PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1053086)

Clipboard (0)
None

Related Articles

1.  Recommendations for Syndromic Surveillance Using Inpatient and Ambulatory EHR Data 
Objective
To develop national Stage 2 Meaningful Use (MUse) recommendations for syndromic surveillance using hospital inpatient and ambulatory clinical care electronic health record (EHR) data.
Introduction
MUse will make EHR data increasingly available for public health surveillance. For Stage 2, the Centers for Medicare & Medicaid Services (CMS) regulations will require hospitals and offer an option for eligible professionals to provide electronic syndromic surveillance data to public health. Together, these data can strengthen public health surveillance capabilities and population health outcomes (Figure 1).
To facilitate the adoption and effective use of these data to advance population health, public health priorities and system capabilities must shape standards for data exchange. Input from all stakeholders is critical to ensure the feasibility, practicality, and, hence, adoption of any recommendations and data use guidelines.
Methods
ISDS, in collaboration with the Division of Informatics Solutions and Operations at the Centers for Disease Control and Prevention (CDC), and HLN Consulting, convened a multi-stakeholder Work-group of clinicians, technologists, epidemiologists, and public health officials with expertise in syndromic surveillance. Recommended MUse guidelines were developed by performing an environmental scan of current practice and by using an iterative, expert and community input-driven process. The Workgroup developed initial guidelines and then solicited and received feedback from the stakeholder community via interview, e-mail, and structured surveys. Stakeholder feedback was analyzed using quantitative and qualitative methods and used to revise the recommendations.
Results
The MUse Workgroup defined electronic syndromic surveillance (ESS) characteristics. Specifically, data are characterized by their timeliness, sensitivity rather than specificity, population focus, limited personally identifiable information, and inclusion of all patient encounters within a specific healthcare setting (e.g., emergency department, inpatient, outpatient). Based on stakeholder input (n=125) and Workgroup expertise, the guidelines identify priority syndromic surveillance uses that can assist with: Monitoring population health;Informing public health services; andInforming interventions, health education, and policy by characterizing the burden of chronic disease and health disparities.
Similarly, the Workgroup identified data elements to support these uses in the hospital inpatient setting and possibly in the ambulatory care setting. They were aligned to previously identified emergency department and urgent care center data elements and Stage 1–2 clinical MUse objectives. Core data elements (required for certification) cover treating facility; patient demographics; subjective and objective clinical findings, including chief complaint, body mass index, smoking history, diagnoses; and outcomes. Other data elements were designated as extended (not required for certification) or future (for future consideration). The data elements and their specifications are subject to change based on applicable state and local laws and practices.
Based on their findings and recommended guidelines detailed in the report, the Workgroup also identified community activities and additional investments that would best support public health agencies in using EHR technology with syndromic surveillance methodologies.
Conclusions
The widespread adoption of EHRs, catalyzed by MUse, has the potential to improve population health. By identifying and describing potential ESS uses of new sources of EHR data and associated data elements with the greatest utility for public health, the recommendations set forth by the ISDS MUse Workgroup will serve to facilitate the adoption of MUse policy by both healthcare and public health agencies.
PMCID: PMC3692899
EHR; syndromic surveillance; Meaningful Use; inpatient; ambulatory
2.  Advancing Personalized Health Care through Health Information Technology: An Update from the American Health Information Community's Personalized Health Care Workgroup 
The Personalized Health Care Workgroup of the American Health Information Community was formed to determine what is needed to promote standard reporting and incorporation of medical genetic/genomic tests and family health history data in electronic health records. The Workgroup has examined and clarified a range of issues related to this information, including interoperability standards and requirements for confidentiality, privacy, and security, in the course of developing recommendations to facilitate its capture, storage, transmission, and use in clinical decision support. The Workgroup is one of several appointed by the American Health Information Community to study high-priority issues related to the implementation of interoperable electronic health records in the United States. It is also a component of the U.S. Department of Health and Human Services' Personalized Health Care Initiative, which is designed to create a foundation upon which information technology that supports personalized, predictive, and pre-emptive health care can be built.
doi:10.1197/jamia.M2718
PMCID: PMC2442266  PMID: 18436899
3.  Improving patient information for telemonitoring in chronic heart failure 
Background
More and more people suffer from heart failure and the expectation is that this number will only increase the coming years. Innovations are needed to keep healthcare accessible as well as affordable. Telemonitoring is one of the promising innovations that can be deployed for making the care for heart failure patients safer and more efficient. Nevertheless, the use of these eHealth solutions are not yet in proportion to our objective. There are many reasons for this situation in terms of funding, acceptance, questions about liability, etc. Another very important reason is the lack of interoperability: there is no interaction or information exchange between different systems. This leads to a situation in which information is not, or not in time, available to the care provider. A heart failure patient using telemonitoring measures his body weight, his blood pressure and answers some questions on a daily basis. Based on these data, the care providers in the hospital are able to monitor the health status of the patient over a distance. However, care providers lack access to all information on the patient in one application. The telemonitoring information can be found in the telemonitoring system, whereas the other medical information (medication overview, medical history, etc.) is stored in the hospital information system or electronic patient record. As a result, not all patient information is available in one system or it has to be copied manually, with all the consequences that can entail.
Aims and objectives
The aim of this project is to improve the information exchange and to stimulate the use and acceptance of telemonitoring. Nictiz initiated assembling all stakeholders to develop interoperability profiles that will improve the information exchange.
Methods and results
To enable interoperability, standards are a required but not sufficient condition. It is also necessary to agree on how those standards are applied to support specific care processes and to exchange the correct information at the correct moment. This can be achieved by developing interoperability profiles. In these profiles agreements between all stakeholders are recorded on process, information, application, and technical level. Starting point was the problem on information exchange described above and the needs and the interests of the stakeholders. Based on this specific use case, health care professionals, patient representatives, IT suppliers, and insurers collaborate to make agreements about interoperability between the telemonitoring system and the electronic patient record used in the hospital. This results in functional and technical design specifications, based on the Continua Design Guidelines. These profiles will be implemented in the relevant applications, resulting in an information exchange between the telemonitoring systems and the electronic patient record systems in a standardized way.
Conclusion
With the use of interoperability profiles defined by all stakeholders, the telemonitoring data are available in the electronic patient record of the heart failure patient used in the hospital. In this way, all information is easily available for the care providers, thereby making the care for heart failure patients safer and more efficient.
PMCID: PMC3571133
telemonitoring; chronic heart failure; interoperability; profiles
4.  A knowledge-based taxonomy of critical factors for adopting electronic health record systems by physicians: a systematic literature review 
Background
The health care sector is an area of social and economic interest in several countries; therefore, there have been lots of efforts in the use of electronic health records. Nevertheless, there is evidence suggesting that these systems have not been adopted as it was expected, and although there are some proposals to support their adoption, the proposed support is not by means of information and communication technology which can provide automatic tools of support. The aim of this study is to identify the critical adoption factors for electronic health records by physicians and to use them as a guide to support their adoption process automatically.
Methods
This paper presents, based on the PRISMA statement, a systematic literature review in electronic databases with adoption studies of electronic health records published in English. Software applications that manage and process the data in the electronic health record have been considered, i.e.: computerized physician prescription, electronic medical records, and electronic capture of clinical data. Our review was conducted with the purpose of obtaining a taxonomy of the physicians main barriers for adopting electronic health records, that can be addressed by means of information and communication technology; in particular with the information technology roles of the knowledge management processes. Which take us to the question that we want to address in this work: "What are the critical adoption factors of electronic health records that can be supported by information and communication technology?". Reports from eight databases covering electronic health records adoption studies in the medical domain, in particular those focused on physicians, were analyzed.
Results
The review identifies two main issues: 1) a knowledge-based classification of critical factors for adopting electronic health records by physicians; and 2) the definition of a base for the design of a conceptual framework for supporting the design of knowledge-based systems, to assist the adoption process of electronic health records in an automatic fashion. From our review, six critical adoption factors have been identified: user attitude towards information systems, workflow impact, interoperability, technical support, communication among users, and expert support. The main limitation of the taxonomy is the different impact of the adoption factors of electronic health records reported by some studies depending on the type of practice, setting, or attention level; however, these features are a determinant aspect with regard to the adoption rate for the latter rather than the presence of a specific critical adoption factor.
Conclusions
The critical adoption factors established here provide a sound theoretical basis for research to understand, support, and facilitate the adoption of electronic health records to physicians in benefit of patients.
doi:10.1186/1472-6947-10-60
PMCID: PMC2970582  PMID: 20950458
5.  Reinterpreting Ethnic Patterns among White and African American Men Who Inject Heroin: A Social Science of Medicine Approach 
PLoS Medicine  2006;3(10):e452.
Background
Street-based heroin injectors represent an especially vulnerable population group subject to negative health outcomes and social stigma. Effective clinical treatment and public health intervention for this population requires an understanding of their cultural environment and experiences. Social science theory and methods offer tools to understand the reasons for economic and ethnic disparities that cause individual suffering and stress at the institutional level.
Methods and Findings
We used a cross-methodological approach that incorporated quantitative, clinical, and ethnographic data collected by two contemporaneous long-term San Francisco studies, one epidemiological and one ethnographic, to explore the impact of ethnicity on street-based heroin-injecting men 45 years of age or older who were self-identified as either African American or white. We triangulated our ethnographic findings by statistically examining 14 relevant epidemiological variables stratified by median age and ethnicity. We observed significant differences in social practices between self-identified African Americans and whites in our ethnographic social network sample with respect to patterns of (1) drug consumption; (2) income generation; (3) social and institutional relationships; and (4) personal health and hygiene. African Americans and whites tended to experience different structural relationships to their shared condition of addiction and poverty. Specifically, this generation of San Francisco injectors grew up as the children of poor rural to urban immigrants in an era (the late 1960s through 1970s) when industrial jobs disappeared and heroin became fashionable. This was also when violent segregated inner city youth gangs proliferated and the federal government initiated its “War on Drugs.” African Americans had earlier and more negative contact with law enforcement but maintained long-term ties with their extended families. Most of the whites were expelled from their families when they began engaging in drug-related crime. These historical-structural conditions generated distinct presentations of self. Whites styled themselves as outcasts, defeated by addiction. They professed to be injecting heroin to stave off “dopesickness” rather than to seek pleasure. African Americans, in contrast, cast their physical addiction as an oppositional pursuit of autonomy and pleasure. They considered themselves to be professional outlaws and rejected any appearance of abjection. Many, but not all, of these ethnographic findings were corroborated by our epidemiological data, highlighting the variability of behaviors within ethnic categories.
