Search tips
Search criteria

Results 1-25 (1042536)

Clipboard (0)

Related Articles

1.  Association of genes of protease-antiprotease balance pathway to lung function and emphysema subtypes 
The imbalance between proteases and antiproteases has been proposed to participate to the pathogenesis of chronic obstructive pulmonary disease (COPD) and emphysema. Gene level variation in different metalloproteinases, metalloproteinase inhibitors, and cytokines affecting them may contribute to this imbalance and destruction of the lung parenchyma. We investigated whether polymorphisms in selected protease-antiprotease balance pathway genes predispose to different emphysema subtypes (centrilobular, paraseptal, panlobular, and bullae) and airflow limitation among Finnish construction workers.
Eleven single nucleotide polymorphisms (SNPs) from seven genes (GC: rs7041 and rs4588; MMP1: rs1799750; MMP9: rs3918242; MMP12: rs652438; TIMP2: rs2277698; TNF: rs1799724 and rs1800629; TGFB1: rs1800469, rs1800470, and rs2241718) were analyzed from 951 clinically and radiologically characterized construction workers. The genotype and haplotype data was compared to different emphysematous signs confirmed with high resolution computed tomography (HRCT), forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and maximal expiratory flow at 50% of FVC (MEF50) by using linear and logistic regression analyses, adjusted for potential confounders.
The TIMP2 rs2277698 SNP was associated with overall (p = 0.022) and paraseptal (p = 0.010) emphysema, as well as with FEV1/FVC ratio (p = 0.035) and MEF50 (p = 0.008). The TGFB1 rs2241718 and MMP9 rs3918242 SNPs were associated with centrilobular emphysema (p = 0.022 and p = 0.008), and the TNF rs1800629 SNP with paraseptal emphysema (p = 0.017). In stratified analysis, individuals with at least one TIMP2 rs2277698 or TNF rs1800629 variant allele were found to be at around two-fold risk for pathological paraseptal changes (OR 1.94, 95% CI 1.14-3.30; OR 2.10, 95% CI 1.24-3.56). On the contrary, the risk for pathological centrilobular changes was halved for individuals with at least one MMP9 rs3918242 (OR 0.51, 95% CI 0.30-0.86) or TGFB1 rs2241718 (OR 0.53, 95% CI 0.30-0.90) variant allele, or TGFB1 rs1800469-rs1800470 AT-haplotype (OR 0.55, 95% CI 0.33-0.93). MEF50, in turn, was significantly reduced among individuals with at least one TIMP2 rs2277698 variant allele (p = 0.011).
Our findings strengthen the hypothesis of the importance of protease-antiprotease balance in pathogenesis of emphysema and shed light on the aetiology of different emphysema subtypes by associating MMP9 and TGFB1 to centrilobular emphysema, and TIMP2 and TNF to paraseptal emphysema and/or airflow obstruction.
PMCID: PMC3680142  PMID: 23734748
Emphysema; Lung function; Genetics; Protease-antiprotease balance
2.  MMP12, Lung Function, and COPD in High-Risk Populations 
The New England journal of medicine  2009;361(27):2599-2608.
Genetic variants influencing lung function in children and adults may ultimately lead to the development of chronic obstructive pulmonary disease (COPD), particularly in high-risk groups.
We tested for an association between single-nucleotide polymorphisms (SNPs) in the gene encoding matrix metalloproteinase 12 (MMP12) and a measure of lung function (prebronchodilator forced expiratory volume in 1 second [FEV1]) in more than 8300 subjects in seven cohorts that included children and adults. Within the Normative Aging Study (NAS), a cohort of initially healthy adult men, we tested for an association between SNPs that were associated with FEV1 and the time to the onset of COPD. We then examined the relationship between MMP12 SNPs and COPD in two cohorts of adults with COPD or at risk for COPD.
The minor allele (G) of a functional variant in the promoter region of MMP12 (rs2276109 [−82A→G]) was positively associated with FEV1 in a combined analysis of children with asthma and adult former and current smokers in all cohorts (P=2×10−6). This allele was also associated with a reduced risk of the onset of COPD in the NAS cohort (hazard ratio, 0.65; 95% confidence interval [CI], 0.46 to 0.92; P = 0.02) and with a reduced risk of COPD in a cohort of smokers (odds ratio, 0.63; 95% CI, 0.45 to 0.88; P = 0.005) and among participants in a family-based study of early-onset COPD (P = 0.006).
The minor allele of a SNP in MMP12 (rs2276109) is associated with a positive effect on lung function in children with asthma and in adults who smoke. This allele is also associated with a reduced risk of COPD in adult smokers.
PMCID: PMC2904064  PMID: 20018959
3.  82 Association of Matrix Metalloproteinase-7 and -12 Genes polymorphisms With Asthma: A Case-Control Study of MMP-7 and -12 in a Japanese Population 
Genetic variants influencing lung function or immune system may be involved in the development of asthma and/or its symptoms. Matrix metalloproteinases (MMPs) contribute to both normal and pathological tissue remodeling and also act as regulatory molecules by processing cytokines or adhesion molecules. In animal models, growing evidences suggest that MMPs play important roles in asthma phenotypes. Some MMP genes (e.g. MMP-9 and MMP-12) have recently been shown to be associated with asthma in Caucasian populations. We investigated whether single nucleotide polymorphisms (SNPs) in MMP-7 and MMP-12 could affect the susceptibility to and clinical phenotypes of asthma in the Japanese population.
We conducted a case-control study between SNPs in MMP-7 and MMP-12 genes and asthma-related phenotypes using childhood and adult Japanese populations (653 childhood asthma patients and 423 controls, and 428 adult asthma patients and 646 controls, respectively). To investigate the effects of amino acid substitutions by SNPs on MMPs' enzymatic activity, MMP activity assays were performed using commercially available kits based on fluorescence resonance energy transfer (FRET) peptide. We also evaluated the effect of 3’UTR SNP in MMP-7 on its mRNA stability and the effect of SNP in MMP-12 on its antimicrobial activity.
We found that, in the Japanese population, SNPs of MMP-7 (rs10502001, G/A, Arg77His; rs14983, C/T, 3’UTR) (P = 0.006; odds ratio (OR), 1.46; 95% confidential interval (CI), 1.126-1.903) and MMP-12 (rs652438, A/G, Asn357Ser) (P = 0.015; OR, 1.60; 95% CI, 1.002-2.556) showed significant association with adult and childhood asthma, respectively. We also found that the SNP (rs652438) in MMP-12 was associated with severity in adult asthma (P = 0.010). Using supernatant from cultured HEK293 cells stably transfected with the pcDNA3.1(+)-MMP-7 or MMP-12 as MMP proteins, we evaluated activation kinetics, rate of proteolytic cleavage of FRET peptide, Michaelis constant, and substrate specificity of the enzyme. In this system, we couldn't detect the functional effects of amino acid substitutions by SNPs on the enzymatic activity.
