PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1203469)

Clipboard (0)
None

Related Articles

1.  Characterization of Low-Pathogenic H5 Subtype Influenza Viruses from Eurasia: Implications for the Origin of Highly Pathogenic H5N1 Viruses▿  
Journal of Virology  2007;81(14):7529-7539.
Highly pathogenic avian influenza (HPAI) H5N1 viruses are now endemic in many Asian countries, resulting in repeated outbreaks in poultry and increased cases of human infection. The immediate precursor of these HPAI viruses is believed to be A/goose/Guangdong/1/96 (Gs/GD)-like H5N1 HPAI viruses first detected in Guangdong, China, in 1996. From 2000 onwards, many novel reassortant H5N1 influenza viruses or genotypes have emerged in southern China. However, precursors of the Gs/GD-like viruses and their subsequent reassortants have not been fully determined. Here we characterize low-pathogenic avian influenza (LPAI) H5 subtype viruses isolated from poultry and migratory birds in southern China and Europe from the 1970s to the 2000s. Phylogenetic analyses revealed that Gs/GD-like virus was likely derived from an LPAI H5 virus in migratory birds. However, its variants arose from multiple reassortments between Gs/GD-like virus and viruses from migratory birds or with those Eurasian viruses isolated in the 1970s. It is of note that unlike HPAI H5N1 viruses, those recent LPAI H5 viruses have not become established in aquatic or terrestrial poultry. Phylogenetic analyses revealed the dynamic nature of the influenza virus gene pool in Eurasia with repeated transmissions between the eastern and western extremities of the continent. The data also show reassortment between influenza viruses from domestic and migratory birds in this region that has contributed to the expanded diversity of the influenza virus gene pool among poultry in Eurasia.
doi:10.1128/JVI.00327-07
PMCID: PMC1933357  PMID: 17507485
2.  The Genesis and Evolution of H9N2 Influenza Viruses in Poultry from Southern China, 2000 to 2005▿  
Journal of Virology  2007;81(19):10389-10401.
H9N2 influenza viruses have become established in terrestrial poultry in different Asian countries over the last 2 decades. Our previous study demonstrated that quail harbor increasingly diverse novel H9N2 reassortants, including both Chicken/Beijing/1/94 (Ck/Bei-like) and Quail/Hong Kong/G1/97 (G1-like) viruses. However, since 1999, the genesis and evolution of H9N2 viruses in different types of poultry have not been investigated systematically. In the present study, H9N2 viruses isolated from chickens, ducks, and other minor poultry species were characterized genetically and antigenically. Our findings demonstrate that Ck/Bei-like H9N2 viruses have been introduced into many different types of poultry in southern China, including quail, partridges, chukar, pheasant, guinea fowl, and domestic ducks, while G1-like viruses were commonly detected in quail, less frequently detected in other minor poultry species, and not detected in chickens and ducks. Genetic analysis revealed 35 genotypes of H9N2 viruses, including 14 novel genotypes that have not been recognized before. Our results also suggested that two-way interspecies transmission exists between different types of poultry. Our study demonstrates that the long-term cocirculation of multiple virus lineages (e.g., H5N1 and H9N2 viruses) in different types of poultry has facilitated the frequent reassortment events that are mostly responsible for the current great genetic diversity in H9N2 and H5N1 influenza viruses in this region. This situation favors the emergence of influenza viruses with pandemic potential.
doi:10.1128/JVI.00979-07
PMCID: PMC2045440  PMID: 17652402
3.  Reassortant H9N2 Influenza Viruses Containing H5N1-Like PB1 Genes Isolated from Black-Billed Magpies in Southern China 
PLoS ONE  2011;6(9):e25808.
H9N2 influenza A viruses have become endemic in different types of terrestrial poultry and wild birds in Asia, and are occasionally transmitted to humans and pigs. To evaluate the role of black-billed magpies (Pica pica) in the evolution of influenza A virus, we conducted two epidemic surveys on avian influenza viruses in wild black-billed magpies in Guangxi, China in 2005 and characterized three isolated black-billed magpie H9N2 viruses (BbM viruses). Phylogenetic analysis indicated that three BbM viruses were almost identical with 99.7 to 100% nucleotide homology in their whole genomes, and were reassortants containing BJ94-like (Ck/BJ/1/94) HA, NA, M, and NS genes, SH/F/98-like (Ck/SH/F/98) PB2, PA, and NP genes, and H5N1-like (Ck/YN/1252/03, clade 1) PB1 genes. Genetic analysis showed that BbM viruses were most likely the result of multiple reassortments between co-circulating H9N2-like and H5N1-like viruses, and were genetically different from other H9N2 viruses because of the existence of H5N1-like PB1 genes. Genotypical analysis revealed that BbM viruses evolved from diverse sources and belonged to a novel genotype (B46) discovered in our recent study. Molecular analysis suggested that BbM viruses were likely low pathogenic reassortants. However, results of our pathogenicity study demonstrated that BbM viruses replicated efficiently in chickens and a mammalian mouse model but were not lethal for infected chickens and mice. Antigenic analysis showed that BbM viruses were antigenic heterologous with the H9N2 vaccine strain. Our study is probably the first report to document and characterize H9N2 influenza viruses isolated from black-billed magpies in southern China. Our results suggest that black-billed magpies were susceptible to H9N2 influenza viruses, which raise concerns over possible transmissions of reassortant H9N2 viruses among poultry and wild birds.
doi:10.1371/journal.pone.0025808
PMCID: PMC3183077  PMID: 21980538
4.  Evolution and Molecular Epidemiology of H9N2 Influenza A Viruses from Quail in Southern China, 2000 to 2005▿  
Journal of Virology  2006;81(6):2635-2645.
