PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (911957)

Clipboard (0)
None

Related Articles

1.  Eurocan plus report: feasibility study for coordination of national cancer research activities 
Summary
The EUROCAN+PLUS Project, called for by the European Parliament, was launched in October 2005 as a feasibility study for coordination of national cancer research activities in Europe. Over the course of the next two years, the Project process organized over 60 large meetings and countless smaller meetings that gathered in total over a thousand people, the largest Europe–wide consultation ever conducted in the field of cancer research.
Despite a strong tradition in biomedical science in Europe, fragmentation and lack of sustainability remain formidable challenges for implementing innovative cancer research and cancer care improvement. There is an enormous duplication of research effort in the Member States, which wastes time, wastes money and severely limits the total intellectual concentration on the wide cancer problem. There is a striking lack of communication between some of the biggest actors on the European scene, and there are palpable tensions between funders and those researchers seeking funds.
It is essential to include the patients’ voice in the establishment of priority areas in cancer research at the present time. The necessity to have dialogue between funders and scientists to establish the best mechanisms to meet the needs of the entire community is evident. A top priority should be the development of translational research (in its widest form), leading to the development of effective and innovative cancer treatments and preventive strategies. Translational research ranges from bench–to–bedside innovative cancer therapies and extends to include bringing about changes in population behaviours when a risk factor is established.
The EUROCAN+PLUS Project recommends the creation of a small, permanent and independent European Cancer Initiative (ECI). This should be a model structure and was widely supported at both General Assemblies of the project. The ECI should assume responsibility for stimulating innovative cancer research and facilitating processes, becoming the common voice of the cancer research community and serving as an interface between the cancer research community and European citizens, patients’ organizations, European institutions, Member States, industry and small and medium enterprises (SMEs), putting into practice solutions aimed at alleviating barriers to collaboration and coordination of cancer research activities in the European Union, and dealing with legal and regulatory issues. The development of an effective ECI will require time, but this entity should be established immediately. As an initial step, coordination efforts should be directed towards the creation of a platform on translational research that could encompass (1) coordination between basic, clinical and epidemiological research; (2) formal agreements of co–operation between comprehensive cancer centres and basic research laboratories throughout Europe and (3) networking between funding bodies at the European level.
The European Parliament and its instruments have had a major influence in cancer control in Europe, notably in tobacco control and in the implementation of effective population–based screening. To make further progress there is a need for novelty and innovation in cancer research and prevention in Europe, and having a platform such as the ECI, where those involved in all aspects of cancer research can meet, discuss and interact, is a decisive development for Europe.
Executive Summary
Cancer is one of the biggest public health crises facing Europe in the 21st century—one for which Europe is currently not prepared nor preparing itself. Cancer is a major cause of death in Europe with two million casualties and three million new cases diagnosed annually, and the situation is set to worsen as the population ages.
These facts led the European Parliament, through the Research Directorate-General of the European Commission, to call for initiatives for better coordination of cancer research efforts in the European Union. The EUROCAN+PLUS Project was launched in October 2005 as a feasibility study for coordination of national cancer research activities. Over the course of the next two years, the Project process organized over 60 large meetings and countless smaller meetings that gathered in total over a thousand people. In this respect, the Project became the largest Europe-wide consultation ever conducted in the field of cancer research, implicating researchers, cancer centres and hospitals, administrators, healthcare professionals, funding agencies, industry, patients’ organizations and patients.
The Project first identified barriers impeding research and collaboration in research in Europe. Despite a strong tradition in biomedical science in Europe, fragmentation and lack of sustainability remain the formidable challenges for implementing innovative cancer research and cancer care improvement. There is an enormous duplication of research effort in the Member States, which wastes time, wastes money and severely limits the total intellectual concentration on the wide cancer problem. There is a striking lack of communication between some of the biggest actors on the European scene, and there are palpable tensions between funders and those researchers seeking funds.
In addition, there is a shortage of leadership, a multiplicity of institutions each focusing on its own agenda, sub–optimal contact with industry, inadequate training, non–existent career paths, low personnel mobility in research especially among clinicians and inefficient funding—all conspiring against efficient collaboration in cancer care and research. European cancer research today does not have a functional translational research continuum, that is the process that exploits biomedical research innovations and converts them into prevention methods, diagnostic tools and therapies. Moreover, epidemiological research is not integrated with other types of cancer research, and the implementation of the European Directives on Clinical Trials 1 and on Personal Data Protection 2 has further slowed the innovation process in Europe. Furthermore, large inequalities in health and research exist between the EU–15 and the New Member States.
The picture is not entirely bleak, however, as the European cancer research scene presents several strengths, such as excellent basic research and clinical research and innovative etiological research that should be better exploited.
When considering recommendations, several priority dimensions had to be retained. It is essential that proposals include actions and recommendations that can benefit all Member States of the European Union and not just States with the elite centres. It is also essential to have a broader patient orientation to help provide the knowledge to establish cancer control possibilities when we exhaust what can be achieved by the implementation of current knowledge. It is vital that the actions proposed can contribute to the Lisbon Strategy to make Europe more innovative and competitive in (cancer) research.
The Project participants identified six areas for which consensus solutions should be implemented in order to obtain better coordination of cancer research activities. The required solutions are as follows. The proactive management of innovation, detection, facilitation of collaborations and maintenance of healthy competition within the European cancer research community.The establishment of an exchange portal of information for health professionals, patients and policy makers.The provision of guidance for translational and clinical research including the establishment of a translational research platform involving comprehensive cancer centres and cancer research centres.The coordination of calls and financial management of cancer research projects.The construction of a ‘one–stop shop’ as a contact interface between the industry, small and medium enterprises, scientists and other stakeholders.The support of greater involvement of healthcare professionals in translational research and multidisciplinary training.
In the course of the EUROCAN+PLUS consultative process, several key collaborative projects emerged between the various groups and institutes engaged in the consultation. There was a collaboration network established with Europe’s leading Comprehensive Cancer Centres; funding was awarded for a closer collaboration of Owners of Cancer Registries in Europe (EUROCOURSE); there was funding received from FP7 for an extensive network of leading Biological Resource Centres in Europe (BBMRI); a Working Group identified the special needs of Central, Eastern and South–eastern Europe and proposed a remedy (‘Warsaw Declaration’), and the concept of developing a one–stop shop for dealing with academia and industry including the Innovative Medicines Initiative (IMI) was discussed in detail.
Several other dimensions currently lacking were identified. There is an absolute necessity to include the patients’ voice in the establishment of priority areas in cancer research at the present time. It was a salutary lesson when it was recognized that all that is known about the quality of life of the cancer patient comes from the experience of a tiny proportion of cancer patients included in a few clinical trials. The necessity to have dialogue between funders and scientists to establish the best mechanisms to meet the needs of the entire community was evident. A top priority should be the development of translational research (in its widest form) and the development of effective and innovative cancer treatments and preventative strategies in the European Union. Translational research ranges from bench-to-bedside innovative cancer therapies and extends to include bringing about changes in population behaviours when a risk factor is established.
Having taken note of the barriers and the solutions and having examined relevant examples of existing European organizations in the field, it was agreed during the General Assembly of 19 November 2007 that the EUROCAN+PLUS Project had to recommend the creation of a small, permanent and neutral ECI. This should be a model structure and was widely supported at both General Assemblies of the project. The proposal is based on the successful model of the European Molecular Biology Organisation (EMBO), and its principal aims include providing a forum where researchers from all backgrounds and from all countries can meet with members of other specialities including patients, nurses, clinicians, funders and scientific administrators to develop priority programmes to make Europe more competitive in research and more focused on the cancer patient.
The ECI should assume responsibility for: stimulating innovative cancer research and facilitating processes;becoming the common voice of the cancer research community and serving as an interface between the cancer research community and European citizens, patients’ and organizations;European institutions, Member States, industry and small and medium enterprises;putting into practice the aforementioned solutions aimed at alleviating barriers and coordinating cancer research activities in the EU;dealing with legal and regulatory issues.
Solutions implemented through the ECI will lead to better coordination and collaboration throughout Europe, more efficient use of resources, an increase in Europe’s attractiveness to the biomedical industry and better quality of cancer research and education of health professionals.
The Project considered that European legal instruments currently available were inadequate for addressing many aspects of the barriers identified and for the implementation of effective, lasting solutions. Therefore, the legal environment that could shelter an idea like the ECI remains to be defined but should be done so as a priority. In this context, the initiative of the European Commission for a new legal entity for research infrastructure might be a step in this direction. The development of an effective ECI will require time, but this should be established immediately. As an initial step, coordination efforts should be directed towards the creation of a platform on translational research that could encompass: (1) coordination between basic, clinical and epidemiological research; (2) formal agreements of co-operation between comprehensive cancer centres and basic research laboratories throughout Europe; (3) networking between funding bodies at the European level. Another topic deserving immediate attention is the creation of a European database on cancer research projects and cancer research facilities.