Our association study suggested that genetic variants of MMP7 and MMP12 conferred risk for development of asthma in the Japanese population.
PMCID: PMC3512818
4.  Genetic Variation in the Matrix Metalloproteinase Genes and Diabetic Nephropathy in Type 1 Diabetes 
Genetic data support the notion that polymorphisms in members of the matrix metalloproteinase (MMP) family of genes play an important role in extracellular matrix remodeling and contribute to the pathogenesis of vascular disease. To identify novel genetic markers for diabetic nephropathy (DN), we examined the relationship between MMP gene polymorphisms and DN in the Genetics of Kidneys in Diabetes (GoKinD) population. Genotypic data from the Genetic Association Information Network (GAIN) type 1 DN project were analyzed for associations across 21 MMP genes in 1,705 individual with type 1 diabetes, including 885 normoalbuminuric control subjects and 820 advanced DN case subjects. In total, we investigated the role of 1,283 SNPs (198 genotyped SNPs and 1,085 imputed SNPs) mapping to the MMP genes. We identified associations at several correlated SNPs across a 29.2 kb interval on chromosome 11q at the MMP-3/MMP-12 locus. The strongest associations occurred at 2 highly-correlated SNPs, rs610950 (OR = 0.50, P = 1.6×10−5) and rs1277718 (OR = 0.50, P = 2.1×10−5). Further examination of this locus identified 17 SNPs (2 genotyped SNPs and 15 imputed SNPs) in complete linkage disequilibrium associated with DN (P-values < 2.5×10−4), including a non-synonymous SNP (rs652438, Asn357Ser) located in exon 8 of MMP-12 that significantly reduced the risk of DN among carriers of the serine substitution relative to homozygous carriers of asparagine (OR = 0.51; 95% CI = 0.37–0.71, P = 6.2×10−5). Taken together, our study suggests that genetic variations within the MMP-3/MMP-12 locus influence susceptibility of DN in type 1 diabetes.
PMCID: PMC3081941  PMID: 21277817
Diabetic nephropathy; type 1 diabetes; end-stage renal disease; matrix metalloproteinase; genetic association
5.  Genetic variation in TIMP1 but not MMPs predict excess FEV1 decline in two general population-based cohorts 
Respiratory Research  2011;12(1):57.
An imbalance in Matrix MetalloProteases (MMPs) and Tissue Inhibitors of MMPs (TIMPs) contributes to Chronic Obstructive Pulmonary Disease (COPD) development. Longitudinal studies investigating Single Nucleotide Polymorphisms (SNPs) in MMPs and TIMPs with respect to COPD development and lung function decline in the general population are lacking.
We genotyped SNPs in MMP1 (G-1607GG), MMP2 (-1306 C/T), MMP9 (3 tagging SNPs), MMP12 (A-82G and Asn357Ser) and TIMP1 (Phe124Phe and Ile158Ile) in 1390 Caucasians with multiple FEV1 measurements from a prospective cohort study in the general population. FEV1 decline was analyzed using linear mixed effect models adjusted for confounders. Analyses of the X-chromosomal TIMP1 gene were stratified according to sex. All significant associations were repeated in an independent general population cohort (n = 1152).
MMP2 -1306 TT genotype carriers had excess FEV1 decline (-4.0 ml/yr, p = 0.03) compared to wild type carriers. TIMP1 Ile158Ile predicted significant excess FEV1 decline in both males and females. TIMP1 Phe124Phe predicted significant excess FEV1 decline in males only, which was replicated (p = 0.10) in the second cohort. The MMP2 and TIMP1 Ile158Ile associations were not replicated. Although power was limited, we did not find associations with COPD development.
We for the first time show that TIMP1 Phe124Phe contributes to excess FEV1 decline in two independent prospective cohorts, albeit not quite reaching conventional statistical significance in the replication cohort. SNPs in MMPs evidently do not contribute to FEV1 decline in the general population.
PMCID: PMC3111362  PMID: 21524282
6.  Genes involved in innate immunity associated with asbestos-related fibrotic changes 
To determine whether genetic polymorphisms in several candidate genes related to innate immunity and protease–antiprotease balance modify individual susceptibility to develop asbestos-related fibrotic pleuropulmonary changes.
Sixteen polymorphisms from nine genes (NLRP3, CARD8, TNF, TGFB1, GC, MMP1, MMP9, MMP12 and TIMP2) were genotyped from 951 Finnish asbestos-exposed workers. The genotype/haplotype data were compared to signs of fibrosis and pleural thickenings using linear and logistic regression analysis adjusted for potential confounders.
A functional polymorphism (Q705K; rs35829419) in the NLRP3 gene was associated with interstitial lung fibrosis (p=0.013), and the TGFB1 rs2241718 SNP with visceral pleural fibrosis (VPF) (p=0.044). In stratified analysis, the carriage of at least one NLRP3 variant allele conferred a 2.5-fold increased risk for pathological interstitial lung fibrosis (OR 2.44, 95% CI 0.97 to 6.14). Conversely, the carriage of at least one TGFB1 rs2241718 variant allele protected against VPF (OR 0.62, 95% CI 0.39 to 0.98). The TIMP2 rs2277698 SNP and a haplotype consisting of the TGFB1 rs1800469 and rs1800470 SNPs were associated with the degree of pleural thickening calcification (p=0.037 and p=0.035), and the CARD8 rs2043211 SNP with the greatest thickness of pleural plaques (p=0.015).
Our results support the hypothesis that the NLRP3 inflammasome is important in the development of fibrotic lung disease by associating the NLRP3 rs35829419 variant allele with increased risk of asbestos-related interstitial lung fibrosis, and the TGFB1 rs2241718 variant allele with decreased risk of asbestos-related VPF. Polymorphisms in CARD8 and TIMP2 are proposed to modify the development and/or calcification of pleural thickenings.
PMCID: PMC3888604  PMID: 24142982
7.  Analyses of association between PPAR gamma and EPHX1 polymorphisms and susceptibility to COPD in a Hungarian cohort, a case-control study 
BMC Medical Genetics  2010;11:152.
In addition to smoking, genetic predisposition is believed to play a major role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Genetic association studies of new candidate genes in COPD may lead to improved understanding of the pathogenesis of the disease.
