Search tips
Search criteria

Results 1-25 (559264)

Clipboard (0)

Related Articles

1.  A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil 
BMC Microbiology  2004;4:11.
Prodigiosin produced by Serratia marcescens is a promising drug owing to its reported characteristics of having antifungal, immunosuppressive and antiproliferative activity. From an industrial point of view the necessity to obtain a suitable medium to simultaneously enhance the growth of Serratia marcescens and the pigment production was the aim of this work. The usage of individual fatty acid as substrate in industries would be cost-effective in the long run and this paved the way for us to try the effect of different fatty acid-containing seeds and oils of peanut, sesame and coconut as source of substrate.
The addition of sugars only showed slight enhancement of prodigiosin production in nutrient broth but not in fatty acid containing seed medium. The powdered peanut broth had supported better growth of Serratia marcescens and higher yield of prodigiosin when compared with the existing nutrient broth and peptone glycerol broth. A block in prodigiosin production was seen above 30°C in nutrient broth, but the fatty acid seed medium used by us supported prodigiosin production upto 42°C though the yields were lower than what was obtained at 28°C. From the results, the fatty acid form of carbon source has a role to play in enhanced cell growth and prodigiosin production.
We conclude by reporting that the powdered and sieved peanut seed of different quality grades were consistent in yielding a fourty fold increase in prodigiosin production over the existing media. A literature survey on the composition of the different media components in nutrient broth, peptone glycerol broth and the fatty acid containing seeds and oils enabled us to propose that the saturated form of fatty acid has a role to play in enhanced cell growth and prodigiosin production. This work has also enabled us to report that the temperature related block of prodigiosin biosynthesis varies with different media and the powdered peanut broth supports prodigiosin production at higher temperatures. The medium suggested in this work is best suitable from an industrial point of view in being economically feasible, in terms of the higher prodigiosin yield and the extraction of prodigiosin described in this paper is simple with minimal wastage.
PMCID: PMC404375  PMID: 15113456
2.  Induction of Prodigiosin Biosynthesis after Shift-Down in Temperature of Nonproliferating Cells of Serratia marcescens 
Applied Microbiology  1972;23(4):704-709.
Nonpigmented bacteria obtained by growth of Serratia marcescens at 38 C synthesized prodigiosin at 25 C if certain individual amino acids were added to cultures of nonproliferating cells. In order of effectiveness, the amino acids were: DL-histidine, L-proline, L-hydroxyproline, DL-alanine, L-alanine, DL-aspartic acid, D-alanine, DL-proline, L-serine, L-ornithine, L-glutamic acid, and D-proline. DL-Histidine at its optimal concentration (20 mg/ml) induced formation of prodigiosin (198 μg of prodigiosin per mg of bacterial protein) after incubation of cultures for 54 hr. Lower concentrations (10 mg/ml) of the other amino acids usually were optimum but less prodigiosin was synthesized, and the maximal amount of pigment occurred between 36 and 48 hr. DL-Methionine was not effective alone but at a low concentration (40 μg/ml) enhanced and accelerated biosynthesis of prodigiosin in the presence of other suitable amino acids. Addition of 2 mg of L-proline per ml at 0 hr induced formation of only 30 μg of prodigiosin after incubation for 42 hr, but addition at 36 hr of 5 mg more of L-proline per ml increased synthesis to 120 μg at 42 hr. Again, DL-methionine markedly augmented prodigiosin biosynthesis in these cultures. Synthesis of prodigiosin ceased if cultures were shifted from 25 to 38 C. Prodigiosin biosynthesis by the nonproliferating cells was maximum when cultures were aerated, the amount of bacterial protein was about 2.0 mg/ml, and amino acids were added at 0 hr. Bacteria synthesized prodigiosin most efficiently when they were harvested from aerated cultures grown at 38 C for 24 hr in a complete medium in a fermentor.
PMCID: PMC380422  PMID: 4553139
3.  Macromolecular syntheses during biosynthesis of prodigiosin by Serratia marcescens. 
Amino acids that were utilized as sole sources of carbon and nitrogen for growth of Serratia marcescens Nima resulted in biosynthesis of prodigiosin in non-proliferating bacteria. Addition of alanine, proline, or histidine to non-proliferating cells incubated at 27 C increased the rate of protein synthesis and also caused biosynthesis of prodigiosin. No increase in the rate of protein synthesis was observed upon the addition of amino acids that did not stimulate prodigiosin biosynthesis. Increased rates of synthesis of ribonucleic acid (RNA) and of deoxyribonucleic acid (DNA) (a small amount) also occurred after addition of amino acids that resulted in biosynthesis of prodigiosin. After incubation of 24 h, the total amount of protein in suspensions of bacteria to which alanine or proline was added increased 67 and 98%, respectively. Total amounts of DNA and of RNA also increased before synthesis of prodigiosin. The amounts of these macromolecules did not increase after addition of amino acids that did not induce biosynthesis of progidiosin. However, macromolecular synthesis was not related only to prodigiosin biosynthesis because the rates of DNA, RNA, and protein synthesis also increased in suspensions of bacteria incubated with proline at 39 C, at which temperature no prodigiosin was synthesized. The quantities of DNA, RNA, and protein synthesized were lower in non-proliferating cells than in growing cells. The data indicated that amino acids causing biosynthesis of prodigiosin in non-proliferating cells must be metabolized and serve as sources of carbon and of nitrogen for synthesis of macromolecules and intermediates. Prodigiosin was synthesized secondarily to these primary metabolic events.
