PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (939005)

Clipboard (0)
None

Related Articles

1.  Assessing Optimal Target Populations for Influenza Vaccination Programmes: An Evidence Synthesis and Modelling Study 
PLoS Medicine  2013;10(10):e1001527.
Marc Baguelin and colleagues use virological, clinical, epidemiological, and behavioral data to estimate how policies for influenza vaccination programs may be optimized in England and Wales.
Please see later in the article for the Editors' Summary
Background
Influenza vaccine policies that maximise health benefit through efficient use of limited resources are needed. Generally, influenza vaccination programmes have targeted individuals 65 y and over and those at risk, according to World Health Organization recommendations. We developed methods to synthesise the multiplicity of surveillance datasets in order to evaluate how changing target populations in the seasonal vaccination programme would affect infection rate and mortality.
Methods and Findings
Using a contemporary evidence-synthesis approach, we use virological, clinical, epidemiological, and behavioural data to develop an age- and risk-stratified transmission model that reproduces the strain-specific behaviour of influenza over 14 seasons in England and Wales, having accounted for the vaccination uptake over this period. We estimate the reduction in infections and deaths achieved by the historical programme compared with no vaccination, and the reduction had different policies been in place over the period. We find that the current programme has averted 0.39 (95% credible interval 0.34–0.45) infections per dose of vaccine and 1.74 (1.16–3.02) deaths per 1,000 doses. Targeting transmitters by extending the current programme to 5–16-y-old children would increase the efficiency of the total programme, resulting in an overall reduction of 0.70 (0.52–0.81) infections per dose and 1.95 (1.28–3.39) deaths per 1,000 doses. In comparison, choosing the next group most at risk (50–64-y-olds) would prevent only 0.43 (0.35–0.52) infections per dose and 1.77 (1.15–3.14) deaths per 1,000 doses.
Conclusions
This study proposes a framework to integrate influenza surveillance data into transmission models. Application to data from England and Wales confirms the role of children as key infection spreaders. The most efficient use of vaccine to reduce overall influenza morbidity and mortality is thus to target children in addition to older adults.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Every winter, millions of people catch influenza, a viral infection of the airways. Most infected individuals recover quickly, but seasonal influenza outbreaks (epidemics) kill about half a million people annually. In countries with advanced health systems, these deaths occur mainly among elderly people and among individuals with long-term illnesses such as asthma and heart disease that increase the risk of complications occurring after influenza virus infection. Epidemics of influenza occur because small but frequent changes in the influenza virus mean that an immune response produced one year through infection provides only partial protection against influenza the following year. Annual immunization with a vaccine that contains killed influenza viruses of the major circulating strains can greatly reduce a person's risk of catching influenza by preparing the immune system to respond quickly when challenged by a live influenza virus. Consequently, many countries run seasonal influenza vaccination programs that, in line with World Health Organization recommendations, target individuals 65 years old and older and people in high-risk groups.
Why Was This Study Done?
Is this approach the best use of available resources? Might, for example, vaccination of children—the main transmitters of influenza—provide more benefit to the whole population than vaccination of elderly people? Vaccination of children would not directly prevent as many influenza-related deaths as vaccination of elderly people, but it might indirectly prevent deaths in elderly adults by inducing herd immunity—vaccination of a large part of a population can protect unvaccinated members of the population by reducing the chances of an infection spreading. Policy makers need to know whether a change to an influenza vaccination program is likely to provide additional population benefits before altering the program. In this evidence synthesis and modeling study, the researchers combine (synthesize) longitudinal influenza surveillance datasets (data collected over time) from England and Wales, develop a mathematical model for influenza transmission based on these data using a Bayesian statistical approach, and use the model to evaluate the impact on influenza infections and deaths of changes to the seasonal influenza vaccination program in England and Wales.
What Did the Researchers Do and Find?
The researchers developed an influenza transmission model using clinical data on influenza-like illness consultations collected in a primary care surveillance scheme for each week of 14 influenza seasons in England and Wales, virological information on respiratory viruses detected in a subset of patients presenting with clinically suspected influenza, and data on vaccination coverage in the whole population (epidemiological data). They also incorporated data on social contacts (behavioral data) and on immunity to influenza viruses in the population (seroepidemiological data) into their model. To estimate the impact of potential changes to the current vaccination strategy in England and Wales, the researchers used their model, which replicated the patterns of disease observed in the surveillance data, to run simulated epidemics for each influenza season and for three strains of influenza virus under various vaccination scenarios. Compared to no vaccination, the current program (vaccination of people 65 years old and older and people in high-risk groups) averted 0.39 infections per dose of vaccine and 1.74 deaths per 1,000 doses. Notably, the model predicted that extension of the program to target 5–16-year-old children would increase the efficiency of the program and would avert 0.70 infections per dose and 1.95 deaths per 1,000 doses.
What Do These Findings Mean?
The finding that the transmission model developed by the researchers closely fit the available surveillance data suggests that the model should be able to predict what would have happened in England and Wales over the study period if an alternative vaccination regimen had been in place. The accuracy of such predictions may be limited, however, because the vaccination model is based on a series of simplifying assumptions. Importantly, given that influenza vaccination for children is being rolled out in England and Wales from September 2013, the model confirms that children are key spreaders of influenza and suggests that a vaccination program targeting children will reduce influenza infections and potentially influenza deaths in the whole population. More generally, the findings of this study support wider adoption of national vaccination strategies designed to block influenza transmission and to target those individuals most at risk from the complications of influenza infection.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371.journal.pmed.1001527.
The UK National Health Service Choices website provides information for patients about seasonal influenza and about vaccination; Public Health England (formerly the Health Protection Agency) provides information on influenza surveillance in the UK, including information about the primary care surveillance database used in this study
The World Health Organization provides information on seasonal influenza (in several languages)
The European Influenzanet is a system to monitor the activity of influenza-like illness with the aid of volunteers via the Internet
The US Centers for Disease Control and Prevention also provides information for patients and health professionals on all aspects of seasonal influenza, including information about vaccination and about the US influenza surveillance system; its website contains a short video about personal experiences of influenza
Flu.gov, a US government website, provides access to information on seasonal influenza and vaccination
MedlinePlus has links to further information about influenza and about immunization (in English and Spanish)
doi:10.1371/journal.pmed.1001527
PMCID: PMC3793005  PMID: 24115913
2.  The Effects of Influenza Vaccination of Health Care Workers in Nursing Homes: Insights from a Mathematical Model 
PLoS Medicine  2008;5(10):e200.
Background
Annual influenza vaccination of institutional health care workers (HCWs) is advised in most Western countries, but adherence to this recommendation is generally low. Although protective effects of this intervention for nursing home patients have been demonstrated in some clinical trials, the exact relationship between increased vaccine uptake among HCWs and protection of patients remains unknown owing to variations between study designs, settings, intensity of influenza seasons, and failure to control all effect modifiers. Therefore, we use a mathematical model to estimate the effects of HCW vaccination in different scenarios and to identify a herd immunity threshold in a nursing home department.
Methods and Findings
We use a stochastic individual-based model with discrete time intervals to simulate influenza virus transmission in a 30-bed long-term care nursing home department. We simulate different levels of HCW vaccine uptake and study the effect on influenza virus attack rates among patients for different institutional and seasonal scenarios. Our model reveals a robust linear relationship between the number of HCWs vaccinated and the expected number of influenza virus infections among patients. In a realistic scenario, approximately 60% of influenza virus infections among patients can be prevented when the HCW vaccination rate increases from 0 to 1. A threshold for herd immunity is not detected. Due to stochastic variations, the differences in patient attack rates between departments are high and large outbreaks can occur for every level of HCW vaccine uptake.
Conclusions
The absence of herd immunity in nursing homes implies that vaccination of every additional HCW protects an additional fraction of patients. Because of large stochastic variations, results of small-sized clinical trials on the effects of HCW vaccination should be interpreted with great care. Moreover, the large variations in attack rates should be taken into account when designing future studies.
Using a mathematical model to simulate influenza transmission in nursing homes, Carline van den Dool and colleagues find that each additional staff member vaccinated further reduces the risk to patients.
Editors' Summary
Background.
Every winter, millions of people catch influenza, a contagious viral disease of the nose, throat, and airways. Most people recover completely from influenza within a week or two but some develop life-threatening complications such as bacterial pneumonia. As a result, influenza outbreaks kill about half a million people—mainly infants, elderly people, and chronically ill individuals—each year. To minimize influenza-related deaths, the World Health Organization recommends that vulnerable people be vaccinated against influenza every autumn. Annual vaccination is necessary because flu viruses continually make small changes to the viral proteins (antigens) that the immune system recognizes. This means that an immune response produced one year provides only partial protection against influenza the next year. To provide maximum protection against influenza, each year's vaccine contains disabled versions of the major circulating strains of influenza viruses.