Two proposed casual single nucleotide polymorphisms (SNP) (rs1051740, rs2234922) in microsomal epoxide hydrolase (EPHX1) and three SNPs (rs1801282, rs1800571, rs3856806) in peroxisome proliferator-activated receptor gamma (PPARG), a new candidate gene, were genotyped in a case-control study (272 COPD patients and 301 controls subjects) in Hungary. Allele frequencies and genotype distributions were compared between the two cohorts and trend test was also used to evaluate association between SNPs and COPD. To estimate the strength of association, odds ratios (OR) (with 95% CI) were calculated and potential confounding variables were tested in logistic regression analysis. Association between haplotypes and COPD outcome was also assessed.
The distribution of imputed EPHX1 phenotypes was significantly different between the COPD and the control group (P = 0.041), OR for the slow activity phenotype was 1.639 (95% CI = 1.08- 2.49; P = 0.021) in our study. In logistic regression analysis adjusted for both variants, also age and pack-year, the rare allele of His447His of PPARG showed significant association with COPD outcome (OR = 1.853, 95% CI = 1.09-3.14, P = 0.0218). In haplotype analysis the GC haplotype of PPARG (OR = 0.512, 95% CI = 0.27-0.96, P = 0.035) conferred reduced risk for COPD.
The "slow" activity-associated genotypes of EPHX1 were associated with increased risk of COPD. The minor His447His allele of PPARG significantly increased; and the haplotype containing the minor Pro12Ala and the major His447His polymorphisms of PPARG decreased the risk of COPD.
PMCID: PMC2988760  PMID: 21044285
8.  Genetic Variations in ADIPOQ Gene Are Associated with Chronic Obstructive Pulmonary Disease 
PLoS ONE  2012;7(11):e50848.
Adiponectin is reported to be related to the development of chronic obstructive pulmonary disease (COPD). Genetic variants in the gene encoding adiponectin (ADIPOQ) have been reported to be associated with adiponectin level in several genome–wide linkage and association studies. However, relatively little is known about the effects of ADIPOQ gene variants on COPD susceptibility. We determined the frequencies of single-nucleotide polymorphisms (SNPs) in ADIPOQ in a Chinese Han population and their possible association with COPD susceptibility.
We conducted a case–control study of 279 COPD patients and 367 age- and gender-distribution-matched control subjects. Seven tagging SNPs in ADIPOQ, including rs710445, rs16861205, rs822396, rs7627128, rs1501299, rs3821799 and rs1063537 were genotyped by SNaPshot. Association analysis of genotypes/alleles and haplotypes constructed from these loci with COPD was conducted under different genetic models.
The alleles or genotypes of rs1501299 distributed significantly differently in COPD patients and controls (allele: P = 0.002, OR = 1.43 and 95%CI = 1.14–1.79; genotype: P = 0.008). The allele A at rs1501299 was potentially associated with an increased risk of COPD in all dominant model analysis (P = 0.009; OR: 1.54; 95%CI: 1.11–2.13), recessive model analyses (P = 0.015; OR: 1.75; 95% CI: 1.11–2.75) and additive model analyses (P = 0.003; OR: 2.11; 95% CI: 1.29–3.47). In haplotype analysis, we observed haplotypes AAAAACT and GGACCTC had protective effects, while haplotypes AGAACTC, AGGCCTC, GGAACTC, GGACACT and GGGCCTC were significantly associated with the increased risk of COPD.
We conducted the first investigation of the association between the SNPs in ADIPOQ and COPD risk. Our current findings suggest that ADIPOQ may be a potential risk gene for COPD. Further studies in larger groups are warranted to confirm our results.
PMCID: PMC3508992  PMID: 23209832
9.  Genetic variants associated with circulating MMP1 levels near matrix metalloproteinase genes on chromosome 11q21-22 in Taiwanese: interaction with obesity 
BMC Medical Genetics  2013;14:30.
MMP1 is implicated in the pathogenesis of atherothrombotic cardiovascular disease. We aimed to elucidate genetic determinants of inflammatory marker levels, including circulating MMP1, in Taiwanese, and their association with obesity.
Five genetic polymorphisms around matrix metalloproteinase genes on chromosome 11q21-22 region were genotyped in 519 subjects.
After adjusting for clinical covariates, two polymorphisms were significantly associated with MMP1 levels, rs1799750 and rs495366, using an additive inheritance model (P = 1.5x10-4 and P = 2.57x10-5, respectively). Using dominant model, minor alleles of rs1799750 and rs495366 were associated with higher MMP1 levels (P = 1.3x10-4 and P = 1.95x10-5, respectively). In haplotype analysis, two haplotypes inferred from five SNPs (A2GATA and A1GATG) were associated with MMP1 levels (P = 5x10-4 and P = 8.47x10-5, respectively). Subgroup and interaction analysis revealed an association of rs1799750 and rs495366 with MMP1 levels only in non-obese subjects (P = 6.66x10-6 and P = 4.38x10-5, respectively, and interaction P = 0.008 for rs1799750). Haplotype interaction analysis also showed significant interaction for haplotype A1GATG (interaction P = 0.003).
Genotypes/haplotypes around MMP1 locus are associated with MMP1 levels in Taiwanese. Further, since genotypes/haplotypes near MMP1 locus interact with obesity to set MMP1 levels, genetic determinants for MMP1 level may be different between obese and non-obese individuals.
PMCID: PMC3599409  PMID: 23497408
Matrix metalloproteinase 1; Genetic association study; Polymorphism; Haplotype; Interaction
10.  Identification of a chronic obstructive pulmonary disease genetic determinant that regulates HHIP 
Human Molecular Genetics  2011;21(6):1325-1335.
Multiple intergenic single-nucleotide polymorphisms (SNPs) near hedgehog interacting protein (HHIP) on chromosome 4q31 have been strongly associated with pulmonary function levels and moderate-to-severe chronic obstructive pulmonary disease (COPD). However, whether the effects of variants in this region are related to HHIP or another gene has not been proven. We confirmed genetic association of SNPs in the 4q31 COPD genome-wide association study (GWAS) region in a Polish cohort containing severe COPD cases and healthy smoking controls (P = 0.001 to 0.002). We found that HHIP expression at both mRNA and protein levels is reduced in COPD lung tissues. We identified a genomic region located ∼85 kb upstream of HHIP which contains a subset of associated SNPs, interacts with the HHIP promoter through a chromatin loop and functions as an HHIP enhancer. The COPD risk haplotype of two SNPs within this enhancer region (rs6537296A and rs1542725C) was associated with statistically significant reductions in HHIP promoter activity. Moreover, rs1542725 demonstrates differential binding to the transcription factor Sp3; the COPD-associated allele exhibits increased Sp3 binding, which is consistent with Sp3's usual function as a transcriptional repressor. Thus, increased Sp3 binding at a functional SNP within the chromosome 4q31 COPD GWAS locus leads to reduced HHIP expression and increased susceptibility to COPD through distal transcriptional regulation. Together, our findings reveal one mechanism through which SNPs upstream of the HHIP gene modulate the expression of HHIP and functionally implicate reduced HHIP gene expression in the pathogenesis of COPD.
