a key neurosteroid and has antiglucocorticoid activity. DHEA has been used for the treatment of a number of diseases, including obesity; its pharmacological effects depend on large oral doses, which effect rapidly wanes in part because of its short half-life in plasma. Since steroid hormone esters circulate for longer periods, we have studied here whether the administration of DHEA oleoyl ester may extend its pharmacologic availability by keeping high circulating levels.
Results
Tritium-labelled oleoyl-DHEA was given to Wistar male and female rats by gastric tube. The kinetics of appearance of the label in plasma was unrelated to sex; the pattern being largely coincident with the levels of DHEA-sulfate only in females, and after 2 h undistinguishable from the results obtained using labelled DHEA gavages; in the short term, practically no lipophilic DHEA label was found in plasma. After 24 h only a small fraction of the label remained in the rat organs, with a different sex-related distribution pattern coincident for oleoyl- and free- DHEA gavages. The rapid conversion of oleoyl-DHEA into circulating DHEA-sulfate was investigated using stomach, liver and intestine homogenates; which hydrolysed oleoyl-DHEA optimally near pH 8. Duodenum and ileum contained the highest esterase activities. Pure hog pancreas cholesterol-esterase broke down oleoyl-DHEA at rates similar to those of oleoyl-cholesterol. The intestinal and liver esterases were differently activated by taurocholate and showed different pH-activity patterns than cholesterol esterase, suggesting that oleoyl-DHEA can be hydrolysed by a number of esterases in the lumen (e.g. cholesterol-esterase), in the intestinal wall and the liver.
Conclusion
The esterase activities found may condition the pharmacological availability (and depot effect) of orally administered steroid hormone fatty acid esters such as oleoyl-DHEA. The oral administration of oleoyl-DHEA in order to extend DHEA plasma availability has not been proved effective, since the ester is rapidly hydrolysed, probably in the intestine itself, and mainly converted to DHEA-sulfate at least in females.
doi:10.1186/1471-2210-7-4
PMCID: PMC1831771  PMID: 17346356
13.  Testosterone Increases Circulating Dehydroepiandrosterone Sulfate Levels in the Male Rhesus Macaque 
The adrenal steroid dehydroepiandrosterone (DHEA) and its sulfate (DHEAS) are two of the most abundant hormones in the human circulation. Furthermore, they are released in a circadian pattern and show a marked age-associated decline. Adult levels of DHEA and DHEAS are significantly higher in males than in females, but the reason for this sexual dimorphism is unclear. In the present study, we administered supplementary androgens [DHEA, testosterone and 5α-dihydrotestosterone (DHT)] to aged male rhesus macaques (Macaca mulatta). While this paradigm increased circulating DHEAS immediately after DHEA administration, an increase was also observed following either testosterone or DHT administration, resulting in hormonal profiles resembling levels observed in young males in terms of both amplitude and circadian pattern. This stimulatory effect was limited to DHEAS, as an increase in circulating cortisol was not observed. Taken together, these data demonstrate an influence of the hypothalamo-pituitary–testicular axis on adrenal function in males, possibly by sensitizing the zona reticularis to the stimulating action of adrenocorticopic hormone. This represents a plausible mechanism to explain sex differences in circulating DHEA and DHEAS levels, and may have important implications in the development of hormone therapies designed for elderly men and women.
doi:10.3389/fendo.2014.00101
PMCID: PMC4070064  PMID: 25009533
adrenal gland; aging; androgen; dehydroepiandrosterone; non-human primate; testosterone
14.  DHEA administration and exercise training improves insulin resistance in obese rats 
Background
Dehydroepiandrosterone (DHEA) is precursor of sex steroid hormone. We demonstrated that acute DHEA injection to type 1 diabetes model rats induced improvement of hyperglycemia. However, the effect of the combination of DHEA administration and exercise training on insulin resistance is still unclear. This study was undertaken to determine whether 6-weeks of DHEA administration and/or exercise training improve insulin resistance in obese male rats.