Why Was This Study Done?
Most Western countries also recommend annual flu vaccination for health care workers (HCWs) in hospitals and other institutions to reduce the transmission of influenza to vulnerable patients. However, many HCWs don't get a regular flu shot, so should efforts be made to increase their rate of vaccine uptake? To answer this question, public-health experts need to know more about the relationship between vaccine uptake among HCWs and patient protection. In particular, they need to know whether a high rate of vaccine uptake by HCWs will provide “herd immunity.” Herd immunity occurs because, when a sufficient fraction of a population is immune to a disease that passes from person to person, infected people rarely come into contact with susceptible people, which means that both vaccinated and unvaccinated people are protected from the disease. In this study, the researchers develop a mathematical model to investigate the relationship between vaccine uptake among HCWs and patient protection in a nursing home department.
What Did the Researchers Do and Find?
To predict influenza virus attack rates (the number of patient infections divided by the number of patients in a nursing home department during an influenza season) at different levels of HCW vaccine uptake, the researchers develop a stochastic transmission model to simulate epidemics on a computer. This model predicts that as the HCW vaccination rate increases from 0 (no HCWs vaccinated) to 1 (all the HCWs vaccinated), the expected average influenza virus attack rate decreases at a constant rate. In the researchers' baseline scenario—a nursing home department with 30 beds where patients come into contact with other patients, HCWs, and visitors—the model predicts that about 60% of the patients who would have been infected if no HCWs had been vaccinated are protected when all the HCWs are vaccinated, and that seven HCWs would have to be vaccinated to protect one patient. This last figure does not change with increasing vaccine uptake, which indicates that there is no level of HCW vaccination that completely stops the spread of influenza among the patients; that is, there is no herd immunity. Finally, the researchers show that large influenza outbreaks can happen by chance at every level of HCW vaccine uptake.
What Do These Findings Mean?
As with all mathematical models, the accuracy of these predictions may depend on the specific assumptions built into the model. Therefore the researchers verified that their findings hold for a wide range of plausible assumptions. These findings have two important practical implications. First, the direct relationship between HCW vaccination and patient protection and the lack of any herd immunity suggest that any increase in HCW vaccine uptake will be beneficial to patients in nursing homes. That is, increasing the HCW vaccination rate from 80% to 90% is likely to be as important as increasing it from 10% to 20%. Second, even 100% HCW vaccination cannot guarantee that influenza outbreaks will not occasionally occur in nursing homes. Because of the large variation in attack rates, the results of small clinical trials on the effects of HCW vaccination may be inaccurate and future studies will need to be very large if they are to provide reliable estimates of the amount of protection that HCW vaccination provides to vulnerable patients.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050200.
Read the related PLoSMedicine Perspective by Cécile Viboud and Mark Miller
A related PLoSMedicine Research Article by Jeffrey Kwong and colleagues is also available
The World Health Organization provides information on influenza and on influenza vaccines (in several languages)
The US Centers for Disease Control and Prevention provide information for patients and professionals on all aspects of influenza (in English and Spanish)
The UK Health Protection Agency also provides information on influenza
MedlinePlus provides a list of links to other information about influenza (in English and Spanish)
The UK National Health Service provides information about herd immunity, including a simple explanatory animation
The European Centre for Disease Prevention and Control provides an overview on the types of influenza
doi:10.1371/journal.pmed.0050200
PMCID: PMC2573905  PMID: 18959470
3.  Association between the 2008–09 Seasonal Influenza Vaccine and Pandemic H1N1 Illness during Spring–Summer 2009: Four Observational Studies from Canada 
PLoS Medicine  2010;7(4):e1000258.
In three case-control studies and a household transmission cohort, Danuta Skowronski and colleagues find an association between prior seasonal flu vaccination and increased risk of 2009 pandemic H1N1 flu.
Background
In late spring 2009, concern was raised in Canada that prior vaccination with the 2008–09 trivalent inactivated influenza vaccine (TIV) was associated with increased risk of pandemic influenza A (H1N1) (pH1N1) illness. Several epidemiologic investigations were conducted through the summer to assess this putative association.
Methods and Findings
Studies included: (1) test-negative case-control design based on Canada's sentinel vaccine effectiveness monitoring system in British Columbia, Alberta, Ontario, and Quebec; (2) conventional case-control design using population controls in Quebec; (3) test-negative case-control design in Ontario; and (4) prospective household transmission (cohort) study in Quebec. Logistic regression was used to estimate odds ratios for TIV effect on community- or hospital-based laboratory-confirmed seasonal or pH1N1 influenza cases compared to controls with restriction, stratification, and adjustment for covariates including combinations of age, sex, comorbidity, timeliness of medical visit, prior physician visits, and/or health care worker (HCW) status. For the prospective study risk ratios were computed. Based on the sentinel study of 672 cases and 857 controls, 2008–09 TIV was associated with statistically significant protection against seasonal influenza (odds ratio 0.44, 95% CI 0.33–0.59). In contrast, estimates from the sentinel and three other observational studies, involving a total of 1,226 laboratory-confirmed pH1N1 cases and 1,505 controls, indicated that prior receipt of 2008–09 TIV was associated with increased risk of medically attended pH1N1 illness during the spring–summer 2009, with estimated risk or odds ratios ranging from 1.4 to 2.5. Risk of pH1N1 hospitalization was not further increased among vaccinated people when comparing hospitalized to community cases.
Conclusions
Prior receipt of 2008–09 TIV was associated with increased risk of medically attended pH1N1 illness during the spring–summer 2009 in Canada. The occurrence of bias (selection, information) or confounding cannot be ruled out. Further experimental and epidemiological assessment is warranted. Possible biological mechanisms and immunoepidemiologic implications are considered.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Every winter, millions of people catch influenza—a viral infection of the airways—and hundreds of thousands of people die as a result. These seasonal epidemics occur because small but frequent changes in the influenza virus mean that an immune response produced one year through infection or vaccination provides only partial protection against influenza the next year. Annual vaccination with killed influenza viruses of the major circulating strains can greatly reduce a person's risk of catching influenza. Consequently, many countries run seasonal influenza vaccination programs. In most of Canada, vaccination with a mixture of three inactivated viruses (a trivalent inactivated vaccine or TIV) is provided free to children aged 6–23 months, to elderly people, to people with long-term conditions that increase their risk of influenza-related complications, and those who provide care for them; in Ontario, free vaccination is offered to everyone older than 6 months.
In addition, influenza viruses occasionally emerge that are very different and to which human populations have virtually no immunity. These viruses can start global epidemics (pandemics) that can kill millions of people. Experts have been warning for some time that an influenza pandemic is long overdue and, in March 2009, the first cases of influenza caused by a new virus called pandemic A/H1N1 2009 (pH1N1; swine flu) occurred in Mexico. The virus spread rapidly and on 11 June 2009, the World Health Organization declared that a global pandemic of pH1N1 influenza was underway. By the end of February 2010, more than 16,000 people around the world had died from pH1N1.
Why Was This Study Done?
During an investigation of a school outbreak of pH1N1 in the late spring 2009 in Canada, investigators noted that people with illness characterized by fever and coughing had been vaccinated against seasonal influenza more often than individuals without such illness. To assess whether this association between prior vaccination with seasonal 2008–09 TIV and subsequent pH1N1 illness was evident in other settings, researchers in Canada therefore conducted additional studies using different methods. In this paper, the researchers report the results of four additional studies conducted in Canada during the summer of 2009 to assess this possible association.
What Did the Researchers Do and Find?
The researchers conducted four epidemiologic studies. Epidemiology is the study of the causes, distribution, and control of diseases in populations.
Three of the four studies were case-control studies in which the researchers assessed the frequency of prior vaccination with the 2008–09 TIV in people with pH1N1 influenza compared to the frequency among healthy members of the general population or among individuals who had an influenza-like illness but no sign of infection with an influenza virus. The researchers also did a household transmission study in which they collected information about vaccination with TIV among the additional cases of influenza that were identified in 47 households in which a case of laboratory-confirmed pH1N1 influenza had occurred. The first of the case-control studies, which was based on Canada's vaccine effectiveness monitoring system, showed that, as expected, the 2008–09 TIV provided protection against seasonal influenza. However, estimates from all four studies (which included about 1,200 laboratory-confirmed pH1N1 cases and 1,500 controls) showed that prior recipients of the 2008–09 TIV had approximately 1.4–2.5 times increased chances of developing pH1N1 illness that needed medical attention during the spring–summer of 2009 compared to people who had not received the TIV. Prior seasonal vaccination was not associated with an increase in the severity of pH1N1 illness, however. That is, it did not increase the risk of being hospitalized among those with pH1N1 illness.