PMCID: PMC169721  PMID: 782359
4.  Role of Methionine in Biosynthesis of Prodigiosin by Serratia marcescens 
Journal of Bacteriology  1973;116(3):1191-1198.
Methionine alone did not allow biosynthesis of prodigiosin (2-methyl-3-amyl-6-methoxyprodigiosene) in nonproliferating cells (NPC) of Serratia marcescens strain Nima. However, when methionine was added to NPC synthesizing prodigiosin in the presence of other amino acids, the lag period for synthesis of prodigiosin was shortened, an increased amount of the pigment was formed, and the optimal concentrations of the other amino acids were reduced. Less prodigiosin was synthesized when addition of methionine was delayed beyond 4 h. The specific activity of prodigiosin synthesized by addition of 14CH3-methionine was 40 to 50 times greater than that synthesized from methionine-2-14C or 14COOH-methionine. NPC of mutant OF of S. marcescens synthesized norprodigiosin (2-methyl-3-amyl-6-hydroxyprodigiosene), and the specific activity of this pigment synthesized in the presence of 14CH3-methionine was only 5 to 13 times greater than that synthesized from methionine-2-14C or 14COOH-methionine. A particulate, cell-free extract of mutant WF of S. marcescens methylated norprodigiosin to form prodigiosin. When the extract was added to NPC of mutant OF synthesizing norprodigiosin in the presence of 14CH3-methionine, the prodigiosin formed had 80% greater specific activity than the norprodigiosin synthesized in the absence of the extract. The C6 hydroxyl group of norprodigiosin was methylated in the presence of the extract and methionine. Biosynthesis of prodigiosin by NPC of strain Nima also was augmented by addition of S-adenosylmethionine. Various analogues of methionine such as norleucine, norvaline, ethionine, and α-methylmethionine did not affect biosynthesis of prodigiosin by NPC either in the presence or absence of methionine.
PMCID: PMC246475  PMID: 4201771
5.  Kinetic Analysis of Growth Rate, ATP, and Pigmentation Suggests an Energy-Spilling Function for the Pigment Prodigiosin of Serratia marcescens▿  
Journal of Bacteriology  2008;190(22):7453-7463.
Serratia marcescens is a gram-negative environmental bacterium and opportunistic pathogen. S. marcescens expresses prodigiosin, a bright red and cell-associated pigment which has no known biological function for producing cells. We present here a kinetic model relating cell, ATP, and prodigiosin concentration changes for S. marcescens during cultivation in batch culture. Cells were grown in a variety of complex broth media at temperatures which either promoted or essentially prevented pigmentation. High growth rates were accompanied by large decreases in cellular prodigiosin concentration; low growth rates were associated with rapid pigmentation. Prodigiosin was induced most strongly during limited growth as the population transitioned to stationary phase, suggesting a negative effect of this pigment on biomass production. Mathematically, the combined rate of formation of biomass and bioenergy (as ATP) was shown to be equivalent to the rate of prodigiosin production. Studies with cyanide inhibition of both oxidative phosphorylation and pigment production indicated that rates of biomass and net ATP synthesis were actually higher in the presence of cyanide, further suggesting a negative regulatory role for prodigiosin in cell and energy production under aerobic growth conditions. Considered in the context of the literature, these results suggest that prodigiosin reduces ATP production by a process termed energy spilling. This process may protect the cell by limiting production of reactive oxygen compounds. Other possible functions for prodigiosin as a mediator of cell death at population stationary phase are discussed.