PMCID: PMC3284120  PMID: 22140090
11.  Genetic Polymorphism of Matrix Metalloproteinase Family and Chronic Obstructive Pulmonary Disease Susceptibility: a Meta-analysis 
Scientific Reports  2013;3:2818.
Matrix metalloproteinase (MMP) family is considered to be associated with chronic obstructive pulmonary disease (COPD) pathogenesis, however, no consistent results have been provided by previous studies. In this report, we performed Meta analysis to investigate the association between four kinds of MMP single nucleotide polymorphisms (SNP, MMP1 -1607 1G/2G, MMP3 -1171 5A/6A, MMP9 -1562 C/T, MMP12 -82 A/G) and COPD risk from 21 studies including 4184 cases and 5716 controls. Both overall and subgroup association between SNP and COPD susceptibility were tested. There was no evident association between MMP polymorphisms and COPD susceptibility in general population. On the other hand, subgroup analysis suggested that MMP9 -1562 C/T polymorphism was related to COPD, as we found that C allele carriers were at lower risk in some subgroups stratified by lung function, age and genotype identification method, compared with TT homozygotes. Our results indicated the genotype TT might be one genetic risk factor of severe COPD.
PMCID: PMC3788362  PMID: 24085258
12.  Matrix metalloproteinases and educational attainment in refractive error: evidence of gene-environment interactions in the AREDS study 
Ophthalmology  2012;120(2):298-305.
A previous study of Old Order Amish families has shown association of ocular refraction with markers proximal to matrix metalloproteinase (MMP) genes MMP1 and MMP10 and intragenic to MMP2. We conducted a candidate gene replication study of association between refraction and single nucleotide polymorphisms (SNPs) within these genomic regions.
Candidate gene genetic association study.
2,000 participants drawn from the Age Related Eye Disease Study (AREDS) were chosen for genotyping. After quality control filtering, 1912 individuals were available for analysis.
Microarray genotyping was performed using the HumanOmni 2.5 bead array. SNPs originally typed in the previous Amish association study were extracted for analysis. In addition, haplotype tagging SNPs were genotyped using TaqMan assays. Quantitative trait association analyses of mean spherical equivalent refraction (MSE) were performed on 30 markers using linear regression models and an additive genetic risk model, while adjusting for age, sex, education, and population substructure. Post-hoc analyses were performed after stratifying on a dichotomous education variable. Pointwise (P-emp) and multiple-test study-wise (P-multi) significance levels were calculated empirically through permutation.
Main outcome measures
MSE was used as a quantitative measure of ocular refraction.
The mean age and ocular refraction were 68 years (SD=4.7) and +0.55 D (SD=2.14), respectively. Pointwise statistical significance was obtained for rs1939008 (P-emp=0.0326). No SNP attained statistical significance after correcting for multiple testing. In stratified analyses, multiple SNPs reached pointwise significance in the lower-education group: 2 of these were statistically significant after multiple testing correction. The two highest-ranking SNPs in Amish families (rs1939008 and rs9928731) showed pointwise P-emp<0.01 in the lower-education stratum of AREDS participants.
We show suggestive evidence of replication of an association signal for ocular refraction to a marker between MMP1 and MMP10. We also provide evidence of a gene-environment interaction between previously-reported markers and education on refractive error. Variants in MMP1- MMP10 and MMP2 regions appear to affect population variation in ocular refraction in environmental conditions less favorable for myopia development.
PMCID: PMC3563738  PMID: 23098370
refraction; refractive error; myopia; association study; gene-environment interaction; matrix metalloproteinase; MMP; genetics
13.  SERPINE2 Polymorphisms and Chronic Obstructive Pulmonary Disease 
Journal of Korean Medical Science  2009;24(6):1119-1125.
A number of genome-wide linkage analyses have identified the 2q33.3-2q37.2 region as most likely to contain the genes that contribute to the susceptibility to chronic obstructive pulmonary disease (COPD). It was hypothesized that the SERPINE2 gene, which is one of the genes located at the 2q33.3-2q37.2 region, may act as a low-penetrance susceptibility gene for COPD. To test this hypothesis, the association of four SERPINE2 single nucleotide polymorphisms (SNPs; rs16865421A>G, rs7583463A>C, rs729631C>G, and rs6734100C>G) with the risk of COPD was investigated in a case-control study of 311 COPD patients and 386 controls. The SNP rs16865421 was associated with a significantly decreased risk of COPD in a dominant model for the polymorphic allele (adjusted odds ratio [OR]=0.66, 95% confidence interval [CI]=0.45-0.97, P=0.03). In haplotype analysis, the GACC haplotype carrying the polymorphic allele at the rs16865421 was associated with a significantly decreased risk of COPD when compared to the AACC haplotype (adjusted OR=0.58, 95% CI=0.38-0.89, P=0.01), and this effect was evident in younger individuals (adjusted OR=0.30, 95% CI=0.14-0.64, P=0.002). This study suggests that the SERPINE2 gene contributes to the susceptibility to COPD.
PMCID: PMC2775861  PMID: 19949669
Serpine2; Polymorphism; Pulmonary Disease, Chronic Obstructive
14.  Genetic Determinants of Chronic Obstructive Pulmonary Disease in South Indian Male Smokers 
PLoS ONE  2014;9(2):e89957.
The development of chronic obstructive pulmonary disease, upon exposure to tobacco smoke, is the cumulative effect of defects in several genes. With the aim of understanding the genetic structure that is characteristic of our patient population, we selected forty two single nucleotide polymorphisms of twenty genes based on previous studies and genotyped a total of 382 samples, which included 236 patients and 146 controls using Sequenom MassARRAY system. Allele frequencies of rs2276109 (MMP12) and rs1800925 (IL13) differed significantly between patients and controls (p = 0.013 and 0.044 respectively). Genotype analysis showed association of rs2276109 (MMP12) under additive and dominant models (p = 0.017, p = 0.012 respectively), rs1800925 (IL13) under additive model (p = 0.047) and under recessive model, rs1695 (GSTP1; p = 0.034), rs729631, rs975278, rs7583463 (SERPINE2; p = 0.024, 0.024 and 0.012 respectively), rs2568494, rs10851906 (IREB2; p = 0.026 and 0.041 respectively) and rs7671167 (FAM13A; p = 0.029). The minor alleles of rs1695 (G), rs7671167 (T), rs729631 (G), rs975278 (A) and rs7583463 (A) showed significant negative association whereas those of rs2276109 (G), rs2568494 (A), rs10851906 (G) and rs1800469 (T; TGF-β) showed significant positive association with lung function under different genetic models. Haplotypes carrying A allele of rs2276109, G allele of rs1695 showed negative correlation with lung function. Haplotypes carrying major alleles of rs7671167 (C) of FAM13A and rs729631 (C), rs975278 (G), rs7583463 (C) of SERPINE2 had protective effect on lung function. Haplotypes of IREB2 carrying major alleles of rs2568494 (G), rs2656069 (A), rs10851906 (A), rs965604 (C) and minor alleles of rs1964678 (T), rs12593229 (T) showed negative correlation with lung function. In conclusion, our study replicated the results of most of the previous studies. However, the positive correlation between the minor alleles of rs2568494 (A) and rs10851906 (G) of IREB2 and lung function needs further investigation.