What Do These Findings Mean?
Because all the investigations in this study are “observational,” the people who had been vaccinated might share another unknown characteristic that is actually responsible for increasing their risk of developing pH1N1 illness (“confounding”). Furthermore, the results reported in this study might have arisen by chance, although the consistency of results across the studies makes this unlikely. Thus, the finding of an association between prior receipt of 2008–09 TIV and an increased risk of pH1N1 illness is not conclusive and needs to be investigated further, particularly since some other observational studies conducted in other countries have reported that seasonal vaccination had no influence or may have been associated with reduced chances of pH1N1 illness. If the findings in the current study are real, however, they raise important questions about the biological interactions between seasonal and pandemic influenza strains and vaccines, and about the best way to prevent and control both types of influenza in future.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/ 10.1371/journal.pmed.1000258.
This article is further discussed in a PLoS Medicine Perspective by Cécile Viboud and Lone Simonsen
FightFlu.ca, a Canadian government Web site, provides access to information on pH1N1 influenza
The US Centers for Disease Control and Prevention provides information about influenza for patients and professionals, including specific information on H1N1 influenza
Flu.gov, a US government website, provides access to information on H1N1, avian and pandemic influenza
The World Health Organization provides information on seasonal influenza and has detailed information on pH1N1 influenza (in several languages)
The UK Health Protection Agency provides information on pandemic influenza and on pH1N1 influenza
doi:10.1371/journal.pmed.1000258
PMCID: PMC2850386  PMID: 20386731
4.  The Effect of Universal Influenza Immunization on Mortality and Health Care Use 
PLoS Medicine  2008;5(10):e211.
Background
In 2000, Ontario, Canada, initiated a universal influenza immunization program (UIIP) to provide free influenza vaccines for the entire population aged 6 mo or older. Influenza immunization increased more rapidly in younger age groups in Ontario compared to other Canadian provinces, which all maintained targeted immunization programs. We evaluated the effect of Ontario's UIIP on influenza-associated mortality, hospitalizations, emergency department (ED) use, and visits to doctors' offices.
Methods and Findings
Mortality and hospitalization data from 1997 to 2004 for all ten Canadian provinces were obtained from national datasets. Physician billing claims for visits to EDs and doctors' offices were obtained from provincial administrative datasets for four provinces with comprehensive data. Since outcomes coded as influenza are known to underestimate the true burden of influenza, we studied more broadly defined conditions. Hospitalizations, ED use, doctors' office visits for pneumonia and influenza, and all-cause mortality from 1997 to 2004 were modelled using Poisson regression, controlling for age, sex, province, influenza surveillance data, and temporal trends, and used to estimate the expected baseline outcome rates in the absence of influenza activity. The primary outcome was then defined as influenza-associated events, or the difference between the observed events and the expected baseline events. Changes in influenza-associated outcome rates before and after UIIP introduction in Ontario were compared to the corresponding changes in other provinces. After UIIP introduction, influenza-associated mortality decreased more in Ontario (relative rate [RR] = 0.26) than in other provinces (RR = 0.43) (ratio of RRs = 0.61, p = 0.002). Similar differences between Ontario and other provinces were observed for influenza-associated hospitalizations (RR = 0.25 versus 0.44, ratio of RRs = 0.58, p < 0.001), ED use (RR = 0.31 versus 0.69, ratio of RRs = 0.45, p < 0.001), and doctors' office visits (RR = 0.21 versus 0.52, ratio of RRs = 0.41, p < 0.001). Sensitivity analyses were carried out to assess consistency, specificity, and the presence of a dose-response relationship. Limitations of this study include the ecological study design, the nonspecific outcomes, difficulty in modeling baseline events, data quality and availability, and the inability to control for potentially important confounders.
Conclusions
Compared to targeted programs in other provinces, introduction of universal vaccination in Ontario in 2000 was associated with relative reductions in influenza-associated mortality and health care use. The results of this large-scale natural experiment suggest that universal vaccination may be an effective public health measure for reducing the annual burden of influenza.
Comparing influenza-related mortality and health care use between Ontario and other Canadian provinces, Jeffrey Kwong and colleagues find evidence that Ontario's universal vaccination program has reduced the burden of influenza.
Editors' Summary
Background.
Seasonal outbreaks (epidemics) of influenza—a viral disease of the nose, throat, and airways—affect millions of people and kill about 500,000 individuals every year. These epidemics occur because of “antigenic drift”: small but frequent changes in the viral proteins to which the human immune system responds mean that an immune response produced one year by exposure to an influenza virus provides only partial protection against influenza the next year. Immunization can boost this natural immunity and reduce a person's chances of catching influenza. That is, an injection of killed influenza viruses can be used to prime the immune system so that it responds quickly and efficiently when exposed to live virus. However, because of antigenic drift, for influenza immunization to be effective, it has to be repeated annually with a vaccine that contains the major circulating strains of the influenza virus.
Why Was This Study Done?
Public-health organizations recommend targeted vaccination programs, so that elderly people, infants, and chronically ill individuals—the people most likely to die from pneumonia and other complications of influenza—receive annual influenza vaccination. Some experts argue, however, that universal vaccination might provide populations with better protection from influenza, both directly by increasing the number of vaccinated people and indirectly through “herd immunity,” which occurs when a high proportion of the population is immune to an infectious disease, so that even unvaccinated people are unlikely to become infected (because infected people rarely come into contact with susceptible people). In this study, the researchers compare the effects of the world's first free universal influenza immunization program (UIIP), which started in 2000 in the Canadian province of Ontario, on influenza-associated deaths and health care use with the effects of targeted vaccine programs on the same outcomes elsewhere in Canada.
What Did the Researchers Do and Find?
Using national records, the researchers collected data on influenza vaccination, on all deaths, and on hospitalizations for pneumonia and influenza in all Canadian provinces between 1997 and 2004. They also collected data on emergency department and doctors' office visits for pneumonia and influenza for Ontario, Quebec, Alberta, and Manitoba. They then used a mathematical model to estimate the baseline rates for these outcomes in the absence of influenza activity, and from these calculated weekly rates for deaths and health care use specifically resulting from influenza. In 1996–1997, 18% of the population was vaccinated against influenza in Ontario whereas in the other provinces combined the vaccination rate was 13%. On average, since 2000—the year in which UIIP was introduced in Ontario—vaccination rates have risen to 38% and 24% in Ontario and the other provinces, respectively. Since the introduction of UIIP, the researchers report, influenza-associated deaths have decreased by 74% in Ontario but by only 57% in the other provinces combined. Influenza-associated use of health care facilities has also decreased more in Ontario than in the other provinces over the same period.
What Do These Findings Mean?
These findings are limited by some aspects of the study design. For example, they depend on the accuracy of the assumptions made when calculating events due specifically to influenza, and on the availability and accuracy of vaccination and clinical outcome data. In addition, it is possible that influenza-associated deaths and health care use may have decreased more in Ontario than in the other Canadian provinces because of some unrecognized health care changes specific to Ontario but unrelated to the introduction of universal influenza vaccination. Nevertheless, these findings indicate that, compared to the targeted vaccination programs in the other Canadian provinces, the Ontarian UIIP is associated with reductions in influenza-associated deaths and health care use, particularly in people younger than 65 years old. This effect is seen at a level of vaccination unlikely to produce herd immunity so might be more marked if the uptake of vaccination could be further increased. Thus, although it is possible that Canada is a special case, these findings suggest that universal influenza vaccination might be an effective way to reduce the global burden of influenza.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050211.
Read the related PLoSMedicine Perspective by Cécile Viboud and Mark Miller
A related PLoSMedicine Research Article by Carline van den Dool and colleagues is also available
The Ontario Ministry of Health provides information on its universal influenza immunization program (in English and French)
The World Health Organization provides information on influenza and on influenza vaccines (in several languages)
The US Centers for Disease Control and Prevention provide information for patients and professionals on all aspects of influenza (in English and Spanish)
MedlinePlus provides a list of links to other information about influenza (in English and Spanish)
The UK National Health Service provides information about the science of immunization, including a simple explanatory animation of immunity
doi:10.1371/journal.pmed.0050211
PMCID: PMC2573914  PMID: 18959473
5.  Characterization of Regional Influenza Seasonality Patterns in China and Implications for Vaccination Strategies: Spatio-Temporal Modeling of Surveillance Data 
PLoS Medicine  2013;10(11):e1001552.
Cécile Viboud and colleagues describe epidemiological patterns of influenza incidence across China to support the design of a national vaccination program.