Conclusions
Bringing quantitative and qualitative methodologies and perspectives into a collaborative dialog among cross-disciplinary researchers highlights the fact that clinical practice must go beyond simple racial or cultural categories. A clinical social science approach provides insights into how sociocultural processes are mediated by historically rooted and institutionally enforced power relations. Recognizing the logical underpinnings of ethnically specific behavioral patterns of street-based injectors is the foundation for cultural competence and for successful clinical relationships. It reduces the risk of suboptimal medical care for an exceptionally vulnerable and challenging patient population. Social science approaches can also help explain larger-scale patterns of health disparities; inform new approaches to structural and institutional-level public health initiatives; and enable clinicians to take more leadership in changing public policies that have negative health consequences.
Bourgois and colleagues found that the African American and white men in their study had a different pattern of drug use and risk behaviors, adopted different strategies for survival, and had different personal histories.
Editors' Summary
Background.
There are stark differences in the health of different ethnic groups in America. For example, the life expectancy for white men is 75.4 years, but it is only 69.2 years for African-American men. The reasons behind these disparities are unclear, though there are several possible explanations. Perhaps, for example, different ethnic groups are treated differently by health professionals (with some groups receiving poorer quality health care). Or maybe the health disparities are due to differences across ethnic groups in income level (we know that richer people are healthier). These disparities are likely to persist unless we gain a better understanding of how they arise.
Why Was This Study Done?
The researchers wanted to study the health of a very vulnerable community of people: heroin users living on the streets in the San Francisco Bay Area. The health status of this community is extremely poor, and its members are highly stigmatized—including by health professionals themselves. The researchers wanted to know whether African American men and white men who live on the streets have a different pattern of drug use, whether they adopt varying strategies for survival, and whether they have different personal histories. Knowledge of such differences would help the health community to provide more tailored and culturally appropriate interventions. Physicians, nurses, and social workers often treat street-based drug users, especially in emergency rooms and free clinics. These health professionals regularly report that their interactions with street-based drug users are frustrating and confrontational. The researchers hoped that their study would help these professionals to have a better understanding of the cultural backgrounds and motivations of their drug-using patients.
What Did the Researchers Do and Find?
Over the course of six years, the researchers directly observed about 70 men living on the streets who injected heroin as they went about their usual lives (this type of research is called “participant observation”). The researchers specifically looked to see whether there were differences between the white and African American men. All the men gave their consent to be studied in this way and to be photographed. The researchers also studied a database of interviews with almost 7,000 injection drug users conducted over five years, drawing out the data on differences between white and African men. The researchers found that the white men were more likely to supplement their heroin use with inexpensive fortified wine, while African American men were more likely to supplement heroin with crack. Most of the white men were expelled from their families when they began engaging in drug-related crime, and these men tended to consider themselves as destitute outcasts. African American men had earlier and more negative contact with law enforcement but maintained long-term ties with their extended families, and these men tended to consider themselves as professional outlaws. The white men persevered less in attempting to find a vein in which to inject heroin, and so were more likely to inject the drug directly under the skin—this meant that they were more likely to suffer from skin abscesses. The white men generated most of their income from panhandling (begging for money), while the African American men generated most of their income through petty crime and/or through offering services such as washing car windows at gas stations.
What Do These Findings Mean?
Among street-based heroin users, there are important differences between white men and African American men in the type of drugs used, the method of drug use, their social backgrounds, the way in which they identify themselves, and the health risks that they take. By understanding these differences, health professionals should be better placed to provide tailored and appropriate care when these men present to clinics and emergency rooms. As the researchers say, “understanding of different ethnic populations of drug injectors may reduce difficult clinical interactions and resultant physician frustration while improving patient access and adherence to care.” One limitation of this study is that the researchers studied one specific community in one particular area of the US—so we should not assume that their findings would apply to street-based heroin users elsewhere.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030452.
The US Centers for Disease Control (CDC) has a web page on HIV prevention among injection drug users
The World Health Organization has collected documents on reducing the risk of HIV in injection drug users and on harm reduction approaches
The International Harm Reduction Association has information relevant to a global audience on reducing drug-related harm among individuals and communities
US-focused information on harm reduction is available via the websites of the Harm Reduction Coalition and the Chicago Recovery Alliance
Canada-focused information can be found at the Street Works Web site
The Harm Reduction Journal publishes open-access articles
The CDC has a web page on eliminating racial and ethnic health disparities
The Drug Policy Alliance has a web page on drug policy in the United States
doi:10.1371/journal.pmed.0030452
PMCID: PMC1621100  PMID: 17076569
6.  e-Health, m-Health and healthier social media reform: the big scale view 
Introduction
In the upcoming decade, digital platforms will be the backbone of a strategic revolution in the way medical services are provided, affecting both healthcare providers and patients. Digital-based patient-centered healthcare services allow patients to actively participate in managing their own care, in times of health as well as illness, using personally tailored interactive tools. Such empowerment is expected to increase patients’ willingness to adopt actions and lifestyles that promote health as well as improve follow-up and compliance with treatment in cases of chronic illness. Clalit Health Services (CHS) is the largest HMO in Israel and second largest world-wide. Through its 14 hospitals, 1300 primary and specialized clinics, and 650 pharmacies, CHS provides comprehensive medical care to the majority of Israel’s population (above 4 million members). CHS e-Health wing focuses on deepening patient involvement in managing health, through personalized digital interactive tools. Currently, CHS e-Health wing provides e-health services for 1.56 million unique patients monthly with 2.4 million interactions every month (August 2011). Successful implementation of e-Health solutions is not a sum of technology, innovation and health; rather it’s the expertise of tailoring knowledge and leadership capabilities in multidisciplinary areas: clinical, ethical, psychological, legal, comprehension of patient and medical team engagement etc. The Google Health case excellently demonstrates this point. On the other hand, our success with CHS is a demonstration that e-Health can be enrolled effectively and fast with huge benefits for both patients and medical teams, and with a robust business model.
CHS e-Health core components
They include:
1. The personal health record layer (what the patient can see) presents patients with their own medical history as well as the medical history of their preadult children, including diagnoses, allergies, vaccinations, laboratory results with interpretations in layman’s terms, medications with clear, straightforward explanations regarding dosing instructions, important side effects, contraindications, such as lactation etc., and other important medical information. All personal e-Health services require identification and authorization.
2. The personal knowledge layer (what the patient should know) presents patients with personally tailored recommendations for preventative medicine and health promotion. For example, diabetic patients are push notified regarding their yearly eye exam. The various health recommendations include: occult blood testing, mammography, lipid profile etc. Each recommendation contains textual, visual and interactive content components in order to promote engagement and motivate the patient to actually change his health behaviour.
3. The personal health services layer (what the patient can do) enables patients to schedule clinic visits, order chronic prescriptions, e-consult their physician via secured e-mail, set SMS medication reminders, e-consult a pharmacist regarding personal medications. Consultants’ answers are sent securely to the patients’ personal mobile device.
On December 2009 CHS launched secured, web based, synchronous medical consultation via video conference. Currently 11,780 e-visits are performed monthly (May 2011). The medical encounter includes e-prescription and referral capabilities which are biometrically signed by the physician. On December 2010 CHS launched a unique mobile health platform, which is one of the most comprehensive personal m-Health applications world-wide. An essential advantage of mobile devices is their potential to bridge the digital divide. Currently, CHS m-Health platform is used by more than 45,000 unique users, with 75,000 laboratory results views/month, 1100 m-consultations/month and 9000 physician visit scheduling/month.
4. The Bio-Sensing layer (what physiological data the patient can populate) includes diagnostic means that allow remote physical examination, bio-sensors that broadcast various physiological measurements, and smart homecare devices, such as e-Pill boxes that gives seniors, patients and their caregivers the ability to stay at home and live life to its fullest. Monitored data is automatically transmitted to the patient’s Personal Health Record and to relevant medical personnel.
The monitoring layer is embedded in the chronic disease management platform, and in the interactive health promotion and wellness platform. It includes tailoring of consumer-oriented medical devices and service provided by various professional personnel—physicians, nurses, pharmacists, dieticians and more.
5. The Social layer (what the patient can share). Social media networks triggered an essential change at the humanity ‘genome’ level, yet to be further defined in the upcoming years. Social media has huge potential in promoting health as it combines fun, simple yet extraordinary user experience, and bio-social-feedback. There are two major challenges in leveraging health care through social networks:
a. Our personal health information is the cornerstone for personalizing healthier lifestyle, disease management and preventative medicine. We naturally see our personal health data as a super-private territory. So, how do we bring the power of our private health information, currently locked within our Personal Health Record, into social media networks without offending basic privacy issues?
b. Disease management and preventive medicine are currently neither considered ‘cool’ nor ‘fun’ or ‘potentially highly viral’ activities; yet, health is a major issue of everybody’s life. It seems like we are missing a crucial element with a huge potential in health behavioural change—the Fun Theory. Social media platforms comprehends user experience tools that potentially could break current misconception, and engage people in the daily task of taking better care of themselves.
CHS e-Health innovation team characterized several break-through applications in this unexplored territory within social media networks, fusing personal health and social media platforms without offending privacy. One of the most crucial issues regarding adoption of e-health and m-health platforms is change management. Being a ‘hot’ innovative ‘gadget’ is far from sufficient for changing health behaviours at the individual and population levels.
CHS health behaviour change management methodology includes 4 core elements:
1. Engaging two completely different populations: patients, and medical teams. e-Health applications must present true added value for both medical teams and patients, engaging them through understanding and assimilating “what’s really in it for me”. Medical teams are further subdivided into physicians, nurses, pharmacists and administrative personnel—each with their own driving incentive. Resistance to change is an obstacle in many fields but it is particularly true in the conservative health industry. To successfully manage a large scale persuasive process, we treat intra-organizational human resources as “Change Agents”. Harnessing the persuasive power of ~40,000 employees requires engaging them as the primary target group. Successful recruitment has the potential of converting each patient-medical team interaction into an exposure opportunity to the new era of participatory medicine via e-health and m-health channels.
2. Implementation waves: every group of digital health products that are released at the same time are seen as one project. Each implementation wave leverages the focus of the organization and target populations to a defined time span. There are three major and three minor implementation waves a year.
3. Change-Support Arrow: a structured infrastructure for every implementation wave. The sub-stages in this strategy include:
Cross organizational mapping and identification of early adopters and stakeholders relevant to the implementation wave
Mapping positive or negative perceptions and designing specific marketing approaches for the distinct target groups
Intra and extra organizational marketing
Conducting intensive training and presentation sessions for groups of implementers
Running conflict-prevention activities, such as advanced tackling of potential union resistance
Training change-agents with resistance-management behavioural techniques, focused intervention for specific incidents and for key opinion leaders
Extensive presence in the clinics during the launch period, etc.