H9N2 influenza viruses have become established and maintain long-term endemicity in terrestrial poultry in Asian countries. Occasionally these viruses transmit to other mammals, including humans. Increasing epidemiological and laboratory findings suggest that quail may be an important host, as they are susceptible to different subtypes of influenza viruses. To better understand the role of quail in influenza virus ecology and evolution, H9N2 viruses isolated from quail during 2000 to 2005 were antigenically and genetically characterized. Our results showed that H9N2 viruses are prevalent year-round in southern China and replicate mainly asymptomatically in the respiratory tract of quail. Genetic analysis revealed that both the G1-like and Ck/Bei-like H9N2 lineages were cocirculating in quail since 2000. Phylogenetic analyses demonstrated that most of the isolates tested were double- or multiple-reassortant variants, with four G1-like and 16 Ck/Bei-like genotypes recognized. A novel genotype of G1-like virus became predominant in quail since 2003, while multiple Ck/Bei-like genotypes were introduced into quail, wherein they incorporated G1-like gene segments, but none of them became established in this host. Those Ck/Bei-like reassortants generated in quail have then been introduced into other poultry. These complex interactions form a two-way transmission system between quail and other types of poultry. The present study provides evidence that H9N2 and H5N1 subtype viruses have also exchanged gene segments to generate currently circulating reassortants of both subtypes that have pandemic potential. Continuing influenza virus surveillance in poultry is critical to understanding the genesis and emergence of potentially pandemic strains in this region.
doi:10.1128/JVI.02316-06
PMCID: PMC1865985  PMID: 17192315
5.  Evolutionary Dynamics and Emergence of Panzootic H5N1 Influenza Viruses 
PLoS Pathogens  2008;4(9):e1000161.
The highly pathogenic avian influenza (HPAI) H5N1 virus lineage has undergone extensive genetic reassortment with viruses from different sources to produce numerous H5N1 genotypes, and also developed into multiple genetically distinct sublineages in China. From there, the virus has spread to over 60 countries. The ecological success of this virus in diverse species of both poultry and wild birds with frequent introduction to humans suggests that it is a likely source of the next human pandemic. Therefore, the evolutionary and ecological characteristics of its emergence from wild birds into poultry are of considerable interest. Here, we apply the latest analytical techniques to infer the early evolutionary dynamics of H5N1 virus in the population from which it emerged (wild birds and domestic poultry). By estimating the time of most recent common ancestors of each gene segment, we show that the H5N1 prototype virus was likely introduced from wild birds into poultry as a non-reassortant low pathogenic avian influenza H5N1 virus and was not generated by reassortment in poultry. In contrast, more recent H5N1 genotypes were generated locally in aquatic poultry after the prototype virus (A/goose/Guangdong/1/96) introduction occurred, i.e., they were not a result of additional emergence from wild birds. We show that the H5N1 virus was introduced into Indonesia and Vietnam 3–6 months prior to detection of the first outbreaks in those countries. Population dynamics analyses revealed a rapid increase in the genetic diversity of A/goose/Guangdong/1/96 lineage viruses from mid-1999 to early 2000. Our results suggest that the transmission of reassortant viruses through the mixed poultry population in farms and markets in China has selected HPAI H5N1 viruses that are well adapted to multiple hosts and reduced the interspecies transmission barrier of those viruses.
Author Summary
H5N1 influenza virus has been responsible for poultry outbreaks over the last 12 years—the longest recorded example of highly pathogenic avian influenza (HPAI) circulation in poultry. The ecological success of this virus in diverse species of both poultry and wild birds with sporadic introduction to humans suggests that it is a likely source of the next human pandemic. Genome sequences of H5N1 viruses reveal extensive genetic reassortment (mixing) with other influenza subtypes to produce many H5N1 genotypes that have developed into multiple genetically distinct clades, some of which have spread to affect over 60 countries. Here, we analyze all available sequence data of avian influenza viruses from Eurasia and show that the original HPAI H5N1 virus (referred to as A/goose/Guangdong/1/96) was likely introduced directly into poultry as an intact virus particle from wild aquatic birds. In contrast, H5N1 genotypes were generated in aquatic poultry populations after the introduction of A/goose/Guangdong/1/96 virus. Our results suggest that the transmission of reassortant viruses through the diverse poultry populations in farms and markets in China has selected H5N1 viruses that are well-adapted to multiple hosts and reduced the interspecies transmission barrier of those viruses.
doi:10.1371/journal.ppat.1000161
PMCID: PMC2533123  PMID: 18818732
6.  Genetics, Receptor Binding Property, and Transmissibility in Mammals of Naturally Isolated H9N2 Avian Influenza Viruses 
PLoS Pathogens  2014;10(11):e1004508.
H9N2 subtype influenza viruses have been detected in different species of wild birds and domestic poultry in many countries for several decades. Because these viruses are of low pathogenicity in poultry, their eradication is not a priority for animal disease control in many countries, which has allowed them to continue to evolve and spread. Here, we characterized the genetic variation, receptor-binding specificity, replication capability, and transmission in mammals of a series of H9N2 influenza viruses that were detected in live poultry markets in southern China between 2009 and 2013. Thirty-five viruses represented 17 genotypes on the basis of genomic diversity, and one specific “internal-gene-combination” predominated among the H9N2 viruses. This gene combination was also present in the H7N9 and H10N8 viruses that have infected humans in China. All of the 35 viruses preferentially bound to the human-like receptor, although two also retained the ability to bind to the avian-like receptor. Six of nine viruses tested were transmissible in ferrets by respiratory droplet; two were highly transmissible. Some H9N2 viruses readily acquired the 627K or 701N mutation in their PB2 gene upon infection of ferrets, further enhancing their virulence and transmission in mammals. Our study indicates that the widespread dissemination of H9N2 viruses poses a threat to human health not only because of the potential of these viruses to cause an influenza pandemic, but also because they can function as “vehicles” to deliver different subtypes of influenza viruses from avian species to humans.
Author Summary
Avian influenza viruses continue to present challenges to human health. Recently the H7N9 and H10N8 viruses that are of low pathogenicity for poultry have caused human infections and deaths in China. H9N2 influenza virus have been isolated worldwide from wild and domestic avian species for several decades, and their low pathogenic nature to poultry made them a low priority for animal disease control, which has allowed them to continue to evolve and spread. Here, we investigated a series of H9N2 influenza viruses that were detected in live poultry markets in southern China. We found that these viruses are able to preferentially bind to the human-type receptor, and some of them can cause disease and transmit between ferrets by respiratory droplet. All the transmissible H9N2 viruses have a similar internal gene constellation, which was also present in the H7N9 and H10N8 viruses. Our study indicates that the widespread dissemination of H9N2 viruses poses a threat to human health not only because of the potential of these viruses to cause an influenza pandemic, but also because they can function as “vehicles” to deliver different subtypes of influenza viruses from avian species to humans.
doi:10.1371/journal.ppat.1004508
PMCID: PMC4239090  PMID: 25411973
7.  Novel Reassortant Highly Pathogenic H5N2 Avian Influenza Viruses in Poultry in China 
PLoS ONE  2012;7(9):e46183.
