PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (748102)

Clipboard (0)
None

Related Articles

1.  Prescriber and staff perceptions of an electronic prescribing system in primary care: a qualitative assessment 
Background
The United States (US) Health Information Technology for Economic and Clinical Health Act of 2009 has spurred adoption of electronic health records. The corresponding meaningful use criteria proposed by the Centers for Medicare and Medicaid Services mandates use of computerized provider order entry (CPOE) systems. Yet, adoption in the US and other Western countries is low and descriptions of successful implementations are primarily from the inpatient setting; less frequently the ambulatory setting. We describe prescriber and staff perceptions of implementation of a CPOE system for medications (electronic- or e-prescribing system) in the ambulatory setting.
Methods
Using a cross-sectional study design, we conducted eight focus groups at three primary care sites in an independent medical group. Each site represented a unique stage of e-prescribing implementation - pre/transition/post. We used a theoretically based, semi-structured questionnaire to elicit physician (n = 17) and staff (n = 53) perceptions of implementation of the e-prescribing system. We conducted a thematic analysis of focus group discussions using formal qualitative analytic techniques (i.e. deductive framework and grounded theory). Two coders independently coded to theoretical saturation and resolved discrepancies through discussions.
Results
Ten themes emerged that describe perceptions of e-prescribing implementation: 1) improved availability of clinical information resulted in prescribing efficiencies and more coordinated care; 2) improved documentation resulted in safer care; 3) efficiencies were gained by using fewer paper charts; 4) organizational support facilitated adoption; 5) transition required time; resulted in workload shift to staff; 6) hardware configurations and network stability were important in facilitating workflow; 7) e-prescribing was time-neutral or time-saving; 8) changes in patient interactions enhanced patient care but required education; 9) pharmacy communications were enhanced but required education; 10) positive attitudes facilitated adoption.
Conclusions
Prescribers and staff worked through the transition to successfully adopt e-prescribing, and noted the benefits. Overall impressions were favorable. No one wished to return to paper-based prescribing.
doi:10.1186/1472-6947-10-72
PMCID: PMC2996338  PMID: 21087524
2.  The Effect of Physicians’ Long-term Use of CPOE on Their Test Management Work Practices 
Objective
To explore physicians’ work practices in relation to their long-term use of a computerized physician order entry system (CPOE).
Design
A cross-sectional qualitative study was conducted in four clinical units in two large Australian teaching hospitals. One hospital had used CPOE for over 10 years to order all clinical laboratory and radiology tests and view test results and the other had used the computerized viewing facility of the system for over seven years with tests ordered manually. Data were collected by non-participatory observations of physicians (55 sessions) and 28 interviews.
Measurements
Content analysis of the observation field notes, reflections on observations and interview transcripts were conducted by two researchers independently. A thematic grounded theory approach was used to derive key themes that would explain physicians work practices associated with CPOE use.
Results
Three themes relating to physicians’ established use of CPOE were identified: (1) the effect of the hospital and clinical environment; (2) changes to work practices; and (3) physicians’ management of information. Physicians’ test management work practices using CPOE were related to diversity between: the hospitals; the clinical units’ environment, and the users of the system.
Conclusion
Hospitals need to understand and analyze physicians’ test management work practices prior to and during the implementation of CPOE to accommodate their diverse ways of working with computerized information systems. In the current mixed media environment, physicians’ use of manual and computerized information systems for sourcing and recording information impacts on efficiency and patient safety.
doi:10.1197/jamia.M2152
PMCID: PMC1656955  PMID: 16929035
3.  Contextual Implementation Model: A Framework for Assisting Clinical Information System Implementations 
Objective
This paper presents a multiple perspectives model of clinical information system implementation, the Contextual Implementation Model (CIM). Although other implementation models have been developed, few are grounded in data and others fail to take adequate account of the clinical environment and users’ requirements.
Design
The CIM arose from qualitative data collected from four clinical units in two large Australian teaching hospitals. The aim of the study was to explore physicians’ test management work practices associated with the compulsory use of a hospital-wide, mandatory computerized provider order entry (CPOE) system.1 The dataset consisted of non-participatory observations of physicians using CPOE (n=55 sessions) and interviews with health professionals (n=28) about test management work practices. Data were analyzed by two researchers independently using an iterative grounded approach.
Results
A core underlying theme of ‘contextual differences’ emerged which explained physicians’ use of the CPOE system in the sites. The CIM focuses attention on diversity at three contextual levels: the organizational level; the clinical or departmental level, and the individual level. Within each of these levels there are dimensions for consideration (for example, organizational culture, leadership and diverse ways of working) which affect physicians’ attitudes to, and use of, CPOE.
Conclusion
The CIM provides a contextual differences perspective which can be used to facilitate the implementation of clinical information systems. Developing a clinical information system implementation model serves as a framework to guide future implementations to ensure their safe and efficient use and also improve the likelihood of uptake by physicians.
doi:10.1197/jamia.M2468
PMCID: PMC2274802  PMID: 18096917
4.  Cost-Effectiveness of a Computerized Provider Order Entry System in Improving Medication Safety Ambulatory Care 
Background
Computerized provider order entry (CPOE) is the process of entering physician orders directly into an electronic health record. Although CPOE has been shown to improve medication safety and reduce health care costs, these improvements have been demonstrated largely in the inpatient setting; the cost-effectiveness in the ambulatory setting remains uncertain.