Please see later in the article for the Editors' Summary
Background
The complexity of influenza seasonal patterns in the inter-tropical zone impedes the establishment of effective routine immunization programs. China is a climatologically and economically diverse country, which has yet to establish a national influenza vaccination program. Here we characterize the diversity of influenza seasonality in China and make recommendations to guide future vaccination programs.
Methods and Findings
We compiled weekly reports of laboratory-confirmed influenza A and B infections from sentinel hospitals in cities representing 30 Chinese provinces, 2005–2011, and data on population demographics, mobility patterns, socio-economic, and climate factors. We applied linear regression models with harmonic terms to estimate influenza seasonal characteristics, including the amplitude of annual and semi-annual periodicities, their ratio, and peak timing. Hierarchical Bayesian modeling and hierarchical clustering were used to identify predictors of influenza seasonal characteristics and define epidemiologically-relevant regions. The annual periodicity of influenza A epidemics increased with latitude (mean amplitude of annual cycle standardized by mean incidence, 140% [95% CI 128%–151%] in the north versus 37% [95% CI 27%–47%] in the south, p<0.0001). Epidemics peaked in January–February in Northern China (latitude ≥33°N) and April–June in southernmost regions (latitude <27°N). Provinces at intermediate latitudes experienced dominant semi-annual influenza A periodicity with peaks in January–February and June–August (periodicity ratio >0.6 in provinces located within 27.4°N–31.3°N, slope of latitudinal gradient with latitude −0.016 [95% CI −0.025 to −0.008], p<0.001). In contrast, influenza B activity predominated in colder months throughout most of China. Climate factors were the strongest predictors of influenza seasonality, including minimum temperature, hours of sunshine, and maximum rainfall. Our main study limitations include a short surveillance period and sparse influenza sampling in some of the southern provinces.
Conclusions
Regional-specific influenza vaccination strategies would be optimal in China; in particular, annual campaigns should be initiated 4–6 months apart in Northern and Southern China. Influenza surveillance should be strengthened in mid-latitude provinces, given the complexity of seasonal patterns in this region. More broadly, our findings are consistent with the role of climatic factors on influenza transmission dynamics.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Every year, millions of people worldwide catch influenza, a viral disease of the airways. Most infected individuals recover quickly but seasonal influenza outbreaks (epidemics) kill about half a million people annually. These epidemics occur because antigenic drift—frequent small changes in the viral proteins to which the immune system responds—means that an immune response produced one year provides only partial protection against influenza the next year. Annual vaccination with a mixture of killed influenza viruses of the major circulating strains boosts this natural immunity and greatly reduces the risk of catching influenza. Consequently, many countries run seasonal influenza vaccination programs. Because the immune response induced by vaccination decays within 4–8 months of vaccination and because of antigenic drift, it is important that these programs are initiated only a few weeks before the onset of local influenza activity. Thus, vaccination starts in early autumn in temperate zones (regions of the world that have a mild climate, part way between a tropical and a polar climate), because seasonal influenza outbreaks occur in the winter months when low humidity and low temperatures favor the transmission of the influenza virus.
Why Was This Study Done?
Unlike temperate regions, seasonal influenza patterns are very diverse in tropical countries, which lie between latitudes 23.5°N and 23.5°S, and in the subtropical countries slightly north and south of these latitudes. In some of these countries, there is year-round influenza activity, in others influenza epidemics occur annually or semi-annually (twice yearly). This complexity, which is perhaps driven by rainfall fluctuations, complicates the establishment of effective routine immunization programs in tropical and subtropical countries. Take China as an example. Before a national influenza vaccination program can be established in this large, climatologically diverse country, public-health experts need a clear picture of influenza seasonality across the country. Here, the researchers use spatio-temporal modeling of influenza surveillance data to characterize the seasonality of influenza A and B (the two types of influenza that usually cause epidemics) in China, to assess the role of putative drivers of seasonality, and to identify broad epidemiological regions (areas with specific patterns of disease) that could be used as a basis to optimize the timing of future Chinese vaccination programs.
What Did the Researchers Do and Find?
The researchers collected together the weekly reports of laboratory-confirmed influenza prepared by the Chinese national sentinel hospital-based surveillance network between 2005 and 2011, data on population size and density, mobility patterns, and socio-economic factors, and daily meteorological data for the cities participating in the surveillance network. They then used various statistical modeling approaches to estimate influenza seasonal characteristics, to assess predictors of influenza seasonal characteristics, and to identify epidemiologically relevant regions. These analyses indicate that, over the study period, northern provinces (latitudes greater than 33°N) experienced winter epidemics of influenza A in January–February, southern provinces (latitudes less than 27°N) experienced peak viral activity in the spring (April–June), and provinces at intermediate latitudes experienced semi-annual epidemic cycles with infection peaks in January–February and June–August. By contrast, influenza B activity predominated in the colder months throughout China. The researchers also report that minimum temperatures, hours of sunshine, and maximum rainfall were the strongest predictors of influenza seasonality.
What Do These Findings Mean?
These findings show that influenza seasonality in China varies between regions and between influenza virus types and suggest that, as in other settings, some of these variations might be associated with specific climatic factors. The accuracy of these findings is limited by the short surveillance period, by sparse surveillance data from some southern and mid-latitude provinces, and by some aspects of the modeling approach used in the study. Further surveillance studies need to be undertaken to confirm influenza seasonality patterns in China. Overall, these findings suggest that, to optimize routine influenza vaccination in China, it will be necessary to stagger the timing of vaccination over three broad geographical regions. More generally, given that there is growing interest in rolling out national influenza immunization programs in low- and middle-income countries, these findings highlight the importance of ensuring that vaccination strategies are optimized by taking into account local disease patterns.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/ 10.1371/journal.pmed.1001552.
This study is further discussed in a PLOS Medicine Perspective by Steven Riley
The UK National Health Service Choices website provides information for patients about seasonal influenza and about influenza vaccination
The World Health Organization provides information on seasonal influenza (in several languages) and on influenza surveillance and monitoring
The US Centers for Disease Control and Prevention also provides information for patients and health professionals on all aspects of seasonal influenza, including information about vaccination; its website contains a short video about personal experiences of influenza.
Flu.gov, a US government website, provides access to information on seasonal influenza and vaccination
Information about the Chinese National Influenza Center, which is part of the Chinese Center for Disease Control and Prevention: and which runs influenza surveillance in China, is available (in English and Chinese)
MedlinePlus has links to further information about influenza and about vaccination (in English and Spanish)
A recent PLOS Pathogens Research Article by James D. Tamerius et al. investigates environmental predictors of seasonal influenza epidemics across temperate and tropical climates
A study published in PLOS ONE by Wyller Alencar de Mello et al. indicates that Brazil, like China, requires staggered timing of vaccination from Northern to Southern states to account for different timings of influenza activity.
doi:10.1371/journal.pmed.1001552
PMCID: PMC3864611  PMID: 24348203
6.  Economic Appraisal of Ontario's Universal Influenza Immunization Program: A Cost-Utility Analysis 
PLoS Medicine  2010;7(4):e1000256.
Beate Sander and colleagues assess the cost-effectiveness of the program that provides free seasonal influenza vaccines to the entire population of Ontario, Canada.
Background
In July 2000, the province of Ontario, Canada, initiated a universal influenza immunization program (UIIP) to provide free seasonal influenza vaccines for the entire population. This is the first large-scale program of its kind worldwide. The objective of this study was to conduct an economic appraisal of Ontario's UIIP compared to a targeted influenza immunization program (TIIP).
Methods and Findings
A cost-utility analysis using Ontario health administrative data was performed. The study was informed by a companion ecological study comparing physician visits, emergency department visits, hospitalizations, and deaths between 1997 and 2004 in Ontario and nine other Canadian provinces offering targeted immunization programs. The relative change estimates from pre-2000 to post-2000 as observed in other provinces were applied to pre-UIIP Ontario event rates to calculate the expected number of events had Ontario continued to offer targeted immunization. Main outcome measures were quality-adjusted life years (QALYs), costs in 2006 Canadian dollars, and incremental cost-utility ratios (incremental cost per QALY gained). Program and other costs were drawn from Ontario sources. Utility weights were obtained from the literature. The incremental cost of the program per QALY gained was calculated from the health care payer perspective. Ontario's UIIP costs approximately twice as much as a targeted program but reduces influenza cases by 61% and mortality by 28%, saving an estimated 1,134 QALYs per season overall. Reducing influenza cases decreases health care services cost by 52%. Most cost savings can be attributed to hospitalizations avoided. The incremental cost-effectiveness ratio is Can$10,797/QALY gained. Results are most sensitive to immunization cost and number of deaths averted.