There has been multiple evidence that domestic poultry may act as a vessel for the generation of novel influenza A viruses. In this study, we have analyzed the evolution and pathogenicity of 4 H5N2 avian influenza viruses isolated from apparently healthy poultry from H5N1 virus endemic areas in China. Phylogenetic analysis revealed that two of these viruses, A/duck/Eastern China/1111/2011 (DK/EC/1111/11) and A/goose/Eastern China/1112/2011 (GS/EC/1112/11) were derived from reassortment events in which clade 2.3.4 highly pathogenic avian influenza (HPAI) H5N1 viruses acquired novel neuraminidase and nonstructural protein genes. Another two isolates, A/chicken/Hebei/1102/2010 (CK/HB/1102/10) and A/duck/Hebei/0908/2009 (DK/HB/0908/09), possess hemagglutinin (HA) gene belong to clade 7 H5 viruses and other genes from endemic H9N2 viruses, or from viruses of various subtypes of the natural gene pool. All of these H5N2 isolates bear characteristic sequences of HPAI virus at the cleavage site of HA, and animal experiments indicated that all of these viruses but DK/HB/0908/09 is highly pathogenic to chickens. In particular, DK/EC/1111/11 and GS/EC/1112/11 are also highly pathogenic to ducks and moderately pathogenic to mice. All of these 4 viruses were able to replicate in domestic ducks and mice without prior adaptation. The emergence of these novel H5N2 viruses adds more evidence for the active evolution of H5 viruses in Asia. The maintenance of the highly pathogenic phenotype of some of these viruses even after reassortment with a new NA subtypes, their ability to replicate and transmit in domestic poultry, and the pathogenicity in the mammalian mouse model, highlight the potential threat posed by these viruses to both veterinary and public health.
doi:10.1371/journal.pone.0046183
PMCID: PMC3458027  PMID: 23049973
8.  Novel genetic reassortants in H9N2 influenza A viruses and their diverse pathogenicity to mice 
Virology Journal  2011;8:505.
Background
H9N2 influenza A viruses have undergone extensive reassortments in different host species, and could lead to the epidemics or pandemics with the potential emergence of novel viruses.
Methods
To understand the genetic and pathogenic features of early and current circulating H9N2 viruses, 15 representative H9N2 viruses isolated from diseased chickens in northern China between 1998 and 2010 were characterized and compared with all Chinese H9N2 viruses available in the NCBI database. Then, the representative viruses of different genotypes were selected to study the pathogenicity in mice with the aim to investigate the adaptation and the potential pathogenicity of the novel H9N2 reassortants to mammals.
Results
Our results demonstrated that most of the 15 isolates were reassortants and generated four novel genotypes (B62-B65), which incorporated the gene segments from Eurasian H9N2 lineage, North American H9N2 branch, and H5N1 viruses. It was noteworthy that the newly identified genotype B65 has been prevalent in China since 2007, and more importantly, different H9N2 influenza viruses displayed a diverse pathogenicity to mice. The isolates of the 2008-2010 epidemic (genotypes B55 and B65) were lowly infectious, while two representative viruses of genotypes B0 and G2 isolated from the late 1990s were highly pathogenic to mice. In addition, Ck/SD/LY-1/08 (genotype 63, containing H5N1-like NP and PA genes) was able to replicate well in mouse lungs with high virus titers but caused mild clinical signs.
Conclusion
Several lines of evidence indicated that the H9N2 influenza viruses constantly change their genetics and pathogenicity. Thus, the genetic evolution of H9N2 viruses and their pathogenicity to mammals should be closely monitored to prevent the emergence of novel pandemic viruses.
doi:10.1186/1743-422X-8-505
PMCID: PMC3236014  PMID: 22050764
avian influenza virus; H9N2; reassortant; genotype; pathogenicity
9.  Establishment of an H6N2 Influenza Virus Lineage in Domestic Ducks in Southern China ▿ †  
Journal of Virology  2010;84(14):6978-6986.
Multiple reassortment events between different subtypes of endemic avian influenza viruses have increased the genomic diversity of influenza viruses circulating in poultry in southern China. Gene exchange from the natural gene pool to poultry has contributed to this increase in genetic diversity. However, the role of domestic ducks as an interface between the natural gene pool and terrestrial poultry in the influenza virus ecosystem has not been fully characterized. Here we phylogenetically and antigenically analyzed 170 H6 viruses isolated from domestic ducks from 2000 to 2005 in southern China, which contains the largest population of domestic ducks in the world. Three distinct hemagglutinin lineages were identified. Group I contained the majority of isolates with a single internal gene complex and was endemic in domestic ducks in Guangdong from the late 1990s onward. Group II was derived from reassortment events in which the surface genes of group I viruses were replaced with novel H6 and N2 genes. Group III represented H6 viruses that undergo frequent reassortment with multiple virus subtypes from the natural gene pool. Surprisingly, H6 viruses endemic in domestic ducks and terrestrial poultry seldom reassort, but gene exchanges between viruses from domestic ducks and migratory ducks occurred throughout the surveillance period. These findings suggest that domestic ducks in southern China mediate the interaction of viruses between different gene pools and facilitate the generation of novel influenza virus variants circulating in poultry.
doi:10.1128/JVI.00256-10
PMCID: PMC2898240  PMID: 20463062
10.  H6 Influenza Viruses Pose a Potential Threat to Human Health 
Journal of Virology  2014;88(8):3953-3964.
ABSTRACT
Influenza viruses of the H6 subtype have been isolated from wild and domestic aquatic and terrestrial avian species throughout the world since their first detection in a turkey in Massachusetts in 1965. Since 1997, H6 viruses with different neuraminidase (NA) subtypes have been detected frequently in the live poultry markets of southern China. Although sequence information has been gathered over the last few years, the H6 viruses have not been fully biologically characterized. To investigate the potential risk posed by H6 viruses to humans, here we assessed the receptor-binding preference, replication, and transmissibility in mammals of a series of H6 viruses isolated from live poultry markets in southern China from 2008 to 2011. Among the 257 H6 strains tested, 87 viruses recognized the human type receptor. Genome sequence analysis of 38 representative H6 viruses revealed 30 different genotypes, indicating that these viruses are actively circulating and reassorting in nature. Thirty-seven of 38 viruses tested in mice replicated efficiently in the lungs and some caused mild disease; none, however, were lethal. We also tested the direct contact transmission of 10 H6 viruses in guinea pigs and found that 5 viruses did not transmit to the contact animals, 3 viruses transmitted to one of the three contact animals, and 2 viruses transmitted to all three contact animals. Our study demonstrates that the H6 avian influenza viruses pose a clear threat to human health and emphasizes the need for continued surveillance and evaluation of the H6 influenza viruses circulating in nature.