Objective
The objective was to estimate the cost-effectiveness of CPOE in reducing medication errors and adverse drug events (ADEs) in the ambulatory setting.
Methods
We created a decision-analytic model to estimate the cost-effectiveness of CPOE in a midsized (400 providers) multidisciplinary medical group over a 5-year time horizon— 2010 to 2014— the time frame during which health systems are implementing CPOE to meet Meaningful Use criteria. We adopted the medical group’s perspective and utilized their costs, changes in efficiency, and actual number of medication errors and ADEs. One-way and probabilistic sensitivity analyses were conducted. Scenario analyses were explored.
Results
In the base case, CPOE dominated paper prescribing, that is, CPOE cost $18 million less than paper prescribing, and was associated with 1.5 million and 14,500 fewer medication errors and ADEs, respectively, over 5 years. In the scenario that reflected a practice group of five providers, CPOE cost $265,000 less than paper prescribing, was associated with 3875 and 39 fewer medication errors and ADEs, respectively, over 5 years, and was dominant in 80% of the simulations.
Conclusions
Our model suggests that the adoption of CPOE in the ambulatory setting provides excellent value for the investment, and is a cost-effective strategy to improve medication safety over a wide range of practice sizes.
doi:10.1016/j.jval.2014.01.009
PMCID: PMC4079669  PMID: 24968993
adverse drug events; ambulatory care; computerized physician order entry system; cost-benefit analysis (cost-effectiveness); medication errors
5.  Principles for a Successful Computerized Physician Order Entry Implementation 
To identify success factors for implementing computerized physician order entry (CPOE), our research team took both a top-down and bottom-up approach and reconciled the results to develop twelve overarching principles to guide implementation. A consensus panel of experts produced ten Considerations with nearly 150 sub-considerations, and a three year project using qualitative methods at multiple successful sites for a grounded theory approach yielded ten general themes with 24 sub-themes. After reconciliation using a meta-matrix approach, twelve Principles, which cluster into groups forming the mnemonic CPOE emerged. Computer technology principles include: temporal concerns; technology and meeting information needs; multidimensional integration; and costs. Personal principles are: value to users and tradeoffs; essential people; and training and support. Organizational principles include: foundational underpinnings; collaborative project management; terms, concepts and connotations; and improvement through evaluation and learning. Finally, Environmental issues include the motivation and context for implementing such systems.
PMCID: PMC1480169  PMID: 14728129
6.  Adding insight: A qualitative cross-site study of physician order entry 
Summary
The research questions, strategies, and results of a 7-year qualitative study of computerized physician order entry implementation (CPOE) at successful sites are reviewed over time. The iterative nature of qualitative inquiry stimulates a consecutive stream of research foci, which, with each iteration, add further insight into the overarching research question. A multidisciplinary team of researchers studied CPOE implementation in four organizations using a multi-method approach to address the question “what are the success factors for implementing CPOE?” Four major themes emerged after studying three sites; ten themes resulted from blending the first results with those from a fourth site; and twelve principles were generated when results of a qualitative analysis of consensus conference transcripts were combined with the field data. The study has produced detailed descriptions of factors related to CPOE success and insight into the implementation process.
doi:10.1016/j.ijmedinf.2005.05.005
PMCID: PMC1524826  PMID: 15964780
Attitude to computers; Hospital information systems; User-computer interface; Physician order entry
7.  Evaluation of medium-term consequences of implementing commercial computerized physician order entry and clinical decision support prescribing systems in two ‘early adopter’ hospitals 
Objective
To understand the medium-term consequences of implementing commercially procured computerized physician order entry (CPOE) and clinical decision support (CDS) systems in ‘early adopter’ hospitals.
Materials and methods
In-depth, qualitative case study in two hospitals using a CPOE or a CDS system for at least 2 years. Both hospitals had implemented commercially available systems. Hospital A had implemented a CPOE system (with basic decision support), whereas hospital B invested additional resources in a CDS system that facilitated order entry but which was integrated with electronic health records and offered more advanced CDS. We used a combination of documentary analysis of the implementation plans, audiorecorded semistructured interviews with system users, and observations of strategic meetings and systems usage.
Results
We collected 11 documents, conducted 43 interviews, and conducted a total of 21.5 h of observations. We identified three major themes: (1) impacts on individual users, including greater legibility of prescriptions, but also some accounts of increased workloads; (2) the introduction of perceived new safety risks related to accessibility and usability of hardware and software, with users expressing concerns that some problems such as duplicate prescribing were more likely to occur; and (3) realizing organizational benefits through secondary uses of data.