PMCID: PMC3933698  PMID: 24587150
15.  IL6 and CRP haplotypes are associated with COPD risk and systemic inflammation: a case-control study 
BMC Medical Genetics  2009;10:23.
Elevated circulating levels of C-reactive protein (CRP), interleukin (IL)-6 and fibrinogen (FG) have been repeatedly associated with many adverse outcomes in patients with chronic obstructive pulmonary disease (COPD). To date, it remains unclear whether and to what extent systemic inflammation is primary or secondary in the pathogenesis of COPD.
The aim of this study was to examine the association between haplotypes of CRP, IL6 and FGB genes, systemic inflammation, COPD risk and COPD-related phenotypes (respiratory impairment, exercise capacity and body composition).
Eighteen SNPs in three genes, representing optimal haplotype-tagging sets, were genotyped in 355 COPD patients and 195 healthy smokers. Plasma levels of CRP, IL-6 and FG were measured in the total study group. Differences in haplotype distributions were tested using the global and haplotype-specific statistics.
Raised plasma levels of CRP, IL-6 and fibrinogen were demonstrated in COPD patients. However, COPD population was very heterogeneous: about 40% of patients had no evidence of systemic inflammation (CRP < 3 mg/uL or no inflammatory markers in their top quartile). Global test for haplotype effect indicated association of CRP gene and CRP plasma levels (P = 0.0004) and IL6 gene and COPD (P = 0.003). Subsequent analysis has shown that IL6 haplotype H2, associated with an increased COPD risk (p = 0.004, OR = 4.82; 1.64 to 4.18), was also associated with very low CRP levels (p = 0.0005). None of the genes were associated with COPD-related phenotypes.
Our findings suggest that common genetic variation in CRP and IL6 genes may contribute to heterogeneity of COPD population associated with systemic inflammation.
PMCID: PMC2660301  PMID: 19272152
16.  A Genome-Wide Association Study in Chronic Obstructive Pulmonary Disease (COPD): Identification of Two Major Susceptibility Loci 
PLoS Genetics  2009;5(3):e1000421.
There is considerable variability in the susceptibility of smokers to develop chronic obstructive pulmonary disease (COPD). The only known genetic risk factor is severe deficiency of α1-antitrypsin, which is present in 1–2% of individuals with COPD. We conducted a genome-wide association study (GWAS) in a homogenous case-control cohort from Bergen, Norway (823 COPD cases and 810 smoking controls) and evaluated the top 100 single nucleotide polymorphisms (SNPs) in the family-based International COPD Genetics Network (ICGN; 1891 Caucasian individuals from 606 pedigrees) study. The polymorphisms that showed replication were further evaluated in 389 subjects from the US National Emphysema Treatment Trial (NETT) and 472 controls from the Normative Aging Study (NAS) and then in a fourth cohort of 949 individuals from 127 extended pedigrees from the Boston Early-Onset COPD population. Logistic regression models with adjustments of covariates were used to analyze the case-control populations. Family-based association analyses were conducted for a diagnosis of COPD and lung function in the family populations. Two SNPs at the α-nicotinic acetylcholine receptor (CHRNA 3/5) locus were identified in the genome-wide association study. They showed unambiguous replication in the ICGN family-based analysis and in the NETT case-control analysis with combined p-values of 1.48×10−10, (rs8034191) and 5.74×10−10 (rs1051730). Furthermore, these SNPs were significantly associated with lung function in both the ICGN and Boston Early-Onset COPD populations. The C allele of the rs8034191 SNP was estimated to have a population attributable risk for COPD of 12.2%. The association of hedgehog interacting protein (HHIP) locus on chromosome 4 was also consistently replicated, but did not reach genome-wide significance levels. Genome-wide significant association of the HHIP locus with lung function was identified in the Framingham Heart study (Wilk et al., companion article in this issue of PLoS Genetics; doi:10.1371/journal.pgen.1000429). The CHRNA 3/5 and the HHIP loci make a significant contribution to the risk of COPD. CHRNA3/5 is the same locus that has been implicated in the risk of lung cancer.
Author Summary
There is considerable variability in the susceptibility of smokers to develop chronic obstructive pulmonary disease (COPD), which is a heritable multi-factorial trait. Identifying the genetic determinants of COPD risk will have tremendous public health importance. This study describes the first genome-wide association study (GWAS) in COPD. We conducted a GWAS in a homogenous case-control cohort from Norway and evaluated the top 100 single nucleotide polymorphisms in the family-based International COPD Genetics Network. The polymorphisms that showed replication were further evaluated in subjects from the US National Emphysema Treatment Trial and controls from the Normative Aging Study and then in a fourth cohort of extended pedigrees from the Boston Early-Onset COPD population. Two polymorphisms in the α-nicotinic acetylcholine receptor 3/5 locus on chromosome 15 showed unambiguous evidence of association with COPD. This locus has previously been implicated in both smoking behavior and risk of lung cancer, suggesting the possibility of multiple functional polymorphisms in the region or a single polymorphism with wide phenotypic consequences. The hedgehog interacting protein (HHIP) locus on chromosome 4, which is associated with COPD, is also a significant risk locus for COPD.
PMCID: PMC2650282  PMID: 19300482
17.  Aquaporin 5 Polymorphisms and Rate of Lung Function Decline in Chronic Obstructive Pulmonary Disease 
PLoS ONE  2010;5(12):e14226.
Aquaporin-5 (AQP5) can cause mucus overproduction and lower lung function. Genetic variants in the AQP5 gene might be associated with rate of lung function decline in chronic obstructive pulmonary disease (COPD).