IMPORTANCE Avian influenza viruses continue to present a challenge to human health. Research and pandemic preparedness have largely focused on the H5 and H7 subtype influenza viruses in recent years. Influenza viruses of the H6 subtype have been isolated from wild and domestic aquatic and terrestrial avian species throughout the world since their first detection in the United States in 1965. Since 1997, H6 viruses have been detected frequently in the live poultry markets of southern China; however, the biological characterization of these viruses is very limited. Here, we assessed the receptor-binding preference, replication, and transmissibility in mammals of a series of H6 viruses isolated from live poultry markets in southern China and found that 34% of the viruses are able to bind human type receptors and that some of them are able to transmit efficiently to contact animals. Our study demonstrates that the H6 viruses pose a clear threat to human health.
doi:10.1128/JVI.03292-13
PMCID: PMC3993743  PMID: 24501418
11.  Establishment of Influenza A Virus (H6N1) in Minor Poultry Species in Southern China▿  
Journal of Virology  2007;81(19):10402-10412.
An H6N1 virus, A/teal/Hong Kong/W312/97 (W312), was isolated during the “bird flu” incident in Hong Kong in 1997. Genetic analysis suggested that this virus might be the progenitor of the A/Hong Kong/156/97 (HK/97) H5N1 virus, as seven of eight gene segments of those viruses had a common source. Continuing surveillance in Hong Kong showed that a W312-like virus was prevalent in quail and pheasants in 1999; however, the further development of H6N1 viruses has not been investigated since 2001. Here we report influenza virus surveillance data collected in southern China from 2000 to 2005 that show that H6N1 viruses have become established and endemic in minor poultry species and replicate mainly in the respiratory tract. Phylogenetic analysis indicated that all H6N1 isolates had W312-like hemagglutinin and neuraminidase genes. However, reassortment of internal genes between different subtype virus lineages, including H5N1, H9N2, and other avian viruses, generated multiple novel H6N1 genotypes in different types of poultry. These novel H6N1/N2 viruses are double, triple, or even quadruple reassortants. Reassortment between a W312-like H6N1 virus and an A/quail/Hong Kong/G1/97 (HK/97)-like H9N2 virus simultaneously generated novel H6N2 subtype viruses that were persistent in poultry. Molecular analyses suggest that W312-like viruses may not be the precursors of HK/97 virus but reassortants from an HK/97-like virus and another unidentified H6 subtype virus. These results provide further evidence of the pivotal role of the live poultry market system of southern China in generating increased genetic diversity in influenza viruses in this region.
doi:10.1128/JVI.01157-07
PMCID: PMC2045442  PMID: 17652385
12.  Continuing Reassortment Leads to the Genetic Diversity of Influenza Virus H7N9 in Guangdong, China 
Journal of Virology  2014;88(15):8297-8306.
ABSTRACT
On 30 March 2013, a novel avian influenza A H7N9 virus causing severe human respiratory infections was identified in China. Preliminary sequence analyses have shown that the virus is a reassortant of H7N9 and H9N2 avian influenza viruses. In this study, we conducted enhanced surveillance for H7N9 virus in Guangdong, China, from April to August 2013. We isolated two H7N9 viral strains from environmental samples associated with poultry markets and one from a clinical patient. Sequence analyses showed that the Guangdong H7N9 virus isolated from April to May shared high sequence similarity with other strains from eastern China. The A/Guangdong/1/2013 (H7N9) virus isolated from the Guangdong patient on 10 August 2013 was divergent from previously sequenced H7N9 viruses and more closely related to local circulating H9N2 viruses in the NS and NP genes. Phylogenetic analyses revealed that four internal genes of the A/Guangdong/1/2013 (H7N9) virus—the NS, NP, PB1, and PB2 genes—were in clusters different from those for H7N9 viruses identified previously in other provinces of China. The discovery presented here suggests that continuing reassortment led to the emergence of the A/Guangdong/1/2013 (H7N9) virus as a novel H7N9 virus in Guangdong, China, and that viral adaptation to avian and human hosts must be assessed.
IMPORTANCE In this study, we isolated and characterized the avian influenza A H7N9 virus in Guangdong, China, from April to August 2013. We show that the viruses isolated from Guangdong environmental samples and chickens from April to May 2013 were highly similar to other H7N9 strains found in eastern China. The H7N9 virus isolated from the clinical patient in Guangdong in August 2013 was divergent from previously identified H7N9 viruses, with the NS and NP genes originating from recent H9N2 viruses circulating in the province. This study provides direct evidence that continuing reassortment occurred and led to the emergence of a novel H7N9 influenza virus in Guangdong, China. These results also shed light on how the H7N9 virus evolved, which is critically important for future monitoring and tracing of viral transmission.
doi:10.1128/JVI.00630-14
PMCID: PMC4135935  PMID: 24829356
13.  Emergence and Evolution of Avian H5N2 Influenza Viruses in Chickens in Taiwan 
Journal of Virology  2014;88(10):5677-5686.
ABSTRACT
Sporadic activity by H5N2 influenza viruses has been observed in chickens in Taiwan from 2003 to 2012. The available information suggests that these viruses were generated by reassortment between a Mexican-like H5N2 virus and a local enzootic H6N1 virus. Yet the origin, prevalence, and pathogenicity of these H5N2 viruses have not been fully defined. Following the 2012 highly pathogenic avian influenza (HPAI) outbreaks, surveillance was conducted from December 2012 to July 2013 at a live-poultry wholesale market in Taipei. Our findings showed that H5N2 and H6N1 viruses cocirculated at low levels in chickens in Taiwan. Phylogenetic analyses revealed that all H5N2 viruses had hemagglutinin (HA) and neuraminidase (NA) genes derived from a 1994 Mexican-like virus, while their internal gene complexes were incorporated from the enzootic H6N1 virus lineage by multiple reassortment events. Pathogenicity studies demonstrated heterogeneous results even though all tested viruses had motifs (R-X-K/R-R) supportive of high pathogenicity. Serological surveys for common subtypes of avian viruses confirmed the prevalence of the H5N2 and H6N1 viruses in chickens and revealed an extraordinarily high seroconversion rate to an H9N2 virus, a subtype that is not found in Taiwan but is prevalent in mainland China. These findings suggest that reassortant H5N2 viruses, together with H6N1 viruses, have become established and enzootic in chickens throughout Taiwan and that a large-scale vaccination program might have been conducted locally that likely led to the introduction of the 1994 Mexican-like virus to Taiwan in 2003.