Conclusions
We identified little difference in the medium-term consequences of a CPOE and a CDS system. It is important that future studies investigate the medium- and longer-term consequences of CPOE and CDS systems in a wider range of hospitals.
doi:10.1136/amiajnl-2013-002252
PMCID: PMC4173168  PMID: 24431334
Cpoe; CDS; Implementation; Adoption; Eprescribing
8.  Computerized Prescriber Order Entry Implementation in a Physician Assistant–Managed Hematology and Oncology Inpatient Service: Effects on Workflow and Task Switching 
Journal of Oncology Practice  2012;9(4):e103-e114.
The authors found that CPOE implementation did not negatively affect time available for direct patient care and that workflow fragmentation decreased, which is likely beneficial.
Purpose:
Little is known about the impact of computerized prescriber order entry (CPOE) systems on inpatient hematology/oncology services. The objective of this study was to quantify the impact of an inpatient CPOE implementation on workflow, with an emphasis on ordering and direct patient care time.
Methods:
We conducted a direct-observation time-and-motion study of the provider team of a hematology/oncology inpatient service both before and after CPOE implementation, characterizing workflow into 60 distinct activity categories. The provider team comprised physician assistants supervised by attending physicians. Results were adjusted to account for variations in the census. We also conducted an analysis of computer logs to assess CPOE system usage.
Results:
Study participants were observed for 228.0 hours over 53 observation sessions. There was little change in the proportion of census-adjusted time spent on ordering (10.2% before v 11.4% after) and on direct patient care (50.7% before v 47.8% after). Workflow fragmentation decreased, with providers spending an average of 131.2 seconds on a continuous task before implementation and 218.3 seconds after (P < .01). An eight-fold decrease in the number of pages was observed during the course of the study.
Conclusion:
CPOE implementation did not negatively affect time available for direct patient care. Workflow fragmentation decreased, which is likely beneficial.
doi:10.1200/JOP.2012.000655
PMCID: PMC3710176  PMID: 23942926
9.  Toward successful migration to computerized physician order entry for chemotherapy 
Current Oncology  2014;21(2):e221-e228.
Background
Computerized physician order entry (cpoe) systems allow for medical order management in a clinical setting. Use of a cpoe has been shown to significantly improve chemotherapy safety by reducing the number of prescribing errors. Usability of these systems has been identified as a critical factor in their successful adoption. However, there is a paucity of literature investigating the usability of cpoe for chemotherapy and describing the experiences of cancer care providers in implementing and using a cpoe system.
Methods
A mixed-methods study, including a national survey and a workshop, was conducted to determine the current status of cpoe adoption in Canadian oncology institutions, to identify and prioritize knowledge gaps in cpoe usability and adoption, and to establish a research agenda to bridge those gaps. Survey respondents were representatives of cancer care providers from each Canadian province. The workshop participants were oncology clinicians, human factors engineers, patient safety researchers, policymakers, and hospital administrators from across Canada, with participation from the United States.
Results
A variety of issues related to implementing and using a cpoe for chemotherapy were identified. The major issues concerned the need for better understanding of current practices of chemotherapy ordering, preparation, and administration; a lack of system selection and procurement guidance; a lack of implementation and maintenance guidance; poor cpoe usability and workflow support; and other cpoe system design issues. An additional three research themes for addressing the existing challenges and advancing successful adoption of cpoe for chemotherapy were identified: The need to investigate variances in workflows and practices in chemotherapy ordering and administrationThe need to develop best-practice cpoe procurement and implementation guidance specifically for chemotherapyThe need to measure the effects of cpoe implementation in medical oncology
Conclusions
Addressing the existing challenges in cpoe usability and adoption for chemotherapy, and accelerating successful migration to cpoe by cancer care providers requires future research focusing on workflow variations, chemotherapy-specific cpoe procurement needs, and implementation guidance needs.
doi:10.3747/co.21.1759
PMCID: PMC3997455  PMID: 24764707
Chemotherapy; cpoe; computerized physician order entry; usability
10.  PHYSICIANS' BELIEFS ABOUT USING EMR AND CPOE: IN PURSUIT OF A CONTEXTUALIZED UNDERSTANDING OF HEALTH IT USE BEHAVIOR 
Purpose
To identify and describe physicians' beliefs about use of electronic medical records (EMR) and computerized provider order entry (CPOE) for inpatient and outpatient care, to build an understanding of what factors shape information technology (IT) use behavior in the unique context of health care delivery.
Methods
Semi-structured qualitative research interviews were carried out, following the beliefs elicitation approach. Twenty physicians from two large Midwest US hospitals participated. Physicians were asked questions to elicit beliefs and experiences pertaining to their use of EMR and CPOE. Questions were based on a broad set of behavior-shaping beliefs and the methods commonly used to elicit those beliefs.
Results
Qualitative analysis revealed numerous themes related to the perceived emotional and instrumental outcomes of EMR and CPOE use; perceived external and personal normative pressure to use those systems; perceived volitional control over use behavior; perceived facilitators and barriers to system use; and perceptions about the systems and how they were implemented. EMR and CPOE were commonly believed to both improve and worsen the ease and quality of personal performance, productivity and efficiency, and patient outcomes. Physicians felt encouraged by employers and others to use the systems but also had personal role-related and moral concerns about doing so. Perceived facilitators and barriers were numerous and had their sources in all aspects of the work system.