Despite enormous progress in cancer control in Europe during the past two decades, there was an increase of 300,000 in the number of new cases of cancer diagnosed between 2004 and 2006. The European Parliament and its instruments have had a major influence in cancer control, notably in tobacco control and in the implementation of effective population–based screening. To make further progress there is a need for novelty and innovation in cancer research and prevention in Europe, and having a platform such as the ECI, where those involved in all aspects of cancer research can meet, discuss and interact, is a decisive development for Europe.
doi:10.3332/ecancer.2011.84
PMCID: PMC3234055  PMID: 22274749
2.  The Science Behind Health Information Technology Implementation: Understanding Failures and Building on Successes 
Everyone attending the AMIA conference has likely either heard about or had firsthand experience of a failed health information technology implementation. The line dividing failed implementations from successful ones frequently seems perilously thin, dependent on people and organizational factors as much as on technology design. What implementation lessons have informatics researchers and practitioners learned from prior failures and successes? Can the research domain of Implementation Science assist practitioners to improve implementation planning and execution? Implementation Science draws on multiple disciplines and perspectives (e.g., clinical, organizational, engineering, behavioral, social science) to understand technology adoption, explore patterns of technology use, and define organizational strategies for sustainable deployment. Through two case study presentations and a series of questions, our presentation will actively engage the audience in a discussion of what an evidence-based approach to implementation might mean at different institutions and explore practical implications of Implementation Science for decision-makers and technology implementers. The presentation will translate research on implementation into implementation lessons and practical strategies for practitioners.
PMCID: PMC3540579
3.  Implementing community-based provider participation in research: an empirical study 
Background
Since 2003, the United States National Institutes of Health (NIH) has sought to restructure the clinical research enterprise in the United States by promoting collaborative research partnerships between academically-based investigators and community-based physicians. By increasing community-based provider participation in research (CBPPR), the NIH seeks to advance the science of discovery by conducting research in clinical settings where most people get their care, and accelerate the translation of research results into everyday clinical practice. Although CBPPR is seen as a promising strategy for promoting the use of evidence-based clinical services in community practice settings, few empirical studies have examined the organizational factors that facilitate or hinder the implementation of CBPPR. The purpose of this study is to explore the organizational start-up and early implementation of CBPPR in community-based practice.
Methods
We used longitudinal, case study research methods and an organizational model of innovation implementation to theoretically guide our study. Our sample consisted of three community practice settings that recently joined the National Cancer Institute’s (NCI) Community Clinical Oncology Program (CCOP) in the United States. Data were gathered through site visits, telephone interviews, and archival documents from January 2008 to May 2011.
Results
The organizational model for innovation implementation was useful in identifying and investigating the organizational factors influencing start-up and early implementation of CBPPR in CCOP organizations. In general, the three CCOP organizations varied in the extent to which they achieved consistency in CBPPR over time and across physicians. All three CCOP organizations demonstrated mixed levels of organizational readiness for change. Hospital management support and resource availability were limited across CCOP organizations early on, although they improved in one CCOP organization. As a result of weak IPPs, all three CCOPs created a weak implementation climate. Patient accrual became concentrated over time among those groups of physicians for whom CBPPR exhibited a strong innovation-values fit. Several external factors influenced innovation use, complicating and enriching our intra-organizational model of innovation implementation.
Conclusion
Our results contribute to the limited body of research on the implementation of CBPPR. They inform policy discussions about increasing and sustaining community clinician involvement in clinical research and expand on theory about organizational determinants of implementation effectiveness.
doi:10.1186/1748-5908-7-41
PMCID: PMC3482599  PMID: 22568935
Implementation; Academic-community research partnerships; Cancer clinical trials
4.  People, organizational, and leadership factors impacting informatics support for clinical and translational research 
Background
In recent years, there have been numerous initiatives undertaken to describe critical information needs related to the collection, management, analysis, and dissemination of data in support of biomedical research (J Investig Med 54:327-333, 2006); (J Am Med Inform Assoc 16:316–327, 2009); (Physiol Genomics 39:131-140, 2009); (J Am Med Inform Assoc 18:354–357, 2011). A common theme spanning such reports has been the importance of understanding and optimizing people, organizational, and leadership factors in order to achieve the promise of efficient and timely research (J Am Med Inform Assoc 15:283–289, 2008). With the emergence of clinical and translational science (CTS) as a national priority in the United States, and the corresponding growth in the scale and scope of CTS research programs, the acuity of such information needs continues to increase (JAMA 289:1278–1287, 2003); (N Engl J Med 353:1621–1623, 2005); (Sci Transl Med 3:90, 2011). At the same time, systematic evaluations of optimal people, organizational, and leadership factors that influence the provision of data, information, and knowledge management technologies and methods are notably lacking.
Methods
In response to the preceding gap in knowledge, we have conducted both: 1) a structured survey of domain experts at Academic Health Centers (AHCs); and 2) a subsequent thematic analysis of public-domain documentation provided by those same organizations. The results of these approaches were then used to identify critical factors that may influence access to informatics expertise and resources relevant to the CTS domain.
Results
A total of 31 domain experts, spanning the Biomedical Informatics (BMI), Computer Science (CS), Information Science (IS), and Information Technology (IT) disciplines participated in a structured surveyprocess. At a high level, respondents identified notable differences in theaccess to BMI, CS, and IT expertise and services depending on the establishment of a formal BMI academic unit and the perceived relationship between BMI, CS, IS, and IT leaders. Subsequent thematic analysis of the aforementioned public domain documents demonstrated a discordance between perceived and reported integration across and between BMI, CS, IS, and IT programs and leaders with relevance to the CTS domain.
Conclusion
Differences in people, organization, and leadership factors do influence the effectiveness of CTS programs, particularly with regard to the ability to access and leverage BMI, CS, IS, and IT expertise and resources. Based on this finding, we believe that the development of a better understanding of how optimal BMI, CS, IS, and IT organizational structures and leadership models are designed and implemented is critical to both the advancement of CTS and ultimately, to improvements in the quality, safety, and effectiveness of healthcare.
doi:10.1186/1472-6947-13-20
PMCID: PMC3577661  PMID: 23388243
5.  Roadmap for a Participatory Research–Practice Partnership to Implement Evidence 
Background: Our research team has undertaken implementation of evidence in the form of practice guideline recommendations for populations in hospital, community, and long-term care settings with diverse provider and patient populations (people with chronic wounds, e.g., pressure and leg ulcers, heart failure, stroke, diabetes, palliative care, cancer, and maternity care). Translating evidence into clinical practice at the point of care is a complex and often overwhelming challenge for the health system as well as for individual practitioners.
Purpose: To ensure that best available evidence is integrated into practice, “local evidence” needs to be generated and this process accomplishes a number of things: it focuses all involved on the “same page,” identifies important facilitating factors as well as barriers, provides empirical support for planning, and in itself is a key aspect of implementation. In doing this work, we developed a roadmap, the Queen’s University Research Roadmap for Knowledge Implementation (QuRKI) that outlines three major phases of linked research and implementation activity: (1) issue identification/clarification; (2) solution building; and (3) implementation, evaluation, and nurturing the change.
In this paper, we describe our practical experience as researchers working at point-of-care and how research can be used to facilitate the implementation of evidence. An exemplar is used to illustrate the fluid interplay of research and implementation activities and present the range of supporting research.
Implications: QuRKI serves as a guide for researchers in the formation of a strategic alliance with the practice community for undertaking evidence-informed reorganization of care. Using this collaborative approach, researchers play an integral role in focusing on, and using evidence during all discussions. We welcome further evaluation of its usefulness in the field.
doi:10.1111/j.1741-6787.2012.00256.x
PMCID: PMC3791554  PMID: 22672620
evidence-based practice; activating knowledge; planned-action framework; engaged scholarship; action-research
6.  Antecedents of the People and Organizational Aspects of Medical Informatics 
Abstract
People and organizational issues are critical in both implementing medical informatics systems and in dealing with the altered organizations that new systems often create. The people and organizational issues area—like medical informatics itself—is a blend of many disciplines. The academic disciplines of psychology, sociology, social psychology, social anthropology, organizational behavior and organizational development, management, and cognitive sciences are rich with research with significant potential to ease the introduction and on-going use of information technology in today's complex health systems. These academic areas contribute research data and core information for better understanding of such issues as the importance of and processes for creating future direction; managing a complex change process; effective strategies for involving individuals and groups in the informatics effort; and effectively managing the altered organization. This article reviews the behavioral and business referent disciplines that can potentially contribute to improved implementations and on-going management of change in the medical informatics arena.
PMCID: PMC61497  PMID: 9067874
7.  The meaning and measurement of implementation climate 
Background
Climate has a long history in organizational studies, but few theoretical models integrate the complex effects of climate during innovation implementation. In 1996, a theoretical model was proposed that organizations could develop a positive climate for implementation by making use of various policies and practices that promote organizational members' means, motives, and opportunities for innovation use. The model proposes that implementation climate--or the extent to which organizational members perceive that innovation use is expected, supported, and rewarded--is positively associated with implementation effectiveness. The implementation climate construct holds significant promise for advancing scientific knowledge about the organizational determinants of innovation implementation. However, the construct has not received sufficient scholarly attention, despite numerous citations in the scientific literature. In this article, we clarify the meaning of implementation climate, discuss several measurement issues, and propose guidelines for empirical study.