The entire process is monitored and managed continuously by a review team.
4. Closing Phase: each wave is analyzed and a “lessons-learned” session concludes the changes required in the modus operandi of the e-health project team.
PMCID: PMC3571141
e-Health; mobile health; personal health record; online visit; patient empowerment; knowledge prescription
7.  Access To Essential Maternal Health Interventions and Human Rights Violations among Vulnerable Communities in Eastern Burma 
PLoS Medicine  2008;5(12):e242.
Background
Health indicators are poor and human rights violations are widespread in eastern Burma. Reproductive and maternal health indicators have not been measured in this setting but are necessary as part of an evaluation of a multi-ethnic pilot project exploring strategies to increase access to essential maternal health interventions. The goal of this study is to estimate coverage of maternal health services prior to this project and associations between exposure to human rights violations and access to such services.
Methods and Findings
Selected communities in the Shan, Mon, Karen, and Karenni regions of eastern Burma that were accessible to community-based organizations operating from Thailand were surveyed to estimate coverage of reproductive, maternal, and family planning services, and to assess exposure to household-level human rights violations within the pilot-project target population. Two-stage cluster sampling surveys among ever-married women of reproductive age (15–45 y) documented access to essential antenatal care interventions, skilled attendance at birth, postnatal care, and family planning services. Mid-upper arm circumference, hemoglobin by color scale, and Plasmodium falciparum parasitemia by rapid diagnostic dipstick were measured. Exposure to human rights violations in the prior 12 mo was recorded. Between September 2006 and January 2007, 2,914 surveys were conducted. Eighty-eight percent of women reported a home delivery for their last pregnancy (within previous 5 y). Skilled attendance at birth (5.1%), any (39.3%) or ≥ 4 (16.7%) antenatal visits, use of an insecticide-treated bed net (21.6%), and receipt of iron supplements (11.8%) were low. At the time of the survey, more than 60% of women had hemoglobin level estimates ≤ 11.0 g/dl and 7.2% were Pf positive. Unmet need for contraceptives exceeded 60%. Violations of rights were widely reported: 32.1% of Karenni households reported forced labor and 10% of Karen households had been forced to move. Among Karen households, odds of anemia were 1.51 (95% confidence interval [CI] 0.95–2.40) times higher among women reporting forced displacement, and 7.47 (95% CI 2.21–25.3) higher among those exposed to food security violations. The odds of receiving no antenatal care services were 5.94 (95% CI 2.23–15.8) times higher among those forcibly displaced.
Conclusions
Coverage of basic maternal health interventions is woefully inadequate in these selected populations and substantially lower than even the national estimates for Burma, among the lowest in the region. Considerable political, financial, and human resources are necessary to improve access to maternal health care in these communities.
Luke Mullany and colleagues examine access to essential maternal health interventions and human rights violations within vulnerable communities in eastern Burma.
Editors' Summary
Background.
After decades of military rule, Burma has one of the world's worst health-care systems and high levels of ill health. For example, maternal mortality (deaths among women from pregnancy-related causes) is around 360 per 100,000 live births in Burma, whereas in neighboring Thailand it is only 44 per 100,000 live births. Maternal health is even worse in the Shan, Karenni, Karen and Mon states in eastern Burma where ethnic conflicts and enforced village relocations have internally displaced more than half a million people. Here, maternal mortality is thought to be about 1000 per 100, 000 live births. In an effort to improve access to life-saving maternal health interventions in these states, Burmese community-based health organizations, the Johns Hopkins Center for Public Health and Human Rights and the Global Health Access Program in the USA, and the Mae Tao Clinic (a health-worker training center in Thailand) recently set up the Mobile Obstetric Maternal Health Workers (MOM) Project. In this pilot project, local health workers from 12 communities in eastern Burma received training in antenatal care, emergency obstetrics (the care of women during childbirth), blood transfusion, and family planning at the Mae Tao Clinic. Back in Burma, these maternal health workers trained additional local health workers and traditional birth attendants. All these individuals now provide maternal health care to their communities.
Why Was This Study Done?
The effectiveness of the MOM project can only be evaluated if accurate baseline information on women's access to maternal health-care services is available. This information is also needed to ensure the wise use of scarce health-care resources. However, very little is known about reproductive and maternal health in eastern Burma. In this study, the researchers analyze the information on women's access to reproductive and maternal health-care services that was collected during the initial field implementation stage of the MOM project. In addition, they analyze whether exposure to enforced village relocations and other human rights violations affect access to maternal health-care services.
What Did the Researchers Do and Find?
Trained survey workers asked nearly 3000 ever-married women of reproductive age in the selected communities about their access to antenatal and postnatal care, skilled birth attendants, and family planning. They measured each woman's mid-upper arm circumference (an indicator of nutritional status) and tested them for anemia (iron deficiency) and infection with malaria parasites (a common cause of anemia in tropical countries). Finally, they asked the women about any recent violations of their human rights such as forced labour or relocation. Nearly 90% of the women reported a home delivery for their last baby. A skilled attendant was present at only one in 20 births and only one in three women had any antenatal care. One third of the women received postnatal care and only a third said they had access to effective contraceptives. Few women had received iron supplements or had used insecticide-treated bednets to avoid malaria-carrying mosquitos. Consequently, more than half the women were anemic and 7.2% were infected with malaria parasites. Many women also showed signs of poor nutrition. Finally, human rights violations were widely reported by the women. In Karen, the region containing most of the study communities, forced relocation tripled the risk of women developing anemia and greatly decreased their chances of receiving any antenatal care.
What Do These Findings Mean?
These findings show that access to maternal health-care interventions is extremely limited and that poor nutrition, anemia, and malaria, all of which increase the risk of pregnancy complications, are widespread in the communities in the MOM project. Because these communities had some basic health services and access to training in Thailand before the project started, these results probably underestimate the lack of access to maternal health-care services in eastern Burma. Nevertheless, it is clear that considerable political, financial, and human resources will be needed to improve maternal health in this region. Finally, the findings also reveal a link between human rights violations and reduced access to maternal health-care services. Thus, the scale of human rights violations will need to be considered when evaluating programs designed to improve maternal health in Burma and in other places where there is ongoing conflict.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050242.
This research article is further discussed in a PLoS Medicine Perspective by Macaya Douoguih
The World Health Organization provides information on all aspects of health in Burma (in several languages)
The Mae Tao Clinic also provides general information about Burma and its health services
More information about the MOM project is available in a previous publication by the researchers
The Burma Campaign UK and Human Rights Watch both provide detailed information about human rights violations in Burma
The United Nations Population Fund provides information about safe motherhood and ongoing efforts to save mothers' lives around the world
doi:10.1371/journal.pmed.0050242
PMCID: PMC2605890  PMID: 19108601
8.  A Health Department’s Collaborative Model for Disease Surveillance Capacity Building 
Objective
Highlight one academic health department’s unique approach to optimizing collaborative opportunities for capacity development and document the implications for chronic disease surveillance and population health.
Introduction
Public Health departments are increasingly called upon to be innovative in quality service delivery under a dwindling resource climate as highlighted in several publications of the Institute of Medicine. Collaboration with other entities in the delivery of core public health services has emerged as a recurring theme. One model of this collaboration is an academic health department: a formal affiliation between a health professions school and a local health department. Initially targeted at workforce development, this model of collaboration has since yielded dividends in other core public health service areas including community assessment, program evaluation, community-based participatory research and data analysis.
The Duval County Health Department (DCHD), Florida, presents a unique community-centered model of the academic health department. Prominence in local informatics infrastructure capacity building and hosting a CDC-CSTE applied public health informatics fellowship (APHIF) in the Institute for Public Health Informatics and Research (IPHIR) in partnership with the Center for Health Equity Research, University of Florida & Shands medical center are direct dividends of this collaborative model.
Methods
We examined the collaborative efforts of the DCHD and present the unique advantages these have brought in the areas of entrenched data-driven public health service culture, community assessments, program evaluation, community-based participatory research and health informatics projects.
Results
Advantages of the model include a data-driven culture with the balanced scorecard model in leadership and sub-departmental emphases on quality assurance in public health services. Activities in IPHIR include data-driven approaches to program planning and grant developments, program evaluations, data analyses and impact assessments for the DCHD and other community health stakeholders.
Reports developed by IPHIR have impacted policy formulation by highlighting the need for sub county level data differentiation to address health disparities. Unique community-based mapping of Duval County into health zones based on health risk factors correlating with health outcome measures have been published. Other reports highlight chronic disease surveillance data and health scorecards in special populations.
Partnerships with regional higher institutions (University of Florida, University of North Florida and Florida A&M University) increased public health service delivery and yielded rich community-based participatory research opportunities.
Cutting edge participation in health IT policy implementation led to the hosting of the fledgling community HIE, the Jacksonville Health Information Network, as well as leadership in shaping the landscape of the state HIE. This has immense implications for public health surveillance activities as chronic disease surveillance and public health service research take center stage under new healthcare payment models amidst increasing calls for quality assurance in public health services.
DCHD is currently hosting a CDC-funded fellowship in applied public health informatics. Some of the projects materializing from the fellowship are the mapping of the current public health informatics profile of the DCHD, a community based diabetes disease registry to aid population-based management and surveillance of diabetes, development of a proposal for a combined primary care/general preventive medicine residency in UF-Shands Medical Center, Jacksonville and mobilization of DCHD healthcare providers for the roll-out of the state-built electronic medical records system (Florida HMS-EHR).
Conclusions
Academic health centers provide a model of collaboration that directly impacts on their success in delivering core public health services. Disease surveillance is positively affected by the diverse community affiliations of an academic health department. The academic health department, as epitomized by DCHD, is also better positioned to seize up-coming opportunities for local public health capacity building.
PMCID: PMC3692891
Academic Health Departments; collaborative model; health informatics projects
9.  The Impact of eHealth on the Quality and Safety of Health Care: A Systematic Overview 
PLoS Medicine  2011;8(1):e1000387.
Aziz Sheikh and colleagues report the findings of their systematic overview that assessed the impact of eHealth solutions on the quality and safety of health care.