Methods
After 14 weeks of a high-sucrose diet, obese male Wistar rats were assigned randomly to one of four groups: control, DHEA administration, exercise training, and a combination of DHEA administration and exercise training (n = 10 each group).
Results
After 6-weeks of DHEA administration and/or exercise training, rats in the combination group weighed significantly less and had lower serum insulin levels than rats in the other groups. Moreover, the rats treated with DHEA alone or DHEA and exercise had significantly lower fasting glucose levels (combination, 84 ± 6.5 mg/dL; DHEA, 102 ± 9.5 mg/dL; control, 148 ± 10.5 mg/dL). In addition, insulin sensitivity check index showed significant improvements in the combination group (combination, 0.347 ± 0.11; exercise, 0.337 ± 0.16%; DHEA, 0.331 ± 0.14; control, 0.308 ± 0.12). Muscular DHEA and 5α-dihydrotestosterone (DHT) concentrations were significantly higher in the combination group, and closely correlated with the quantitative insulin-sensitivity check index (DHEA: r = 0.71, p < 0.01; DHT: r = 0.69, p < 0.01).
Conclusion
These results showed that a combination of DHEA administration and exercise training effectively improved fasting blood glucose and insulin levels, and insulin sensitivity, which may reflect increased muscular DHEA and DHT concentrations.
doi:10.1186/1743-7075-9-47
PMCID: PMC3433349  PMID: 22647230
Exercise training; Insulin sensitivity; Sex steroid hormone; Obesity
15.  Dehydroepiandrosterone Restoration of Growth Hormone Gene Expression in Aging Female Rats, in Vivo and in Vitro: Evidence for Actions via Estrogen Receptors 
Endocrinology  2005;146(12):5176-5187.
A decline in dehydroepiandrosterone (DHEA) and GH levels with aging may be associated with frailty and morbidity. Little is known about the direct effects of DHEA on somatotropes. We recently reported that 17β-estradiol (E2), a DHEA metabolite, stimulates the expression of GH in vitro in young female rats. To test the hypothesis that DHEA restores function in aging somatotropes, dispersed anterior pituitary (AP) cells from middle-aged (12–14 months) or young (3–4 months) female rats were cultured in vitro with or without DHEA or E2 and fixed for immunolabeling or in situ hybridization. E2 increased the percentage of AP cells with GH protein or mRNA in the aged rats to young levels. DHEA increased the percentages of somatotropes (detected by GH protein or mRNA) from 14–16 ± 2% to 29–31 ± 3% (P ≤0.05) and of GH mRNA (detected by quantitative RT-PCR) only in aging rats. To test DHEA’s in vivo effects, 18-month-old female rats were injected with DHEA or vehicle for 2.5 d, followed by a bolus of GHRH 1 h before death. DHEA treatment increased serum GH 1.8-fold (7 ± 0.5 to 12 ± 1.3 ng/ml; P = 0.02, by RIA) along with a similar increase (P = 0.02) in GH immunolabel. GHRH target cells also increased from 11 ± 1% to 19 ± 2% (P = 0.03). Neither GH nor GHRH receptor mRNAs levels were changed. To test the mechanisms behind DHEA’s actions, AP cells from aging rats were treated with DHEA with or without inhibitors of DHEA metabolism. Trilostane, aminogluthemide, or ICI 182,780 completely blocked the stimulatory effects of DHEA, suggesting that DHEA metabolites may stimulate aging somatotropes via estrogen receptors.
doi:10.1210/en.2005-0811
PMCID: PMC1868401  PMID: 16150906
AP, Anterior pituitary; DHEA, dehydroepiandrosterone; E2, 17β-estradiol; ER, estrogen receptor; GHRH R, GHRH receptor; HPRT, hypoxanthine guanine phosphoribosyltransferase; 3β-HSD, 3β-hydroxysteroid dehydrogenase; IOD, integrated optical density; ITS, insulin, transferrin, sodium selenite, and BSA; QRT-PCR, quantitative RT-PCR
16.  Androgen conversion in osteoarthritis and rheumatoid arthritis synoviocytes – androstenedione and testosterone inhibit estrogen formation and favor production of more potent 5α-reduced androgens 
Arthritis Research & Therapy  2005;7(5):R938-R948.