Discussion
Implementation climate differs from constructs such as organizational climate, culture, or context in two important respects: first, it has a strategic focus (implementation), and second, it is innovation-specific. Measuring implementation climate is challenging because the construct operates at the organizational level, but requires the collection of multi-dimensional perceptual data from many expected innovation users within an organization. In order to avoid problems with construct validity, assessments of within-group agreement of implementation climate measures must be carefully considered. Implementation climate implies a high degree of within-group agreement in climate perceptions. However, researchers might find it useful to distinguish implementation climate level (the average of implementation climate perceptions) from implementation climate strength (the variability of implementation climate perceptions). It is important to recognize that the implementation climate construct applies most readily to innovations that require collective, coordinated behavior change by many organizational members both for successful implementation and for realization of anticipated benefits. For innovations that do not possess these attributes, individual-level theories of behavior change could be more useful in explaining implementation effectiveness.
Summary
This construct has considerable value in implementation science, however, further debate and development is necessary to refine and distinguish the construct for empirical use.
doi:10.1186/1748-5908-6-78
PMCID: PMC3224582  PMID: 21781328
8.  Knowledge Management and Informatics Considerations for Comparative Effectiveness Research: A Case-driven Exploration 
Medical care  2013;51(8 0 3):S38-S44.
Background
As clinical data are increasingly collected and stored electronically, their potential use for comparative effectiveness research (CER) grows. Despite this promise, challenges face those wishing to leverage such data. In this paper we aim to enumerate some of the knowledge management and informatics issues common to such data re-use.
Design
After reviewing the current state of knowledge regarding biomedical informatics challenges and best practices related to CER, we then present two research projects at our institution. We analyze these and highlight several common themes and challenges related to the conduct of CER studies. Finally, we represent these emergent themes.
Results
The informatics challenges commonly encountered by those conducting CER studies include issues related to data information and knowledge management (e.g. data re-use, data preparation) as well as those related to people and organizational issues (e.g. socio-technical factors and organizational factors). Examples of these are described in further detail and a formal framework for describing these findings is presented.
Conclusion
Significant challenges face researchers attempting to use often diverse and heterogeneous datasets for CER. These challenges must be understood in order to be dealt with successfully and can often be overcome with the appropriate use of informatics best practices. Many research and policy questions remain to be answered in order to realize the full potential of the increasingly electronic clinical data available for such research.
doi:10.1097/MLR.0b013e31829b1de1
PMCID: PMC3914140  PMID: 23793050
Knowledge Management; comparative effectiveness research; medical informatics
9.  Addressing Organizational Issues into the Evaluation of Medical Systems 
Abstract
New system design and evaluation methodologies are being developed to address social, organizational, political, and other non-technological issues in medical informatics. This paper describes a social interactionist framework for researching these kinds of organizational issues, based on research within medical informatics and other disciplines over the past 20 years. It discusses how effective evaluation strategies may be undertaken to address organizational issues concerning computer information systems in medicine and health care. The paper begins with a theoretical framework for evaluation. It then describes the 4Cs of evaluation: communication, care, control, and context. Five methodological guidelines are given for conducting comprehensive evaluations that address these 4Cs. An example of an evaluation research design that fits the guidelines and was used in an evaluation of an on-line clinical imaging system is discussed. Results of the evaluation study illustrate how this approach addresses organizational concerns and the 4Cs.
PMCID: PMC61498  PMID: 9067875
10.  From policy to practice: implementing frontline community health services for substance dependence–study protocol 
Background
Substance abuse is a worldwide public health concern. Extensive scientific research has shown that screening and brief interventions for substance use disorders administered in primary care provide substantial benefit at relatively low cost. Frontline health clinicians are well placed to detect and treat patients with substance use disorders. Despite effectiveness shown in research, there are many factors that impact the implementation of these practices in real-world clinical practice. Recently, the Ministry of Health and Social Services in Quebec, Canada, issued two policy documents aimed at introducing screening and early intervention for substance abuse into frontline healthcare clinics in Quebec. The current research protocol was developed in order to study the process of implementation of evidence-based addiction treatment practices at three primary care clinics in Montreal (Phase 1). In addition, the research protocol was designed to examine the efficacy of overall policy implementation, including barriers and facilitators to addictions program development throughout Quebec (Phase 2).
Methods/Design
Phase 1 will provide an in-depth case study of knowledge translation and implementation. The study protocol will utilize an integrated knowledge translation strategy to build collaborative mechanisms for knowledge exchange between researchers, addiction specialists, and frontline practitioners (guided by the principles of participatory-action research), and directly examine the process of knowledge uptake and barriers to transfer using both qualitative and quantitative methodologies. Evaluation will involve multiple measures, time points and domains; program uptake and effectiveness will be determined by changes in healthcare service delivery, sustainability and outcomes. In Phase 2, qualitative methods will be utilized to examine the contextual facilitators and barriers that frontline organizations face in implementing services for substance dependence. Phase 2 will provide the first study exploring the wide-scale implementation of frontline services for substance dependence in the province of Quebec and yield needed information about how to effectively implement mandated policies into clinical practice and impact public health.
Discussion
Findings from this research program will contribute to the understanding of factors associated with implementation of frontline services for substance dependence and help to inform future policy and organizational support for the implementation of evidence-based practices.
doi:10.1186/s13012-014-0108-x
PMCID: PMC4159513  PMID: 25138688
Substance dependence; Screening; Brief interventions; Frontline health services; Implementation; Knowledge translation; Policy; Organizational change
11.  Developing a national dissemination plan for collaborative care for depression: QUERI Series 
Background
Little is known about effective strategies for disseminating and implementing complex clinical innovations across large healthcare systems. This paper describes processes undertaken and tools developed by the U.S. Department of Veterans Affairs (VA) Mental Health Quality Enhancement Research Initiative (MH-QUERI) to guide its efforts to partner with clinical leaders to prepare for national dissemination and implementation of collaborative care for depression.
Methods
An evidence-based quality improvement (EBQI) process was used to develop an initial set of goals to prepare the VA for national dissemination and implementation of collaborative care. The resulting product of the EBQI process is referred to herein as a "National Dissemination Plan" (NDP). EBQI participants included: a) researchers with expertise on the collaborative care model for depression, clinical quality improvement, and implementation science, and b) VA clinical and administrative leaders with experience and expertise on how to adapt research evidence to organizational needs, resources and capacity. Based on EBQI participant feedback, drafts of the NDP were revised and refined over multiple iterations before a final version was approved by MH-QUERI leadership. 'Action Teams' were created to address each goal. A formative evaluation framework and related tools were developed to document processes, monitor progress, and identify and act upon barriers and facilitators in addressing NDP goals.
Results
The National Dissemination Plan suggests that effectively disseminating collaborative care for depression in the VA will likely require attention to: Guidelines and Quality Indicators (4 goals), Training in Clinical Processes and Evidence-based Quality Improvement (6 goals), Marketing (7 goals), and Informatics Support (1 goal). Action Teams are using the NDP as a blueprint for developing infrastructure to support system-wide adoption and sustained implementation of collaborative care for depression. To date, accomplishments include but are not limited to: conduct of a systematic review of the literature to update VA depression treatment guidelines to include the latest evidence on collaborative care for depression; training for clinical staff on TIDES (Translating Initiatives for Depression into Effective Solutions project) care; spread of TIDES care to new VA facilities; and integration of TIDES depression assessment tools into a planned update of software used in delivery of VA mental health services. Thus far, common barriers encountered by Action Teams in addressing NDP goals include: a) limited time to address goals due to competing tasks/priorities, b) frequent turnover of key organizational leaders/stakeholders, c) limited skills and training among team members for addressing NDP goals, and d) difficulty coordinating activities across Action Teams on related goals.
Conclusion
MH-QUERI has partnered with VA organizational leaders to develop a focused yet flexible plan to address key factors to prepare for national dissemination and implementation of collaborative care for depression. Early indications suggest that the plan is laying an important foundation that will enhance the likelihood of successful implementation and spread across the VA healthcare system.
doi:10.1186/1748-5908-3-59
PMCID: PMC2631596  PMID: 19117524
12.  Internet-Based Device-Assisted Remote Monitoring of Cardiovascular Implantable Electronic Devices 
Executive Summary
Objective
The objective of this Medical Advisory Secretariat (MAS) report was to conduct a systematic review of the available published evidence on the safety, effectiveness, and cost-effectiveness of Internet-based device-assisted remote monitoring systems (RMSs) for therapeutic cardiac implantable electronic devices (CIEDs) such as pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. The MAS evidence-based review was performed to support public financing decisions.
Clinical Need: Condition and Target Population
Sudden cardiac death (SCD) is a major cause of fatalities in developed countries. In the United States almost half a million people die of SCD annually, resulting in more deaths than stroke, lung cancer, breast cancer, and AIDS combined. In Canada each year more than 40,000 people die from a cardiovascular related cause; approximately half of these deaths are attributable to SCD.
Most cases of SCD occur in the general population typically in those without a known history of heart disease. Most SCDs are caused by cardiac arrhythmia, an abnormal heart rhythm caused by malfunctions of the heart’s electrical system. Up to half of patients with significant heart failure (HF) also have advanced conduction abnormalities.
Cardiac arrhythmias are managed by a variety of drugs, ablative procedures, and therapeutic CIEDs. The range of CIEDs includes pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. Bradycardia is the main indication for PMs and individuals at high risk for SCD are often treated by ICDs.