Background
There is considerable international interest in exploiting the potential of digital solutions to enhance the quality and safety of health care. Implementations of transformative eHealth technologies are underway globally, often at very considerable cost. In order to assess the impact of eHealth solutions on the quality and safety of health care, and to inform policy decisions on eHealth deployments, we undertook a systematic review of systematic reviews assessing the effectiveness and consequences of various eHealth technologies on the quality and safety of care.
Methods and Findings
We developed novel search strategies, conceptual maps of health care quality, safety, and eHealth interventions, and then systematically identified, scrutinised, and synthesised the systematic review literature. Major biomedical databases were searched to identify systematic reviews published between 1997 and 2010. Related theoretical, methodological, and technical material was also reviewed. We identified 53 systematic reviews that focused on assessing the impact of eHealth interventions on the quality and/or safety of health care and 55 supplementary systematic reviews providing relevant supportive information. This systematic review literature was found to be generally of substandard quality with regards to methodology, reporting, and utility. We thematically categorised eHealth technologies into three main areas: (1) storing, managing, and transmission of data; (2) clinical decision support; and (3) facilitating care from a distance. We found that despite support from policymakers, there was relatively little empirical evidence to substantiate many of the claims made in relation to these technologies. Whether the success of those relatively few solutions identified to improve quality and safety would continue if these were deployed beyond the contexts in which they were originally developed, has yet to be established. Importantly, best practice guidelines in effective development and deployment strategies are lacking.
Conclusions
There is a large gap between the postulated and empirically demonstrated benefits of eHealth technologies. In addition, there is a lack of robust research on the risks of implementing these technologies and their cost-effectiveness has yet to be demonstrated, despite being frequently promoted by policymakers and “techno-enthusiasts” as if this was a given. In the light of the paucity of evidence in relation to improvements in patient outcomes, as well as the lack of evidence on their cost-effectiveness, it is vital that future eHealth technologies are evaluated against a comprehensive set of measures, ideally throughout all stages of the technology's life cycle. Such evaluation should be characterised by careful attention to socio-technical factors to maximise the likelihood of successful implementation and adoption.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
There is considerable international interest in exploiting the potential of digital health care solutions, often referred to as eHealth—the use of information and communication technologies—to enhance the quality and safety of health care. Often accompanied by large costs, any large-scale expenditure on eHealth—such as electronic health records, picture archiving and communication systems, ePrescribing, associated computerized provider order entry systems, and computerized decision support systems—has tended to be justified on the grounds that these are efficient and cost-effective means for improving health care. In 2005, the World Health Assembly passed an eHealth resolution (WHA 58.28) that acknowledged, “eHealth is the cost-effective and secure use of information and communications technologies in support of health and health-related fields, including health-care services, health surveillance, health literature, and health education, knowledge and research,” and urged member states to develop and implement eHealth technologies. Since then, implementing eHealth technologies has become a main priority for many countries. For example, England has invested at least £12.8 billion in a National Programme for Information Technology for the National Health Service, and the Obama administration in the United States has committed to a US$38 billion eHealth investment in health care.
Why Was This Study Done?
Despite the wide endorsement of and support for eHealth, the scientific basis of its benefits—which are repeatedly made and often uncritically accepted—remains to be firmly established. A robust evidence-based perspective on the advantages on eHealth could help to suggest priority areas that have the greatest potential for benefit to patients and also to inform international eHealth deliberations on costs. Therefore, in order to better inform the international community, the authors systematically reviewed the published systematic review literature on eHealth technologies and evaluated the impact of these technologies on the quality and safety of health care delivery.
What Did the Researchers Do and Find?
The researchers divided eHealth technologies into three main categories: (1) storing, managing, and transmission of data; (2) clinical decision support; and (3) facilitating care from a distance. Then, implementing methods based on those developed by the Cochrane Collaboration and the NHS Service Delivery and Organisation Programme, the researchers used detailed search strategies and maps of health care quality, safety, and eHealth interventions to identify relevant systematic reviews (and related theoretical, methodological, and technical material) published between 1997 and 2010. Using these techniques, the researchers retrieved a total of 46,349 references from which they identified 108 reviews. The 53 reviews that the researchers finally selected (and critically reviewed) provided the main evidence base for assessing the impact of eHealth technologies in the three categories selected.
In their systematic review of systematic reviews, the researchers included electronic health records and picture archiving communications systems in their evaluation of category 1, computerized provider (or physician) order entry and e-prescribing in category 2, and all clinical information systems that, when used in the context of eHealth technologies, integrate clinical and demographic patient information to support clinician decision making in category 3.
The researchers found that many of the clinical claims made about the most commonly used eHealth technologies were not substantiated by empirical evidence. The evidence base in support of eHealth technologies was weak and inconsistent and importantly, there was insubstantial evidence to support the cost-effectiveness of these technologies. For example, the researchers only found limited evidence that some of the many presumed benefits could be realized; importantly, they also found some evidence that introducing these new technologies may on occasions also generate new risks such as prescribers becoming over-reliant on clinical decision support for e-prescribing, or overestimate its functionality, resulting in decreased practitioner performance.
What Do These Findings Mean?
The researchers found that despite the wide support for eHealth technologies and the frequently made claims by policy makers when constructing business cases to raise funds for large-scale eHealth projects, there is as yet relatively little empirical evidence to substantiate many of the claims made about eHealth technologies. In addition, even for the eHealth technology tools that have proven to be successful, there is little evidence to show that such tools would continue to be successful beyond the contexts in which they were originally developed. Therefore, in light of the lack of evidence in relation to improvements in patient outcomes, as well as the lack of evidence on their cost-effectiveness, the authors say that future eHealth technologies should be evaluated against a comprehensive set of measures, ideally throughout all stages of the technology's life cycle, and include socio-technical factors to maximize the likelihood of successful implementation and adoption in a given context. Furthermore, it is equally important that eHealth projects that have already been commissioned are subject to rigorous, multidisciplinary, and independent evaluation.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000387.
The authors' broader study is: Car J, Black A, Anandan C, Cresswell K, Pagliari C, McKinstry B, et al. (2008) The Impact of eHealth on the Quality and Safety of Healthcare. Available at: http://www.haps.bham.ac.uk/publichealth/cfhep/001.shtml
More information is available on the World Health Assembly eHealth resolution
The World Health Organization provides information at the Global Observatory on eHealth, as well as a global insight into eHealth developments
The European Commission provides Information on eHealth in Europe and some examples of good eHealth practice
More information is provided on NHS Connecting for Health
doi:10.1371/journal.pmed.1000387
PMCID: PMC3022523  PMID: 21267058
10.  Natural Language Processing and the Oncologic History: Is There a Match? 
Journal of Oncology Practice  2011;7(4):e15-e19.
The widespread adoption of electronic health records within the oncology community is creating rich databases that contain details of the cancer care continuum. Large portions of this information are locked up in free text, but several efforts are underway to address this.
Purpose:
The widespread adoption of electronic health records (EHRs) is creating rich databases documenting the cancer patient's care continuum. However, much of this data, especially narrative “oncologic histories,” are “locked” within free text (unstructured) portions of notes. Nationwide incentives, ranging from certification (Quality Oncology Practice Initiative) to monetary reimbursement (the Health Information Technology for Economic and Clinical Health Act), increasingly require the translation of these histories into treatment summaries for patient use and into tools to assist in transitions of care. Unfortunately, formulation of treatment summaries from these data is difficult and time-consuming. The rapidly developing field of automated natural language processing may offer a solution to this communication problem.
Methods:
We surveyed a cross section of providers at Beth Israel Deaconess Medical Center regarding the importance of treatment summaries and whether these were being formulated on a regular basis. We also developed a program for the Informatics for Integrating Biology and the Bedside challenge, which was designed to extract meaningful information from EHRs. The program was then applied to a sample of narrative oncologic histories.
Results:
The majority of providers (86%) felt that treatment summaries were important, but only 11% actually implemented them. The most common obstacles identified were lack of time and lack of EHR tools. We demonstrated that relevant medical concepts can be automatically extracted from oncologic histories with reasonable accuracy and precision.
Conclusion:
Natural language processing technology offers a promising method for structuring a free-text oncologic history into a compact treatment summary, creating a robust and accurate means of communication between providers and between provider and patient.
doi:10.1200/JOP.2011.000240
PMCID: PMC3140455  PMID: 22043196
11.  Benefits and problems of electronic information exchange as perceived by health care professionals: an interview study 
Background
Various countries are currently implementing a national electronic patient record (n-EPR). Despite the assumed positive effects of n-EPRs, their overall adoption remains low and meets resistance from health care providers. This study aims to increase our understanding of health care providers' attitude towards the n-EPR, by investigating their perceptions of the benefits and problems of electronic information exchange in health care and the n-EPR in particular.
Methods
The study was conducted in three Dutch health care settings: acute care, diabetes care, and ambulatory mental health care. Two health care organisations were included per setting. Between January and June 2010, interviews were conducted with 17 stakeholders working in these organisations. Relevant themes were deduced by means of thematic qualitative analysis.
Results
Health care providers perceived electronic information exchange to promote the efficiency and quality of care. The problems they perceived in electronic information exchange mainly concerned the confidentiality and safety of information exchange and the reliability and quality of patient data. Many problems perceived by health care providers did not specifically apply to the n-EPR, but to electronic information exchange in general.
Conclusions
The implementation of the Dutch n-EPR has mainly followed a top-down approach, thereby neglecting the fact that the perceptions and preferences of its users (health care providers) need to be addressed in order to achieve successful implementation. The results of this study provide valuable suggestions about how to promote health care providers' willingness to adopt electronic information exchange, which can be useful for other countries currently implementing an n-EPR. Apart from providing information about the benefits and usefulness of electronic information exchange, efforts should be focused on minimising the problems as perceived by health care providers. The safety and confidentiality of electronic information exchange can be improved by developing tools to evaluate the legitimacy of access to electronic records, by increasing health care providers' awareness of the need to be careful when using patient data, and by measures to limit access to sensitive patient data. Improving health care providers' recording behaviour is important to improve the reliability and quality of electronically exchanged patient data.
doi:10.1186/1472-6963-11-256
PMCID: PMC3200179  PMID: 21982395
12.  Personal Health Management (PHM): Singapore’s national strategy to activate and empower patients and care givers through innovative personal health technologies 
Introduction
In the next two decades, Singapore will face a near-perfect demographic and chronic disease-burden “storm”. Rising public expectations of healthcare services, inflationary cost pressures and continuous resource scarcity add to the challenges the system faces. Singapore’s Ministry of Health’s (MOH) response to these impending challenges has been swift and reforms are under way that will lead to new models of care, integrated care delivery capabilities as well as increased capacity (through development of primary care and new facilities) in light of growing demands. The national Personal Health Management (PHM) strategy adds another dimension to Singapore’s national reforms, which is to leverage on one of the greatest untapped resources of healthcare: people, their families and communities.