In synovial cells of patients with osteoarthritis (OA) and rheumatoid arthritis (RA), conversion products of major anti-inflammatory androgens are as yet unknown but may be proinflammatory. Therefore, therapy with androgens in RA could be a problem. This study was carried out in order to compare conversion products of androgens in RA and OA synoviocytes. In 26 OA and 24 RA patients, androgen conversion in synovial cells was investigated using radiolabeled substrates and analysis by thin-layer chromatography and HPLC. Aromatase expression was studied by immunohistochemistry. Dehydroepiandrosterone (DHEA) was converted into androstenediol, androstenedione (ASD), 16αOH-DHEA, 7αOH-DHEA, testosterone, estrone (E1), estradiol (E2), estriol (E3), and 16αOH-testosterone (similar in OA and RA). Surprisingly, levels of E2, E3, and 16α-hydroxylated steroids were as high as levels of testosterone. In RA and OA, 5α-dihydrotestosterone increased conversion of DHEA into testosterone but not into estrogens. The second androgen, ASD, was converted into 5α-dihydro-ASD, testosterone, and negligible amounts of E1, E2, E3, or 16αOH-testosterone. 5α-dihydro-ASD levels were higher in RA than OA. The third androgen, testosterone, was converted into ASD, 5α-dihydro-ASD, 5α-dihydrotestosterone, and negligible quantities of E1 and E2. 5α-dihydrotestosterone was higher in RA than OA. ASD and testosterone nearly completely blocked aromatization of androgens. In addition, density of aromatase-positive cells and concentration of released E2, E3, and free testosterone from superfused synovial tissue was similar in RA and OA but estrogens were markedly higher than free testosterone. In conclusion, ASD and testosterone might be favorable anti-inflammatory compounds because they decrease aromatization and increase anti-inflammatory 5α-reduced androgens. In contrast, DHEA did not block aromatization but yielded high levels of estrogens and proproliferative 16α-hydroxylated steroids. Androgens were differentially converted to pro- and anti-inflammatory steroid hormones via diverse pathways.
doi:10.1186/ar1769
PMCID: PMC1257423  PMID: 16207335
17.  DHEA metabolites activate estrogen receptors alpha and beta 
Steroids  2012;78(1):15-25.
Dehydroepiandrosterone (DHEA) levels were reported to associate with increased breast cancer risk in postmenopausal women, but some carcinogen-induced rat mammary tumor studies question this claim. The purpose of this study was to determine how DHEA and its metabolites affect estrogen receptors α or β (ERα or ERβ) -regulated gene transcription and cell proliferation. In transiently transfected HEK-293 cells, androstenediol, DHEA, and DHEA-S activated ERα. In ERβ transfected HepG2 cells, androstenedione, DHEA, androstenediol, and 7-oxo DHEA stimulated reporter activity. ER antagonists ICI 182,780 (fulvestrant) and 4-hydroxytamoxifen, general P450 inhibitor miconazole, and aromatase inhibitor exemestane inhibited activation by DHEA or metabolites in transfected cells. ERβ-selective antagonist R,R-THC (R,R-cis-diethyl tetrahydrochrysene) inhibited DHEA and DHEA metabolite transcriptional activity in ERβ-transfected cells. Expression of endogenous estrogen-regulated genes: pS2, progesterone receptor, cathepsin D1, and nuclear respiratory factor-1 was increased by DHEA and its metabolites in an ER-subtype, gene, and cell-specific manner. DHEA metabolites, but not DHEA, competed with 17β-estradiol for ERα and ERβ binding and stimulated MCF-7 cell proliferation, demonstrating that DHEA metabolites interact directly with ERα and ERβ in vitro, modulating estrogen target genes in vivo.
doi:10.1016/j.steroids.2012.10.002
PMCID: PMC3529809  PMID: 23123738
estrogen receptors; DHEA; androstendione; androstendiol; transcription
18.  Combined inhibition of glycolysis, the pentose cycle, and thioredoxin metabolism selectively increases cytotoxicity and oxidative stress in human breast and prostate cancer 
Redox Biology  2014;4:127-135.