Conclusion
Given the breadth and detail of elicited beliefs, numerous design and policy implications can be identified. Additionally, the findings are a first step toward developing a theory of health IT acceptance and use contextualized to the unique setting of health care.
doi:10.1016/j.ijmedinf.2009.12.003
PMCID: PMC2821328  PMID: 20071219
electronic medical records; computerized provider order entry; beliefs elicitation; theory of planned behavior
11.  Lessons learned from implementation of computerized provider order entry in 5 community hospitals: a qualitative study 
Background
Computerized Provider Order Entry (CPOE) can improve patient safety, quality and efficiency, but hospitals face a host of barriers to adopting CPOE, ranging from resistance among physicians to the cost of the systems. In response to the incentives for meaningful use of health information technology and other market forces, hospitals in the United States are increasingly moving toward the adoption of CPOE. The purpose of this study was to characterize the experiences of hospitals that have successfully implemented CPOE.
Methods
We used a qualitative approach to observe clinical activities and capture the experiences of physicians, nurses, pharmacists and administrators at five community hospitals in Massachusetts (USA) that adopted CPOE in the past few years. We conducted formal, structured observations of care processes in diverse inpatient settings within each of the hospitals and completed in-depth, semi-structured interviews with clinicians and staff by telephone. After transcribing the audiorecorded interviews, we analyzed the content of the transcripts iteratively, guided by principles of the Immersion and Crystallization analytic approach. Our objective was to identify attitudes, behaviors and experiences that would constitute useful lessons for other hospitals embarking on CPOE implementation.
Results
Analysis of observations and interviews resulted in findings about the CPOE implementation process in five domains: governance, preparation, support, perceptions and consequences. Successful institutions implemented clear organizational decision-making mechanisms that involved clinicians (governance). They anticipated the need for education and training of a wide range of users (preparation). These hospitals deployed ample human resources for live, in-person training and support during implementation. Successful implementation hinged on the ability of clinical leaders to address and manage perceptions and the fear of change. Implementation proceeded smoothly when institutions identified and anticipated the consequences of the change.
Conclusions
The lessons learned in the five domains identified in this study may be useful for other community hospitals embarking on CPOE adoption.
doi:10.1186/1472-6947-13-67
PMCID: PMC3695777  PMID: 23800211
Quality of care; Clinical decision support; Meaningful use; Transformation
12.  Evaluation and Certification of Computerized Provider Order Entry Systems 
Computerized physician order entry (CPOE) is an application that is used to electronically write physician orders either in the hospital or in the outpatient setting. It is used in about 15% of U.S. Hospitals and a smaller percentage of ambulatory clinics. It is linked with clinical decision support, which provides much of the value of implementing it. A number of studies have assessed the impact of CPOE with respect to a variety of parameters, including costs of care, medication safety, use of guidelines or protocols, and other measures of the effectiveness or quality of care. Most of these studies have been undertaken at CPOE exemplar sites with homegrown clinical information systems. With the increasing implementation of commercial CPOE systems in various settings of care has come evidence that some implementation approaches may not achieve previously published results or may actually cause new errors or even harm. This has lead to new initiatives to evaluate CPOE systems, which have been undertaken by both vendors and other groups who evaluate vendors, focused on CPOE vendor capabilities and effective approaches to implementation that can achieve benefits seen in published studies. In addition, an electronic health record (EHR) vendor certification process is ongoing under the province of the Certification Commission for Health Information Technology (CCHIT) (which includes CPOE) that will affect the purchase and use of these applications by hospitals and clinics and their participation in public and private health insurance programs. Large employers have also joined this focus by developing flight simulation tools to evaluate the capabilities of these CPOE systems once implemented, potentially linking the results of such programs to reimbursement through pay for performance programs. The increasing role of CPOE systems in health care has invited much more scrutiny about the effectiveness of these systems in actual practice which has the potential to improve their ultimate performance.
doi:10.1197/jamia.M2248
PMCID: PMC2215075  PMID: 17077453
13.  Computerized Provider Order Entry Adoption: Implications for Clinical Workflow 
ABSTRACT
OBJECTIVE
To identify and describe unintended adverse consequences related to clinical workflow when implementing or using computerized provider order entry (CPOE) systems.
METHODS
We analyzed qualitative data from field observations and formal interviews gathered over a three-year period at five hospitals in three organizations. Five multidisciplinary researchers worked together to identify themes related to the impacts of CPOE systems on clinical workflow.
RESULTS
CPOE systems can affect clinical work by 1) introducing or exposing human/computer interaction problems, 2) altering the pace, sequencing, and dynamics of clinical activities, 3) providing only partial support for the work activities of all types of clinical personnel, 4) reducing clinical situation awareness, and 5) poorly reflecting organizational policy and procedure.