Five single nucleotide polymorphisms (SNPs) in AQP5 were genotyped in 429 European American individuals with COPD randomly selected from the NHLBI Lung Health Study. Mean annual decline in FEV1 % predicted, assessed over five years, was calculated as a linear regression slope, adjusting for potential covariates and stratified by smoking status. Constructs containing the wildtype allele and risk allele of the coding SNP N228K were generated using site-directed mutagenesis, and transfected into HBE-16 (human bronchial epithelial cell line). AQP5 abundance and localization were assessed by immunoblots and confocal immunofluoresence under control, shear stress and cigarette smoke extract (CSE 10%) exposed conditions to test for differential expression or localization.
Among continuous smokers, three of the five SNPs tested showed significant associations (0.02>P>0.004) with rate of lung function decline; no associations were observed among the group of intermittent or former smokers. Haplotype tests revealed multiple association signals (0.012>P>0.0008) consistent with the single-SNP results. In HBE16 cells, shear stress and CSE led to a decrease in AQP5 abundance in the wild-type, but not in the N228K AQP5 plasmid.
Polymorphisms in AQP5 were associated with rate of lung function decline in continuous smokers with COPD. A missense mutation modulates AQP-5 expression in response to cigarette smoke extract and shear stress. These results suggest that AQP5 may be an important candidate gene for COPD.
PMCID: PMC2997058  PMID: 21151978
18.  Multistudy Fine Mapping of Chromosome 2q Identifies XRCC5 as a Chronic Obstructive Pulmonary Disease Susceptibility Gene 
Rationale: Several family-based studies have identified genetic linkage for lung function and airflow obstruction to chromosome 2q.
Objectives: We hypothesized that merging results of high-resolution single nucleotide polymorphism (SNP) mapping in four separate populations would lead to the identification of chronic obstructive pulmonary disease (COPD) susceptibility genes on chromosome 2q.
Methods: Within the chromosome 2q linkage region, 2,843 SNPs were genotyped in 806 COPD cases and 779 control subjects from Norway, and 2,484 SNPs were genotyped in 309 patients with severe COPD from the National Emphysema Treatment Trial and 330 community control subjects. Significant associations from the combined results across the two case-control studies were followed up in 1,839 individuals from 603 families from the International COPD Genetics Network (ICGN) and in 949 individuals from 127 families in the Boston Early-Onset COPD Study.
Measurements and Main Results: Merging the results of the two case-control analyses, 14 of the 790 overlapping SNPs had a combined P < 0.01. Two of these 14 SNPs were consistently associated with COPD in the ICGN families. The association with one SNP, located in the gene XRCC5, was replicated in the Boston Early-Onset COPD Study, with a combined P = 2.51 × 10−5 across the four studies, which remains significant when adjusted for multiple testing (P = 0.02). Genotype imputation confirmed the association with SNPs in XRCC5.
Conclusions: By combining data from COPD genetic association studies conducted in four independent patient samples, we have identified XRCC5, an ATP-dependent DNA helicase, as a potential COPD susceptibility gene.
PMCID: PMC2937234  PMID: 20463177
emphysema; genetic linkage; metaanalysis; single nucleotide polymorphism
19.  Identification of FGF7 as a novel susceptibility locus for chronic obstructive pulmonary disease 
Thorax  2011;66(12):1085-1090.
Traditional genome-wide association studies (GWAS) of large cohort of subjects with chronic obstructive pulmonary disease (COPD) have successfully identified novel candidate genes, but several other plausible loci do not meet strict criteria for genome-wide significance after correction for multiple testing.
We hypothesize that by applying unbiased weights derived from unique populations we can identify additional COPD susceptibility loci.
We performed a homozygosity haplotype analysis on a group of subjects with and without COPD to identify regions of conserved homozygosity (RCHH). Weights were constructed based on the frequency of these RCHH in case vs. controls, and used to adjust the P values from a large collaborative GWAS of COPD.
We identified 2,318 regions of conserved homozygosity, of which 576 were significantly (P < .05) overrepresented in cases. After applying the weights constructed from these regions to a collaborative GWAS of COPD, we identified two single nucleotide polymorphisms in a novel gene (FGF7) that gained genome-wide significance by the false discovery rate method. In a follow-up analysis, both SNPs (rs12591300 and rs4480740) were significantly associated with COPD in an independent population (combined P values of 7.9E-07 and 2.8E-06 respectively). In another independent population, increased lung tissue FGF7 expression was associated with worse measures of lung function.
Weights constructed from a homozygosity haplotype analysis of an isolated population successfully identify novel genetic associations from a GWAS on a separate population. This method can be used to identify promising candidate genes that fail to meet strict correction for multiple testing.
PMCID: PMC3348619  PMID: 21921092
20.  IL10 Polymorphisms Are Associated with Airflow Obstruction in Severe α1-Antitrypsin Deficiency 
Severe α1-antitrypsin (AAT) deficiency is a proven genetic risk factor for chronic obstructive pulmonary disease (COPD), especially in individuals who smoke. There is marked variability in the development of lung disease in individuals homozygous (PI ZZ) for this autosomal recessive condition, suggesting that modifier genes could be important. We hypothesized that genetic determinants of obstructive lung disease may be modifiers of airflow obstruction in individuals with severe AAT deficiency. To identify modifier genes, we performed family-based association analyses for 10 genes previously associated with asthma and/or COPD, including IL10, TNF, GSTP1, NOS1, NOS3, SERPINA3, SERPINE2, SFTPB, TGFB1, and EPHX1. All analyses were performed in a cohort of 378 PI ZZ individuals from 167 families. Quantitative spirometric phenotypes included forced expiratory volume in one second (FEV1) and the ratio of FEV1/forced vital capacity (FVC). A qualitative phenotype of moderate-to-severe COPD was defined for individuals with FEV1 ⩽ 50 percent predicted. Six of 11 single-nucleotide polymorphisms (SNPs) in IL10 (P = 0.0005–0.05) and 3 of 5 SNPs in TNF (P = 0.01–0.05) were associated with FEV1 and/or FEV1/FVC. IL10 SNPs also demonstrated association with the qualitative COPD phenotype. When phenotypes of individuals with a physician's diagnosis of asthma were excluded, IL10 SNPs remained significantly associated, suggesting that the association with airflow obstruction was independent of an association with asthma. Haplotype analysis of IL10 SNPs suggested the strongest association with IL10 promoter SNPs. IL10 is likely an important modifier gene for the development of COPD in individuals with severe AAT deficiency.
PMCID: PMC2176135  PMID: 17690329
chronic obstructive pulmonary disease; genetic modifiers; interleukin 10; family-based association analysis
21.  Inflammation, Insulin Resistance, and Diabetes—Mendelian Randomization Using CRP Haplotypes Points Upstream 
PLoS Medicine  2008;5(8):e155.
Raised C-reactive protein (CRP) is a risk factor for type 2 diabetes. According to the Mendelian randomization method, the association is likely to be causal if genetic variants that affect CRP level are associated with markers of diabetes development and diabetes. Our objective was to examine the nature of the association between CRP phenotype and diabetes development using CRP haplotypes as instrumental variables.