Inhibition of glycolysis using 2-deoxy-d-glucose (2DG, 20 mM, 24–48 h) combined with inhibition of the pentose cycle using dehydroepiandrosterone (DHEA, 300 µM, 24–48 h) increased clonogenic cell killing in both human prostate (PC-3 and DU145) and human breast (MDA-MB231) cancer cells via a mechanism involving thiol-mediated oxidative stress. Surprisingly, when 2DG+DHEA treatment was combined with an inhibitor of glutathione (GSH) synthesis (l-buthionine sulfoximine; BSO, 1 mM) that depleted GSH>90% of control, no further increase in cell killing was observed during 48 h exposures. In contrast, when an inhibitor of thioredoxin reductase (TrxR) activity (Auranofin; Au, 1 µM), was combined with 2DG+DHEA or DHEA-alone for 24 h, clonogenic cell killing was significantly increased in all three human cancer cell lines. Furthermore, enhanced clonogenic cell killing seen with the combination of DHEA+Au was nearly completely inhibited using the thiol antioxidant, N-acetylcysteine (NAC, 20 mM). Redox Western blot analysis of PC-3 cells also supported the conclusion that thioredoxin-1 (Trx-1) oxidation was enhanced by treatment DHEA+Au and inhibited by NAC. Importantly, normal human mammary epithelial cells (HMEC) were not as sensitive to 2DG, DHEA, and Au combinations as their cancer cell counterparts (MDA-MB-231). Overall, these results support the hypothesis that inhibition of glycolysis and pentose cycle activity, combined with inhibition of Trx metabolism, may provide a promising strategy for selectively sensitizing human cancer cells to oxidative stress-induced cell killing.
Graphical abstract
Highlights
•Inhibition of both glycolysis and pentose cycle causes oxidative stress in human breast and prostate cancer cells.•Combining inhibition of glycolysis and pentose cycle with inhibition of thioredoxin reductase enhances cell killing of these human cancer cells.•The toxicity and oxidative stress is selective for cancer vs. normal cells.
doi:10.1016/j.redox.2014.12.001
PMCID: PMC4309850  PMID: 25560241
2DG, 2-deoxy-d-glucose; NAC, N-acetylcysteine; GSH, glutathione; GSSG, glutathione disulfide; DHEA, dehydroepiandrosterone; Au, auranofin; G6PDH, glucose-6-dehydrogenase; ROS, reactive oxygen species; Trx, thioredoxin; TrxR, thioredoxin reductase; Dehydroepiandrosterone; Pentose phosphate pathway; Oxidative stress; Auranofin; Buthionine sulfoximine; Glutathione; Thioredoxin; 2-Deoxy-d-glucose; Cancer
19.  Preservation of androgen secretion during estrogen suppression with aminoglutethimide in the treatment of metastatic breast carcinoma. 
Journal of Clinical Investigation  1980;65(3):602-612.