CONCLUSIONS
As CPOE systems evolve, those involved must take care to mitigate the many unintended adverse effects these systems have on clinical workflow. Workflow issues resulting from CPOE can be mitigated by iteratively altering both clinical workflow and the CPOE system until a satisfactory fit is achieved.
doi:10.1007/s11606-008-0857-9
PMCID: PMC2607519  PMID: 19020942
attitude to computers; hospital information systems; user–computer interface; physician order entry
14.  Computerized provider order entry systems – Research imperatives and organizational challenges facing pathology services 
Information and communication technologies (ICT) are contributing to major changes taking place in pathology and within health services more generally. In this article, we draw on our research experience for over 7 years investigating the implementation and diffusion of computerized provider order entry (CPOE) systems to articulate some of the key informatics challenges confronting pathology laboratories. The implementation of these systems, with their improved information management and decision support structures, provides the potential for enhancing the role that pathology services play in patient care pathways. Beyond eliminating legibility problems, CPOE systems can also contribute to the efficiency and safety of healthcare, reducing the duplication of test orders and diminishing the risk of misidentification of patient samples and orders. However, despite the enthusiasm for CPOE systems, their diffusion across healthcare settings remains variable and is often beset by implementation problems. Information systems like CPOE may have the ability to integrate work, departments and organizations, but unfortunately, health professionals, departments and organizations do not always want to be integrated in ways that information systems allow. A persistent theme that emerges from the research evidence is that one size does not fit all, and system success or otherwise is reliant on the conditions and circumstances in which they are located. These conditions and circumstances are part of what is negotiated in the complex, messy and challenging area of ICT implementation. The solution is not likely to be simple and easy, but current evidence suggests that a combination of concerted efforts, better research designs, more sophisticated theories and hypotheses as well as more skilled, multidisciplinary research teams, tackling this area of study will bring substantial benefits, improving the effectiveness of pathology services, and, as a direct corollary, the quality of patient care.
doi:10.4103/2153-3539.65431
PMCID: PMC2929545  PMID: 20805962
Computerized provider order entry; evaluation studies; hospital information systems; laboratories; pathology
15.  Organization-wide adoption of computerized provider order entry systems: a study based on diffusion of innovations theory 
Background
Computerized provider order entry (CPOE) systems have been introduced to reduce medication errors, increase safety, improve work-flow efficiency, and increase medical service quality at the moment of prescription. Making the impact of CPOE systems more observable may facilitate their adoption by users. We set out to examine factors associated with the adoption of a CPOE system for inter-organizational and intra-organizational care.
Methods
The diffusion of innovation theory was used to understand physicians' and nurses' attitudes and thoughts about implementation and use of the CPOE system. Two online survey questionnaires were distributed to all physicians and nurses using a CPOE system in county-wide healthcare organizations. The number of complete questionnaires analyzed was 134 from 200 nurses (67.0%) and 176 from 741 physicians (23.8%). Data were analyzed using descriptive-analytical statistical methods.
Results
More nurses (56.7%) than physicians (31.3%) stated that the CPOE system introduction had worked well in their clinical setting (P < 0.001). Similarly, more physicians (73.9%) than nurses (50.7%) reported that they found the system not adapted to their specific professional practice (P = < 0.001). Also more physicians (25.0%) than nurses (13.4%) stated that they did want to return to the previous system (P = 0.041). We found that in particular the received relative advantages of the CPOE system were estimated to be significantly (P < 0.001) higher among nurses (39.6%) than physicians (16.5%). However, physicians' agreements with the compatibility of the CPOE and with its complexity were significantly higher than the nurses (P < 0.001).
Conclusions
Qualifications for CPOE adoption as defined by three attributes of diffusion of innovation theory were not satisfied in the study setting. CPOE systems are introduced as a response to the present limitations in paper-based systems. In consequence, user expectations are often high on their relative advantages as well as on a low level of complexity. Building CPOE systems therefore requires designs that can provide rather important additional advantages, e.g. by preventing prescription errors and ultimately improving patient safety and safety of clinical work. The decision-making process leading to the implementation and use of CPOE systems in healthcare therefore has to be improved. As any change in health service settings usually faces resistance, we emphasize that CPOE system designers and healthcare decision-makers should continually collect users' feedback about the systems, while not forgetting that it also is necessary to inform the users about the potential benefits involved.
doi:10.1186/1472-6947-9-52
PMCID: PMC2809050  PMID: 20043843
16.  Physician Order Entry Or Nurse Order Entry? Comparison of Two Implementation Strategies for a Computerized Order Entry System Aimed at Reducing Dosing Medication Errors 
Background
Despite the significant effect of computerized physician order entry (CPOE) in reducing nonintercepted medication errors among neonatal inpatients, only a minority of hospitals have successfully implemented such systems. Physicians' resistance and users' frustration seem to be two of the most important barriers. One solution might be to involve nurses in the order entry process to reduce physicians’ data entry workload and resistance. However, the effect of this collaborative order entry method in reducing medication errors should be compared with a strictly physician order entry method.
Objective
To investigate whether a collaborative order entry method consisting of nurse order entry (NOE) followed by physician verification and countersignature is as effective as a strictly physician order entry (POE) method in reducing nonintercepted dose and frequency medication errors in the neonatal ward of an Iranian teaching hospital.
Methods
A four-month prospective study was designed with two equal periods. During the first period POE was used and during the second period NOE was used. In both methods, a warning appeared when the dose or frequency of the prescribed medication was incorrect that suggested the appropriate dosage to the physicians. Physicians’ responses to the warnings were recorded in a database and subsequently analyzed. Relevant paper-based and electronic medical records were reviewed to increase credibility.