Conclusions
Universal immunization against seasonal influenza was estimated to be an economically attractive intervention.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Annual outbreaks (epidemics) of influenza—a viral disease of the nose, throat, and airways—make millions of people ill and kill about 500,000 individuals every year. In doing so, they impose a considerable economic burden on society in terms of health care costs and lost productivity. Influenza epidemics occur because small but frequent changes in the viral proteins to which the immune system responds mean that an immune response produced one year by exposure to an influenza virus provides only partial protection against influenza the next year. Annual immunization with a vaccine that contains killed influenza viruses of the major circulating strains can boost this natural immunity and greatly reduce a person's chances of catching influenza. Consequently, many countries run seasonal influenza vaccine programs. These programs usually target people at high risk of complications from influenza and individuals likely to come into close contact with them, and people who provide essential community services. So, for example, in most Canadian provinces, targeted influenza immunization programs (TIIPs) offer free influenza vaccinations to people aged 65 years or older, to people with chronic medical conditions, and to health care workers.
Why Was This Study Done?
Some experts argue, however, that universal vaccination might provide populations with better protection from influenza. In 2000, the province of Ontario in Canada decided, therefore, to introduce a universal influenza immunization program (UIIP) to provide free influenza vaccination to everyone older than 6 months, the first large program of this kind in the world. A study published in 2008 showed that, following the introduction of the UIIP, vaccination rates in Ontario increased more than in other Canadian provinces. In addition, deaths from influenza and influenza-related use of health care facilities decreased more in Ontario than in provinces that continued to offer a TIIP. But is universal influenza vaccination good value for money? In this study, the researchers evaluate the cost-effectiveness of the Ontario UIIP by comparing the health outcomes and costs associated with its introduction with the health outcomes and costs associated with a hypothetical continuation of targeted influenza immunization.
What Did the Researchers Do and Find?
The researchers used data on TIIP and UIIP vaccine uptake, physician visits, emergency department visits, hospitalizations for influenza, and deaths from influenza between 1997 and 2004 in Ontario and in nine Canadian states offering TIIPs, and Ontario cost data, in their “cost-utility” analysis. This type of analysis estimates the additional cost required to generate a year of perfect health (a quality-adjusted life-year or QALY) through the introduction of an intervention. QALYs are calculated by multiplying the time spent in a certain health state by a measure of the quality of that health state. The researchers report that the cost of Ontario's UIIP was about twice as much as the cost of a TIIP for the province. However, the introduction of the UIIP reduced the number of influenza cases by nearly two-thirds and reduced deaths from influenza by more than a quarter compared with what would have been expected had the province continued to offer a TIIP, an overall saving of 1,134 QALYs. Furthermore, the reduction in influenza cases halved influenza-related health care costs, mainly because of reductions in hospitalization. Overall, this means that the additional cost to Ontario of saving one QALY through the introduction of the UIIP was Can$10,797, an “incremental cost-effectiveness ratio” of $10,797 per QALY gained.
What Do These Findings Mean?
In Canada, an intervention is considered cost-effective from the point of view of a health care purchaser if it costs less than Canadian $50,000 to gain one QALY. These findings indicate, therefore, that for Ontario the introduction of the UIIP is economically attractive. Indeed, the researchers calculate that even if the costs of the UIIP were to double, the additional cost of saving one QALY by introducing universal immunization would remain below $50,000. Other “sensitivity” analyses undertaken by the researchers also indicate that universal immunization is likely to be effective and cost-effective in Ontario if other key assumptions and/or data included in the calculations are varied within reasonable limits. Given these findings, the researchers suggest that a UIIP might be an appealing intervention in other Canadian provinces and in other high-income countries where influenza transmission and health-care costs are broadly similar to those in Ontario.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000256.
A PLoS Medicine Research Article by Kwong and colleagues describes how the introduction of universal influenza immunization in Ontario altered influenza-related health care use and deaths in the province
Wikipedia pages are available on QALYs and on cost-utility analysis (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
Bandolier, an independent online journal about evidence-based health-care, provides information about QALYs and their use in cost-utility analysis
The UK National Institute for Health and Clinical Excellence has a webpage on Measuring effectiveness and cost-effectiveness: the QALY
doi:10.1371/journal.pmed.1000256
PMCID: PMC2850382  PMID: 20386727
7.  Optimizing the Dose of Pre-Pandemic Influenza Vaccines to Reduce the Infection Attack Rate 
PLoS Medicine  2007;4(6):e218.
Background
The recent spread of avian influenza in wild birds and poultry may be a precursor to the emergence of a 1918-like human pandemic. Therefore, stockpiles of human pre-pandemic vaccine (targeted at avian strains) are being considered. For many countries, the principal constraint for these vaccine stockpiles will be the total mass of antigen maintained. We tested the hypothesis that lower individual doses (i.e., less than the recommended dose for maximum protection) may provide substantial extra community-level benefits because they would permit wider vaccine coverage for a given total size of antigen stockpile.
Methods and Findings
We used a mathematical model to predict infection attack rates under different policies. The model incorporated both an individual's response to vaccination at different doses and the process of person-to-person transmission of pandemic influenza. We found that substantial reductions in the attack rate are likely if vaccines are given to more people at lower doses. These results are applicable to all three vaccine candidates for which data are available. As a guide to the magnitude of the effect, we simulated epidemics based on historical studies of immunogenicity. For example, for one of the vaccines for which data are available, the attack rate would drop from 67.6% to 58.7% if 160 out of the total US population of 300 million were given an optimal dose rather than 20 out of 300 million given the maximally protective dose (as promulgated in the US National Pandemic Preparedness Plan). Our results are conservative with respect to a number of alternative assumptions about the precise nature of vaccine protection. We also considered a model variant that includes a single high-risk subgroup representing children. For smaller stockpile sizes that allow vaccine to be offered only to the high-risk group at the optimal dose, the predicted benefits of using the homogenous model formed a lower bound in the presence of a risk group, even when the high-risk group was twice as infective and twice as susceptible.
Conclusions
In addition to individual-level protection (i.e., vaccine efficacy), the population-level implications of pre-pandemic vaccine programs should be considered when deciding on stockpile size and dose. Our results suggest that a lower vaccine dose may be justified in order to increase population coverage, thereby reducing the infection attack rate overall.
Steven Riley and colleagues examine the potential benefits of "stretching" a limited supply of vaccine and suggest that substantial reductions in the attack rate are possible if vaccines are given to more people at lower doses.
Editors' Summary
Background.
Every winter, millions of people catch influenza, a viral infection of the nose, throat, and airways. Most recover quickly, but the disease can be deadly. In the US, seasonal influenza outbreaks (epidemics) cause 36,000 excess deaths annually. And now there are fears that an avian (bird) influenza virus might trigger a human influenza pandemic—a global epidemic that could kill millions. Seasonal epidemics occur because flu viruses continually make small changes to their hemagglutinin and neuraminidase molecules, the viral proteins (antigens) that the immune system recognizes. Because of this “antigenic drift,” an immune system response (which can be induced by catching flu or by vaccination with disabled circulating influenza strains) that combats flu one year may provide only partial protection the next year. “Antigenic shift” (large changes in flu antigens) can cause pandemics because communities have no immunity to the changed virus.
Why Was This Study Done?
Although avian influenza virus, which contains a hemagglutinin type that differs from currently circulating human flu viruses, has caused a few cases of human influenza, it has not started a human pandemic yet because it cannot move easily between people. If it acquires this property, which will probably involve further small antigenic changes, it could kill millions of people before scientists can develop an effective vaccine against it. To provide some interim protection, many countries are preparing stockpiles of “pre-pandemic” vaccines targeted against the avian virus. The US, for example, plans to store enough pre-pandemic vaccine to provide maximum protection to 20 million people (including key health workers) out of its population of 300 million. But, given a limited stockpile of pre-pandemic vaccine, might giving more people a lower dose of vaccine, which might reduce the number of people susceptible to infection and induce herd immunity by preventing efficient transmission of the flu virus, be a better way to limit the spread of pandemic influenza? In this study, the researchers have used mathematical modeling to investigate this question.
What Did the Researchers Do and Find?
To predict the infection rates associated with different vaccination policies, the researchers developed a mathematical model that incorporates data on human immune responses induced with three experimental vaccines against the avian virus and historical data on the person–person transmission of previous pandemic influenza viruses. For all the vaccines, the model predicts that giving more people a low dose of the vaccine would limit the spread of influenza better than giving fewer people the high dose needed for full individual protection. For example, the researchers estimate that dividing the planned US stockpile of one experimental vaccine equally between 160 million people instead of giving it at the fully protective dose to 20 million people might avert about 27 million influenza cases in less than year. However, giving the maximally protective dose to the 9 million US health-care workers and using the remaining vaccine at a lower dose to optimize protection within the general population might avert only 14 million infections.