IMPORTANCE H5N2 avian influenza viruses first appeared in chickens in Taiwan in 2003 and caused a series of outbreaks afterwards. Phylogenetic analyses show that the chicken H5N2 viruses have H5 and N2 genes that are closely related to those of a vaccine strain originating from Mexico in 1994, while the contemporary duck H5N2 viruses in Taiwan belong to the Eurasian gene pool. The unusually high similarity of the chicken H5N2 viruses to the Mexican vaccine strain suggests that these viruses might have been introduced to Taiwan by using inadequately inactivated or attenuated vaccines. These chicken H5N2 viruses are developing varying levels of pathogenicity that could lead to significant consequences for the local poultry industry. These findings emphasize the need for strict quality control and competent oversight in the manufacture and usage of avian influenza virus vaccines and indicate that alternatives to widespread vaccination may be desirable.
doi:10.1128/JVI.00139-14
PMCID: PMC4019133  PMID: 24623422
14.  Evolution of Highly Pathogenic H5N1 Avian Influenza Viruses in Vietnam between 2001 and 2007 
PLoS ONE  2008;3(10):e3462.
Highly pathogenic avian influenza (HPAI) H5N1 viruses have caused dramatic economic losses to the poultry industry of Vietnam and continue to pose a serious threat to public health. As of June 2008, Vietnam had reported nearly one third of worldwide laboratory confirmed human H5N1 infections. To better understand the emergence, spread and evolution of H5N1 in Vietnam we studied over 300 H5N1 avian influenza viruses isolated from Vietnam since their first detection in 2001. Our phylogenetic analyses indicated that six genetically distinct H5N1 viruses were introduced into Vietnam during the past seven years. The H5N1 lineage that evolved following the introduction in 2003 of the A/duck/Hong Kong/821/2002-like viruses, with clade 1 hemagglutinin (HA), continued to predominate in southern Vietnam as of May 2007. A virus with a clade 2.3.4 HA newly introduced into northern Vietnam in 2007, reassorted with pre-existing clade 1 viruses, resulting in the emergence of novel genotypes with neuraminidase (NA) and/or internal gene segments from clade 1 viruses. A total of nine distinct genotypes have been present in Vietnam since 2001, including five that were circulating in 2007. At least four of these genotypes appear to have originated in Vietnam and represent novel H5N1 viruses not reported elsewhere. Geographic and temporal analyses of H5N1 infection dynamics in poultry suggest that the majority of viruses containing new genes were first detected in northern Vietnam and subsequently spread to southern Vietnam after reassorting with pre-existing local viruses in northern Vietnam. Although the routes of entry and spread of H5N1 in Vietnam remain speculative, enhanced poultry import controls and virologic surveillance efforts may help curb the entry and spread of new HPAI viral genes.
doi:10.1371/journal.pone.0003462
PMCID: PMC2565130  PMID: 18941631
15.  Continued Evolution of H5N1 Influenza Viruses in Wild Birds, Domestic Poultry, and Humans in China from 2004 to 2009▿ †  
Journal of Virology  2010;84(17):8389-8397.
Despite substantial efforts to control H5N1 avian influenza viruses (AIVs), the viruses have continued to evolve and cause disease outbreaks in poultry and infections in humans. In this report, we analyzed 51 representative H5N1 AIVs isolated from domestic poultry, wild birds, and humans in China during 2004 to 2009, and 21 genotypes were detected based on whole-genome sequences. Twelve genotypes of AIVs in southern China bear similar H5 hemagglutinin (HA) genes (clade 2.3). These AIVs did not display antigenic drift and could be completely protected against by the A/goose/Guangdong/1/96 (GS/GD/1/96)-based oil-adjuvanted killed vaccine and recombinant Newcastle disease virus vaccine, which have been used in China. In addition, antigenically drifted H5N1 viruses, represented by A/chicken/Shanxi/2/06 (CK/SX/2/06), were detected in chickens from several provinces in northern China. The CK/SX/2/06-like viruses are reassortants with newly emerged HA, NA, and PB1 genes that could not be protected against by the GS/GD/1/96-based vaccines. These viruses also reacted poorly with antisera generated from clade 2.2 and 2.3 viruses. The majority of the viruses isolated from southern China were lethal in mice and ducks, while the CK/SX/2/06-like viruses caused mild disease in mice and could not replicate in ducks. Our results demonstrate that the H5N1 AIVs circulating in nature have complex biological characteristics and pose a continued challenge for disease control and pandemic preparedness.
doi:10.1128/JVI.00413-10
PMCID: PMC2919039  PMID: 20538856
16.  H9N2 Influenza Viruses Possessing H5N1-Like Internal Genomes Continue To Circulate in Poultry in Southeastern China 
Journal of Virology  2000;74(20):9372-9380.
The transmission of H9N2 influenza viruses to humans and the realization that the A/Hong Kong/156/97-like (H5N1) (abbreviated HK/156/97) genome complex may be present in H9N2 viruses in southeastern China necessitated a study of the distribution and characterization of H9N2 viruses in poultry in the Hong Kong SAR in 1999. Serological studies indicated that H9N2 influenza viruses had infected a high proportion of chickens and other land-based birds (pigeon, pheasant, quail, guinea fowl, and chukka) from southeastern China. Two lineages of H9N2 influenza viruses present in the live-poultry markets were represented by A/Quail/Hong Kong/G1/97 (Qa/HK/G1/97)-like and A/Duck/Hong Kong/Y280/97 (Dk/HK/Y280/97)-like viruses. Up to 16% of cages of quail in the poultry markets contained Qa/HK/G1/97-like viruses, while about 5% of cages of other land-based birds were infected with Dk/HK/Y280/97-like viruses. No reassortant between the two H9N2 virus lineages was detected despite their cocirculation in the poultry markets. Reassortant viruses represented by A/Chicken/Hong Kong/G9/97 (H9N2) were the major H9N2 influenza viruses circulating in the Hong Kong markets in 1997 but have not been detected since the chicken slaughter in 1997. The Qa/HK/G1/97-like viruses were frequently isolated from quail, while Dk/HK/Y280/97-like viruses were predominately associated with chickens. The Qa/HK/G1/97-like viruses were evolving relatively rapidly, especially in their PB2, HA, NP, and NA genes, suggesting that they are in the process of adapting to a new host. Experimental studies showed that both H9N2 lineages were primarily spread by the aerosol route and that neither quail nor chickens showed evidence of disease. The high prevalence of quail infected with Qa/HK/G1/97-like virus that contains six gene segments genetically highly related to HK/156/97 (H5N1) virus emphasizes the need for surveillance of mammals including humans.