Results
Medication prescribing for 158 neonates was studied. The rate of nonintercepted medication errors during the NOE period was 40% lower than during the POE period (rate ratio 0.60; 95% confidence interval [CI] .50, .71;P < .001). During the POE period, 80% of nonintercepted errors occurred at the prescription stage, while during the NOE period, 60% of nonintercepted errors occurred in that stage. Prescription errors decreased from 10.3% during the POE period to 4.6% during the NOE period (P < .001), and the number of warnings with which physicians complied increased from 44% to 68% respectively (P < .001). Meanwhile, transcription errors showed a nonsignificant increase from the POE period to the NOE period. The median error per patient was reduced from 2 during the POE period to 0 during the NOE period (P = .005). Underdose and curtailed and prolonged interval errors were significantly reduced from the POE period to the NOE period. The rate of nonintercepted overdose errors remained constant between the two periods. However, the severity of overdose errors was lower in the NOE period (P = .02).
Conclusions
NOE can increase physicians' compliance with warnings and recommended dose and frequency and reduce nonintercepted medication dosing errors in the neonatal ward as effectively as POE or even better. In settings where there is major physician resistance to implementation of CPOE, and nurses are willing to participate in the order entry and are capable of doing so, NOE may be considered a beneficial alternative order entry method.
doi:10.2196/jmir.1284
PMCID: PMC2855204  PMID: 20185400
Medical order entry systems; decision support systems, clinical; medication erors; Iran; infant, newborn; patient safety
17.  Some Unintended Consequences of Clinical Decision Support Systems 
Clinical decision support systems (CDS) coupled with computerized physician/provider order entry (CPOE) can improve the quality of patient care and the efficiency of hospital operations. However, they can also produce unintended consequences. Using qualitative methods, a multidisciplinary team gathered and analyzed data about the unintended consequences of CPOE, identifying nine types, and found that CDS-generated unintended consequences appeared among all types. Further analysis of 47 CDS examples uncovered three themes related to CDS content: elimination or shifting of human roles; difficulty in keeping content current; and inappropriate content. Three additional themes related to CDS presentation were found: rigidity of the system; alert fatigue; and potential for errors. Management of CDS must include careful selection and maintenance of content and prudent decision making about human computer interaction opportunities.
PMCID: PMC2813668  PMID: 18693791
18.  Computerized Physician Order Entry - effectiveness and efficiency of electronic medication ordering with decision support systems 
Health political background
Computerized physician order entry (CPOE) systems are software to electronically enter medication orders. They can be equipped with tools for decision support (CDS). In Germany, various vendors offer such systems for hospitals and physicians’ offices. These systems have mostly been developed during the last five to ten years.
Scientific background
CPOE-systems exist since the 1970’s. Usually, clinical decision support is integrated into the CPOE to avoid errors.
Research questions
This HTA-report aims to evaluate the effectiveness and efficiency of CPOE-/CDS-systems and their ethical, social and legal aspects.
Methods
The systematic literature search (27 international data bases) yielded 791 abstracts. Following a two-part selection process, twelve publications were included in the assessment.
Results
All reviews and studies included in the present report show that the use of CPOE-/CDS-systems can lead to a reduction of medication errors. Minor errors can be eliminated almost completely. The effect of CPOE-/CDS-systems on the rate of adverse drug events (ADE) is evaluated in only two primary studies with conflicting results. It is difficult to compare the results of economical studies because they evaluate different settings, interventions and time frames. In addition, the documentation often is not fully transparent. All four studies included measure costs and effects from the perspective of a hospital or hospital affiliation. Concerning social aspects, the literature points at changes regard competing interests of technology and humans that result from the implementation of CPOE-systems. The experience of institutions in which the implementation of CPOE-systems leads to problems showed that the importance of considering the socio-organisational context had partly been underestimated.
Discussion
CPOE-/CDS-systems are able to reduce the rate of medication errors when ordering medications. The adherence to guidelines, communication, patient care and personnel satisfaction can also be affected positively. However, the literature also reports negative effects, as through the use of CPOE-/CDS-systems new errors can be generated. This makes continuous revisions of the system, as well as data-updates necessary. Concerning the cost-benefit-ratio from the hospital perspective, the two qualitatively best economic studies show contradictory results. Therefore, a positive cost-benefit-ratio for individual hospitals cannot be assumed, particularly as the study results cannot be generalized.