We evaluated the comparative effects of aminoglutethimide (AG) on androgen and estrogen levels estrone ([E1], estradiol [E2], plasma dehydroepiandrosterone-sulfate [DHEA-S], testosterone [T], dihydrotestosterone [DHT], delta 4-androstenedione [delta 4-A]), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin in postmenopausal patients with breast cancer randomly allocated to either AG treatment or bilateral surgical adrenalectomy as a control group. In response to either treatment, the plasma levels of E1 fell 62-75% (P less than 0.001) and urine E1 85.7-88.7% (P less than 0.001) in all study days over a 12-wk period. Similarly, the concentrations of E2 in plasma and urine fell 40-72% without statistically significant differences between the two treatment modalities. The relatively weak androgen, DHEA-S, was reduced by 92% (877.3 +/- 184.6 to 71.8 +/- 14.5 ng/ml) at 12 wk in women treated with AG, but suppressed nearly 99% (1,151 +/- 262 to 5.8 +/- 3.3 ng/ml) in adrenalectomized women. At all time points after treatment, the DHEA-S levels were significantly higher in patients receiving AG. Plasma concentrations of the potent androgens, T and DHT, were also relatively preserved during AG treatment. T levels were never significantly reduced by AG, and DHT concentrations were decreased only at the 4th wk to a maximum of 20%. delta 4-A levels fell 56% in response to this drug only on the 12th wk of therapy (basal, 0.79 +/- 0.09 ng/ml; 12 wk, 0.35 +/- 0.07 ng/ml). In marked contrast, all androgens fell significantly at each time period in response to surgical adrenalectomy, with an 81% maximum suppression of T, 73% of DHT, and 97% of delta 4-A. In response to estrogen suppression, plasma levels of FSH, LH, and prolactin did not change significantly throughout the treatment period in either therapy group. To examine possible contributions of the postmenopausal ovary to hormone levels during therapy, data from surgically castrate and spontaneously menopausal women were evaluated separately. No significant differences between the two groups were observed for E1, E2, T, DHT, DHEA-S, delta 4-A, LH, FSH, and prolactin. We conclude that equivalent and highly significant estrogen suppression occurs with either AG or surgical adrenalectomy although androgen secretion is preserved during AG treatment but not after surgical adrenalectomy. The combined effects of estrogen deprivation associated with androgen preservation might be significant in the therapeutic action of AG in hormone-responsive neoplasms.
PMCID: PMC371401  PMID: 6986409
20.  Androgenic Biomarker Profiling in Human Matrices and Cell Culture Samples Using High Through put, Electrospray Tandem Mass Spectrometry 
The Prostate  2014;74(7):722-731.
BACKGROUND
A high throughput, high pressure liquid chromatographic (HPLC) method with triple quadrupole mass spectral detection (LC/MS/MS) was validated for the measurement of 5 endogenous androgens in human plasma and serum and applied to various in vivo and in vitro study samples to pursue a better understanding of the interrelationship of the androgen axis, intracrine metabolism, and castration-recurrent prostate cancer (CaP).
METHODS
A Shimadzu HPLC system interfaced with a Sciex QTRAP 5500 mass spectrometer with electrospray ionization was used with inline column-switching. Samples were liquid/liquid extracted and chromatographed on a Luna C18(2) column at 60°C with a biphasic gradient using a 15-min run time.
RESULTS
The method was validated for five androgens in human plasma and serum, and applied to four sets of samples. Plasma (n = 188) and bone marrow aspirate (n = 129) samples from patients with CaP, who received abiraterone acetate plus prednisone for up to 945 days (135 weeks), had undetectable androgens after 8 weeks of treatment. Plasma dehydroepiandrosterone (DHEA) concentrations were higher in African Americans than Caucasian Americans with newly diagnosed CaP. Analysis of prostate tumor tissue homogenates demonstrated reproducible testosterone (T) and dihydrotestosterone (DHT) concentrations with a minimal sample size of ~1.0–2.0 mg of tissue. Finally, cell pellet and media samples from the LNCaP C4-2 cell line showed conversion of T to DHT.
CONCLUSION
The proposed LC/MS/MS method was validated for quantitation of five endogenous androgens in human plasma and serum, and effectively profiles androgens in clinical specimens and cell culture samples.
PMCID: PMC4335642  PMID: 24847527
androgen axis; prostate cancer; testosterone; dihydrotestosterone; steroid 5α-reductase; LC/MS/MS
21.  Effects of 7-keto Dehydroepiandrosterone on Voluntary Ethanol Intake in Male Rats 
Alcohol (Fayetteville, N.Y.)  2010;45(4):349-354.