What Do These Findings Mean?
These findings suggest that, given a limited stockpile of pre-pandemic vaccine, increasing the population coverage of vaccination by using low doses of vaccine might reduce the overall influenza infection rate more effectively than vaccinating fewer people with fully protective doses of vaccine. However, because the researchers' model includes many assumptions, it can only give an indication of how different strategies might perform, not firm numbers for how many influenza cases each strategy is likely to avert. Before public-health officials use this or a similar model to help them decide the best way to use pre-pandemic vaccines to control a human influenza pandemic, they will need more information about the efficacy of these vaccines and about transmission rates of currently circulating viruses. They will also need to know whether pre-pandemic vaccines actually provide good protection against the pandemic virus, as assumed in this study, before they can recommend mass immunization with low doses of pre-pandemic vaccine, selective vaccination with high doses, or a mixed strategy.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040218.
US Centers for Disease Control and Prevention provide information on influenza and influenza vaccination for patients and health professionals (in English, Spanish, Filipino, Chinese, and Vietnamese)
The World Health Organization has a fact sheet on influenza and on the global response to avian influenza (in English, Spanish, French, Russian, Arabic, and Chinese)
The MedlinePlus online encyclopedia devotes a page to flu (in English and Spanish)
The UK Health Protection Agency information on avian, pandemic, and seasonal influenza
The US National Institute of Allergy and Infectious Diseases has a comprehensive feature called “focus on the flu”
doi:10.1371/journal.pmed.0040218
PMCID: PMC1892041  PMID: 17579511
8.  Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this analysis was to determine the effectiveness of the influenza vaccination and the pneumococcal vaccination in patients with chronic obstructive pulmonary disease (COPD) in reducing the incidence of influenza-related illness or pneumococcal pneumonia.
Clinical Need: Condition and Target Population
Influenza Disease
Influenza is a global threat. It is believed that the risk of a pandemic of influenza still exists. Three pandemics occurred in the 20th century which resulted in millions of deaths worldwide. The fourth pandemic of H1N1 influenza occurred in 2009 and affected countries in all continents.
Rates of serious illness due to influenza viruses are high among older people and patients with chronic conditions such as COPD. The influenza viruses spread from person to person through sneezing and coughing. Infected persons can transfer the virus even a day before their symptoms start. The incubation period is 1 to 4 days with a mean of 2 days. Symptoms of influenza infection include fever, shivering, dry cough, headache, runny or stuffy nose, muscle ache, and sore throat. Other symptoms such as nausea, vomiting, and diarrhea can occur.
Complications of influenza infection include viral pneumonia, secondary bacterial pneumonia, and other secondary bacterial infections such as bronchitis, sinusitis, and otitis media. In viral pneumonia, patients develop acute fever and dyspnea, and may further show signs and symptoms of hypoxia. The organisms involved in bacterial pneumonia are commonly identified as Staphylococcus aureus and Hemophilus influenza. The incidence of secondary bacterial pneumonia is most common in the elderly and those with underlying conditions such as congestive heart disease and chronic bronchitis.
Healthy people usually recover within one week but in very young or very old people and those with underlying medical conditions such as COPD, heart disease, diabetes, and cancer, influenza is associated with higher risks and may lead to hospitalization and in some cases death. The cause of hospitalization or death in many cases is viral pneumonia or secondary bacterial pneumonia. Influenza infection can lead to the exacerbation of COPD or an underlying heart disease.
Streptococcal Pneumonia
Streptococcus pneumoniae, also known as pneumococcus, is an encapsulated Gram-positive bacterium that often colonizes in the nasopharynx of healthy children and adults. Pneumococcus can be transmitted from person to person during close contact. The bacteria can cause illnesses such as otitis media and sinusitis, and may become more aggressive and affect other areas of the body such as the lungs, brain, joints, and blood stream. More severe infections caused by pneumococcus are pneumonia, bacterial sepsis, meningitis, peritonitis, arthritis, osteomyelitis, and in rare cases, endocarditis and pericarditis.
People with impaired immune systems are susceptible to pneumococcal infection. Young children, elderly people, patients with underlying medical conditions including chronic lung or heart disease, human immunodeficiency virus (HIV) infection, sickle cell disease, and people who have undergone a splenectomy are at a higher risk for acquiring pneumococcal pneumonia.
Technology
Influenza and Pneumococcal Vaccines
Trivalent Influenza Vaccines in Canada
In Canada, 5 trivalent influenza vaccines are currently authorized for use by injection. Four of these are formulated for intramuscular use and the fifth product (Intanza®) is formulated for intradermal use.
The 4 vaccines for intramuscular use are:
Fluviral (GlaxoSmithKline), split virus, inactivated vaccine, for use in adults and children ≥ 6 months;
Vaxigrip (Sanofi Pasteur), split virus inactivated vaccine, for use in adults and children ≥ 6 months;
Agriflu (Novartis), surface antigen inactivated vaccine, for use in adults and children ≥ 6 months; and
Influvac (Abbott), surface antigen inactivated vaccine, for use in persons ≥ 18 years of age.
FluMist is a live attenuated virus in the form of an intranasal spray for persons aged 2 to 59 years. Immunization with current available influenza vaccines is not recommended for infants less than 6 months of age.
Pneumococcal Vaccine
Pneumococcal polysaccharide vaccines were developed more than 50 years ago and have progressed from 2-valent vaccines to the current 23-valent vaccines to prevent diseases caused by 23 of the most common serotypes of S pneumoniae. Canada-wide estimates suggest that approximately 90% of cases of pneumococcal bacteremia and meningitis are caused by these 23 serotypes. Health Canada has issued licenses for 2 types of 23-valent vaccines to be injected intramuscularly or subcutaneously:
Pneumovax 23® (Merck & Co Inc. Whitehouse Station, NJ, USA), and
Pneumo 23® (Sanofi Pasteur SA, Lion, France) for persons 2 years of age and older.
Other types of pneumococcal vaccines licensed in Canada are for pediatric use. Pneumococcal polysaccharide vaccine is injected only once. A second dose is applied only in some conditions.
Research Questions
What is the effectiveness of the influenza vaccination and the pneumococcal vaccination compared with no vaccination in COPD patients?
What is the safety of these 2 vaccines in COPD patients?
What is the budget impact and cost-effectiveness of these 2 vaccines in COPD patients?
Research Methods
Literature search
Search Strategy
A literature search was performed on July 5, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2000 to July 5, 2010. The search was updated monthly through the AutoAlert function of the search up to January 31, 2011. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Articles with an unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established. Data extraction was carried out by the author.
Inclusion Criteria
studies comparing clinical efficacy of the influenza vaccine or the pneumococcal vaccine with no vaccine or placebo;
randomized controlled trials published between January 1, 2000 and January 31, 2011;
studies including patients with COPD only;
studies investigating the efficacy of types of vaccines approved by Health Canada;
English language studies.
Exclusion Criteria
non-randomized controlled trials;
studies investigating vaccines for other diseases;
studies comparing different variations of vaccines;
studies in which patients received 2 or more types of vaccines;
studies comparing different routes of administering vaccines;
studies not reporting clinical efficacy of the vaccine or reporting immune response only;
studies investigating the efficacy of vaccines not approved by Health Canada.
Outcomes of Interest
Primary Outcomes
Influenza vaccination: Episodes of acute respiratory illness due to the influenza virus.
Pneumococcal vaccination: Time to the first episode of community-acquired pneumonia either due to pneumococcus or of unknown etiology.
Secondary Outcomes
rate of hospitalization and mechanical ventilation
mortality rate
adverse events
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses. The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Efficacy of the Influenza Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The influenza vaccination was associated with significantly fewer episodes of influenza-related acute respiratory illness (ARI). The incidence density of influenza-related ARI was:
All patients: vaccine group: (total of 4 cases) = 6.8 episodes per 100 person-years; placebo group: (total of 17 cases) = 28.1 episodes per 100 person-years, (relative risk [RR], 0.2; 95% confidence interval [CI], 0.06−0.70; P = 0.005).
Patients with severe airflow obstruction (forced expiratory volume in 1 second [FEV1] < 50% predicted): vaccine group: (total of 1 case) = 4.6 episodes per 100 person-years; placebo group: (total of 7 cases) = 31.2 episodes per 100 person-years, (RR, 0.1; 95% CI, 0.003−1.1; P = 0.04).
Patients with moderate airflow obstruction (FEV1 50%−69% predicted): vaccine group: (total of 2 cases) = 13.2 episodes per 100 person-years; placebo group: (total of 4 cases) = 23.8 episodes per 100 person-years, (RR, 0.5; 95% CI, 0.05−3.8; P = 0.5).