PMCID: PMC2576671  PMID: 18805986
6.  Influence of Environmental Factors and Medium Composition on Vibrio gazogenes Growth and Prodigiosin Production 
Vibrio gazogenes ATCC 29988 growth and prodigiosin synthesis were studied in batch culture on complex and defined media and in chemostat cultures on defined medium. In batch culture on complex medium, a maximum growth rate of 0.75 h−1 and a maximum prodigiosin concentration of 80 ng of prodigiosin · mg of cell protein−1 were observed. In batch culture on defined medium, maximum growth rates were lower (maximum growth rate, 0.40 h−1), and maximum prodigiosin concentrations were higher (1,500 ng · mg of protein−1). In batch culture on either complex or defined medium, growth was characterized by a period of logarithmic growth followed by a period of linear growth; on either medium, prodigiosin biosynthesis was maximum during linear growth. In batch culture on defined medium, the initial concentration of glucose optimal for growth and pigment production was 3.0%; higher levels of glucose suppressed synthesis of the pigment. V. gazogenes had an absolute requirement for Na+; optimal growth occurred in the presence of 100 mM NaCl. Increases in the concentration of Na+ up to 600 mM resulted in further increases in the concentration of pigment in the broth. Prodigiosin was synthesized at a maximum level in the presence of inorganic phosphate concentrations suboptimal for growth. Concentrations of KH2PO4 above 0.4 mM caused decreased pigment synthesis, whereas maximum cell growth occurred at 1.0 mM. Optimal growth and pigment production occurred in the presence of 8 to 16 mg of ferric ion · liter−1, with higher concentrations proving inhibitory to both growth and pigment production. Both growth and pigment production were found to decrease with increased concentrations of p-aminobenzoic acid. The highest specific concentration of prodigiosin (3,480 ng · mg protein−1) was observed in chemostat cultures at a dilution rate of 0.057 h−1. The specific rate of prodigiosin production at this dilution rate was approximately 80% greater than that observed in batch culture on defined medium. At dilution rates greater than 0.057 h−1, the concentration of cells decreased with increasing dilution rate, resulting in a profile comparable to that expected for linear growth kinetics. No explanation could be found for the linear growth profiles obtained for both batch and chemostat cultures.
PMCID: PMC242530  PMID: 16346306
7.  The Anticancer Agent Prodigiosin Is Not a Multidrug Resistance Protein Substrate 
DNA and Cell Biology  2013;32(3):90-97.
The brilliant red pigments prodiginines are natural secondary metabolites that are produced by select species of Gram-negative and Gram-positive bacteria. These molecules have received significant attention due to their reported antibacterial, antifungal, immunosuppressive, and anticancer activities. In this study, a Serratia marcescens SER1 strain was isolated and verified using 16s rDNA. The prodigiosin was purified using silica chromatography and was analyzed by 1H-NMR spectroscopy. The cell cytotoxic effects of the purified prodigiosin on multiple drug resistant cell lines that overexpress MDR1, BCRP, or MRP2 pumps were analyzed. Prodigiosin had nearly identical cytotoxic effects on the resistant cells in comparison to their parental lines. In agreement with the same prodigiosin cytotoxicity, FACS analysis of prodigiosin accumulation and efflux in MDR overexpressing cell lines also indicated that this pro-apoptotic agent operates independently of the presence of the MDR1, BCRP, or MRP transporter and may be a potential treatment for malignant cancer cells that overexpress multidrug resistance transporters.
The anticancer agent prodigiosin is not a multidrug resistance protein substrate. Prodigiosin, produced by Serratia marcescens, has cytotoxic effects on cells irrespective of whether the cells express MDR1, MRP2, or BCRP pumps of the multidrug resistance families. Therefore this drug may be potentially useful as a treatment for malignancies that overexpress the MDR pumps.
PMCID: PMC3589871  PMID: 23373476
8.  Induction of Pigmentation in Nonproliferating Cells of Serratia marcescens by Addition of Single Amino Acids 
Journal of Bacteriology  1971;106(2):444-448.
Addition of casein hydrolysate to suspensions of washed, nonpigmented, nonproliferating Serratia marcescens incubating at 27 C induced biosynthesis of prodigiosin. Four amino acids of casein hydrolysate, dl-aspartic acid, l-glutamic acid, l-proline, and l-alanine caused formation of pigment when added individually. dl-Ornithine also was effective. Optimal concentrations for maximal pigmentation were 5 to 10 mg/ml; at these high concentrations, d-serine also induced biosynthesis of some prodigiosin. dl-Alanine and -ornithine were as effective as the l-iosomers, but l-glutamic acid and l-proline gave better responses than their racemic mixtures. Kinetics of prodigiosin biosynthesis after addition of dl-alanine (20 mg/ml) were similar to those of cells suspended in 0.2% casein hydrolysate. The other amino acids were less effective. Addition of 5 mg of dl-alanine or casein hydrolysate per ml to minimal medium increased by 30% the amount of prodigiosin formed by growing cells after incubation for 7 days at 27 C. Cultures grown for 7 days at 27 C in 0.2% casein hydrolsate formed more prodigiosin than did suspensions of nonproliferating cells containing individual amino acids or casein hydrolysate. However, more pigment was produced by cells suspended in l-alanine (5 mg/ml) or l-proline (10 mg/ml) than when suspended in 0.4% natural or synthetic casein hydrolysate. Filtrates from suspensions of nonproliferating cells forming pigment in l-proline induced more rapid formation of prodigiosin, but filtrates from suspensions in dl-alanine did not. The data supported the hypothesis that pyrrole groups of prodigiosin may be synthesized from 5-carbon amino acids such as proline, ornithine, aspartic, and glutamic acids, but the role of alanine is unknown.