PMCID: PMC112365  PMID: 11000205
17.  Phylogenetic Diversity and Genotypical Complexity of H9N2 Influenza A Viruses Revealed by Genomic Sequence Analysis 
PLoS ONE  2011;6(2):e17212.
H9N2 influenza A viruses have become established worldwide in terrestrial poultry and wild birds, and are occasionally transmitted to mammals including humans and pigs. To comprehensively elucidate the genetic and evolutionary characteristics of H9N2 influenza viruses, we performed a large-scale sequence analysis of 571 viral genomes from the NCBI Influenza Virus Resource Database, representing the spectrum of H9N2 influenza viruses isolated from 1966 to 2009. Our study provides a panoramic framework for better understanding the genesis and evolution of H9N2 influenza viruses, and for describing the history of H9N2 viruses circulating in diverse hosts. Panorama phylogenetic analysis of the eight viral gene segments revealed the complexity and diversity of H9N2 influenza viruses. The 571 H9N2 viral genomes were classified into 74 separate lineages, which had marked host and geographical differences in phylogeny. Panorama genotypical analysis also revealed that H9N2 viruses include at least 98 genotypes, which were further divided according to their HA lineages into seven series (A–G). Phylogenetic analysis of the internal genes showed that H9N2 viruses are closely related to H3, H4, H5, H7, H10, and H14 subtype influenza viruses. Our results indicate that H9N2 viruses have undergone extensive reassortments to generate multiple reassortants and genotypes, suggesting that the continued circulation of multiple genotypical H9N2 viruses throughout the world in diverse hosts has the potential to cause future influenza outbreaks in poultry and epidemics in humans. We propose a nomenclature system for identifying and unifying all lineages and genotypes of H9N2 influenza viruses in order to facilitate international communication on the evolution, ecology and epidemiology of H9N2 influenza viruses.
doi:10.1371/journal.pone.0017212
PMCID: PMC3046171  PMID: 21386964
18.  Continued Circulation in China of Highly Pathogenic Avian Influenza Viruses Encoding the Hemagglutinin Gene Associated with the 1997 H5N1 Outbreak in Poultry and Humans 
Journal of Virology  2000;74(14):6592-6599.
Since the outbreak in humans of an H5N1 avian influenza virus in Hong Kong in 1997, poultry entering the live-bird markets of Hong Kong have been closely monitored for infection with avian influenza. In March 1999, this monitoring system detected geese that were serologically positive for H5N1 avian influenza virus, but the birds were marketed before they could be sampled for virus. However, viral isolates were obtained by swabbing the cages that housed the geese. These samples, known collectively as A/Environment/Hong Kong/437/99 (A/Env/HK/437/99), contained four viral isolates, which were compared to the 1997 H5N1 Hong Kong isolates. Analysis of A/Env/HK/437/99 viruses revealed that the four isolates are nearly identical genetically and are most closely related to A/Goose/Guangdong/1/96. These isolates and the 1997 H5N1 Hong Kong viruses encode common hemagglutinin (H5) genes that have identical hemagglutinin cleavage sites. Thus, the pathogenicity of the A/Env/HK/437/99 viruses was compared in chickens and in mice to evaluate the potential for disease outbreaks in poultry and humans. The A/Env/HK/437/99 isolates were highly pathogenic in chickens but caused a longer mean death time and had altered cell tropism compared to A/Hong Kong/156/97 (A/HK/156/97). Like A/HK/156/97, the A/Env/HK/437/99 viruses replicated in mice and remained localized to the respiratory tract. However, the A/Env/HK/437/99 isolates caused only mild pathological lesions in these tissues and no clinical signs of disease or death. As a measure of the immune response to these viruses, transforming growth factor β levels were determined in the serum of infected mice and showed elevated levels for the A/Env/HK/437/99 viruses compared to the A/HK/156/97 viruses. This study is the first to characterize the A/Env/HK/437/99 viruses in both avian and mammalian species, evaluating the H5 gene from the 1997 Hong Kong H5N1 isolates in a different genetic background. Our findings reveal that at least one of the avian influenza virus genes encoded by the 1997 H5N1 Hong Kong viruses continues to circulate in mainland China and that this gene is important for pathogenesis in chickens but is not the sole determinant of pathogenicity in mice. There is evidence that H9N2 viruses, which have internal genes in common with the 1997 H5N1 Hong Kong isolates, are still circulating in Hong Kong and China as well, providing a heterogeneous gene pool for viral reassortment. The implications of these findings for the potential for human disease are discussed.
PMCID: PMC112169  PMID: 10864673
19.  Influenza in Migratory Birds and Evidence of Limited Intercontinental Virus Exchange 
PLoS Pathogens  2007;3(11):e167.
Migratory waterfowl of the world are the natural reservoirs of influenza viruses of all known subtypes. However, it is unknown whether these waterfowl perpetuate highly pathogenic (HP) H5 and H7 avian influenza viruses. Here we report influenza virus surveillance from 2001 to 2006 in wild ducks in Alberta, Canada, and in shorebirds and gulls at Delaware Bay (New Jersey), United States, and examine the frequency of exchange of influenza viruses between the Eurasian and American virus clades, or superfamilies. Influenza viruses belonging to each of the subtypes H1 through H13 and N1 through N9 were detected in these waterfowl, but H14 and H15 were not found. Viruses of the HP Asian H5N1 subtypes were not detected, and serologic studies in adult mallard ducks provided no evidence of their circulation. The recently described H16 subtype of influenza viruses was detected in American shorebirds and gulls but not in ducks. We also found an unusual cluster of H7N3 influenza viruses in shorebirds and gulls that was able to replicate well in chickens and kill chicken embryos. Genetic analysis of 6,767 avian influenza gene segments and 248 complete avian influenza viruses supported the notion that the exchange of entire influenza viruses between the Eurasian and American clades does not occur frequently. Overall, the available evidence does not support the perpetuation of HP H5N1 influenza in migratory birds and suggests that the introduction of HP Asian H5N1 to the Americas by migratory birds is likely to be a rare event.