Administration of dehydroepiandrosterone (DHEA), a neurosteroid that can negatively modulate the GABAA receptor, has been shown to decrease voluntary intake of ethanol in rats. In vivo, DHEA can be metabolized to a variety of metabolites, including 7-keto DHEA, a metabolite without the prohormonal effects of DHEA. This study compared the effectiveness of 7-keto DHEA to DHEA for reducing ethanol intake in the same group of rats. The subjects, previously trained to drink ethanol using a saccharin-fading procedure, had access to ethanol for thirty minutes daily, and the amount consumed was recorded. Subjects were administered 10 and 56 mg/kg of DHEA or 7-keto DHEA intraperitoneally 15 minutes prior to drinking sessions. Subjects received each particular dose daily until one of two criteria was met; that is, either ethanol intake did not differ by more than 20% of the mean for three consecutive days, or for a maximum of eight days. Both 10 and 56 mg/kg of 7-keto DHEA significantly reduced the dose of ethanol consumed. While 10 mg/kg of 7-keto DHEA produced decreases similar to those found with DHEA, the 56-mg/kg dose of 7-keto DHEA was significantly more effective at decreasing the dose of ethanol consumed than the same dose of DHEA. These results show that 7-keto DHEA is comparable to, or possibly more effective than, DHEA at decreasing ethanol consumption in rats, and that 7-keto DHEA is a compound deserving further investigation as a possible clinical treatment for alcohol abuse without the prohormonal effects of DHEA.
doi:10.1016/j.alcohol.2010.08.020
PMCID: PMC3095668  PMID: 21051179
DHEA; 7-ketoDHEA; neurosteroid; GABAA receptor; ethanol intake; rats
22.  Interactive Effects of Dehydroepiandrosterone and Testosterone on Cortical Thickness during Early Brain Development 
The Journal of Neuroscience  2013;33(26):10840-10848.
Humans and the great apes are the only species demonstrated to exhibit adrenarche, a key endocrine event associated with prepubertal increases in the adrenal production of androgens, most significantly dehydroepiandrosterone (DHEA) and to a certain degree testosterone. Adrenarche also coincides with the emergence of the prosocial and neurobehavioral skills of middle childhood and may therefore represent a human-specific stage of development. Both DHEA and testosterone have been reported in animal and in vitro studies to enhance neuronal survival and programmed cell death depending on the timing, dose, and hormonal context involved, and to potentially compete for the same signaling pathways. Yet no extant brain-hormone studies have examined the interaction between DHEA- and testosterone-related cortical maturation in humans. Here, we used linear mixed models to examine changes in cortical thickness associated with salivary DHEA and testosterone levels in a longitudinal sample of developmentally healthy children and adolescents 4–22 years old. DHEA levels were associated with increases in cortical thickness of the left dorsolateral prefrontal cortex, right temporoparietal junction, right premotor and right entorhinal cortex between the ages of 4–13 years, a period marked by the androgenic changes of adrenarche. There was also an interaction between DHEA and testosterone on cortical thickness of the right cingulate cortex and occipital pole that was most significant in prepubertal subjects. DHEA and testosterone appear to interact and modulate the complex process of cortical maturation during middle childhood, consistent with evidence at the molecular level of fast/nongenomic and slow/genomic or conversion-based mechanisms underlying androgen-related brain development.
doi:10.1523/JNEUROSCI.5747-12.2013
PMCID: PMC3693059  PMID: 23804104
23.  Rapid estrogen regulation of DHEA metabolism in the male and female songbird brain 
Journal of neurochemistry  2007;104(1):244-253.
In the songbird brain, dehydroepiandrosterone (DHEA) is metabolized to the active and aromatizable androgen androstenedione (AE) by 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD). Thus, brain 3β-HSD plays a key role in regulating the steroidal milieu of the nervous system. Previous studies have shown that stress rapidly regulates brain 3β-HSD activity in a sex-specific manner. To elucidate endocrine regulation of brain 3β-HSD, we asked whether 17β-estradiol (E2) regulates DHEA metabolism in adult zebra finch (Taeniopygia guttata) and whether there are sex-specific effects. Brain tissue was homogenized and centrifuged to obtain supernatant lacking whole cells and cell nuclei. Supernatant was incubated with [3H]DHEA and radioinert E2 in vitro. Within only 10 min, E2 significantly reduced 3β-HSD activity in both male and female brain. Interestingly, the rapid effects of E2 were more pronounced in females than males. These are the first data to show a rapid effect of estrogens on the songbird brain and suggest that rapid estrogen effects differ between male and female brains.