Aims and objectives
At the core of PHM is self-management and Singapore’s continuous promotion of personal responsibility. To support self-management, there is a need to provide patients/people with access to timely, actionable health information—key ingredients of empowerment that leads to greater self-efficacy. Instead of the traditional approach of developing a “static” patient portal, Singapore is taking a unique approach of developing an “open” health technology platform capable of catering to diverse stakeholder needs, and one that allow healthcare providers, enterprises, interest groups to create and build web, mobile applications and interactive content on a common platform to support existing and new healthcare programmes and services. At the crux of the platform is personal health record which is a subset of the just launched, national electronic health record (NEHR) that provides a longitudinal view of the person’s health information generated through life-time encounters at various care settings. The development of a national demonstrator PHM project is underway, slated for launch in early Q2 2012 with participation of two regional healthcare providers aimed at providing self-management technology tools (web and mobile) for low-medium risk diabetic patients. This paper/presentation aims to outline and share Singapore’s approach to empowering patients through the national strategy, barriers and its implementation thus far and roadmap going forward.
Results
It is too early to be able to provide measureable outcomes in particular, clinical outcomes until steady-state is achieved beyond 2012. PHM is a large transformational project where the challenge goes beyond just the implementation of the technology. This is largely due to how the healthcare system is structured and financed in Singapore. The development of the national strategy has been a significant milestone; in that it has galvanised an otherwise disparate approach to self-management that will result in siloed patient information and duplication of efforts. The strategy has garnered senior leadership support from the ministry and stakeholder commitment to collaborate on the platform was a major step forward.
Conclusion
The PHM strategy is the start of an exciting journey to enable a transformation of Singapore’s healthcare system that truly puts the person in the driver’s seat of their own health. The realisation of the PHM vision will take 10 years and development will be in 3 phases starting in 2011. The successful execution of the strategy relies on close coordination and cooperation among its stakeholders. The proposed “open platform” approach recognises that there will not be a one-size-fit-all solution and that diversity will be an added strength.
PMCID: PMC3571167
self management; strategy; policy; mhealth; telehealth
13.  Second generation registry framework 
Background
Information management systems are essential to capture data be it for public health and human disease, sustainable agriculture, or plant and animal biosecurity. In public health, the term patient registry is often used to describe information management systems that are used to record and track phenotypic data of patients. Appropriate design, implementation and deployment of patient registries enables rapid decision making and ongoing data mining ultimately leading to improved patient outcomes. A major bottleneck encountered is the static nature of these registries. That is, software developers are required to work with stakeholders to determine requirements, design the system, implement the required data fields and functionality for each patient registry. Additionally, software developer time is required for ongoing maintenance and customisation. It is desirable to deploy a sophisticated registry framework that can allow scientists and registry curators possessing standard computing skills to dynamically construct a complete patient registry from scratch and customise it for their specific needs with little or no need to engage a software developer at any stage.
Results
This paper introduces our second generation open source registry framework which builds on our previous rare disease registry framework (RDRF). This second generation RDRF is a new approach as it empowers registry administrators to construct one or more patient registries without software developer effort. New data elements for a diverse range of phenotypic and genotypic measurements can be defined at any time. Defined data elements can then be utilised in any of the created registries. Fine grained, multi-level user and workgroup access can be applied to each data element to ensure appropriate access and data privacy. We introduce the concept of derived data elements to assist the data element standards communities on how they might be best categorised.
Conclusions
We introduce the second generation RDRF that enables the user-driven dynamic creation of patient registries. We believe this second generation RDRF is a novel approach to patient registry design, implementation and deployment and a significant advance on existing registry systems.
doi:10.1186/1751-0473-9-14
PMCID: PMC4075501  PMID: 24982690
Patient registry; Born digital; Data element; Genotype; Phenotype; Ontology
14.  Facilitating the Recruitment of Minority Ethnic People into Research: Qualitative Case Study of South Asians and Asthma 
PLoS Medicine  2009;6(10):e1000148.
Aziz Sheikh and colleagues report on a qualitative study in the US and the UK to investigate ways to bolster recruitment of South Asians into asthma studies, including making inclusion of diverse populations mandatory.
Background
There is international interest in enhancing recruitment of minority ethnic people into research, particularly in disease areas with substantial ethnic inequalities. A recent systematic review and meta-analysis found that UK South Asians are at three times increased risk of hospitalisation for asthma when compared to white Europeans. US asthma trials are far more likely to report enrolling minority ethnic people into studies than those conducted in Europe. We investigated approaches to bolster recruitment of South Asians into UK asthma studies through qualitative research with US and UK researchers, and UK community leaders.
Methods and Findings
Interviews were conducted with 36 researchers (19 UK and 17 US) from diverse disciplinary backgrounds and ten community leaders from a range of ethnic, religious, and linguistic backgrounds, followed by self-completion questionnaires. Interviews were digitally recorded, translated where necessary, and transcribed. The Framework approach was used for analysis. Barriers to ethnic minority participation revolved around five key themes: (i) researchers' own attitudes, which ranged from empathy to antipathy to (in a minority of cases) misgivings about the scientific importance of the question under study; (ii) stereotypes and prejudices about the difficulties in engaging with minority ethnic populations; (iii) the logistical challenges posed by language, cultural differences, and research costs set against the need to demonstrate value for money; (iv) the unique contexts of the two countries; and (v) poorly developed understanding amongst some minority ethnic leaders of what research entails and aims to achieve. US researchers were considerably more positive than their UK counterparts about the importance and logistics of including ethnic minorities, which appeared to a large extent to reflect the longer-term impact of the National Institutes of Health's requirement to include minority ethnic people.
Conclusions
Most researchers and community leaders view the broadening of participation in research as important and are reasonably optimistic about the feasibility of recruiting South Asians into asthma studies provided that the barriers can be overcome. Suggested strategies for improving recruitment in the UK included a considerably improved support structure to provide academics with essential contextual information (e.g., languages of particular importance and contact with local gatekeepers), and the need to ensure that care is taken to engage with the minority ethnic communities in ways that are both culturally appropriate and sustainable; ensuring reciprocal benefits was seen as one key way of avoiding gatekeeper fatigue. Although voluntary measures to encourage researchers may have some impact, greater impact might be achieved if UK funding bodies followed the lead of the US National Institutes of Health requiring recruitment of ethnic minorities. Such a move is, however, likely in the short- to medium-term, to prove unpopular with many UK academics because of the added “hassle” factor in engaging with more diverse populations than many have hitherto been accustomed to.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
In an ideal world, everyone would have the same access to health care and the same health outcomes (responses to health interventions). However, health inequalities—gaps in health care and in health between different parts of the population—exist in many countries. In particular, people belonging to ethnic minorities in the UK, the US, and elsewhere have poorer health outcomes for several conditions than people belonging to the ethnic majority (ethnicity is defined by social characteristics such as cultural tradition or national origin). For example, in the UK, people whose ancestors came from the Indian subcontinent (also known as South Asians and comprising in the main of people of Indian, Pakistani, and Bangladeshi origin) are three times as likely to be admitted to hospital for asthma as white Europeans. The reasons underpinning ethnic health inequalities are complex. Some inequalities may reflect intrinsic differences between groups of people—some ethnic minorities may inherit genes that alter their susceptibility to a specific disease. Other ethnic health inequalities may arise because of differences in socioeconomic status or because different cultural traditions affect the uptake of health care services.
Why Was This Study Done?
Minority ethnic groups are often under-represented in health research, which could limit the generalizability of research findings. That is, an asthma treatment that works well in a trial where all the participants are white Europeans might not be suitable for South Asians. Clinicians might nevertheless use the treatment in all their patients irrespective of their ethnicity and thus inadvertently increase ethnic health inequality. So, how can ethnic minorities be encouraged to enroll into research studies? In this qualitative study, the investigators try to answer this question by talking to US and UK asthma researchers and UK community leaders about how they feel about enrolling ethnic minorities into research studies. The investigators chose to compare the feelings of US and UK asthma researchers because minority ethnic people are more likely to enroll into US asthma studies than into UK studies, possibly because the US National Institute of Health's (NIH) Revitalization Act 1993 mandates that all NIH-funded clinical research must include people from ethnic minority groups; there is no similar mandatory policy in the UK.
What Did the Researchers Do and Find?
The investigators interviewed 16 UK and 17 US asthma researchers and three UK social researchers with experience of working with ethnic minorities. They also interviewed ten community leaders from diverse ethnic, religious and linguistic backgrounds. They then analyzed the interviews using the “Framework” approach, an analytical method in which qualitative data are classified and organized according to key themes and then interpreted. By comparing the data from the UK and US researchers, the investigators identified several barriers to ethnic minority participation in health research including: the attitudes of researchers towards the scientific importance of recruiting ethnic minority people into health research studies; prejudices about the difficulties of including ethnic minorities in health research; and the logistical challenges posed by language and cultural differences. In general, the US researchers were more positive than their UK counterparts about the importance and logistics of including ethnic minorities in health research. Finally, the investigators found that some community leaders had a poor understanding of what research entails and about its aims.
What Do These Findings Mean?
These findings reveal a large gap between US and UK researchers in terms of policy, attitudes, practices, and experiences in relation to including ethnic minorities in asthma research. However, they also suggest that most UK researchers and community leaders believe that it is both important and feasible to increase the participation of South Asians in asthma studies. Although some of these findings may have been affected by the study participants sometimes feeling obliged to give “politically correct” answers, these findings are likely to be generalizable to other diseases and to other parts of Europe. Given their findings, the researchers warn that a voluntary code of practice that encourages the recruitment of ethnic minority people into health research studies is unlikely to be successful. Instead, they suggest, the best way to increase the representation of ethnic minority people in health research in the UK might be to follow the US lead and introduce a policy that requires their inclusion in such research.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000148.
Families USA, a US nonprofit organization that campaigns for high-quality, affordable health care for all Americans, has information about many aspects of minority health in the US, including an interactive game about minority health issues
The US Agency for Healthcare Research and Quality has a section on minority health
The UK Department of Health provides information on health inequalities and a recent report on the experiences of patients in Black and minority ethnic groups
The UK Parliamentary Office of Science and Technology also has a short article on ethnicity and health
Information on the NIH Revitalization Act 1993 is available
NHS Evidences Ethnicity and Health has a variety of policy, clinical, and research resources on ethnicity and health
doi:10.1371/journal.pmed.1000148
PMCID: PMC2752116  PMID: 19823568
15.  Electronic Tools for Health Information Exchange 
Background
As patients experience transitions in care, there is a need to share information between care providers in an accurate and timely manner. With the push towards electronic medical records and other electronic tools (eTools) (and away from paper-based health records) for health information exchange, there remains uncertainty around the impact of eTools as a form of communication.