PMCID: PMC285115  PMID: 4929860
9.  Exceptional Production of both Prodigiosin and Cycloprodigiosin as Major Metabolic Constituents by a Novel Marine Bacterium, Zooshikella rubidus S1-1 ▿ †  
Applied and Environmental Microbiology  2011;77(14):4967-4973.
A Gram-negative, red-pigment-producing marine bacterial strain, designated S1-1, was isolated from the tidal flat sediment of the Yellow Sea, Korea. On the basis of phenotypic, phylogenetic, and genetic data, strain S1-1 (KCTC 11448BP) represented a new species of the genus Zooshikella. Thus, we propose the name Zooshikella rubidus sp. nov. Liquid chromatography and mass spectrometry of the red pigments produced by strain S1-1 revealed that the major metabolic compounds were prodigiosin and cycloprodigiosin. In addition, this organism produced six minor prodigiosin analogues, including two new structures that were previously unknown. To our knowledge, this is the first description of a microorganism that simultaneously produces prodigiosin and cycloprodigiosin as two major metabolites. Both prodigiosin and cycloprodigiosin showed antimicrobial activity against several microbial species. These bacteria were approximately 1.5-fold more sensitive to cycloprodigiosin than to prodigiosin. The metabolites also showed anticancer activity against human melanoma cells, which showed significantly more sensitivity to prodigiosin than to cycloprodigiosin. The secondary metabolite profiles of strain S1-1 and two reference bacterial strains were compared by liquid chromatography-mass spectrometry. Multivariate statistical analyses based on secondary metabolite profiles by liquid chromatography-mass spectrometry indicated that the metabolite profile of strain S1-1 could clearly be distinguished from those of two phylogenetically related, prodigiosin-producing bacterial strains.
PMCID: PMC3147376  PMID: 21642414
10.  Production of Prodigiosin Using Tannery Fleshing and Evaluating Its Pharmacological Effects 
The Scientific World Journal  2014;2014:290327.
Aim. The focal theme of present investigation includes isolation of prodigiosin producing fish gut bacteria, enhancing its production using tannery solid waste fleshing, and evaluation of its pharmacological effect. Methods. Optimization of fermentation conditions to yield maximum prodigiosin, and instrumental analysis using FTIR, NMR, ESI-MS, TGA, and DSC. Results. The optimum conditions required for the maximum prodigiosin concentration were achieved at time 30 h, temperature 30°C, pH 8, and 3% substrate concentration. The secondary metabolite was analyzed using ESI-MS, FTIR, and NMR. Therapeutic efficacy was assessed by in vitro anticancer studies. Among the pathogenic bacteria Pseudomonas aeruginosa was most susceptible at the lowest concentration followed by Salmonella typhi. IC50 concentration was cell line specific (HeLa cells: 4.3 µM, HEp2: 5.2 µM, and KB cells: 4.8 µM) and remains nontoxic up to the concentration of 25 µM on normal Vero cells suggesting that cancerous cells are more susceptible to the prodigiosin at lower concentration. Conclusion. Maximum prodigiosin production was obtained with tannery fleshing. The potency of the fish gut bacterial secondary metabolite prodigiosin as a therapeutic agent was confirmed through in vitro antimicrobial and anticancer studies.
PMCID: PMC3920723  PMID: 24587717
11.  Influence of Temperature of Incubation and Type of Growth Medium on Pigmentation in Serratia marcescens 
Journal of Bacteriology  1971;106(2):438-443.
Maximal amounts of prodigiosin were synthesized in either minimal or complete medium after incubation of cultures at 27 C for 7 days. Biosynthesis of prodigiosin began earlier and the range of temperature for formation was greater in complete medium. No prodigiosin was formed in either medium when cultures were incubated at 38 C; however, after a shift to 27 C, pigmentation ensued, provided the period of incubation at 38 C was not longer than 36 hr for minimal medium or 48 hr for complete medium. Washed, nonpigmented cells grown in either medium at 38 C for 72 hr could synthesize prodigiosin when suspended in saline at 27 C when casein hydrolysate was added. These suspensions produced less prodigiosin at a slower rate than did cultures growing in casein hydrolysate at 27 C without prior incubation at 38 C. Optimal concentration of casein hydrolysate for pigment formation by suspensions was 0.4%; optimal temperature was 27 C. Anaerobic incubation, shift back to 38 C, killing cells by heating, or chloramphenicol (25 μg/ml) inhibited pigmentation. Suspensions of washed cells forming pigment reached pH 8.0 to 8.3 rapidly and maintained this pH throughout incubation for 7 days. Measurements of viable count and of protein, plus other data, indicated that cellular multiplication did not occur in suspensions of washed cells during pigment formation. By this procedure utilizing a shift down in temperature, biosynthesis of prodigiosin by washed cells could be separated from multiplication of bacteria.
PMCID: PMC285114  PMID: 4929859
12.  Effect of Iron and Salt on Prodigiosin Synthesis in Serratia marcescens 
Journal of Bacteriology  1973;114(3):999-1006.