Author Summary
Influenza surveillance in wild migratory birds has been done at two sites in North America: 1) in Alberta, Canada, for the past 31 years, and 2) along Delaware Bay, United States, for the past 22 years. These studies support the concept that wild migratory birds are the reservoirs of all influenza A viruses and that the influenza viruses in the world can be divided into two distinct superfamilies, one in Eurasia and the other in the Americas. From time to time these viruses spread to domestic poultry and to humans and cause pandemics of disease. Many investigators have expanded these studies particularly in Europe, Asia, and the Americas. The emergence of highly pathogenic H5N1 in Asia a decade ago and the continuing evolution and spread of these H5N1 viruses to the whole of Eurasia is a continuing problem for veterinary and human public health. The available evidence from Eurasia is that migratory birds can be infected and may be involved in local spread of the highly pathogenic H5N1 virus. The question addressed in the present study is why the highly pathogenic H5N1 influenza virus has not yet reached the Americas despite the overlap in migratory bird pathways, particularly in Alaska. Genomic analysis of influenza viruses from our repository failed to provide evidence of influenza viruses with their whole genome originating from Eurasia. However, we found occasional influenza viruses from North America with single or multiple genes that originated in Eurasia. Our interpretation is that while influenza viruses do exchange between the two hemispheres, this is a rare occurrence. Regardless, enhanced surveillance should be continued in the Americas in case this rare event occurs.
doi:10.1371/journal.ppat.0030167
PMCID: PMC2065878  PMID: 17997603
20.  Reassortant between Human-Like H3N2 and Avian H5 Subtype Influenza A Viruses in Pigs: A Potential Public Health Risk 
PLoS ONE  2010;5(9):e12591.
Background
Human-like H3N2 influenza viruses have repeatedly been transmitted to domestic pigs in different regions of the world, but it is still uncertain whether any of these variants could become established in pig populations. The fact that different subtypes of influenza viruses have been detected in pigs makes them an ideal candidate for the genesis of a possible reassortant virus with both human and avian origins. However, the determination of whether pigs can act as a “mixing vessel” for a possible future pandemic virus is still pending an answer. This prompted us to gather the epidemiological information and investigate the genetic evolution of swine influenza viruses in Jilin, China.
Methods
Nasopharyngeal swabs were collected from pigs with respiratory illness in Jilin province, China from July 2007 to October 2008. All samples were screened for influenza A viruses. Three H3N2 swine influenza virus isolates were analyzed genetically and phylogenetically.
Results
Influenza surveillance of pigs in Jilin province, China revealed that H3N2 influenza viruses were regularly detected from domestic pigs during 2007 to 2008. Phylogenetic analysis revealed that two distinguishable groups of H3N2 influenza viruses were present in pigs: the wholly contemporary human-like H3N2 viruses (represented by the Moscow/10/99-like sublineage) and double-reassortant viruses containing genes from contemporary human H3N2 viruses and avian H5 viruses, both co-circulating in pig populations.
Conclusions
The present study reports for the first time the coexistence of wholly human-like H3N2 viruses and double-reassortant viruses that have emerged in pigs in Jilin, China. It provides updated information on the role of pigs in interspecies transmission and genetic reassortment of influenza viruses.
doi:10.1371/journal.pone.0012591
PMCID: PMC2935369  PMID: 20830295
21.  Multiple introductions of highly pathogenic avian influenza H5N1 viruses into Bangladesh 
Highly pathogenic H5N1 and low pathogenic H9N2 influenza viruses are endemic to poultry markets in Bangladesh and have cocirculated since 2008. H9N2 influenza viruses circulated constantly in the poultry markets, whereas highly pathogenic H5N1 viruses occurred sporadically, with peaks of activity in cooler months. Thirty highly pathogenic H5N1 influenza viruses isolated from poultry were characterized by antigenic, molecular, and phylogenetic analyses. Highly pathogenic H5N1 influenza viruses from clades 2.2.2 and 2.3.2.1 were isolated from live bird markets only. Phylogenetic analysis of the 30 H5N1 isolates revealed multiple introductions of H5N1 influenza viruses in Bangladesh. There was no reassortment between the local H9N2 influenza viruses and H5N1 genotype, despite their prolonged cocirculation. However, we detected two reassortant H5N1 viruses, carrying the M gene from the Chinese H9N2 lineage, which briefly circulated in the Bangladesh poultry markets and then disappeared. On the other hand, interclade reassortment occurred within H5N1 lineages and played a role in the genesis of the currently dominant H5N1 viruses in Bangladesh. Few ‘human-like' mutations in H5N1 may account for the limited number of human cases. Antigenically, clade 2.3.2.1 H5N1 viruses in Bangladesh have evolved since their introduction and are currently mainly homogenous, and show evidence of recent antigenic drift. Although reassortants containing H9N2 genes were detected in live poultry markets in Bangladesh, these reassortants failed to supplant the dominant H5N1 lineage.
doi:10.1038/emi.2014.11
PMCID: PMC3944120
Bangladesh; clades; H5N1; H9N2; live bird markets; phylogenetic tree; reassortment
22.  Influenza H7N9 and H9N2 Viruses: Coexistence in Poultry Linked to Human H7N9 Infection and Genome Characteristics 
Journal of Virology  2014;88(6):3423-3431.
ABSTRACT
Avian influenza virus A of the novel H7N9 reassortant subtype was recently found to cause severe human respiratory infections in China. Live poultry markets were suspected locations of the human H7N9 infection sources, based on the cases' exposure histories and sequence similarities between viral isolates. To explore the role of live poultry markets in the origin of the novel H7N9 virus, we systematically examined poultry and environmental specimens from local markets and farms in Hangzhou, using real-time reverse transcription-PCR (RT-PCR) as well as high-throughput next-generation sequencing (NGS). RT-PCR identified specimens positive for the H7 and N9 genomic segments in all of the 12 poultry markets epidemiologically linked to 10 human H7N9 cases. Chickens, ducks, and environmental specimens from the markets contained heavily mixed subtypes, including H7, N9, H9, and N2 and sometimes H5 and N1. The idea of the coexistence of H7N9 and H9N2 subtypes in chickens was further supported by metagenomic sequencing. In contrast, human H7N9 infection cases (n = 31) were all negative for H9N2 virus according to real-time RT-PCR. The six internal segments were indistinguishable for the H7N9 and H9N2 viruses. The H9, N2, and internal-segment sequences were very close to the sequence of the H9N2 virus circulating in chickens in China recently. Our results provide direct evidence that H9N2 strains coexisted with the novel human-pathogenic H7N9 influenza virus in epidemiologically linked live poultry markets. Avian influenza A virus of the H9N2 subtype likely made a recent contribution to the evolution of the H7N9 virus and continues to do so.