Heart failure (HF) is also a significant health problem and is the most frequent cause of hospitalization in those over 65 years of age. Patients with moderate to severe HF may also have cardiac arrhythmias, although the cause may be related more to heart pump or haemodynamic failure. The presence of HF, however, increases the risk of SCD five-fold, regardless of aetiology. Patients with HF who remain highly symptomatic despite optimal drug therapy are sometimes also treated with CRT devices.
With an increasing prevalence of age-related conditions such as chronic HF and the expanding indications for ICD therapy, the rate of ICD placement has been dramatically increasing. The appropriate indications for ICD placement, as well as the rate of ICD placement, are increasingly an issue. In the United States, after the introduction of expanded coverage of ICDs, a national ICD registry was created in 2005 to track these devices. A recent survey based on this national ICD registry reported that 22.5% (25,145) of patients had received a non-evidence based ICD and that these patients experienced significantly higher in-hospital mortality and post-procedural complications.
In addition to the increased ICD device placement and the upfront device costs, there is the need for lifelong follow-up or surveillance, placing a significant burden on patients and device clinics. In 2007, over 1.6 million CIEDs were implanted in Europe and the United States, which translates to over 5.5 million patient encounters per year if the recommended follow-up practices are considered. A safe and effective RMS could potentially improve the efficiency of long-term follow-up of patients and their CIEDs.
Technology
In addition to being therapeutic devices, CIEDs have extensive diagnostic abilities. All CIEDs can be interrogated and reprogrammed during an in-clinic visit using an inductive programming wand. Remote monitoring would allow patients to transmit information recorded in their devices from the comfort of their own homes. Currently most ICD devices also have the potential to be remotely monitored. Remote monitoring (RM) can be used to check system integrity, to alert on arrhythmic episodes, and to potentially replace in-clinic follow-ups and manage disease remotely. They do not currently have the capability of being reprogrammed remotely, although this feature is being tested in pilot settings.
Every RMS is specifically designed by a manufacturer for their cardiac implant devices. For Internet-based device-assisted RMSs, this customization includes details such as web application, multiplatform sensors, custom algorithms, programming information, and types and methods of alerting patients and/or physicians. The addition of peripherals for monitoring weight and pressure or communicating with patients through the onsite communicators also varies by manufacturer. Internet-based device-assisted RMSs for CIEDs are intended to function as a surveillance system rather than an emergency system.
Health care providers therefore need to learn each application, and as more than one application may be used at one site, multiple applications may need to be reviewed for alarms. All RMSs deliver system integrity alerting; however, some systems seem to be better geared to fast arrhythmic alerting, whereas other systems appear to be more intended for remote follow-up or supplemental remote disease management. The different RMSs may therefore have different impacts on workflow organization because of their varying frequency of interrogation and methods of alerts. The integration of these proprietary RM web-based registry systems with hospital-based electronic health record systems has so far not been commonly implemented.
Currently there are 2 general types of RMSs: those that transmit device diagnostic information automatically and without patient assistance to secure Internet-based registry systems, and those that require patient assistance to transmit information. Both systems employ the use of preprogrammed alerts that are either transmitted automatically or at regular scheduled intervals to patients and/or physicians.
The current web applications, programming, and registry systems differ greatly between the manufacturers of transmitting cardiac devices. In Canada there are currently 4 manufacturers—Medtronic Inc., Biotronik, Boston Scientific Corp., and St Jude Medical Inc.—which have regulatory approval for remote transmitting CIEDs. Remote monitoring systems are proprietary to the manufacturer of the implant device. An RMS for one device will not work with another device, and the RMS may not work with all versions of the manufacturer’s devices.
All Internet-based device-assisted RMSs have common components. The implanted device is equipped with a micro-antenna that communicates with a small external device (at bedside or wearable) commonly known as the transmitter. Transmitters are able to interrogate programmed parameters and diagnostic data stored in the patients’ implant device. The information transfer to the communicator can occur at preset time intervals with the participation of the patient (waving a wand over the device) or it can be sent automatically (wirelessly) without their participation. The encrypted data are then uploaded to an Internet-based database on a secure central server. The data processing facilities at the central database, depending on the clinical urgency, can trigger an alert for the physician(s) that can be sent via email, fax, text message, or phone. The details are also posted on the secure website for viewing by the physician (or their delegate) at their convenience.
Research Questions
The research directions and specific research questions for this evidence review were as follows:
To identify the Internet-based device-assisted RMSs available for follow-up of patients with therapeutic CIEDs such as PMs, ICDs, and CRT devices.
To identify the potential risks, operational issues, or organizational issues related to Internet-based device-assisted RM for CIEDs.
To evaluate the safety, acceptability, and effectiveness of Internet-based device-assisted RMSs for CIEDs such as PMs, ICDs, and CRT devices.
To evaluate the safety, effectiveness, and cost-effectiveness of Internet-based device-assisted RMSs for CIEDs compared to usual outpatient in-office monitoring strategies.
To evaluate the resource implications or budget impact of RMSs for CIEDs in Ontario, Canada.
Research Methods
Literature Search
The review included a systematic review of published scientific literature and consultations with experts and manufacturers of all 4 approved RMSs for CIEDs in Canada. Information on CIED cardiac implant clinics was also obtained from Provincial Programs, a division within the Ministry of Health and Long-Term Care with a mandate for cardiac implant specialty care. Various administrative databases and registries were used to outline the current clinical follow-up burden of CIEDs in Ontario. The provincial population-based ICD database developed and maintained by the Institute for Clinical Evaluative Sciences (ICES) was used to review the current follow-up practices with Ontario patients implanted with ICD devices.
Search Strategy
A literature search was performed on September 21, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from 1950 to September 2010. Search alerts were generated and reviewed for additional relevant literature until December 31, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search.
Inclusion Criteria
published between 1950 and September 2010;
English language full-reports and human studies;
original reports including clinical evaluations of Internet-based device-assisted RMSs for CIEDs in clinical settings;
reports including standardized measurements on outcome events such as technical success, safety, effectiveness, cost, measures of health care utilization, morbidity, mortality, quality of life or patient satisfaction;
randomized controlled trials (RCTs), systematic reviews and meta-analyses, cohort and controlled clinical studies.
Exclusion Criteria
non-systematic reviews, letters, comments and editorials;
reports not involving standardized outcome events;
clinical reports not involving Internet-based device assisted RM systems for CIEDs in clinical settings;
reports involving studies testing or validating algorithms without RM;
studies with small samples (<10 subjects).
Outcomes of Interest
The outcomes of interest included: technical outcomes, emergency department visits, complications, major adverse events, symptoms, hospital admissions, clinic visits (scheduled and/or unscheduled), survival, morbidity (disease progression, stroke, etc.), patient satisfaction, and quality of life.
Summary of Findings
The MAS evidence review was performed to review available evidence on Internet-based device-assisted RMSs for CIEDs published until September 2010. The search identified 6 systematic reviews, 7 randomized controlled trials, and 19 reports for 16 cohort studies—3 of these being registry-based and 4 being multi-centered. The evidence is summarized in the 3 sections that follow.
1. Effectiveness of Remote Monitoring Systems of CIEDs for Cardiac Arrhythmia and Device Functioning
In total, 15 reports on 13 cohort studies involving investigations with 4 different RMSs for CIEDs in cardiology implant clinic groups were identified in the review. The 4 RMSs were: Care Link Network® (Medtronic Inc,, Minneapolis, MN, USA); Home Monitoring® (Biotronic, Berlin, Germany); House Call 11® (St Jude Medical Inc., St Pauls, MN, USA); and a manufacturer-independent RMS. Eight of these reports were with the Home Monitoring® RMS (12,949 patients), 3 were with the Care Link® RMS (167 patients), 1 was with the House Call 11® RMS (124 patients), and 1 was with a manufacturer-independent RMS (44 patients). All of the studies, except for 2 in the United States, (1 with Home Monitoring® and 1 with House Call 11®), were performed in European countries.
The RMSs in the studies were evaluated with different cardiac implant device populations: ICDs only (6 studies), ICD and CRT devices (3 studies), PM and ICD and CRT devices (4 studies), and PMs only (2 studies). The patient populations were predominately male (range, 52%–87%) in all studies, with mean ages ranging from 58 to 76 years. One study population was unique in that RMSs were evaluated for ICDs implanted solely for primary prevention in young patients (mean age, 44 years) with Brugada syndrome, which carries an inherited increased genetic risk for sudden heart attack in young adults.
Most of the cohort studies reported on the feasibility of RMSs in clinical settings with limited follow-up. In the short follow-up periods of the studies, the majority of the events were related to detection of medical events rather than system configuration or device abnormalities. The results of the studies are summarized below:
The interrogation of devices on the web platform, both for continuous and scheduled transmissions, was significantly quicker with remote follow-up, both for nurses and physicians.
In a case-control study focusing on a Brugada population–based registry with patients followed-up remotely, there were significantly fewer outpatient visits and greater detection of inappropriate shocks. One death occurred in the control group not followed remotely and post-mortem analysis indicated early signs of lead failure prior to the event.