Serratia marcescens wild-types ATCC 264 and Nima grew but did not synthesize prodigiosin in a glycerol-alanine medium containing 10 ng of Fe per ml. Wild-type 264 required the addition of 0.2 μg of Fe per ml for maximal growth and prodigiosin synthesis; Nima required 0.5 μg of Fe per ml. Three percent, but not 0.1%, sea salts inhibited prodigiosin synthesis in a complex medium containing up to 10 μg of Fe per ml. NaCl was the inhibitory sea salt component. The inhibition was not specific for NaCl; equimolar concentrations of Na2SO4, KCl, and K2SO4 also inhibited prodigiosin synthesis. Experiments with strains 264 and Nima and with mutant WF which cannot synthesize 4-methoxy-2-2′-bipyrrole-5-carboxyaldehyde (MBC), the bipyrrole moiety of prodigiosin, and with mutant 9-3-3 which cannot synthesize the monopyrrole moiety 2-methyl-3-amylpyrrole (MAP) showed that both MBC synthesis and the reaction condensing MAP and MBC to form prodigiosin were relatively more sensitive to NaCl inhibition than the MAP-synthesizing step. The capacity of whole cells to condense MAP and MBC was present, but inactive, in cells grown in NaCl; removal of the NaCl from non-proliferating salt-grown cells restored the activity. Other evidence suggests the existence of a common precursor to the MAP- and MBC-synthesizing pathways.
PMCID: PMC285356  PMID: 4576415
Journal of Bacteriology  1963;85(5):1136-1140.
Blizzard, John L. (University of Houston, Houston, Texas) and G. E. Peterson. Selective inhibition of proline-induced pigmentation in washed cells of Serratia marcescens. J. Bacteriol. 85:1136–1140. 1963.—Streptomycin, chloramphenicol, and tetracyclines inhibited the synthesis of prodigiosin by Serratia marcescens strain D1. This occurred at concentrations of the antibiotic too low to inhibit the growth of the organism in either agar media or broth cultures. Nonpigmented cells were produced in broth by either adding streptomycin or incubating at 37 C. After being washed and resuspended in aqueous saline containing either casein hydrolysate, l-proline, or a glycine-succinate mixture and incubated at 27 C for 24 hr, these cells formed pigment. The appearance of pigment was preceded by a lag period of 10 hr. Prodigiosin production by these washed suspensions of cells was completely inhibited by either streptomycin or glucose, or by incubation at 37 C instead of 27 C. Even though pigmentation by washed-cell suspensions was induced by proline, the utilization of proline was not affected by streptomycin or glucose, or by incubation at 37 C. To block pigmentation completely, streptomycin had to be added to proline-supplemented cells before they were 10 hr old. Addition of the antibiotic after the end of the induction period caused either partial or no inhibition of pigment production. Streptomycin caused an increase in the endogenous respiration of S. marcescens but failed to affect the constitutive enzymes that oxidize glucose. The possible relationships of these phenomena are discussed.
Weil (1952) reported that low concentrations of chloramphenicol and certain tetracyclines inhibit the synthesis of prodigiosin while permitting growth by Serratia marcescens. He noted the potential value to “mode-of-action” studies of an organism having certain functions selectively inhibited by antibiotics. We confirmed Weil's (1952) observations and found that streptomycin at low concentration would also inhibit the synthesis of prodigiosin without impeding growth.
Further studies of the selective inhibition of prodigiosin synthesis by streptomycin were performed using nonproliferating suspensions of washed cells (Gott and Williams, 1961). Either a glycine-succinate mixture or l-proline could cause nonproliferating cells to form pigment. A period of induction preceded the formation of pigment. Either streptomycin or glucose, or an incubation temperature of 37 C, inhibited the proline-induced pigmentation by washed cells. Further investigations provided insights to these findings.
PMCID: PMC278295  PMID: 14044006
14.  Mitochondrial dysfunction in Trypanosoma cruzi: the role of Serratia marcescens prodigiosin in the alternative treatment of Chagas disease 
Parasites & Vectors  2011;4:66.
Chagas disease is a health threat for many people, mostly those living in Latin America. One of the most important problems in treatment is the limitation of existing drugs. Prodigiosin, produced by Serratia marcescens (Rhodnius prolixus endosymbiont), belongs to the red-pigmented bacterial prodiginine family, which displays numerous biological activities, including antibacterial, antifungal, antiprotozoal, antimalarial, immunosuppressive, and anticancer properties. Here we describe its effects on Trypanosoma cruzi mitochondria belonging to Tc I and Tc II.
Parasites exposed to prodigiosin altered the mitochondrial function and oxidative phosphorylation could not have a normal course, probably by inhibition of complex III. Prodigiosin did not produce cytotoxic effects in lymphocytes and Vero cells and has better effects than benznidazole. Our data suggest that the action of prodigiosin on the parasites is mediated by mitochondrial structural and functional disruptions that could lead the parasites to an apoptotic-like cell death process.