Objective
To examine the impact of eTools for health information exchange in the context of care coordination for individuals with chronic disease in the community.
Data Sources
A literature search was performed on April 26, 2012, using OVID MEDLINE, OVID MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database, for studies published until April 26, 2012 (no start date limit was applied).
Review Methods
A systematic literature search was conducted, and meta-analysis conducted where appropriate. Outcomes of interest fell into 4 categories: health services utilization, disease-specific clinical outcomes, process-of-care indicators, and measures of efficiency. The quality of the evidence was assessed individually for each outcome. Expert panels were assembled for stakeholder engagement and contextualization.
Results
Eleven articles were identified (4 randomized controlled trials and 7 observational studies). There was moderate quality evidence of a reduction in hospitalizations, hospital length of stay, and emergency department visits following the implementation of an electronically generated laboratory report with recommendations based on clinical guidelines. The evidence showed no difference in disease-specific outcomes; there was no evidence of a positive impact on process-of-care indicators or measures of efficiency.
Limitations
A limited body of research specifically examined eTools for health information exchange in the population and setting of interest. This evidence included a combination of study designs and was further limited by heterogeneity in individual technologies and settings in which they were implemented.
Conclusions
There is evidence that the right eTools in the right environment and context can significantly impact health services utilization. However, the findings from this evidence-based analysis raise doubts about the ability of eTools with care-coordination capabilities to independently improve the quality of outpatient care. While eTools may be able to support and sustain processes, inefficiencies embedded in the health care system may require more than automation alone to resolve.
Plain Language Summary
Patients with chronic diseases often work with many different health care providers. To ensure smooth transitions from one setting to the next, health care providers must share information and coordinate care effectively. Electronic medical records (eTools) are being used more and more to coordinate patient care, but it is not yet known whether they are more effective than paper-based health records. In this analysis, we reviewed the evidence for the use of eTools to exchange information and coordinate care for people with chronic diseases in the community. There was some evidence that eTools reduced the number of hospital and emergency department visits, as well as patients' length of stay in the hospital, but there was no evidence that eTools improved the overall quality of patient care.
PMCID: PMC3814806  PMID: 24194799
16.  SMART Platforms: Building the App Store for Biosurveillance 
Objective
To enable public health departments to develop “apps” to run on electronic health records (EHRs) for (1) biosurveillance and case reporting and (2) delivering alerts to the point of care. We describe a novel health information technology platform with substitutable apps constructed around core services enabling EHRs to function as iPhone-like platforms.
Introduction
Health care information is a fundamental source of data for biosurveillance, yet configuring EHRs to report relevant data to health departments is technically challenging, labor intensive, and often requires custom solutions for each installation. Public health agencies wishing to deliver alerts to clinicians also must engage in an endless array of one-off systems integrations.
Despite a $48B investment in HIT, and meaningful use criteria requiring reporting to biosurveillance systems, most vendor electronic health records are architected monolithically, making modification difficult for hospitals and physician practices. An alternative approach is to reimagine EHRs as iPhone-like platforms supporting substitutable apps-based functionality. Substitutability is the capability inherent in a system of replacing one application with another of similar functionality.
Methods
Substitutability requires that the purchaser of an app can replace one application with another without being technically expert, without requiring re-engineering other applications that they are using, and without having to consult or require assistance of any of the vendors of previously installed or currently installed applications. Apps necessarily compete with each other promoting progress and adaptability.
The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project is funded by a $15M grant from Office of the National Coordinator of Health Information Technology’s Strategic Health IT Advanced Research Projects (SHARP) Program. All SMART standards are open and the core software is open source.
The SMART project promotes substitutability through an application programming interface (API) that can be adopted as part of a “container” built around by a wide variety of HIT, providing readonly access to the underlying data model and a software development toolkit to readily create apps. SMART containers are HIT systems, that have implemented the SMART API or a portion of it. Containers marshal data sources and present them consistently across the SMART API. SMART applications consume the API and are substitutable.
Results
SMART provides a common platform supporting an “app store for biosurveillance” as an approach to enabling one stop shopping for public health departments—to create an app once, and distribute it everywhere.
Further, such apps can be readily updated or created—for example, in the case of an emerging infection, an app may be designed to collect additional data at emergency department triage. Or a public health department may widely distribute an app, interoperable with any SMART-enabled EMR, that delivers contextualized alerts when patient electronic records are opened, or through background processes.
SMART has sparked an ecosystem of apps developers and attracted existing health information technology platforms to adopt the SMART API—including, traditional, open source, and next generation EHRs, patient-facing platforms and health information exchanges. SMART-enabled platforms to date include the Cerner EMR, the WorldVista EHR, the OpenMRS EHR, the i2b2 analytic platform, and the Indivo X personal health record. The SMART team is working with the Mirth Corporation, to SMART-enable the HealthBridge and Redwood MedNet Health Information Exchanges. We have demonstrated that a single SMART app can run, unmodified, in all of these environments, as long as the underlying platform collects the required data types. Major EHR vendors are currently adapting the SMART API for their products.
Conclusions
The SMART system enables nimble customization of any electronic health record system to create either a reporting function (outgoing communication) or an alerting function (incoming communication) establishing a technology for a robust linkage between public health and clinical environments.
PMCID: PMC3692876
Electronic health records; Biosurveillance; Informatics; Application Programming Interfaces
17.  A qualitative study of Canada’s experience with the implementation of electronic health information technology 
Background
In 2001, Canada Health Infoway unveiled a plan to implement a national system of interoperable electronic health records. This government-funded corporation introduced a novel model for interprovincial/territorial collaboration to establish core aspects of a national framework. Despite this $1.6 billion initiative, Canada continues to lag behind other Western countries in adopting electronic health records. We conducted a study to identify the success of different aspects of the Canadian plan and ways to improve the adoption of electronic health records.
Methods
We used a case study approach to assess the 10-year history of Canada’s e-health plan. National reports and documents were reviewed, and structured interviews were conducted with 29 key stakeholders representing national and provincial organizations responsible for establishing policy and strategic direction for health information technology. Using grounded theory, we analyzed transcripts of the interviews to identify themes and their relationships.
Results
Key stakeholders identified funding, national standards, patient registries and digital imaging as important achievements of the e-health plan. Lack of an e-health policy, inadequate involvement of clinicians, failure to establish a business case for using electronic health records, a focus on national rather than regional interoperability, and inflexibility in approach were seen as barriers to adoption of the plan.
Interpretation
To accelerate adoption of electronic health records and timely return on investment, an e-health policy needs to be tightly aligned with the major strategic directions of health care reform. Adoption needs to be actively fostered through a bottom-up, clinical-needs-first approach, a national policy for investment in electronic health records, and financial incentives based on patient outcomes that can be achieved with electronic health records.
doi:10.1503/cmaj.100856
PMCID: PMC3060213  PMID: 21343262
18.  Stakeholder engagement: a key component of integrating genomic information into electronic health records 
Integrating genomic information into clinical care and the electronic health record can facilitate personalized medicine through genetically guided clinical decision support. Stakeholder involvement is critical to the success of these implementation efforts. Prior work on implementation of clinical information systems provides broad guidance to inform effective engagement strategies. We add to this evidence-based recommendations that are specific to issues at the intersection of genomics and the electronic health record. We describe stakeholder engagement strategies employed by the Electronic Medical Records and Genomics Network, a national consortium of US research institutions funded by the National Human Genome Research Institute to develop, disseminate, and apply approaches that combine genomic and electronic health record data. Through select examples drawn from sites of the Electronic Medical Records and Genomics Network, we illustrate a continuum of engagement strategies to inform genomic integration into commercial and homegrown electronic health records across a range of health-care settings. We frame engagement as activities to consult, involve, and partner with key stakeholder groups throughout specific phases of health information technology implementation. Our aim is to provide insights into engagement strategies to guide genomic integration based on our unique network experiences and lessons learned within the broader context of implementation research in biomedical informatics. On the basis of our collective experience, we describe key stakeholder practices, challenges, and considerations for successful genomic integration to support personalized medicine.
doi:10.1038/gim.2013.127
PMCID: PMC3909653  PMID: 24030437
electronic health records; genomics; health information technology; personalized medicine; stakeholder engagement; translational medical research
19.  Bridging Islands of Information to Establish an Integrated Knowledge Base of Drugs and Health Outcomes of Interest 
Drug Safety  2014;37(8):557-567.
The entire drug safety enterprise has a need to search, retrieve, evaluate, and synthesize scientific evidence more efficiently. This discovery and synthesis process would be greatly accelerated through access to a common framework that brings all relevant information sources together within a standardized structure. This presents an opportunity to establish an open-source community effort to develop a global knowledge base, one that brings together and standardizes all available information for all drugs and all health outcomes of interest (HOIs) from all electronic sources pertinent to drug safety. To make this vision a reality, we have established a workgroup within the Observational Health Data Sciences and Informatics (OHDSI, http://ohdsi.org) collaborative. The workgroup’s mission is to develop an open-source standardized knowledge base for the effects of medical products and an efficient procedure for maintaining and expanding it. The knowledge base will make it simpler for practitioners to access, retrieve, and synthesize evidence so that they can reach a rigorous and accurate assessment of causal relationships between a given drug and HOI. Development of the knowledge base will proceed with the measureable goal of supporting an efficient and thorough evidence-based assessment of the effects of 1,000 active ingredients across 100 HOIs. This non-trivial task will result in a high-quality and generally applicable drug safety knowledge base. It will also yield a reference standard of drug–HOI pairs that will enable more advanced methodological research that empirically evaluates the performance of drug safety analysis methods.
doi:10.1007/s40264-014-0189-0
PMCID: PMC4134480  PMID: 24985530
20.  Standardized Cardiovascular Data for Clinical Research, Registries, and Patient Care 
Relatively little attention has been focused on standardization of data exchange in clinical research studies and patient care activities. Both are usually managed locally using separate and generally incompatible data systems at individual hospitals or clinics. In the past decade there have been nascent efforts to create data standards for clinical research and patient care data, and to some extent these are helpful in providing a degree of uniformity. Nevertheless these data standards generally have not been converted into accepted computer-based language structures that could permit reliable data exchange across computer networks. The National Cardiovascular Research Infrastructure (NCRI) project was initiated with a major objective of creating a model framework for standard data exchange in all clinical research, clinical registry, and patient care environments, including all electronic health records. The goal is complete syntactic and semantic interoperability. A Data Standards Workgroup was established to create or identify and then harmonize clinical definitions for a base set of standardized cardiovascular data elements that could be used in this network infrastructure. Recognizing the need for continuity with prior efforts, the Workgroup examined existing data standards sources. A basic set of 353 elements was selected. The NCRI staff then collaborated with the two major technical standards organizations in healthcare, the Clinical Data Interchange Standards Consortium and Health Level 7 International, as well as with staff from the National Cancer Institute Enterprise Vocabulary Services. Modeling and mapping were performed to represent (instantiate) the data elements in appropriate technical computer language structures for endorsement as an accepted data standard for public access and use. Fully implemented, these elements will facilitate clinical research, registry reporting, administrative reporting and regulatory compliance, and patient care.
doi:10.1016/j.jacc.2012.12.047
PMCID: PMC3664644  PMID: 23500238
21.  Protocol for implementation of family health history collection and decision support into primary care using a computerized family health history system 
Background
The CDC's Family History Public Health Initiative encourages adoption and increase awareness of family health history. To meet these goals and develop a personalized medicine implementation science research agenda, the Genomedical Connection is using an implementation research (T3 research) framework to develop and integrate a self-administered computerized family history system with built-in decision support into 2 primary care clinics in North Carolina.