Two studies examined the role of RMSs in following ICD leads under regulatory advisory in a European clinical setting and noted:
– Fewer inappropriate shocks were administered in the RM group.
– Urgent in-office interrogations and surgical revisions were performed within 12 days of remote alerts.
– No signs of lead fracture were detected at in-office follow-up; all were detected at remote follow-up.
Only 1 study reported evaluating quality of life in patients followed up remotely at 3 and 6 months; no values were reported.
Patient satisfaction was evaluated in 5 cohort studies, all in short term follow-up: 1 for the Home Monitoring® RMS, 3 for the Care Link® RMS, and 1 for the House Call 11® RMS.
– Patients reported receiving a sense of security from the transmitter, a good relationship with nurses and physicians, positive implications for their health, and satisfaction with RM and organization of services.
– Although patients reported that the system was easy to implement and required less than 10 minutes to transmit information, a variable proportion of patients (range, 9% 39%) reported that they needed the assistance of a caregiver for their transmission.
– The majority of patients would recommend RM to other ICD patients.
– Patients with hearing or other physical or mental conditions hindering the use of the system were excluded from studies, but the frequency of this was not reported.
Physician satisfaction was evaluated in 3 studies, all with the Care Link® RMS:
– Physicians reported an ease of use and high satisfaction with a generally short-term use of the RMS.
– Physicians reported being able to address the problems in unscheduled patient transmissions or physician initiated transmissions remotely, and were able to handle the majority of the troubleshooting calls remotely.
– Both nurses and physicians reported a high level of satisfaction with the web registry system.
2. Effectiveness of Remote Monitoring Systems in Heart Failure Patients for Cardiac Arrhythmia and Heart Failure Episodes
Remote follow-up of HF patients implanted with ICD or CRT devices, generally managed in specialized HF clinics, was evaluated in 3 cohort studies: 1 involved the Home Monitoring® RMS and 2 involved the Care Link® RMS. In these RMSs, in addition to the standard diagnostic features, the cardiac devices continuously assess other variables such as patient activity, mean heart rate, and heart rate variability. Intra-thoracic impedance, a proxy measure for lung fluid overload, was also measured in the Care Link® studies. The overall diagnostic performance of these measures cannot be evaluated, as the information was not reported for patients who did not experience intra-thoracic impedance threshold crossings or did not undergo interventions. The trial results involved descriptive information on transmissions and alerts in patients experiencing high morbidity and hospitalization in the short study periods.
3. Comparative Effectiveness of Remote Monitoring Systems for CIEDs
Seven RCTs were identified evaluating RMSs for CIEDs: 2 were for PMs (1276 patients) and 5 were for ICD/CRT devices (3733 patients). Studies performed in the clinical setting in the United States involved both the Care Link® RMS and the Home Monitoring® RMS, whereas all studies performed in European countries involved only the Home Monitoring® RMS.
3A. Randomized Controlled Trials of Remote Monitoring Systems for Pacemakers
Two trials, both multicenter RCTs, were conducted in different countries with different RMSs and study objectives. The PREFER trial was a large trial (897 patients) performed in the United States examining the ability of Care Link®, an Internet-based remote PM interrogation system, to detect clinically actionable events (CAEs) sooner than the current in-office follow-up supplemented with transtelephonic monitoring transmissions, a limited form of remote device interrogation. The trial results are summarized below:
In the 375-day mean follow-up, 382 patients were identified with at least 1 CAE—111 patients in the control arm and 271 in the remote arm.
The event rate detected per patient for every type of CAE, except for loss of atrial capture, was higher in the remote arm than the control arm.
The median time to first detection of CAEs (4.9 vs. 6.3 months) was significantly shorter in the RMS group compared to the control group (P < 0.0001).
Additionally, only 2% (3/190) of the CAEs in the control arm were detected during a transtelephonic monitoring transmission (the rest were detected at in-office follow-ups), whereas 66% (446/676) of the CAEs were detected during remote interrogation.
The second study, the OEDIPE trial, was a smaller trial (379 patients) performed in France evaluating the ability of the Home Monitoring® RMS to shorten PM post-operative hospitalization while preserving the safety of conventional management of longer hospital stays.
Implementation and operationalization of the RMS was reported to be successful in 91% (346/379) of the patients and represented 8144 transmissions.
In the RM group 6.5% of patients failed to send messages (10 due to improper use of the transmitter, 2 with unmanageable stress). Of the 172 patients transmitting, 108 patients sent a total of 167 warnings during the trial, with a greater proportion of warnings being attributed to medical rather than technical causes.
Forty percent had no warning message transmission and among these, 6 patients experienced a major adverse event and 1 patient experienced a non-major adverse event. Of the 6 patients having a major adverse event, 5 contacted their physician.
The mean medical reaction time was faster in the RM group (6.5 ± 7.6 days vs. 11.4 ± 11.6 days).
The mean duration of hospitalization was significantly shorter (P < 0.001) for the RM group than the control group (3.2 ± 3.2 days vs. 4.8 ± 3.7 days).
Quality of life estimates by the SF-36 questionnaire were similar for the 2 groups at 1-month follow-up.
3B. Randomized Controlled Trials Evaluating Remote Monitoring Systems for ICD or CRT Devices
The 5 studies evaluating the impact of RMSs with ICD/CRT devices were conducted in the United States and in European countries and involved 2 RMSs—Care Link® and Home Monitoring ®. The objectives of the trials varied and 3 of the trials were smaller pilot investigations.
The first of the smaller studies (151 patients) evaluated patient satisfaction, achievement of patient outcomes, and the cost-effectiveness of the Care Link® RMS compared to quarterly in-office device interrogations with 1-year follow-up.
Individual outcomes such as hospitalizations, emergency department visits, and unscheduled clinic visits were not significantly different between the study groups.
Except for a significantly higher detection of atrial fibrillation in the RM group, data on ICD detection and therapy were similar in the study groups.
Health-related quality of life evaluated by the EuroQoL at 6-month or 12-month follow-up was not different between study groups.
Patients were more satisfied with their ICD care in the clinic follow-up group than in the remote follow-up group at 6-month follow-up, but were equally satisfied at 12- month follow-up.
The second small pilot trial (20 patients) examined the impact of RM follow-up with the House Call 11® system on work schedules and cost savings in patients randomized to 2 study arms varying in the degree of remote follow-up.
The total time including device interrogation, transmission time, data analysis, and physician time required was significantly shorter for the RM follow-up group.
The in-clinic waiting time was eliminated for patients in the RM follow-up group.
The physician talk time was significantly reduced in the RM follow-up group (P < 0.05).
The time for the actual device interrogation did not differ in the study groups.
The third small trial (115 patients) examined the impact of RM with the Home Monitoring® system compared to scheduled trimonthly in-clinic visits on the number of unplanned visits, total costs, health-related quality of life (SF-36), and overall mortality.
There was a 63.2% reduction in in-office visits in the RM group.
Hospitalizations or overall mortality (values not stated) were not significantly different between the study groups.
Patient-induced visits were higher in the RM group than the in-clinic follow-up group.
The TRUST Trial
The TRUST trial was a large multicenter RCT conducted at 102 centers in the United States involving the Home Monitoring® RMS for ICD devices for 1450 patients. The primary objectives of the trial were to determine if remote follow-up could be safely substituted for in-office clinic follow-up (3 in-office visits replaced) and still enable earlier physician detection of clinically actionable events.
Adherence to the protocol follow-up schedule was significantly higher in the RM group than the in-office follow-up group (93.5% vs. 88.7%, P < 0.001).
Actionability of trimonthly scheduled checks was low (6.6%) in both study groups. Overall, actionable causes were reprogramming (76.2%), medication changes (24.8%), and lead/system revisions (4%), and these were not different between the 2 study groups.
The overall mean number of in-clinic and hospital visits was significantly lower in the RM group than the in-office follow-up group (2.1 per patient-year vs. 3.8 per patient-year, P < 0.001), representing a 45% visit reduction at 12 months.
The median time from onset of first arrhythmia to physician evaluation was significantly shorter (P < 0.001) in the RM group than in the in-office follow-up group for all arrhythmias (1 day vs. 35.5 days).
The median time to detect clinically asymptomatic arrhythmia events—atrial fibrillation (AF), ventricular fibrillation (VF), ventricular tachycardia (VT), and supra-ventricular tachycardia (SVT)—was also significantly shorter (P < 0.001) in the RM group compared to the in-office follow-up group (1 day vs. 41.5 days) and was significantly quicker for each of the clinical arrhythmia events—AF (5.5 days vs. 40 days), VT (1 day vs. 28 days), VF (1 day vs. 36 days), and SVT (2 days vs. 39 days).
System-related problems occurred infrequently in both groups—in 1.5% of patients (14/908) in the RM group and in 0.7% of patients (3/432) in the in-office follow-up group.
The overall adverse event rate over 12 months was not significantly different between the 2 groups and individual adverse events were also not significantly different between the RM group and the in-office follow-up group: death (3.4% vs. 4.9%), stroke (0.3% vs. 1.2%), and surgical intervention (6.6% vs. 4.9%), respectively.
The 12-month cumulative survival was 96.4% (95% confidence interval [CI], 95.5%–97.6%) in the RM group and 94.2% (95% confidence interval [CI], 91.8%–96.6%) in the in-office follow-up group, and was not significantly different between the 2 groups (P = 0.174).