Conclusions
If the implementation of CPOE-/CDS-systems is well planned and conducted, the system adapted to the needs of the institution and continuously reviewed, and data used are updated on a regular basis, the rate of medication ordering errors can be reduced considerably by using CPOE-/CDS-systems. However, it is not clear how this results in a reduction of ADE. Prospective, systematic multi-centre evaluation-studies with clear methodology are needed, which include an analysis of the user-friendliness and of social and technical aspects of the system. Such studies should evaluate the impact a CPOE-/CDS-system has on ADE-rates and mortality. A detailed description of the system used and of the hospital evaluated is essential. If possible, costs and cost effects should be surveyed and documented transparently.
doi:10.3205/hta000069
PMCID: PMC3011281  PMID: 21289894
19.  Overdependence on Technology: An Unintended Adverse Consequence of Computerized Provider Order Entry  
Computerized provider order entry(CPOE) and other clinical information systems can help reduce medical errors, promote practice standardization, and improve the quality of patient care. However, implementing these systems can result in unintended adverse consequences. Our multidisciplinary team used qualitative methods to gather and analyze data describing unintended adverse consequences related to CPOE adoption and use. Overdependence on technology emerged as one of nine major types we identified. Careful analysis of these data revealed three themes: 1) system downtime can create chaos when there are insufficient backup systems in place, 2) users have false expectations regarding data accuracy and processing, and 3) some clinicians cannot work efficiently without computerized systems. We provide recommendations for mitigating these important issues.
PMCID: PMC2710605  PMID: 18693805
20.  A Cross-site Qualitative Study of Physician Order Entry 
Objective: To describe the perceptions of diverse professionals involved in computerized physician order entry (POE) at sites where POE has been successfully implemented and to identify differences between teaching and nonteaching hospitals.
Design: A multidisciplinary team used observation, focus groups, and interviews with clinical, administrative, and information technology staff to gather data at three sites. Field notes and transcripts were coded using an inductive approach to identify patterns and themes in the data.
Measurements: Patterns and themes concerning perceptions of POE were identified.
Results: Four high-level themes were identified: (1) organizational issues such as collaboration, pride, culture, power, politics, and control; (2) clinical and professional issues involving adaptation to local practices, preferences, and policies; (3) technical/implementation issues, including usability, time, training and support; and (4) issues related to the organization of information and knowledge, such as system rigidity and integration. Relevant differences between teaching and nonteaching hospitals include extent of collaboration, staff longevity, and organizational missions.
Conclusion: An organizational culture characterized by collaboration and trust and an ongoing process that includes active clinician engagement in adaptation of the technology were important elements in successful implementation of physician order entry at the institutions that we studied.
doi:10.1197/jamia.M770
PMCID: PMC150372  PMID: 12595408
21.  Caregiver involvement in a large clinical systems project. 
The Kaiser Permanente Northern California Region (KPNCR) CareGiver Workstation (CGW) Project's mission is to develop and implement a clinical workstation system that will enhance each caregiver-member interaction and aid in the decision-making processes of direct patient care in the inpatient and outpatient settings. The requirements analysis approach for CareGiver Workstation (CGW) is based on the belief that extensive caregiver involvement will provide a better understanding of the diverse needs of Kaiser Permanente Northern California Region (KPNCR). In order to involve as many caregivers as reasonably possible, CGW included a 16 member caregiver core team and 6 different Medical Centers in the requirements definition process. The Medical Centers are referred to as "focus facilities". A "focus group" (caregiver team) at each selected focus facility consisted of a site coordinator and a 24-30 person multidisciplinary team involving physicians, nurses, therapists and other caregivers. The Medical Center selection process identified facilities that provided the best cross-sectional representation of KPNCR. The Lead Focus Facility participated in the initial round of requirements definition activities. These sessions assisted in the design of a simulation that was used at five additional Medical Centers to validate requirements. The five additional Focus Facilities participated in simulation review sessions. Feedback from these sessions was used to revise the simulation and update the requirements document. Caregivers from all six focus facilities and other identified groups participated in a requirements survey to assist CGW with identification of high priority features. Caregiver commitment and continuing involvement are essential for the success of CGW.(ABSTRACT TRUNCATED AT 250 WORDS)
PMCID: PMC2247837  PMID: 7949953
22.  Effect of Computerized Physician Order Entry on Imaging Study Indication 
The effect of computerized physician order entry (CPOE) on imaging indication quality had only been measured in one institution’s emergency department using a homegrown electronic health record with faculty physicians, and only with one instrument. To better understand how many US hospitals’ recent CPOE implementations had affected indication quality, we measured its effect in a generalizable inpatient setting, using one existing and one novel instrument.
We retrospectively analyzed the indications for 100 randomly selected inpatient abdominal computed tomography studies during two calendar months immediately prior to a 3/3/2012 CPOE implementation (1/1/2012–2/29/2012) and during two subsequent calendar months (5/1/2012–6/30/2012). We excluded two intervening months to avoid behaviors associated with adoption. We measured indication quality using a published 8-point explicit scoring scale and our own, novel, implicit 7-point Likert scale.
Explicit scores increased 93% from a pre-CPOE mean ±95% CI of 1.4 ±0.2 to a CPOE mean of 2.7 ±0.3 (p<0.01). Implicit scores increased 26% from a pre-CPOE mean of 4.3 ±0.3 to a CPOE mean of 5.4 ±0.2 (p < 0.05). When presented with a statement that an indication was “extremely helpful,” and choices ranging from “strongly disagree” = 1 to “strongly agree” = 7, implicit scores of 4 and 5 signified “undecided” and “somewhat agree,” respectively.