IMPORTANCE Our results suggest that avian influenza A virus of the H9N2 subtype likely made a recent contribution to the evolution of the H7N9 virus, a novel reassortant avian influenza virus A subtype, and continues to do so. The finding helps shed light on how the H7N9 virus emerged, spread, and transmitted to humans. It is of considerable interest for assessing the risk of the possible emergence of novel reassortant viruses with enhanced transmissibility to humans.
doi:10.1128/JVI.02059-13
PMCID: PMC3957952  PMID: 24403589
23.  Molecular Evolution of H6 Influenza Viruses from Poultry in Southeastern China: Prevalence of H6N1 Influenza Viruses Possessing Seven A/Hong Kong/156/97 (H5N1)-Like Genes in Poultry 
Journal of Virology  2002;76(2):507-516.
The A/teal/Hong Kong/W312/97 (H6N1) influenza virus and the human H5N1 and H9N2 influenza viruses possess similar genes encoding internal proteins, suggesting that H6N1 viruses could become novel human pathogens. The molecular epidemiology and evolution of H6 influenza viruses were characterized by antigenic and genetic analyses of 29 H6 influenza viruses isolated from 1975 to 1981 and 1997 to 2000. Two distinct groups were identified on the basis of their antigenic characteristics. Phylogenetic analysis revealed that all H6N1 viruses isolated from terrestrial poultry in 1999 and 2000 are closely related to A/teal/Hong Kong/W312/97 (H6N1), and the nucleotide sequences of these viruses and of A/Hong Kong/156/97 (H5N1) were more than 96% homologous. The hemagglutinin (HA) of the 1999 and 2000 terrestrial viruses does not have multiple basic amino acids at the site of cleavage of HA1 to HA2; however, a unique insertion of aspartic acid in HA1 between positions 144 and 145 (H3 numbering) was found. The neuraminidase of these terrestrial H6N1 viruses has a deletion of 19 amino acids characteristic of A/Hong Kong/156/97 (H5N1). Evolutionary analysis suggested that these H6N1 viruses coevolved with A/quail/Hong Kong/G1/97-like H9N2 viruses and became more adapted to terrestrial poultry. These terrestrial 1999 and 2000 A/teal/Hong Kong/W312/97 (H6N1)-like viruses, along with the H9N2 viruses, could have been involved in the genesis of the pathogenic H5N1 influenza viruses of 1997. The presence of H6N1 viruses in poultry markets in Hong Kong that possess seven of the eight genes of the A/Hong Kong/156/97 (H5N1) virus raises the following fundamental questions relevant to influenza pandemic preparedness: could the pathogenic H5N1 virus reemerge and could the H6N1 viruses directly cross the species barrier to mammals?
doi:10.1128/JVI.76.2.507-516.2002
PMCID: PMC136834  PMID: 11752141
24.  Genetic Evolution of H9 Subtype Influenza Viruses from Live Poultry Markets in Shanghai, China ▿  
Journal of Clinical Microbiology  2009;47(10):3294-3300.
H9N2 influenza viruses have become established and maintain long-term endemicity in poultry. The complete genomes of seven avian H9N2 influenza viruses were characterized. These seven influenza virus isolates were obtained from live poultry markets in Shanghai, China, in 2002 and from 2006 to 2008. Genetic analysis revealed that all seven isolates had an RSSR motif at the cleavage site of hemagglutinin (HA), indicating low pathogenicity in chickens. Phylogenetic analyses indicated that the seven avian H9N2 viruses belonged to the lineage represented by Duck/Hong Kong/Y280/97 (H9N2), a virus belonging to the Chicken/Beijing/1/94-like (H9N2) lineage, and that they are all quadruple reassortants consisting of genes from different lineages. The six internal genes of the isolates possessed H5N1-like sequences, indicating that they were reassortants of H9 and H5 viruses. All of the viruses had nonstructural (as well as HA and neuraminidase) genes derived from the Duck/Hong Kong/Y280/97-like virus lineage but also had other genes of mixed avian virus origin, including genes similar to those of H5N1 viruses (Gs/GD-like). The infected chickens showed no signs of disease. These results show the genetic and biological diversity of H9N2 viruses in Shanghai and support their potential role as pandemic influenza agents.
doi:10.1128/JCM.00355-09
PMCID: PMC2756938  PMID: 19656985
25.  Genesis of avian influenza H9N2 in Bangladesh 
Avian influenza subtype H9N2 is endemic in many bird species in Asia and the Middle East and has contributed to the genesis of H5N1, H7N9 and H10N8, which are potential pandemic threats. H9N2 viruses that have spread to Bangladesh have acquired multiple gene segments from highly pathogenic (HP) H7N3 viruses that are presumably in Pakistan and currently cocirculate with HP H5N1. However, the source and geographic origin of these H9N2 viruses are not clear. We characterized the complete genetic sequences of 37 Bangladeshi H9N2 viruses isolated in 2011–2013 and investigated their inter- and intrasubtypic genetic diversities by tracing their genesis in relationship to other H9N2 viruses isolated from neighboring countries. H9N2 viruses in Bangladesh are homogenous with several mammalian host-specific markers and are a new H9N2 sublineage wherein the hemagglutinin (HA) gene is derived from an Iranian H9N2 lineage (Mideast_B Iran), the neuraminidase (NA) and polymerase basic 2 (PB2) genes are from Dubai H9N2 (Mideast_C Dubai), and the non-structural protein (NS), nucleoprotein (NP), matrix protein (MP), polymerase acidic (PA) and polymerase basic 1 (PB1) genes are from HP H7N3 originating from Pakistan. Different H9N2 genotypes that were replaced in 2006 and 2009 by other reassortants have been detected in Bangladesh. Phylogenetic and molecular analyses suggest that the current genotype descended from the prototypical H9N2 lineage (G1), which circulated in poultry in China during the late 1990s and came to Bangladesh via the poultry trade within the Middle East, and that this genotype subsequently reassorted with H7N3 and H9N2 lineages from Pakistan and spread throughout India. Thus, continual surveillance of Bangladeshi HP H5N1, H7N3 and H9N2 is warranted to identify further evolution and adaptation to humans.
doi:10.1038/emi.2014.84
PMCID: PMC4317637
Bangladesh/epidemiology; H9N2 subtype/classification; influenza virus/genetics; molecular sequence data; phylogeny; viral sequence analysis

Results 1-25 (1203469)