Here, we propose a potentially useful trypanocidal agent derived from knowledge of an important aspect of the natural life cycle of the parasite: the vector-parasite interaction. Our results indicate that prodigiosin could be a good candidate for the treatment of Chagas disease.
PMCID: PMC3118961  PMID: 21548954
15.  Role of L-proline in the biosynthesis of prodigiosin. 
Nonproliferating cells of Serratia marcescens, wild-type strain Nima, synthesized the pigment, prodigiosin, when saline suspensions were incubated with aeration at 27 degrees C in the presence of proline or alanine. Mutants PutS1 and PutS2 derived from strain Nima formed prodigiosin from alanine, but not from proline, unless alanine also was added. Strain Nima utilized proline as a sole source of carbon and of nitrogen for growth, whereas Put mutants did not. Investigation of enzymes degrading proline showed that the wild-type strain contained proline oxidase, which was absent in Put mutants. The wild type, as well as the mutants, utilized alanine as the sole source of carbon and nitrogen for growth. Although nonproliferating cells of Put mutants failed to synthesize prodigiosin from proline, addition of L-[U-14C]proline to suspensions metabolizing and synthesizing the pigment because of addition of alanine resulted in the incorporation of radioactive label into prodigiosin, as well as into cellular protein. Since Put mutants could not catabolize proline, the incorporation of [14C]proline into the prodigiosin molecule indicated that proline was incorporated directly into the pigment.
PMCID: PMC170306  PMID: 791123
16.  Chromatographic Separation of the Pigment Fractions from a Serratia marcescens Strain1 
Applied Microbiology  1968;16(1):13-20.
A procedure was developed for the separation of pigment fractions in a wild-type Serratia marcescens strain. Separation was achieved by column chromatography and elution with several organic solvents. At least six pigment fractions were obtained from the alumina columns by this technique, whereas only four fractions had been reported previously. Spectral and elemental analyses indicate that, in S. marcescens, prodigiosin is a complex of six fractions, differing in absorption spectra while retaining the general characteristics of the whole pigment.
PMCID: PMC547295  PMID: 4865900
17.  Molecular Interactions of Prodiginines with the BH3 Domain of Anti-Apoptotic Bcl-2 Family Members 
PLoS ONE  2013;8(2):e57562.
Prodigiosin and obatoclax, members of the prodiginines family, are small molecules with anti-cancer properties that are currently under preclinical and clinical trials. The molecular target(s) of these agents, however, is an open question. Combining experimental and computational techniques we find that prodigiosin binds to the BH3 domain in some BCL-2 protein families, which play an important role in the apoptotic programmed cell death. In particular, our results indicate a large affinity of prodigiosin for MCL-1, an anti-apoptotic member of the BCL-2 family. In melanoma cells, we demonstrate that prodigiosin activates the mitochondrial apoptotic pathway by disrupting MCL-1/BAK complexes. Computer simulations with the PELE software allow the description of the induced fit process, obtaining a detailed atomic view of the molecular interactions. These results provide new data to understand the mechanism of action of these molecules, and assist in the development of more specific inhibitors of anti-apoptotic BCL-2 proteins.
PMCID: PMC3583838  PMID: 23460874
18.  Isolation and Purification of Prodigiosin from Vibrio psychroerythrus 
Journal of Bacteriology  1974;118(2):756-757.
The red pigment of Vibrio psychroerythrus (formerly marine psychrophile NRC 1004) was identified as prodigiosin by comparison of its mass spectrum, absorption spectrum in the visible range, and chromatographic behavior with prodigiosin isolated from Serratia marcescens. The properties of the V. psychroerythrus pigment were clearly distinguishable from five other prodigiosin-like compounds isolated from three different microorganisms.
PMCID: PMC246812  PMID: 4597458
19.  Biosynthesis of prodigiosin by non-proliferating wild-type Serratia marcescens and mutants deficient in catabolism of alanine, histidine, and proline. 
Journal of Bacteriology  1977;129(1):124-130.
Mutants of Serratia marcescens Nima, designated as Aut, Hut, or Put, did not utilize L-alanine, L-histidine, or L-proline, respectively, as a sole carbon source but did utilize other amino acids or glycerol as carbon sources. The bacteria were permeable to alanine, histidine, and proline but lacked the enzymes responsible for degradation of these amino acids. The Aut mutant contained no L-alanine dehydrogenase activity, whereas the Hut and Put mutants contained only 7 and 4% of the histidase and proline oxidase activities, respectively, found in the wild-type strain. Rates of oxygen uptake and protein synthesis were significantly lower when the mutants were incubated in the presence of amino acids they could not degrade. Studies of L-[14C]alanine, L-[14C]histidine, and L-[14C]proline incorporation into prodigiosin synthesized by these mutants and the wild-type strain revealed that proline was incorporated intact, whereas all of alanine except the carboxyl group was incorporated into the pigment molecule. Histidine did not enter prodigiosin directly. These data suggested that the presence of unique biosynthetic pathways, independent of primary metabolism, leads to formation of prodigiosin from specific amino acids.