Methods and Findings
We genotyped three tagging SNPs (CRP + 2302G > A; CRP + 1444T > C; CRP + 4899T > G) in the CRP gene and measured serum CRP in 5,274 men and women at mean ages 49 and 61 y (Whitehall II Study). Homeostasis model assessment-insulin resistance (HOMA-IR) and hemoglobin A1c (HbA1c) were measured at age 61 y. Diabetes was ascertained by glucose tolerance test and self-report. Common major haplotypes were strongly associated with serum CRP levels, but unrelated to obesity, blood pressure, and socioeconomic position, which may confound the association between CRP and diabetes risk. Serum CRP was associated with these potential confounding factors. After adjustment for age and sex, baseline serum CRP was associated with incident diabetes (hazard ratio = 1.39 [95% confidence interval 1.29–1.51], HOMA-IR, and HbA1c, but the associations were considerably attenuated on adjustment for potential confounding factors. In contrast, CRP haplotypes were not associated with HOMA-IR or HbA1c (p = 0.52–0.92). The associations of CRP with HOMA-IR and HbA1c were all null when examined using instrumental variables analysis, with genetic variants as the instrument for serum CRP. Instrumental variables estimates differed from the directly observed associations (p = 0.007–0.11). Pooled analysis of CRP haplotypes and diabetes in Whitehall II and Northwick Park Heart Study II produced null findings (p = 0.25–0.88). Analyses based on the Wellcome Trust Case Control Consortium (1,923 diabetes cases, 2,932 controls) using three SNPs in tight linkage disequilibrium with our tagging SNPs also demonstrated null associations.
Observed associations between serum CRP and insulin resistance, glycemia, and diabetes are likely to be noncausal. Inflammation may play a causal role via upstream effectors rather than the downstream marker CRP.
Using a Mendelian randomization approach, Eric Brunner and colleagues show that the associations between serum C-reactive protein and insulin resistance, glycemia, and diabetes are likely to be noncausal.
Editors' Summary
Diabetes—a common, long-term (chronic) disease that causes heart, kidney, nerve, and eye problems and shortens life expectancy—is characterized by high levels of sugar (glucose) in the blood. In people without diabetes, blood sugar levels are controlled by the hormone insulin. Insulin is released by the pancreas after eating and “instructs” insulin-responsive muscle and fat cells to take up the glucose from the bloodstream that is produced by the digestion of food. In the early stages of type 2 diabetes (the commonest type of diabetes), the muscle and fat cells become nonresponsive to insulin (a condition called insulin resistance), and blood sugar levels increase. The pancreas responds by making more insulin—people with insulin resistance have high blood levels of both insulin and glucose. Eventually, however, the insulin-producing cells in the pancreas start to malfunction, insulin secretion decreases, and frank diabetes develops.
Why Was This Study Done?
Globally, about 200 million people have diabetes, but experts believe this number will double by 2030. Ways to prevent or delay the onset of diabetes are, therefore, urgently needed. One major risk factor for insulin resistance and diabetes is being overweight. According to one theory, increased body fat causes mild, chronic tissue inflammation, which leads to insulin resistance. Consistent with this idea, people with higher than normal amounts of the inflammatory protein C-reactive protein (CRP) in their blood have a high risk of developing diabetes. If inflammation does cause diabetes, then drugs that inhibit CRP might prevent diabetes. However, simply measuring CRP and determining whether the people with high levels develop diabetes cannot prove that CRP causes diabetes. Those people with high blood levels of CRP might have other unknown factors in common (confounding factors) that are the real causes of diabetes. In this study, the researchers use “Mendelian randomization” to examine whether increased blood CRP causes diabetes. Some variants of CRP (the gene that encodes CRP) increase the amount of CRP in the blood. Because these variants are inherited randomly, there is no likelihood of confounding factors, and an association between these variants and the development of insulin resistance and diabetes indicates, therefore, that increased CRP levels cause diabetes.
What Did the Researchers Do and Find?
The researchers measured blood CRP levels in more than 5,000 people enrolled in the Whitehall II study, which is investigating factors that affect disease development. They also used the “homeostasis model assessment-insulin resistance” (HOMA-IR) method to estimate insulin sensitivity from blood glucose and insulin measurements, and measured levels of hemoglobin A1c (HbA1c, hemoglobin with sugar attached—a measure of long-term blood sugar control) in these people. Finally, they looked at three “single polynucleotide polymorphisms” (SNPs, single nucleotide changes in a gene's DNA sequence; combinations of SNPs that are inherited as a block are called haplotypes) in CRP in each study participant. Common haplotypes of CRP were related to blood serum CRP levels and, as previously reported, increased blood CRP levels were associated with diabetes and with HOMA-IR and HbA1c values indicative of insulin resistance and poor blood sugar control, respectively. By contrast, CRP haplotypes were not related to HOMA-IR or HbA1c values. Similarly, pooled analysis of CRP haplotypes and diabetes in Whitehall II and another large study on health determinants (the Northwick Park Heart Study II) showed no association between CRP variants and diabetes risk. Finally, data from the Wellcome Trust Case Control Consortium also showed no association between CRP haplotypes and diabetes risk.
What Do These Findings Mean?
Together, these findings suggest that increased blood CRP levels are not responsible for the development of insulin resistance or diabetes, at least in European populations. It may be that there is a causal relationship between CRP levels and diabetes risk in other ethnic populations—further Mendelian randomization studies are needed to discover whether this is the case. For now, though, these findings suggest that drugs targeted against CRP are unlikely to prevent or delay the onset of diabetes. However, they do not discount the possibility that proteins involved earlier in the inflammatory process might cause diabetes and might thus represent good drug targets for diabetes prevention.
Additional Information.
Please access these Web sites via the online version of this summary at
This study is further discussed in a PLoS Medicine Perspective by Bernard Keavney
The MedlinePlus encyclopedia provides information about diabetes and about C-reactive protein (in English and Spanish)
US National Institute of Diabetes and Digestive and Kidney Diseases provides patient information on all aspects of diabetes, including information on insulin resistance (in English and Spanish)
The International Diabetes Federation provides information about diabetes, including information on the global diabetes epidemic
The US Centers for Disease Control and Prevention provides information for the public and professionals on all aspects of diabetes (in English and Spanish)
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC2504484  PMID: 18700811
22.  Association of SELE genotypes/haplotypes with sE-selectin levels in Taiwanese individuals: interactive effect of MMP9 level 
BMC Medical Genetics  2012;13:115.