The CONNECT Trial
The CONNECT trial, another major multicenter RCT, involved the Care Link® RMS for ICD/CRT devices in a15-month follow-up study of 1,997 patients at 133 sites in the United States. The primary objective of the trial was to determine whether automatically transmitted physician alerts decreased the time from the occurrence of clinically relevant events to medical decisions. The trial results are summarized below:
Of the 575 clinical alerts sent in the study, 246 did not trigger an automatic physician alert. Transmission failures were related to technical issues such as the alert not being programmed or not being reset, and/or a variety of patient factors such as not being at home and the monitor not being plugged in or set up.
The overall mean time from the clinically relevant event to the clinical decision was significantly shorter (P < 0.001) by 17.4 days in the remote follow-up group (4.6 days for 172 patients) than the in-office follow-up group (22 days for 145 patients).
– The median time to a clinical decision was shorter in the remote follow-up group than in the in-office follow-up group for an AT/AF burden greater than or equal to 12 hours (3 days vs. 24 days) and a fast VF rate greater than or equal to 120 beats per minute (4 days vs. 23 days).
Although infrequent, similar low numbers of events involving low battery and VF detection/therapy turned off were noted in both groups. More alerts, however, were noted for out-of-range lead impedance in the RM group (18 vs. 6 patients), and the time to detect these critical events was significantly shorter in the RM group (same day vs. 17 days).
Total in-office clinic visits were reduced by 38% from 6.27 visits per patient-year in the in-office follow-up group to 3.29 visits per patient-year in the remote follow-up group.
Health care utilization visits (N = 6,227) that included cardiovascular-related hospitalization, emergency department visits, and unscheduled clinic visits were not significantly higher in the remote follow-up group.
The overall mean length of hospitalization was significantly shorter (P = 0.002) for those in the remote follow-up group (3.3 days vs. 4.0 days) and was shorter both for patients with ICD (3.0 days vs. 3.6 days) and CRT (3.8 days vs. 4.7 days) implants.
The mortality rate between the study arms was not significantly different between the follow-up groups for the ICDs (P = 0.31) or the CRT devices with defribillator (P = 0.46).
Conclusions
There is limited clinical trial information on the effectiveness of RMSs for PMs. However, for RMSs for ICD devices, multiple cohort studies and 2 large multicenter RCTs demonstrated feasibility and significant reductions in in-office clinic follow-ups with RMSs in the first year post implantation. The detection rates of clinically significant events (and asymptomatic events) were higher, and the time to a clinical decision for these events was significantly shorter, in the remote follow-up groups than in the in-office follow-up groups. The earlier detection of clinical events in the remote follow-up groups, however, was not associated with lower morbidity or mortality rates in the 1-year follow-up. The substitution of almost all the first year in-office clinic follow-ups with RM was also not associated with an increased health care utilization such as emergency department visits or hospitalizations.
The follow-up in the trials was generally short-term, up to 1 year, and was a more limited assessment of potential longer term device/lead integrity complications or issues. None of the studies compared the different RMSs, particularly the different RMSs involving patient-scheduled transmissions or automatic transmissions. Patients’ acceptance of and satisfaction with RM were reported to be high, but the impact of RM on patients’ health-related quality of life, particularly the psychological aspects, was not evaluated thoroughly. Patients who are not technologically competent, having hearing or other physical/mental impairments, were identified as potentially disadvantaged with remote surveillance. Cohort studies consistently identified subgroups of patients who preferred in-office follow-up. The evaluation of costs and workflow impact to the health care system were evaluated in European or American clinical settings, and only in a limited way.
Internet-based device-assisted RMSs involve a new approach to monitoring patients, their disease progression, and their CIEDs. Remote monitoring also has the potential to improve the current postmarket surveillance systems of evolving CIEDs and their ongoing hardware and software modifications. At this point, however, there is insufficient information to evaluate the overall impact to the health care system, although the time saving and convenience to patients and physicians associated with a substitution of in-office follow-up by RM is more certain. The broader issues surrounding infrastructure, impacts on existing clinical care systems, and regulatory concerns need to be considered for the implementation of Internet-based RMSs in jurisdictions involving different clinical practices.
PMCID: PMC3377571  PMID: 23074419
13.  geneCBR: a translational tool for multiple-microarray analysis and integrative information retrieval for aiding diagnosis in cancer research 
BMC Bioinformatics  2009;10:187.
Background
Bioinformatics and medical informatics are two research fields that serve the needs of different but related communities. Both domains share the common goal of providing new algorithms, methods and technological solutions to biomedical research, and contributing to the treatment and cure of diseases. Although different microarray techniques have been successfully used to investigate useful information for cancer diagnosis at the gene expression level, the true integration of existing methods into day-to-day clinical practice is still a long way off. Within this context, case-based reasoning emerges as a suitable paradigm specially intended for the development of biomedical informatics applications and decision support systems, given the support and collaboration involved in such a translational development. With the goals of removing barriers against multi-disciplinary collaboration and facilitating the dissemination and transfer of knowledge to real practice, case-based reasoning systems have the potential to be applied to translational research mainly because their computational reasoning paradigm is similar to the way clinicians gather, analyze and process information in their own practice of clinical medicine.
Results
In addressing the issue of bridging the existing gap between biomedical researchers and clinicians who work in the domain of cancer diagnosis, prognosis and treatment, we have developed and made accessible a common interactive framework. Our geneCBR system implements a freely available software tool that allows the use of combined techniques that can be applied to gene selection, clustering, knowledge extraction and prediction for aiding diagnosis in cancer research. For biomedical researches, geneCBR expert mode offers a core workbench for designing and testing new techniques and experiments. For pathologists or oncologists, geneCBR diagnostic mode implements an effective and reliable system that can diagnose cancer subtypes based on the analysis of microarray data using a CBR architecture. For programmers, geneCBR programming mode includes an advanced edition module for run-time modification of previous coded techniques.
Conclusion
geneCBR is a new translational tool that can effectively support the integrative work of programmers, biomedical researches and clinicians working together in a common framework. The code is freely available under the GPL license and can be obtained at .
doi:10.1186/1471-2105-10-187
PMCID: PMC2703634  PMID: 19538727
14.  Identifying the barriers to conducting outcomes research in integrative health care clinic settings - a qualitative study 
Background
Integrative health care (IHC) is an interdisciplinary blending of conventional medicine and complementary and alternative medicine (CAM) with the purpose of enhancing patients' health. In 2006, we designed a study to assess outcomes that are relevant to people using such care. However, we faced major challenges in conducting this study and hypothesized that this might be due to the lack of a research climate in these clinics. To investigate these challenges, we initiated a further study in 2008, to explore the reasons why IHC clinics are not conducting outcomes research and to identify strategies for conducting successful in-house outcomes research programs. The results of the latter study are reported here.
Methods
A total of 25 qualitative interviews were conducted with key participants from 19 IHC clinics across Canada. Basic content analysis was used to identify key themes from the transcribed interviews.
Results
Barriers identified by participants fell into four categories: organizational culture, organizational resources, organizational environment and logistical challenges. Cultural challenges relate to the philosophy of IHC, organizational leadership and practitioner attitudes and beliefs. Participants also identified significant issues relating to their organization's lack of resources such as funding, compensation, infrastructure and partnerships/linkages. Environmental challenges such as the nature of a clinic's patient population and logistical issues such as the actual implementation of a research program and the applicability of research data also posed challenges to the conduct of research. Embedded research leadership, integration of personal and professional values about research, alignment of research activities and clinical workflow processes are some of the factors identified by participants that support IHC clinics' ability to conduct outcomes research.
Conclusions
Assessing and enhancing the broader evaluation culture of IHC clinics prior to implementing outcomes research may be a critical step towards ensuring productive and cost-effective research programs. However, as IHC clinics are often complex systems, a whole systems approach to research should be used taking into account the multidimensional and complex nature of such treatment systems so that the results are useful and reflect real life.
doi:10.1186/1472-6963-10-14
PMCID: PMC2826302  PMID: 20074354
15.  Crossing the Chasm: Information Technology to Biomedical Informatics 
Accelerating the translation of new scientific discoveries to improve human health and disease management is the overall goal of a series of initiatives integrated in the National Institutes of Health (NIH) “Roadmap for Medical Research.” The Clinical and Translational Research Award (CTSA) program is, arguably, the most visible component of the NIH Roadmap providing resources to institutions to transform their clinical and translational research enterprises along the goals of the Roadmap. The CTSA program emphasizes biomedical informatics as a critical component for the accomplishment of the NIH’s translational objectives. To be optimally effective, emerging biomedical informatics programs must link with the information technology (IT) platforms of the enterprise clinical operations within academic health centers.