PMCID: PMC234904  PMID: 318635
20.  Droplet enrichment factors of pigmented and nonpigmented Serratia marcescens: possible selective function for prodigiosin. 
Drops produced by bursting bubbles provide a mechanism for the water-to-air transfer and concentration of matter. Bacteria can adsorb to air bubbles rising through bacterial suspensions and enrich the drops formed by the bubbles upon breaking, creating atmospheric biosols which function in dispersal. This bacterial enrichment can be quantified as an enrichment factor (EF), calculated as the ratio of the concentration of bacteria in the drop to that of the bulk bacterial suspension. Bubbles were produced in suspensions of pigmented (prodigiosin-producing) and nonpigmented cultures of Serratia marcescens. EFs for pigmented cultures were greater than EFs for nonpigmented cells. Pigmented cells appeared hydrophobic based on their partitioning in two-phase systems of polyethylene glycol 6000 and dextran T500. The surface hydrophobicity of pigmented cells may result from the hydrophobic nature of prodigiosin and could account for the greater ability of these bacteria to adsorb to air bubbles and enrich airborne droplets. Enhancement of the aerosolization of S. marcescens may be a selective function of the bacterial secondary metabolite prodigiosin.
PMCID: PMC238647  PMID: 3901922
21.  Expression, crystallization and preliminary crystallographic data analysis of PigF, an O-­methyltransferase from the prodigiosin-synthetic pathway in Serratia  
The last step in the biosynthetic pathway of 4-methoxy-2,2′-bipyrrole-5-­carbaldehyde (MBC) is catalyzed by PigF, which transfers a methyl group to 4-­hydroxy-2,2′-bipyrrole-5-carbaldehyde (HBC) to form the terminal product MBC, but its catalytic mechanism is not known. To elucidate its mechanism, recombinant PigF was purified and crystallized.
Prodigiosin, which is a member of the prodiginines, is a red linear tripyrrole compound. A gene cluster for the biosynthesis of prodigiosin has been identified in Serratia and most genes in the cluster have been functionally assigned. A bifurcated biosynthetic pathway for prodigiosin has previously been determined. The last step in the biosynthetic pathway of 4-methoxy-2,2′-bipyrrole-5-­carbaldehyde (MBC) is catalyzed by PigF, which transfers a methyl group to 4-­hydroxy-2,2′-bipyrrole-5-carbaldehyde (HBC) to form the terminal product MBC, but its catalytic mechanism is not known. To elucidate its mechanism, recombinant PigF was purified and crystallized. The crystals belonged to space group P21, with unit-cell parameters a = 69.4, b = 52.4, c = 279.2 Å, β = 96.8°. The native crystals may contain six molecules in the asymmetric unit, with a V M of 2.17 Å3 Da−1 and a solvent content of 43.43%. A full data set was collected at 2.6 Å resolution using synchrotron radiation on beamline BL17U of Shanghai Synchrotron Radiation Facility (SSRF), People’s Republic of China. Molecular replacement was unsuccessful. To solve the structure of PigF by experimental phasing, selenomethionine-derivativized protein crystals were prepared from a condition with 0.01 M spermidine as an additive. One crystal diffracted to 1.9 Å resolution and a full data set was collected on beamline BL17U at SSRF. The crystal belonged to space group P21, with unit-cell parameters a = 69.0, b = 52.9, c = 93.4 Å, β = 97.3°. Heavy-atom substructure determination and phasing by SAD clearly showed that the crystal contains two molecules in the asymmetric unit, with a V M of 2.19 Å3 Da−1 and a solvent content of 43.82%.
PMCID: PMC3412768  PMID: 22869117
PigF; O-methyltransferases; prodigiosin synthesis; Serratia
22.  Inhibition of Quorum Sensing in Serratia marcescens AS-1 by Synthetic Analogs of N-Acylhomoserine Lactone▿  
Applied and Environmental Microbiology  2007;73(20):6339-6344.
Quorum sensing is a regulatory system for controlling gene expression in response to increasing cell density. N-Acylhomoserine lactone (AHL) is produced by gram-negative bacteria, which use it as a quorum-sensing signal molecule. Serratia marcescens is a gram-negative opportunistic pathogen which is responsible for an increasing number of serious nosocomial infections. S. marcescens AS-1 produces N-hexanoyl homoserine lactone (C6-HSL) and N-(3-oxohexanoyl) homoserine lactone and regulates prodigiosin production, swarming motility, and biofilm formation by AHL-mediated quorum sensing. We synthesized a series of N-acyl cyclopentylamides with acyl chain lengths ranging from 4 to 12 and estimated their inhibitory effects on prodigiosin production in AS-1. One of these molecules, N-nonanoyl-cyclopentylamide (C9-CPA), had a strong inhibitory effect on prodigiosin production. C9-CPA also inhibited the swarming motility and biofilm formation of AS-1. A competition assay revealed that C9-CPA was able to inhibit quorum sensing at four times the concentration of exogenous C6-HSL and was more effective than the previously reported halogenated furanone. Our results demonstrated that C9-CPA was an effective quorum-sensing inhibitor for S. marcescens AS-1.