Patients with mild airflow obstruction (FEV1 ≥ 70% predicted): vaccine group: (total of 1 case) = 4.5 episodes per 100 person-years; placebo group: (total of 6 cases) = 28.2 episodes per 100 person-years, (RR, 0.2; 95% CI, 0.003−1.3; P = 0.06).
The Kaplan-Meier survival analysis showed a significant difference between the vaccinated group and the placebo group regarding the probability of not acquiring influenza-related ARI (log-rank test P value = 0.003). Overall, the vaccine effectiveness was 76%. For categories of mild, moderate, or severe COPD the vaccine effectiveness was 84%, 45%, and 85% respectively.
With respect to hospitalization, fewer patients in the vaccine group compared with the placebo group were hospitalized due to influenza-related ARIs, although these differences were not statistically significant. The incidence density of influenza-related ARIs that required hospitalization was 3.4 episodes per 100 person-years in the vaccine group and 8.3 episodes per 100 person-years in the placebo group (RR, 0.4; 95% CI, 0.04−2.5; P = 0.3; log-rank test P value = 0.2). Also, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD.
Fewer patients in the vaccine group compared with the placebo group required mechanical ventilation due to influenza-related ARIs. However, these differences were not statistically significant. The incidence density of influenza-related ARIs that required mechanical ventilation was 0 episodes per 100 person-years in the vaccine group and 5 episodes per 100 person-years in the placebo group (RR, 0.0; 95% CI, 0−2.5; P = 0.1; log-rank test P value = 0.4). In addition, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD. The effectiveness of the influenza vaccine in preventing influenza-related ARIs and influenza-related hospitalization was not related to age, sex, severity of COPD, smoking status, or comorbid diseases.
safety
Overall, significantly more patients in the vaccine group than the placebo group experienced local adverse reactions (vaccine: 17 [27%], placebo: 4 [6%]; P = 0.002). Significantly more patients in the vaccine group than the placebo group experienced swelling (vaccine 4, placebo 0; P = 0.04) and itching (vaccine 4, placebo 0; P = 0.04). Systemic reactions included headache, myalgia, fever, and skin rash and there were no significant differences between the 2 groups for these reactions (vaccine: 47 [76%], placebo: 51 [81%], P = 0.5).
With respect to lung function, dyspneic symptoms, and exercise capacity, there were no significant differences between the 2 groups at 1 week and at 4 weeks in: FEV1, maximum inspiratory pressure at residual volume, oxygen saturation level of arterial blood, visual analogue scale for dyspneic symptoms, and the 6 Minute Walking Test for exercise capacity.
There was no significant difference between the 2 groups with regard to the probability of not acquiring total ARIs (influenza-related and/or non-influenza-related); (log-rank test P value = 0.6).
Summary of Efficacy of the Pneumococcal Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The Kaplan-Meier survival analysis showed no significant differences between the group receiving the penumoccocal vaccination and the control group for time to the first episode of community-acquired pneumonia due to pneumococcus or of unknown etiology (log-rank test 1.15; P = 0.28). Overall, vaccine efficacy was 24% (95% CI, −24 to 54; P = 0.33).
With respect to the incidence of pneumococcal pneumonia, the Kaplan-Meier survival analysis showed a significant difference between the 2 groups (vaccine: 0/298; control: 5/298; log-rank test 5.03; P = 0.03).
Hospital admission rates and median length of hospital stays were lower in the vaccine group, but the difference was not statistically significant. The mortality rate was not different between the 2 groups.
Subgroup Analysis
The Kaplan-Meier survival analysis showed significant differences between the vaccine and control groups for pneumonia due to pneumococcus and pneumonia of unknown etiology, and when data were analyzed according to subgroups of patients (age < 65 years, and severe airflow obstruction FEV1 < 40% predicted). The accumulated percentage of patients without pneumonia (due to pneumococcus and of unknown etiology) across time was significantly lower in the vaccine group than in the control group in patients younger than 65 years of age (log-rank test 6.68; P = 0.0097) and patients with a FEV1 less than 40% predicted (log-rank test 3.85; P = 0.0498).
Vaccine effectiveness was 76% (95% CI, 20−93; P = 0.01) for patients who were less than 65 years of age and −14% (95% CI, −107 to 38; P = 0.8) for those who were 65 years of age or older. Vaccine effectiveness for patients with a FEV1 less than 40% predicted and FEV1 greater than or equal to 40% predicted was 48% (95% CI, −7 to 80; P = 0.08) and −11% (95% CI, −132 to 47; P = 0.95), respectively. For patients who were less than 65 years of age (FEV1 < 40% predicted), vaccine effectiveness was 91% (95% CI, 35−99; P = 0.002).
Cox modelling showed that the effectiveness of the vaccine was dependent on the age of the patient. The vaccine was not effective in patients 65 years of age or older (hazard ratio, 1.53; 95% CI, 0.61−a2.17; P = 0.66) but it reduced the risk of acquiring pneumonia by 80% in patients less than 65 years of age (hazard ratio, 0.19; 95% CI, 0.06−0.66; P = 0.01).
safety
No patients reported any local or systemic adverse reactions to the vaccine.
PMCID: PMC3384373  PMID: 23074431
9.  Maternal Influenza Immunization and Reduced Likelihood of Prematurity and Small for Gestational Age Births: A Retrospective Cohort Study 
PLoS Medicine  2011;8(5):e1000441.
In an analysis of surveillance data from the state of Georgia (US), Saad Omer and colleagues show an association between receipt of influenza vaccination among pregnant women and reduced risk of premature births.
Background
Infections during pregnancy have the potential to adversely impact birth outcomes. We evaluated the association between receipt of inactivated influenza vaccine during pregnancy and prematurity and small for gestational age (SGA) births.
Methods and Findings
We conducted a cohort analysis of surveillance data from the Georgia (United States) Pregnancy Risk Assessment Monitoring System. Among 4,326 live births between 1 June 2004 and 30 September 2006, maternal influenza vaccine information was available for 4,168 (96.3%). The primary intervention evaluated in this study was receipt of influenza vaccine during any trimester of pregnancy. The main outcome measures were prematurity (gestational age at birth <37 wk) and SGA (birth weight <10th percentile for gestational age). Infants who were born during the putative influenza season (1 October–31 May) and whose mothers were vaccinated against influenza during pregnancy were less likely to be premature compared to infants of unvaccinated mothers born in the same period (adjusted odds ratio [OR] = 0.60; 95% CI, 0.38–0.94). The magnitude of association between maternal influenza vaccine receipt and reduced likelihood of prematurity increased during the period of at least local influenza activity (adjusted OR = 0.44; 95% CI, 0.26–0.73) and was greatest during the widespread influenza activity period (adjusted OR = 0.28; 95% CI, 0.11–0.74). Compared with newborns of unvaccinated women, newborns of vaccinated mothers had 69% lower odds of being SGA (adjusted OR = 0.31; 95% CI, 0.13–0.75) during the period of widespread influenza activity. The adjusted and unadjusted ORs were not significant for the pre-influenza activity period.
Conclusions
This study demonstrates an association between immunization with the inactivated influenza vaccine during pregnancy and reduced likelihood of prematurity during local, regional, and widespread influenza activity periods. However, no associations were found for the pre-influenza activity period. Moreover, during the period of widespread influenza activity there was an association between maternal receipt of influenza vaccine and reduced likelihood of SGA birth.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Maternal infections during pregnancy can have harmful effects on both mother and baby. For example, influenza is associated with increased morbidity and mortality among pregnant women compared to women who are not pregnant or who acquire influenza infection after delivery. And some respiratory infections, especially those that can cause maternal pneumonia such as influenza virus, are known to be associated with the baby being small—below the 10th percentile—for gestational age and with an increased risk of preterm birth—birth before 37 weeks of gestation. Previous studies have shown that inactivated influenza vaccination during pregnancy provides protection against influenza virus for both mother and baby. As there has been an increase in the rate of preterm birth the United States from 9.5% in 1981 to 12.8% in 2006, the impact of maternal influenza immunization on birth outcomes has important public health implications and is of particular interest during influenza pandemics.
Why Was This Study Done?
Given that maternal vaccination can protect babies from influenza virus, it is plausible that influenza vaccination in pregnancy could mitigate adverse birth outcomes such as prematurity and the baby being small for gestational age. The researchers of this study set out to evaluate this hypothesis by investigating whether there was an association between women receiving inactivated influenza vaccine during pregnancy and positive birth outcomes for their babies in the population of the state of Georgia, in the United States.
What Did the Researchers Do and Find?