This report details one academic health center’s transdisciplinary initiative to create an integrated academic discipline of biomedical informatics through the development of its infrastructure for clinical and translational science infrastructure and response to the CTSA mechanism. This approach required a detailed informatics strategy to accomplish these goals. This transdisciplinary initiative was the impetus for creation of a specialized biomedical informatics core, the Center for Biomedical Informatics (CBI). Development of the CBI codified the need to incorporate medical informatics including quality and safety informatics and enterprise clinical information systems within the CBI. This paper describes the steps taken to develop the biomedical informatics infrastructure, its integration with clinical systems at one academic health center, successes achieved, and barriers encountered during these efforts.
doi:10.231/JIM.0b013e31821452bf
PMCID: PMC3137749  PMID: 21383632
CTSA; information technology clinical and translational research; biomedical informatics
16.  Crossing the Implementation Chasm: A Proposal for Bold Action 
As health care organizations dramatically increase investment in information technology (IT) and the scope of their IT projects, implementation failures become critical events. Implementation failures cause stress on clinical units, increase risk to patients, and result in massive costs that are often not recoverable. At an estimated 28% success rate, the current level of investment defies management logic. This paper asserts that there are “chasms” in IT implementations that represent risky stages in the process. Contributors to the chasms are classified into four categories: design, management, organization, and assessment. The American College of Medical Informatics symposium participants recommend bold action to better understand problems and challenges in implementation and to improve the ability of organizations to bridge these implementation chasms. The bold action includes the creation of a Team Science for Implementation strategy that allows for participation from multiple institutions to address the long standing and costly implementation issues. The outcomes of this endeavor will include a new focus on interdisciplinary research and an inter-organizational knowledge base of strategies and methods to optimize implementations and subsequent achievement of organizational objectives.
doi:10.1197/jamia.M2583
PMCID: PMC2410010  PMID: 18308985
17.  A core curriculum for clinical fellowship training in pathology informatics 
Background:
In 2007, our healthcare system established a clinical fellowship program in Pathology Informatics. In 2010 a core didactic course was implemented to supplement the fellowship research and operational rotations. In 2011, the course was enhanced by a formal, structured core curriculum and reading list. We present and discuss our rationale and development process for the Core Curriculum and the role it plays in our Pathology Informatics Fellowship Training Program.
Materials and Methods:
The Core Curriculum for Pathology Informatics was developed, and is maintained, through the combined efforts of our Pathology Informatics Fellows and Faculty. The curriculum was created with a three-tiered structure, consisting of divisions, topics, and subtopics. Primary (required) and suggested readings were selected for each subtopic in the curriculum and incorporated into a curated reading list, which is reviewed and maintained on a regular basis.
Results:
Our Core Curriculum is composed of four major divisions, 22 topics, and 92 subtopics that cover the wide breadth of Pathology Informatics. The four major divisions include: (1) Information Fundamentals, (2) Information Systems, (3) Workflow and Process, and (4) Governance and Management. A detailed, comprehensive reading list for the curriculum is presented in the Appendix to the manuscript and contains 570 total readings (current as of March 2012).
Discussion:
The adoption of a formal, core curriculum in a Pathology Informatics fellowship has significant impacts on both fellowship training and the general field of Pathology Informatics itself. For a fellowship, a core curriculum defines a basic, common scope of knowledge that the fellowship expects all of its graduates will know, while at the same time enhancing and broadening the traditional fellowship experience of research and operational rotations. For the field of Pathology Informatics itself, a core curriculum defines to the outside world, including departments, companies, and health systems considering hiring a pathology informatician, the core knowledge set expected of a person trained in the field and, more fundamentally, it helps to define the scope of the field within Pathology and healthcare in general.
doi:10.4103/2153-3539.100364
PMCID: PMC3445301  PMID: 23024890
Clinical informatics curriculum; clinical informatics teaching; informatics core content; informatics curriculum; pathology informatics core content; pathology informatics curriculum; pathology informatics definition; pathology informatics fellowship; pathology informatics teaching; pathology informatics
18.  EQUIP: Implementing chronic care principles and applying formative evaluation methods to improve care for schizophrenia: QUERI Series 
Background
This paper presents a case study that demonstrates the evolution of a project entitled "Enhancing QUality-of-care In Psychosis" (EQUIP) that began approximately when the U.S. Department of Veterans Affairs' Quality Enhancement Research Initiative (QUERI), and implementation science were emerging. EQUIP developed methods and tools to implement chronic illness care principles in the treatment of schizophrenia, and evaluated this implementation using a small-scale controlled trial. The next iteration of the project, EQUIP-2, was further informed by implementation science and the use of QUERI tools.
Methods
This paper reports the background, development, results and implications of EQUIP, and also describes ongoing work in the second phase of the project (EQUIP-2). The EQUIP intervention uses implementation strategies and tools to increase the adoption and implementation of chronic illness care principles. In EQUIP-2, these strategies and tools are conceptually grounded in a stages-of-change model, and include clinical and delivery system interventions and adoption/implementation tools. Formative evaluation occurs in conjunction with the intervention, and includes developmental, progress-focused, implementation-focused, and interpretive evaluation.
Results
Evaluation of EQUIP provided an understanding of quality gaps and how to address related problems in schizophrenia. EQUIP showed that solutions to quality problems in schizophrenia differ by treatment domain and are exacerbated by a lack of awareness of evidence-based practices. EQUIP also showed that improving care requires creating resources for physicians to help them easily implement practice changes, plus intensive education as well as product champions who help physicians use these resources. Organizational changes, such as the addition of care managers and informatics systems, were shown to help physicians with identifying problems, making referrals, and monitoring follow-up. In EQUIP-2, which is currently in progress, these initial findings were used to develop a more comprehensive approach to implementing and evaluating the chronic illness care model.
Discussion
In QUERI, small-scale projects contribute to the development and enhancement of hands-on, action-oriented service-directed projects that are grounded in current implementation science. This project supports the concept that QUERI tools can be useful in implementing complex care models oriented toward evidence-based improvement of clinical care.
doi:10.1186/1748-5908-3-9
PMCID: PMC2278162  PMID: 18279505
19.  Policy to implementation: evidence-based practice in community mental health – study protocol 
Background
Evidence-based treatments (EBTs) are not widely available in community mental health settings. In response to the call for implementation of evidence-based treatments in the United States, states and counties have mandated behavioral health reform through policies and other initiatives. Evaluations of the impact of these policies on implementation are rare. A systems transformation about to occur in Philadelphia, Pennsylvania, offers an important opportunity to prospectively study implementation in response to a policy mandate.
Methods/design
Using a prospective sequential mixed-methods design, with observations at multiple points in time, we will investigate the responses of staff from 30 community mental health clinics to a policy from the Department of Behavioral Health encouraging and incentivizing providers to implement evidence-based treatments to treat youth with mental health problems. Study participants will be 30 executive directors, 30 clinical directors, and 240 therapists. Data will be collected prior to the policy implementation, and then at two and four years following policy implementation. Quantitative data will include measures of intervention implementation and potential moderators of implementation (i.e., organizational- and leader-level variables) and will be collected from executive directors, clinical directors, and therapists. Measures include self-reported therapist fidelity to evidence-based treatment techniques as measured by the Therapist Procedures Checklist-Revised, organizational variables as measured by the Organizational Social Context Measurement System and the Implementation Climate Assessment, leader variables as measured by the Multifactor Leadership Questionnaire, attitudes towards EBTs as measured by the Evidence-Based Practice Attitude Scale, and knowledge of EBTs as measured by the Knowledge of Evidence- Based Services Questionnaire. Qualitative data will include semi-structured interviews with a subset of the sample to assess the implementation experience of high-, average-, and low-performing agencies. Mixed methods will be integrated through comparing and contrasting results from the two methods for each of the primary hypotheses in this study.
Discussion
Findings from the proposed research will inform both future policy mandates around implementation and the support required for the success of these policies, with the ultimate goal of improving the quality of treatment provided to youth in the public sector.
doi:10.1186/1748-5908-8-38
PMCID: PMC3618103  PMID: 23522556
Evidence-based practice; Community mental health; Policy; Implementation; Fidelity; Organizational variables
20.  Providers' Perceptions of Spinal Cord Injury Pressure Ulcer Guidelines 
Background/Objective:
Pressure ulcers are a serious complication for people with spinal cord injury (SCI). The Consortium for Spinal Cord Medicine (CSCM) published clinical practice guidelines (CPGs) that provided guidance for pressure ulcer prevention and treatment after SCI. The aim of this study was to assess providers' perceptions for each of the 32 CPG recommendations regarding their agreement with CPGs, degree of CPG implementation, and CPG implementation barriers and facilitators.
Methods:
This descriptive mixed-methods study included both qualitative (focus groups) and quantitative (survey) data collection approaches. The sample (n = 60) included 24 physicians and 36 nurses who attended the 2004 annual national conferences of the American Paraplegia Society or American Association of Spinal Cord Injury Nurses. This sample drew from two sources: a purposive sample from a list of preregistered participants and a convenience sample of conference attendee volunteers. We analyzed quantitative data using descriptive statistics and qualitative data using a coding scheme to capture barriers and facilitators.
Results:
The focus groups agreed unanimously on the substance of 6 of the 32 recommendations. Nurse and physician focus groups disagreed on the degree of CGP implementation at their sites, with nurses as a group perceiving less progress in implementation of the guideline recommendations. The focus groups identified only one recommendation, complications of surgery, as being fully implemented at their sites. Categories of barriers and facilitators for implementation of CPGs that emerged from the qualitative analysis included (a) characteristics of CPGs: need for research/evidence, (b) characteristics of CPGs: complexity of design and wording, (c) organizational factors, (d) lack of knowledge, and (e) lack of resources.