doi:10.1111/j.1471-4159.2007.04953.x
PMCID: PMC2954188  PMID: 17949414 CAMSID: cams340
3beta-HSD; 5beta-reductase; androstenedione; aromatase; bird; corticosterone; dehydroepiandrosterone; estradiol; HPLC; neurosteroid; non-genomic; song; stress; testosterone; zebra finch
24.  Androstenediol Complements Estrogenic Bioactivity during the Menopausal Transition 
Menopause (New York, N.y.)  2012;19(6):650-657.
Objective
The perimenopausal increase in circulating dehydroepiandrosterone sulfate (DHEAS) levels during the menopausal transition (MT) is accompanied by other adrenal steroids that have the potential to alter the estrogen/androgen balance and explain the wide inter-woman range of estrogen-related symptoms experienced during the MT.
Methods
Annual serum samples from the Study of Women’s Health Across the Nation (SWAN), which had previously been analyzed for immunoreactive estradiol (E2), testosterone (T), DHEAS and sex hormone binding globulin (SHBG), were selected based on DHEAS concentration and analyzed for immunoreactive and bioactive estrogens and androgens, including immunoreactive androstenedione (Adione), dehydroepiandrosterone (DHEA) and 5-androstene-3β,17β-diol (androstenediol, Adiol).
Results
A two-fold increase in circulating Adione and T was found to rise in parallel with the rise in circulating DHEAS, while DHEA and Adiol concentrations rose seven to eightfold. Circulating Adiol, which has both androgenic and estrogenic biological activity, was significantly associated (p<0.02) with circulating estrogen bioactivity only when E2 concentrations were low and Adiol levels were high.
Conclusions
The wide range of circulating levels of Adiol and its contribution to total circulating estrogenicity during the MT is consistent with the observed inter-woman difference in symptoms at this time. Therefore, we conclude that Adiol contributes to circulating estrogenicity when E2 production falls at menopause and may contribute significantly to the endocrine changes experienced by midlife women.
doi:10.1097/gme.0b013e31823df577
PMCID: PMC3366061  PMID: 22415563
Androstenediol; estrogenicity; menopause; adrenal
25.  Administration of Dehydroepiandrosterone (DHEA) Enhances Visual-Spatial Performance in Post-Menopausal Women 
Behavioral neuroscience  2011;125(5):742-752.
The current paper examines the effect of administering Dehydroepiandrosterone (DHEA) on visual-spatial performance in post-menopausal women (N=24, ages 55-80). The concurrent reduction of serum DHEA levels and visual-spatial performance in this population, coupled with the documented effects of DHEA’s androgenic metabolites on visual-spatial performance, suggest that DHEA administration may enhance visual-spatial performance. The current experiment used a double-blind placebo-controlled crossover design in which 50 mg of oral DHEA was administered daily in the drug condition to explore this hypothesis. Performance on the Mental Rotation, Subject-Ordered Pointing, Fragmented Picture Identification, Perceptual Identification, Same-Different Judgment, and Visual Search tasks and serum levels of DHEA, DHEAS, testosterone, estrone and cortisol were measured in the DHEA and placebo conditions. In contrast to prior experiments using the current methodology that did not demonstrate effects of DHEA administration on episodic and short-term memory tasks, the current experiment demonstrated large beneficial effects of DHEA administration on Mental Rotation, Subject-Ordered Pointing, Fragmented Picture Identification, Perceptual Identification and Same-Different Judgment. Moreover, DHEA administration enhanced serum levels of DHEA, DHEAS, testosterone and estrone, and regression analyses demonstrated that levels of DHEA and its metabolites were positively related to cognitive performance on the visual-spatial tasks in the DHEA condition
doi:10.1037/a0025151
PMCID: PMC3715689  PMID: 21942436
Dehydroepiadrosterone (DHEA); post-menopausal women; cognition; visual-spatial tasks; androgens

Results 1-25 (994634)