Methods/Design
The family health history system collects a three generation family history on 48 conditions and provides decision support (pedigree and tabular family history, provider recommendation report and patient summary report) for 4 pilot conditions: breast cancer, ovarian cancer, colon cancer, and thrombosis. All adult English-speaking, non-adopted, patients scheduled for well-visits are invited to complete the family health system prior to their appointment. Decision support documents are entered into the medical record and available to provider's prior to the appointment. In order to optimize integration, components were piloted by stakeholders prior to and during implementation. Primary outcomes are change in appropriate testing for hereditary thrombophilia and screening for breast cancer, colon cancer, and ovarian cancer one year after study enrollment. Secondary outcomes include implementation measures related to the benefits and burdens of the family health system and its impact on clinic workflow, patients' risk perception, and intention to change health related behaviors. Outcomes are assessed through chart review, patient surveys at baseline and follow-up, and provider surveys. Clinical validity of the decision support is calculated by comparing its recommendations to those made by a genetic counselor reviewing the same pedigree; and clinical utility is demonstrated through reclassification rates and changes in appropriate screening (the primary outcome).
Discussion
This study integrates a computerized family health history system within the context of a routine well-visit appointment to overcome many of the existing barriers to collection and use of family history information by primary care providers. Results of the implementation process, its acceptability to patients and providers, modifications necessary to optimize the system, and impact on clinical care can serve to guide future implementation projects for both family history and other tools of personalized medicine, such as health risk assessments.
doi:10.1186/1472-6963-11-264
PMCID: PMC3200182  PMID: 21989281
22.  Effect of Removing Direct Payment for Health Care on Utilisation and Health Outcomes in Ghanaian Children: A Randomised Controlled Trial 
PLoS Medicine  2009;6(1):e1000007.
Background
Delays in accessing care for malaria and other diseases can lead to disease progression, and user fees are a known barrier to accessing health care. Governments are introducing free health care to improve health outcomes. Free health care affects treatment seeking, and it is therefore assumed to lead to improved health outcomes, but there is no direct trial evidence of the impact of removing out-of-pocket payments on health outcomes in developing countries. This trial was designed to test the impact of free health care on health outcomes directly.
Methods and Findings
2,194 households containing 2,592 Ghanaian children under 5 y old were randomised into a prepayment scheme allowing free primary care including drugs, or to a control group whose families paid user fees for health care (normal practice); 165 children whose families had previously paid to enrol in the prepayment scheme formed an observational arm. The primary outcome was moderate anaemia (haemoglobin [Hb] < 8 g/dl); major secondary outcomes were health care utilisation, severe anaemia, and mortality. At baseline the randomised groups were similar. Introducing free primary health care altered the health care seeking behaviour of households; those randomised to the intervention arm used formal health care more and nonformal care less than the control group. Introducing free primary health care did not lead to any measurable difference in any health outcome. The primary outcome of moderate anaemia was detected in 37 (3.1%) children in the control and 36 children (3.2%) in the intervention arm (adjusted odds ratio 1.05, 95% confidence interval 0.66–1.67). There were four deaths in the control and five in the intervention group. Mean Hb concentration, severe anaemia, parasite prevalence, and anthropometric measurements were similar in each group. Families who previously self-enrolled in the prepayment scheme were significantly less poor, had better health measures, and used services more frequently than those in the randomised group.
Conclusions
In the study setting, removing out-of-pocket payments for health care had an impact on health care-seeking behaviour but not on the health outcomes measured.
Trial registration: ClinicalTrials.gov (#NCT00146692).
Evelyn Ansah and colleagues report on whether removing user fees has an impact on health care-seeking behavior and health outcomes in households with children in Ghana.
Editors' Summary
Background.
Every year, about 10 million children worldwide die before their fifth birthday. About half these deaths occur in developing countries in sub-Saharan Africa. Here, 166 children out of every 1,000 die before they are five. A handful of preventable diseases—acute respiratory infections, diarrhea, malaria, measles, and HIV/AIDS—are responsible for most of these deaths. For all these diseases, delays in accessing medical care contribute to the high death rate. In the case of malaria, for example, children are rarely taken to a clinic or hospital (formal health care) when they first develop symptoms, which include fever, chills, and anemia (lack of red blood cells). Instead, they are taken to traditional healers or given home remedies (informal health care). When they are finally taken to a clinic, it is often too late to save their lives. Many factors contribute to this delay in seeking formal health care. Sometimes, health care simply isn't available. In other instances, parents may worry about the quality of the service provided or may not seek formal health care because of their sociocultural beliefs. Finally, many parents cannot afford the travel costs and loss of earnings involved in taking their child to a clinic or the cost of the treatment itself.
Why Was This Study Done?
The financial cost of seeking formal health care is often the major barrier to accessing health care in poor countries. Consequently, the governments of several developing countries have introduced free health care in an effort to improve their nation's health. Such initiatives have increased the use of formal health care in several African countries; the introduction of user fees in Ghana in the early 1980s had the opposite effect. It is generally assumed that an increase in formal health care utilization improves health—but is this true? In this study, the researchers investigate the effect of removing direct payment for health care on health service utilization and health outcomes in Ghanaian children in a randomized controlled trial (a trial in which participants are randomly assigned to an “intervention” group or “control” group and various predefined outcomes are measured).
What Did the Researchers Do and Find?
The researchers enrolled nearly 2,600 children under the age of 5 y living in a poor region of Ghana. Half were assigned to the group in which a prepayment scheme (paid for by the trial) provided free primary and basic secondary health care—this was the intervention arm. The rest were assigned to the control group in which families paid for health care. The trial's main outcome was the percentage of children with moderate anemia at the end of the malaria transmission season, an indicator of the effect of the intervention on malaria-related illness. Other outcomes included health care utilization (calculated from household diaries), severe anemia, and death. The researchers report that the children in the intervention arm attended formal health care facilities slightly more often and informal health care providers slightly less often than those in the control arm. About 3% of the children in both groups had moderate anemia at the end of the malaria transmission season. In addition, similar numbers of deaths, cases of severe anemia, fever episodes, and known infections with the malaria parasite were recorded in both groups of children.
What Do These Findings Mean?
These findings show that, in this setting, the removal of out-of-pocket payments for health care changed health care-seeking behavior but not health outcomes in children. This lack of a measured effect does not necessarily mean that the provision of free health care has no effect on children's health—it could be that the increase in health care utilization in the intervention arm compared to the control arm was too modest to produce a clear effect on health. Alternatively, in Ghana, the indirect costs of seeking health care may be more important than the direct cost of paying for treatment. Although the findings of this trial may not be generalizable to other countries, they nevertheless raise the possibility that providing free health care might not be the most cost-effective way of improving health in all developing countries. Importantly, they also suggest that changes in health care utilization should not be used in future trials as a proxy measure of improvements in health.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000007.
This research article is further discussed in a PLoS Medicine Perspective by Valéry Ridde and Slim Haddad
The World Health Organization provides information on child health and on global efforts to reduce child mortality, Millennium Development Goal 4; it also provides information about health in Ghana
The United Nations Web site provides further information on all the Millennium Development Goals, which were agreed to by the nations of the world in 2000 with the aim of ending extreme poverty by 2015 (in several languages)
The UK Department for International Development also provides information on the progress that is being made toward reducing child mortality
doi:10.1371/journal.pmed.1000007
PMCID: PMC2613422  PMID: 19127975
23.  Co-Creation With TickiT: Designing and Evaluating a Clinical eHealth Platform for Youth 
JMIR Research Protocols  2013;2(2):e42.
Background
All youth are susceptible to mental health issues and engaging in risky behavior, and for youth with chronic health conditions, the consequences can be more significant than in their healthy peers. Standardized paper-based questionnaires are recommended by the American Academy of Pediatrics in community practice to screen for health risks. In hospitals, psychosocial screening is traditionally undertaken using the Home Education, Eating, Activities, Drugs, Depression, Sex, Safety (HEEADDSS) interview. However, time constraints and patient/provider discomfort reduce implementation. We report findings from an eHealth initiative undertaken to improve uptake of psychosocial screening among youth.
Objective
Youth are sophisticated “technology natives.” Our objective was to leverage youth’s comfort with technology, creating a youth-friendly interactive mobile eHealth psychosocial screening tool, TickiT. Patients enter data into the mobile application prior to a clinician visit. Response data is recorded in a report, which generates alerts for clinicians, shifting the clinical focus from collecting information to focused management. Design goals included improving the patient experience, improving efficiency through electronic patient based data entry, and supporting the collection of aggregated data for research.
Methods
This paper describes the iterative design and evaluation processes undertaken to develop TickiT including co-creation processes, and a pilot study utilizing mixed qualitative and quantitative methods. A collaborative industry/academic partnership engaged stakeholders (youth, health care providers, and administrators) in the co-creation development process. An independent descriptive study conducted in 2 Canadian pediatric teaching hospitals evaluated the feasibility of the platform in both inpatient and ambulatory clinical settings, evaluating both providers and patient responses to the platform.