Conclusions:
Although generally SCI physicians and nurses agreed with the CPG recommendations as written, they did not feel these recommendations were fully implemented in their respective clinical settings. The focus groups identified multiple barriers to the implementation of the CPGs and suggested several facilitators/solutions to improve implementation of these guidelines in SCI. Participants identified organizational factors and the lack of knowledge as the most substantial systems/issues that created barriers to CPG implementation.
PMCID: PMC2031945  PMID: 17591223
Decubitus ulcer; Skin ulcer; Pressure ulcer; Practice guidelines; Evidence-based medicine; Prevention; Spinal cord injuries
21.  TRIAD: The Translational Research Informatics and Data Management Grid 
Applied Clinical Informatics  2011;2(3):331-344.
Objective
Multi-disciplinary and multi-site biomedical research programs frequently require infrastructures capable of enabling the collection, management, analysis, and dissemination of heterogeneous, multi-dimensional, and distributed data and knowledge collections spanning organizational boundaries. We report on the design and initial deployment of an extensible biomedical informatics platform that is intended to address such requirements.
Methods
A common approach to distributed data, information, and knowledge management needs in the healthcare and life science settings is the deployment and use of a service-oriented architecture (SOA). Such SOA technologies provide for strongly-typed, semantically annotated, and stateful data and analytical services that can be combined into data and knowledge integration and analysis “pipelines.” Using this overall design pattern, we have implemented and evaluated an extensible SOA platform for clinical and translational science applications known as the Translational Research Informatics and Data-management grid (TRIAD). TRIAD is a derivative and extension of the caGrid middleware and has an emphasis on supporting agile “working interoperability” between data, information, and knowledge resources.
Results
Based upon initial verification and validation studies conducted in the context of a collection of driving clinical and translational research problems, we have been able to demonstrate that TRIAD achieves agile “working interoperability” between distributed data and knowledge sources.
Conclusion
Informed by our initial verification and validation studies, we believe TRIAD provides an example instance of a lightweight and readily adoptable approach to the use of SOA technologies in the clinical and translational research setting. Furthermore, our initial use cases illustrate the importance and efficacy of enabling “working interoperability” in heterogeneous biomedical environments.
doi:10.4338/ACI-2011-02-RA-0014
PMCID: PMC3631927  PMID: 23616879
Clinical research informatics; data access; data integration; data analysis; standards; workflow; socio-organizational issues
22.  Accessing and Integrating Data and Knowledge for Biomedical Research 
Summary
Objectives
To review the issues that have arisen with the advent of translational research in terms of integration of data and knowledge, and survey current efforts to address these issues.
Methods
Using examples form the biomedical literature, we identified new trends in biomedical research and their impact on bioinformatics. We analyzed the requirements for effective knowledge repositories and studied issues in the integration of biomedical knowledge.
Results
New diagnostic and therapeutic approaches based on gene expression patterns have brought about new issues in the statistical analysis of data, and new workflows are needed are needed to support translational research. Interoperable data repositories based on standard annotations, infrastructures and services are needed to support the pooling and meta-analysis of data, as well as their comparison to earlier experiments. High-quality, integrated ontologies and knowledge bases serve as a source of prior knowledge used in combination with traditional data mining techniques and contribute to the development of more effective data analysis strategies.
Conclusion
As biomedical research evolves from traditional clinical and biological investigations towards omics sciences and translational research, specific needs have emerged, including integrating data collected in research studies with patient clinical data, linking omics knowledge with medical knowledge, modeling the molecular basis of diseases, and developing tools that support in-depth analysis of research data. As such, translational research illustrates the need to bridge the gap between bioinformatics and medical informatics, and opens new avenues for biomedical informatics research.
PMCID: PMC2553094  PMID: 18660883
Medical Informatics; bioinformatics; databases; distributed knowledge bases
23.  Predictors of Rural Health Clinics Managers' Willingness to Join Accountable Care Organizations 
Purpose
The implementation of the Patient Protection and Affordable Care Act has facilitated the development of an innovative and integrated delivery care system, Accountable Care Organizations (ACOs). It is timely, to identify how health care managers in rural health clinics are responding to the ACO model. This research examines RHC managers' perceived benefits and barriers for implementing ACOs from an organizational ecology perspective.
Methodology/Approach
A survey was conducted in Spring of 2012 covering the present RHC network working infrastructures – 1) Organizational social network; 2) organizational care delivery structure; 3) ACO knowledge, perceived benefits, and perceived barriers; 4) quality and disease management programs; and 5) health information technology (HIT) infrastructure. One thousand one hundred sixty clinics were surveyed in the United States. They cover eight southeastern states (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee) and California. A total of ninety-one responses were received.
Findings
RHC managers' personal perceptions on ACO's benefits and knowledge level explained the most variance in their willingness to join ACOs. Individual perceptions appear to be more influential than organizational and context factors in the predictive analysis.
Research limitations/implications
The study is primarily focused in the Southeastern region of the U.S. The generalizability is limited to this region. The predictors of rural health clinics' participation in ACOs are germane to guide the development of organizational strategies for enhancing the general knowledge about the innovativeness of delivering coordinated care and containing health care costs inspired by the Affordable Care Act.
Originality/Value of Paper
Rural health clinics are lagged behind the growth curve of ACO adoption. The diffusion of new knowledge about pros and cons of ACO is essential to reinforce the health care reform in the United States.
doi:10.1108/S0275-495920140000032023
PMCID: PMC4274791  PMID: 25541569
Rural Health Clinics; Accountable Care Organizations (ACOs); Patient Protection and Affordable Care Act (PPACA); Information Technology
24.  Assessing the evolution of primary healthcare organizations and their performance (2005-2010) in two regions of Québec province: Montréal and Montérégie 
BMC Family Practice  2010;11:95.
Background
The Canadian healthcare system is currently experiencing important organizational transformations through the reform of primary healthcare (PHC). These reforms vary in scope but share a common feature of proposing the transformation of PHC organizations by implementing new models of PHC organization. These models vary in their performance with respect to client affiliation, utilization of services, experience of care and perceived outcomes of care.
Objectives
In early 2005 we conducted a study in the two most populous regions of Quebec province (Montreal and Montérégie) which assessed the association between prevailing models of primary healthcare (PHC) and population-level experience of care. The goal of the present research project is to track the evolution of PHC organizational models and their relative performance through the reform process (from 2005 until 2010) and to assess factors at the organizational and contextual levels that are associated with the transformation of PHC organizations and their performance.
Methods/Design
This study will consist of three interrelated surveys, hierarchically nested. The first survey is a population-based survey of randomly-selected adults from two populous regions in the province of Quebec. This survey will assess the current affiliation of people with PHC organizations, their level of utilization of healthcare services, attributes of their experience of care, reception of preventive and curative services and perception of unmet needs for care. The second survey is an organizational survey of PHC organizations assessing aspects related to their vision, organizational structure, level of resources, and clinical practice characteristics. This information will serve to develop a taxonomy of organizations using a mixed methods approach of factorial analysis and principal component analysis. The third survey is an assessment of the organizational context in which PHC organizations are evolving. The five year prospective period will serve as a natural experiment to assess contextual and organizational factors (in 2005) associated with migration of PHC organizational models into new forms or models (in 2010) and assess the impact of this evolution on the performance of PHC.
Discussion
The results of this study will shed light on changes brought about in the organization of PHC and on factors associated with these changes.
doi:10.1186/1471-2296-11-95
PMCID: PMC3014883  PMID: 21122145
25.  Towards pervasive computing in health care – A literature review 
Background
The evolving concepts of pervasive computing, ubiquitous computing and ambient intelligence are increasingly influencing health care and medicine. Summarizing published research, this literature review provides an overview of recent developments and implementations of pervasive computing systems in health care. It also highlights some of the experiences reported in deployment processes.
Methods
There is no clear definition of pervasive computing in the current literature. Thus specific inclusion criteria for selecting articles about relevant systems were developed. Searches were conducted in four scientific databases alongside manual journal searches for the period of 2002 to 2006. Articles included present prototypes, case studies and pilot studies, clinical trials and systems that are already in routine use.
Results
The searches identified 69 articles describing 67 different systems. In a quantitative analysis, these systems were categorized into project status, health care settings, user groups, improvement aims, and systems features (i.e., component types, data gathering, data transmission, systems functions). The focus is on the types of systems implemented, their frequency of occurrence and their characteristics. Qualitative analyses were performed of deployment issues, such as organizational and personnel issues, privacy and security issues, and financial issues. This paper provides a comprehensive access to the literature of the emerging field by addressing specific topics of application settings, systems features, and deployment experiences.
Conclusion
Both an overview and an analysis of the literature on a broad and heterogeneous range of systems are provided. Most systems are described in their prototype stages. Deployment issues, such as implications on organization or personnel, privacy concerns, or financial issues are mentioned rarely, though their solution is regarded as decisive in transferring promising systems to a stage of regular operation. There is a need for further research on the deployment of pervasive computing systems, including clinical studies, economic and social analyses, user studies, etc.
doi:10.1186/1472-6947-8-26
PMCID: PMC2467411  PMID: 18565221

Results 1-25 (911957)