In an inpatient setting with strong external validity to other US hospitals, CPOE implementation increased indication quality, as measured by two independent scoring systems (one pre-existing explicit system and one novel, intuitive implicit system). CPOE thus appears to enhance communication from ordering clinicians to radiologists.
doi:10.1016/j.jacr.2014.07.028
PMCID: PMC4284426  PMID: 25557572
Computerized physician order entry; Diagnostic imaging; Referral and consultation; Medical informatics
23.  Health care failure mode and effect analysis: a useful proactive risk analysis in a pediatric oncology ward 
Background
Pediatric inpatient settings are known for their high medication error rate. The aim of this study was to investigate whether the Health Care Failure Mode and Effect Analysis (HFMEA) is a valid proactive method to evaluate circumscribed health care processes like prescription up to and including administration of chemotherapy (vincristine) in the pediatric oncology inpatient setting.
Methods
A multidisciplinary team consisting of a team leader, pharmacy, nursing and medical staff and a patient's parent was assembled in a pediatric oncology ward with a computerized physician order entry system. A flow diagram of the process was made and potential failure modes were identified and evaluated using a hazard scoring matrix. Using a decision tree, it was determined for which failure mode recommendations had to be made.
Results
The process was divided into three main parts: prescription, processing by the pharmacy, and administration. Fourteen out of 61 failure modes were classified as high risk, 10 of which were sufficiently covered by current protocols. For the other four failure modes, five recommendations were made. Four additional recommendations were made concerning non‐high risk failure modes. Most of them were implemented by the hospital management. The whole process took seven meetings and a total of 140 man‐hours.
Conclusions
The systematic approach of HFMEA by a multidisciplinary team is a useful method for detecting failure modes. A patient or a parent of a patient contributes to the multidisciplinarity of the team.
doi:10.1136/qshc.2005.014902
PMCID: PMC2564000  PMID: 16456212
failure mode and effect analysis; medication error; patient safety; children
24.  Ranked Levels of Influence Model: Selecting Influence Techniques to Minimize IT Resistance 
Journal of biomedical informatics  2010;44(3):497-504.
Implementation of electronic health records (EHR), particularly computerized physician/provider order entry systems (CPOE), is often met with resistance. Influence presented at the right time, in the right manner, may minimize resistance or at least limit the risk of complete system failure. Combining established theories on power, influence tactics, and resistance, we developed the Ranked Levels of Influence model. Applying it to documented examples of EHR/CPOE failures at Cedars-Sinai and Kaiser Permanente in Hawaii, we evaluated the influence applied, the resistance encountered, and the resulting risk to the system implementation. Using the Ranked Levels of Influence model as a guideline, we demonstrate that these system failures were associated with the use of hard influence tactics that resulted in higher levels of resistance. We suggest that when influence tactics remain at the soft tactics level, the level of resistance stabilizes or de-escalates and the system can be saved.
doi:10.1016/j.jbi.2010.02.007
PMCID: PMC2892561  PMID: 20176135
power; resistance; influence; electronic health records; clinical informatics; socio-technical; human factors; hospital information systems; medical order entry systems
25.  Computer order entry systems in the emergency department significantly reduce the time to medication delivery for high acuity patients 
Background
Computerized physician order entry (CPOE) systems are designed to increase safety and improve quality of care; however, their impact on efficiency in the ED has not yet been validated. This study examined the impact of CPOE on process times for medication delivery, laboratory utilization and diagnostic imaging in the early, late and control phases of a regional ED-CPOE implementation.
Methods
Setting: Three tertiary care hospitals serving a population in excess of 1 million inhabitants that initiated the same CPOE system during the same 3-week time window. Patients were stratified into three groupings: Control, Early CPOE and Late CPOE (n = 200 patients per group/hospital site). Eligible patients consisted of a stratified (40% CTAS 2 and 60% CTAS 3) random sample of all patients seen 30 days preceding CPOE implementation (Control), 30 days immediately after CPOE implementation (Early CPOE) and 5–6 months after CPOE implementation (Late CPOE). Primary outcomes were time to (TT) from physician assignment (MD-sign) up to MD-order completion. An ANOVA and t-test were employed for statistical analysis.
Results
In comparison with control, TT 1st MD-Ordered Medication decreased in both the Early and Late CPOE groups (102.6 min control, 62.8 Early and 65.7 late, p < 0.001). TT 1st MD-ordered laboratory results increased in both the Early and Late CPOE groups compared to Control (76.4, 85.3 and 73.8 min, respectively, p < 0.001). TT 1st X-Ray also significantly increased in both the Early and Late CPOE groups (80.4, 84.8 min, respectively, compared to 68.1, p < 0.001). Given that CT and ultrasound imaging inherently takes increased time, these imaging studies were not included, and only X-ray was examined. There was no statistical difference found between TT discharge and consult request.
Conclusions
Regional implementation of CPOE afforded important efficiencies in time to medication delivery for high acuity ED patients. Increased times observed for laboratory and radiology results may reflect system issues outside of the emergency department and as a result of potential confounding may not be a reflection of CPOE impact.
doi:10.1186/1865-1380-6-20
PMCID: PMC3707763  PMID: 23830095

Results 1-25 (748102)