Results
The independent pilot feasibility study included 80 adolescents, 12-18 years, and 38 medical staff-residents, inpatient and outpatient pediatricians, and surgeons. Youth uptake was 99% (79/80), and survey completion 99% (78/79; 90 questions). Youth found it easy to understand (92%, 72/78), easy to use (92%, 72/78), and efficient (80%, 63/79 with completion rate < 10 minutes). Residents were most positive about the application and surgeons were least positive. All inpatient providers obtained new patient information.
Conclusions
Co-creative design methodology with stakeholders was effective for informing design and development processes to leverage effective eHealth opportunities. Continuing stakeholder engagement has further fostered platform development. The platform has the potential to meet IHI Triple Aim goals. Clinical adaptation requires planning, training, and support for health care providers to adjust their practices.
doi:10.2196/resprot.2865
PMCID: PMC3806391  PMID: 24140595
adolescent; adolescent health services; youth; eHealth; information technology; health surveys; delivery of health care; communication; chronic illness; mobile technology; questionnaires
24.  The Role of HIV-Related Stigma in Utilization of Skilled Childbirth Services in Rural Kenya: A Prospective Mixed-Methods Study 
PLoS Medicine  2012;9(8):e1001295.
Janet Turan and colleagues examined the role of the perception of women in rural Kenya of HIV-related stigma during pregnancy on their subsequent utilization of maternity services.
Background
Childbirth with a skilled attendant is crucial for preventing maternal mortality and is an important opportunity for prevention of mother-to-child transmission of HIV. The Maternity in Migori and AIDS Stigma Study (MAMAS Study) is a prospective mixed-methods investigation conducted in a high HIV prevalence area in rural Kenya, in which we examined the role of women's perceptions of HIV-related stigma during pregnancy in their subsequent utilization of maternity services.
Methods and Findings
From 2007–2009, 1,777 pregnant women with unknown HIV status completed an interviewer-administered questionnaire assessing their perceptions of HIV-related stigma before being offered HIV testing during their first antenatal care visit. After the visit, a sub-sample of women was selected for follow-up (all women who tested HIV-positive or were not tested for HIV, and a random sample of HIV-negative women, n = 598); 411 (69%) were located and completed another questionnaire postpartum. Additional qualitative in-depth interviews with community health workers, childbearing women, and family members (n = 48) aided our interpretation of the quantitative findings and highlighted ways in which HIV-related stigma may influence birth decisions. Qualitative data revealed that health facility birth is commonly viewed as most appropriate for women with pregnancy complications, such as HIV. Thus, women delivering at health facilities face the risk of being labeled as HIV-positive in the community. Our quantitative data revealed that women with higher perceptions of HIV-related stigma (specifically those who held negative attitudes about persons living with HIV) at baseline were subsequently less likely to deliver in a health facility with a skilled attendant, even after adjusting for other known predictors of health facility delivery (adjusted odds ratio = 0.44, 95% CI 0.22–0.88).
Conclusions
Our findings point to the urgent need for interventions to reduce HIV-related stigma, not only for improving quality of life among persons living with HIV, but also for better health outcomes among all childbearing women and their families.
Please see later in the article for the Editors' Summary.
Editors' Summary
Background
Every year, nearly 350,000 women die from pregnancy- or childbirth-related complications. Almost all these “maternal” deaths occur in developing countries. In sub-Saharan Africa, for example, the maternal mortality ratio (the number of maternal deaths per 100,000 live births) is 500 whereas in industrialized countries it is only 12. Most maternal deaths are caused by hemorrhage (severe bleeding after childbirth), post-delivery infections, obstructed (difficult) labor, and blood pressure disorders during pregnancy. All these conditions can be prevented if women have access to adequate reproductive health services and if trained health care workers are present during delivery. Notably, in sub-Saharan Africa, infection with HIV (the virus that causes AIDS) is an increasingly important contributor to maternal mortality. HIV infection causes maternal mortality directly by increasing the occurrence of pregnancy complications and indirectly by increasing the susceptibility of pregnant women to malaria, tuberculosis, and other “opportunistic” infections—HIV-positive individuals are highly susceptible to other infections because HIV destroys the immune system.
Why Was This Study Done?
Although skilled delivery attendants reduce maternal mortality, there are many barriers to their use in developing countries including cost and the need to travel long distances to health facilities. Fears and experiences of HIV-related stigma and discrimination (prejudice, negative attitudes, abuse, and maltreatment directed at people living with HIV) may also be a barrier to the use of skilled childbirth service. Maternity services are prime locations for HIV testing and for the provision of interventions for the prevention of mother-to-child transmission (PMTCT) of HIV, so pregnant women know that they will have to “deal with” the issue of HIV when visiting these services. In this prospective mixed-methods study, the researchers examine the role of pregnant women's perceptions of HIV-related stigma in their subsequent use of maternity services in Nyanza Province, Kenya, a region where 16% women aged 15–49 are HIV-positive and where only 44.2% of mothers give birth in a health facility. A mixed-methods study combines qualitative data—how people feel about an issue—with quantitative data—numerical data about outcomes.
What Did the Researchers Do and Find?
In the Maternity in Migori and AIDS Stigma (MAMAS) study, pregnant women with unknown HIV status living in rural regions of Nyanza Province answered questions about their perceptions of HIV-related stigma before being offered HIV testing during their first antenatal clinic visit. After delivery, the researchers asked the women who tested HIV positive or were not tested for HIV and a sample of HIV-negative women where they had delivered their baby. They also gathered qualitative information about barriers to maternity and HIV service use by interviewing childbearing women, family members, and community health workers. The qualitative data indicate that labor in a health facility is commonly viewed as being most appropriate for women with pregnancy complications such as HIV infection. Thus, women delivering at health facilities risk being labeled as HIV positive, a label that the community associates with promiscuity. The quantitative data indicate that women with more negative attitudes about HIV-positive people (higher perceptions of HIV-related stigma) at baseline were about half as likely to deliver in a health facility with a skilled attendant as women with more positive attitudes about people living with HIV.
What Do These Findings Mean?
These findings suggest that HIV-related stigma is associated with the low rate of delivery by skilled attendants in rural areas of Nyanza Province and possibly in other rural regions of sub-Saharan Africa. Community mobilization efforts aimed at increasing the use of PMTCT services may be partly responsible for the strong perception that delivery in a health facility is most appropriate for women with HIV and other pregnancy complications and may have inadvertently strengthened the perception that women who give birth in such facilities are likely to be HIV positive. The researchers suggest, therefore, that health messages should stress that delivery in a health facility is recommended for all women, not just HIV-positive women or those with pregnancy complications, and that interventions should be introduced to reduce HIV-related stigma. This combined strategy has the potential to increase the use of maternity services by all women and the use of HIV and PMTCT services, thereby reducing some of the most pressing health problems facing women and their children in sub-Saharan Africa.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001295.
The United Nations Children's Fund (UNICEF) provides information on maternal mortality, including the WHO/UNICEF/UNFPA/World Bank 2008 country estimates of maternal mortality; a UNICEF special report tells the stories of seven mothers living with HIV in Lesotho
The World Health Organization provides information on maternal health, including information about Millennium Development Goal 5, which aims to reduce maternal mortality (in several languages); the Millennium Development Goals, which were agreed by world leaders in 2000, are designed to eradicate extreme poverty worldwide by 2015
Immpact is a global research initiative for the evaluation of safe motherhood intervention strategies
Maternal Death: The Avoidable Crisis is a briefing paper published by the independent humanitarian medical aid organization Médecins Sans Frontières (MSF) in March 2012
Information is available from Avert, an international AIDS charity on all aspects of HIV/AIDS, including information on women, HIV and AIDS, on HIV and pregnancy, on HIV and AIDS stigma and discrimination, and on HIV in Kenya (in English and Spanish); Avert also has personal stories from women living with HIV
The Stigma Action Network (SAN) is a collaborative endeavor that aims to comprehensively coordinate efforts to develop and expand program, research, and advocacy strategies for reducing HIV stigma worldwide, including mobilizing stakeholders, delivering program and policy solutions, and maximizing investments in HIV programs and services globally
The People Living with Stigma Index aims to address stigma relating to HIV and advocate on key barriers and issues perpetuating stigma; it has recently published Piecing it together for women and girls, the gender dimensions of HIV-related stigma
The Health Policy Project http://www.healthpolicyproject.com has prepared a review of the academic and programmatic literature on stigma and discrimination as barriers to achievement of global goals for maternal health and the elimination of new child HIV infections (see under Resources)
More information on the MAMAS study is available from the UCSF Center for AIDS Prevention Studies
doi:10.1371/journal.pmed.1001295
PMCID: PMC3424253  PMID: 22927800
25.  Lessons Learned for Collaborative Clinical Content Development 
Applied Clinical Informatics  2013;4(2):304-316.
Background
Site-specific content configuration of vendor-based Electronic Health Records (EHRs) is a vital step in the development of standardized and interoperable content that can be used for clinical decision-support, reporting, care coordination, and information exchange. The multi-site, multi-stakeholder Acute Care Documentation (ACD) project at Partners Healthcare Systems (PHS) aimed to develop highly structured clinical content with adequate breadth and depth to meet the needs of all types of acute care clinicians at two academic medical centers. The Knowledge Management (KM) team at PHS led the informatics and knowledge management effort for the project.
Objectives
We aimed to evaluate the role, governance, and project management processes and resources for the KM team’s effort as part of the standardized clinical content creation.
Methods
We employed the Center for Disease Control’s six step Program Evaluation Framework to guide our evaluation steps. We administered a forty-four question, open-ended, semi-structured voluntary survey to gather focused, credible evidence from members of the KM team. Qualitative open-coding was performed to identify themes for lessons learned and concluding recommendations.
Results
Six surveys were completed. Qualitative data analysis informed five lessons learned and thirty specific recommendations associated with the lessons learned. The five lessons learned are: 1) Assess and meet knowledge needs and set expectations at the start of the project; 2) Define an accountable decision-making process; 3) Increase team meeting moderation skills; 4) Ensure adequate resources and competency training with online asynchronous collaboration tools; 5) Develop focused, goal-oriented teams and supportive, consultative service based teams.
Conclusions
Knowledge management requirements for the development of standardized clinical content within a vendor-based EHR among multi-stakeholder teams and sites include: 1) assessing and meeting informatics knowledge needs, 2) setting expectations and standardizing the process for decision-making, and 3) ensuring the availability of adequate resources and competency training.
doi:10.4338/ACI-2013-02-CR-0014
PMCID: PMC3716419  PMID: 23874366
Knowledge management; content development; standardization; governance; program evaluation

Results 1-25 (1053086)