PMCID: PMC2075062  PMID: 17675425
23.  Virulence and Prodigiosin Antibiotic Biosynthesis in Serratia Are Regulated Pleiotropically by the GGDEF/EAL Domain Protein, PigX▿  
Journal of Bacteriology  2007;189(21):7653-7662.
Gram-negative bacteria of the genus Serratia are opportunistic human, plant, and insect pathogens. Serratia sp. strain ATCC 39006 secretes pectinases and cellulases and produces the secondary metabolites carbapenem and prodigiosin. Mutation of a gene (pigX) resulted in an extremely pleiotropic phenotype: prodigiosin antibiotic biosynthesis, plant virulence, and pectinase production were all elevated. PigX controlled secondary metabolism by repressing the transcription of the target prodigiosin biosynthetic operon (pigA-pigO). The transcriptional start site of pigX was determined, and pigX expression occurred in parallel with Pig production. Detailed quantitative intracellular proteome analyses enabled the identification of numerous downstream targets of PigX, including OpgG, mutation of which reduced the production of the plant cell wall-degrading enzymes and virulence. The highly pleiotropic PigX regulator contains GGDEF and EAL domains with noncanonical motifs and is predicted to be membrane associated. Genetic evidence suggests that PigX might function as a cyclic dimeric GMP phosphodiesterase. This is the first characterization of a GGDEF and EAL domain protein in Serratia and the first example of the regulation of antibiotic production by a GGDEF/EAL domain protein.
PMCID: PMC2168757  PMID: 17766413
24.  Enhancement by Sodium Dodecyl Sulfate of Pigment Formation in Serratia marcescens O8 
Three methods were used to determine the enhancement by sodium dodecyl sulfate (SDS) of prodigiosin formation in Serratia marcescens O8. The results of the agar disk diffusion method indicated that pigment formation was dependent upon the concentration of SDS. Diameters of the pigment zones were proportional to the logarithm of SDS concentrations of 300 to 1,500 μg/ml. When bacteria were grown in broth containing SDS from 0 to 800 μg/ml and the pigment extracts were analyzed spectrophotometrically, a similar enhancement of pigment formation was observed. Finally, these results were confirmed by high-performance liquid chromatographic analysis of the extracts. Prodigiosin appeared to be the sole component with increased synthesis. The possible mechanism of the SDS enhancement effect could be explained by an increase in negative binding sites by the association of SDS with a cell envelope component(s). These binding sites may be required for prodigiosin synthesis.
PMCID: PMC241931  PMID: 16345993
25.  Thiamine-induced Formation of the Monopyrrole Moiety of Prodigiosin 
Journal of Bacteriology  1968;96(3):609-616.
Thiamine stimulates the production of a red pigment, which is chromatographically and spectrophotometrically identical to prodigiosin, by growing cultures of Serratia marcescens mutant 9-3-3. This mutant is blocked in the formation of 2-methyl-3-amylpyrrole (MAP), the monopyrrole moiety of prodigiosin, but accumulates 4-methoxy-2,2,′-bipyrrole-5-carboxaldehyde (MBC) and can couple this compound with MAP to form prodigiosin. Addition of thiamine caused production of MAP, and as little as 0.02 mg of thiamine per ml in a peptone-glycerol medium stimulated production of measurable amounts of prodigiosin. Phosphate salts and another type of peptone decreased the thiamine-induced formation of prodigiosin; yeast extract and glycerol enhanced the formation of this substance. Thiamine also enhanced production of prodigiosin by wild-type strain Nima of S. marcescens. The thiamine antagonists, oxythiamine and pyrithiamine, inhibited thiamine-induced production of MAP and of prodigiosin by the mutant strain 9-3-3, formation of prodigiosin by the wild-type strain Nima, and production of MAP by another mutant, strain WF. The pyrimidine moiety of thiamine was only 10% as effective as the vitamin; the thiazole moiety, only 4%; and the two moieties together, 25%. Various other vitamins tested did not stimulate formation of prodigiosin by strain 9-3-3. Thiamine did not stimulate production of prodigiosin by a single-step mutant that showed the same phenotypic block in prodigiosin biosynthesis as strain 9-3-3. This is not surprising since strain 9-3-3 originated as a result of two mutational events. One event may involve thiamine directly, and the other may involve the biosynthesis of MAP. Thiamine is probably involved in the regulation of the biosynthesis of MAP, because the vitamin or inhibitory antagonists must be added during the early phases of growth in order to be effective.
PMCID: PMC252349  PMID: 4895047

Results 1-25 (559264)