E-selectin is implicated in various inflammatory processes and related disorders. We aimed to investigate the role of SELE-gene genotypes/haplotypes on plasma levels of MMP9 and sE-selectin in Taiwanese individuals.
Five hundred twenty individuals were enrolled. Seven tagging SELE single nucleotide polymorphisms were analyzed.
SELE genotypes were found associated with MMP9 and sE-selectin levels. Multivariate analysis identified that the most significant genetic polymorphism (rs5368 genotype) was independently associated with MMP9 levels (P < 0.001). One haplotype (GGAGAGT) was marginally associated with MMP9 levels (P = 0.0490). One SELE SNP, (rs3917406, P = 0.031) was associated with sE-selectin levels after adjusting for MMP9 and sICAM1 levels. Subgroup and interaction analysis revealed association of SELE SNP rs10800469 with sE-selectin levels only in the highest quartile of MMP9 level (P = 0.002, interaction P = 0.023). Haplotype analysis showed one haplotype (AAAAAGC) borderline associated with sE-selectin level (P = 0.0511).
SELE genotypes/haplotypes are independently associated with MMP9 and E-selectin levels in Taiwanese individuals. The associations of SELE genotypes/haplotypes with sE-selectin levels are affected by MMP9 levels.
PMCID: PMC3532335  PMID: 23190470
E-selectin; Genetic association study; Polymorphism; Matrix metalloproteinase 9; Haplotype; Interaction
23.  Association of a specific haplotype across the genes MMP1 and MMP3 with radiographic joint destruction in rheumatoid arthritis 
Arthritis Research & Therapy  2004;6(3):R199-R207.
The genetic background of rheumatoid arthritis (RA) is only partly understood, and several genes seem to be involved. The matrix metalloproteinases MMP1 (interstitial collagenase) and MMP3 (stromelysin 1) are thought to be important in destructive joint changes seen in RA. In the present study, functional relevant promoter polymorphisms of MMP1 and MMP3 were genotyped in 308 patients and in 110 controls, to test whether the polymorphisms contribute to the severity of the disease measured by radiographic progression of joint destruction. For comparison, the shared epitope of HLA DR4 and DR1 (SE) was determined by polymerase chain reaction. There was no association of MMP polymorphisms with susceptibility to RA. However, a strong linkage disequilibrium was observed between the 1G/2G (MMP1) and the 5A/6A (MMP3) polymorphisms (P << 10-6; linkage disequilibrium index D' = 0.46). In factorial regression, the degree of radiographic joint destruction correlated significantly with the 1G-5A haplotype (P = 0.0001) and the interaction term 'estimated number of 1G-5A haplotypes × duration of disease' (P = 0.0007). This association was phasic, indicating that possession of the 1G-5A haplotype has a protective effect over a period of about 15 years of RA, but might be associated with a more pronounced radiographic progression later on. Similar results were also found with the 1G allele of MMP1 alone (P = 0.015) and with the interaction term 'estimated number of 1G alleles × duration of disease' (P = 0.014). The correlation of SE with the Ratingen score was comparable (0.044). The regression model of MMP haplotypes explained 35% of the variance of the radiographic score, whereas the SE explained 29%. The 1G-5A haplotype across the closely linked MMP1 and MMP3 gene loci is a newly described genetic factor strongly associated with the progression of joint damage in RA. Our findings suggest that there are haplotypes in a MMP cluster region that modify the joint destruction in RA in a phasic manner.
PMCID: PMC416441  PMID: 15142265
allelic polymorphism; matrix metalloproteinase; radiographic progression; rheumatoid arthritis
24.  Genotypes in matrix metalloproteinase 9 are a risk factor for COPD 
A growing body of evidence indicates that matrix metalloproteinases (MMPs) play a role in the pathogenesis of COPD. Therefore, we conducted a candidate gene association study of 4 promoter polymorphisms that are known to modify expression levels of the MMP-1, MMP-2, and MMP-9 genes and a Gln279Arg polymorphism in exon 6 of MMP-9 that modifies the substrate-binding region. We examined the association of each variant and haplotypes in 385 male veterans with greater than 20 pack-years of cigarette smoking whose COPD status was characterized using spirometry. The association of these polymorphisms was also examined with decline of pulmonary function in a subset of participants. Only the 279Arg variant was more common in participants with COPD and the homozygous variant was associated with a 3-fold increased risk for COPD. In the haplotype analysis, the haplotype comprising the 249Arg and the CA promoter polymorphism within the MMP-9 gene was associated with risk, suggesting that either 279Arg or a linked variant on this haplotype underlies the association. No association of this polymorphism was found with decline in pulmonary function. These studies show that variants of the MMP-9 gene are associated with COPD in this cohort of veterans.
PMCID: PMC2707156  PMID: 18046864
metalloproteinase; smoking; pulmonary function; single nucleotide polymorphism; molecular epidemiology
25.  Decorin and TGF-β1 polymorphisms and development of COPD in a general population 
Respiratory Research  2006;7(1):89.
Decorin, an extracellular matrix (ECM) proteoglycan, and TGF-β1 are both involved in lung ECM turnover. Decorin and TGF-β1 expression are decreased respectively increased in COPD lung tissue. Interestingly, they act as each other's feedback regulator. We investigated whether single nucleotide polymorphisms (SNPs) in decorin and TGF-β1 underlie accelerated decline in FEV1 and development of COPD in the general population.
We genotyped 1390 subjects from the Vlagtwedde/Vlaardingen cohort. Lung function was measured every 3 years for a period of 25 years. We tested whether five SNPs in decorin (3'UTR and four intron SNPs) and three SNPs in TGF-β1 (3'UTR rs6957, C-509T rs1800469 and Leu10Pro rs1982073), and their haplotypes, were associated with COPD (last survey GOLD stage = II). Linear mixed effects models were used to analyze genotype associations with FEV1 decline.
We found a significantly higher prevalence of carriers of the minor allele of the TGF-β1 rs6957 SNP (p = 0.001) in subjects with COPD. Additionally, we found a significantly lower prevalence of the haplotype with the major allele of rs6957 and minor alleles for rs1800469 and rs1982073 SNPs in TGF-β1 in subjects with COPD (p = 0.030), indicating that this association is due to the rs6957 SNP. TGF-β1 SNPs were not associated with FEV1 decline. SNPs in decorin, and haplotypes constructed of both TGF-β1 and decorin SNPs were not associated with development of COPD or with FEV1 decline.
Our study shows for the first time that SNPs in decorin on its own or in interaction with SNPs in TGF-β1 do not underlie the disturbed balance in expression between these genes in COPD. TGF-β1 SNPs are associated with COPD, yet not with accelerated FEV1 decline in the general population.
PMCID: PMC1539000  PMID: 16780585

Results 1-25 (1042536)