The researchers conducted a retrospective cohort analysis of a large surveillance dataset (the Georgia Pregnancy Risk Assessment Monitoring System) to analyze the relationship between receipt of inactivated influenza vaccine during any trimester of pregnancy by mothers of infants born between June 1, 2004, and September 30, 2006, and their baby being premature or small for gestational age. The study period encompassed the 2004–2005 and 2005–2006 influenza seasons—the two most recent seasons for which the data were available. The researchers did a stratified analysis for the overall study period, and various periods during it, and also weighted their analysis to adjust for possible oversampling. They used logistic regression to evaluate the association of maternal influenza vaccine and (a) prematurity and (b) small for gestational age, and also used linear regression to evaluate the statistical significance of differences between vaccinated and unvaccinated women for mean gestational age at first antenatal visit and mean birth weight.
During the study period, 4,168 mother–baby pairs were included in the analysis. Local influenza activity was detected during 27 weeks (22.1%), and 578 women (14.9% [weighted]) had received the influenza vaccine during pregnancy, giving a vaccination coverage of 19.2% (weighted) among mothers of infants born during the assumed influenza season. In the study sample, 1,547 babies (10.6% [weighted]) were born premature, and 1,186 babies (11.2% [weighted]) were small for gestational age. Infants who were born during the assumed influenza season (October–May) and whose mothers were vaccinated against influenza during pregnancy were less likely to be premature than infants of unvaccinated mothers born in the same period, with an adjusted odds ratio of 0.60. The effect of maternal influenza vaccine on reducing prematurity was the highest for infants born during the period of widespread influenza activity, with 72% lower odds of prematurity in infants of vaccinated mothers than infants of unvaccinated mothers. Compared with newborns of unvaccinated women, babies of vaccinated mothers also had 69% lower odds of being small for gestational age during the period of widespread influenza activity, but the adjusted and unadjusted odd ratios were not significant for the pre-influenza activity period.
What Do These Findings Mean?
These results show that there was an association between maternal immunization with the inactivated influenza vaccine during pregnancy and reduced likelihood of prematurity during local, regional, and widespread influenza activity periods. In addition, during the period of widespread influenza activity there was an negative association between maternal receipt of influenza vaccine and small for gestational age birth.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000441.
More information about influenza vaccination during pregnancy is available from the World Health Organization and the UK National Health Service
More information about the Georgia Pregnancy Risk Assessment Monitoring System is also available
doi:10.1371/journal.pmed.1000441
PMCID: PMC3104979  PMID: 21655318
10.  Seasonal Influenza Vaccine Effectiveness in the community (SIVE): protocol for a cohort study exploiting a unique national linked data set 
BMJ Open  2012;2(2):e001019.
Introduction
Seasonal influenza vaccination is recommended for all individuals aged 65 years and over and in individuals younger than 65 years with comorbidities. There is good evidence of vaccine effectiveness (VE) in young healthy individuals but less robust evidence for effectiveness in the populations targeted for influenza vaccination. Undertaking a randomised controlled trial to assess VE is now impractical due to the presence of national vaccination programmes. Quasi-experimental designs offer the potential to advance the evidence base in such scenarios, and the authors have therefore been commissioned to undertake a naturalistic national evaluation of seasonal influenza VE by using data derived from linkage of a number of Scottish health databases. The aim of this study is to examine the effectiveness of the seasonal influenza vaccination in the Scottish population.
Methods and analysis
A cohort study design will be used pooling data over nine seasons. A primary care database covering 4% of the Scottish population for the period 2000–2009 has been linked to the national database of hospital admissions and the death register and is being linked to the Health Protection Scotland virology database. The primary outcome is VE measured in terms of rate of hospital admissions due to respiratory illness. Multivariable regression will be used to produce estimates of VE adjusted for confounders. The major challenge of this approach is addressing the strong effect of confounding due to vaccinated individuals being systematically different from unvaccinated individuals. Analyses using propensity scores and instrumental variables will be undertaken, and the effect of an unknown confounder will be modelled in a sensitivity analysis to assess the robustness of the estimates.
Ethics and dissemination
The West of Scotland Research Ethics Committee has classified this project as surveillance. The study findings will be disseminated in peer-reviewed publications and presented at international conferences.
Article summary
Article focus
Study protocol for a cohort study to investigate the effectiveness of the seasonal influenza vaccine in the general population.
Key messages
Seasonal influenza is responsible for substantial global morbidity and mortality, particularly in high-risk populations. Uptake rates for seasonal influenza vaccine remain suboptimal.
As randomised controlled trials are no longer feasible to assess VE, quasi-experimental methods can be used in their place.
Strengths and limitations of this study
The study population comprises a large unbiased sample of the general population.
We are developing a unique linked national database, which contains anonymised individual patient-level data from general practices, hospitals, virology investigations and the death register.
Our analysis plan takes a robust and comprehensive approach to the well-described problem of confounding in VE studies.
As this is an observational study, residual confounding may still be present despite the comprehensive approach we plan to take to deal with this.
doi:10.1136/bmjopen-2012-001019
PMCID: PMC3307124  PMID: 22422920
11.  A Comparative Analysis of Influenza Vaccination Programs 
PLoS Medicine  2006;3(10):e387.
Background
The threat of avian influenza and the 2004–2005 influenza vaccine supply shortage in the United States have sparked a debate about optimal vaccination strategies to reduce the burden of morbidity and mortality caused by the influenza virus.
Methods and Findings
We present a comparative analysis of two classes of suggested vaccination strategies: mortality-based strategies that target high-risk populations and morbidity-based strategies that target high-prevalence populations. Applying the methods of contact network epidemiology to a model of disease transmission in a large urban population, we assume that vaccine supplies are limited and then evaluate the efficacy of these strategies across a wide range of viral transmission rates and for two different age-specific mortality distributions.
We find that the optimal strategy depends critically on the viral transmission level (reproductive rate) of the virus: morbidity-based strategies outperform mortality-based strategies for moderately transmissible strains, while the reverse is true for highly transmissible strains. These results hold for a range of mortality rates reported for prior influenza epidemics and pandemics. Furthermore, we show that vaccination delays and multiple introductions of disease into the community have a more detrimental impact on morbidity-based strategies than mortality-based strategies.
Conclusions
If public health officials have reasonable estimates of the viral transmission rate and the frequency of new introductions into the community prior to an outbreak, then these methods can guide the design of optimal vaccination priorities. When such information is unreliable or not available, as is often the case, this study recommends mortality-based vaccination priorities.
A comparative analysis of two classes of suggested vaccination strategies, mortality-based strategies that target high-risk populations and morbidity-based strategies that target high-prevalence populations.
Editors' Summary
Background.
Influenza—a viral infection of the nose, throat, and airways that is transmitted in airborne droplets released by coughing or sneezing—is a serious public health threat. Most people recover quickly from influenza, but some individuals, especially infants, old people, and individuals with chronic health problems, can develop pneumonia and die. In the US, seasonal outbreaks (epidemics) of flu cause an estimated 36,000 excess deaths annually. And now there are fears that avian influenza might start a human pandemic—a global epidemic that could kill millions. Seasonal outbreaks of influenza occur because flu viruses continually change the viral proteins (antigens) to which the immune system responds. “Antigenic drift”—small changes in these proteins—means that an immune system response that combats flu one year may not provide complete protection the next winter. “Antigenic shift”—large antigen changes—can cause pandemics because communities have no immunity to the changed virus. Annual vaccination with vaccines based on the currently circulating viruses controls seasonal flu epidemics; to control a pandemic, vaccines based on the antigenically altered virus would have to be quickly developed.
Why Was This Study Done?
Most countries target vaccination efforts towards the people most at risk of dying from influenza, and to health-care workers who are likely come into contact with flu patients. But is this the best way to reduce the burden of illness (morbidity) and death (mortality) caused by influenza, particularly at the start of a pandemic, when vaccine would be limited? Old people and infants are much less likely to catch and spread influenza than school children, students, and employed adults, so could vaccination of these sections of the population—instead of those most at risk of death—be the best way to contain influenza outbreaks? In this study, the researchers used an analytical method called “contact network epidemiology” to compare two types of vaccination strategies: the currently favored mortality-based strategy, which targets high-risk individuals, and a morbidity-based strategy, which targets those segments of the community in which most influenza cases occur.
What Did the Researchers Do and Find?
Most models of disease transmission assume that each member of a community is equally likely to infect every other member. But a baby is unlikely to transmit flu to, for example, an unrelated, housebound elderly person. Contact network epidemiology takes the likely relationships between people into account when modeling disease transmission. Using information from Vancouver, British Columbia, Canada, on household size, age distribution, and occupations, and other factors such as school sizes, the researchers built a model population of a quarter of a million interconnected people. They then investigated how different vaccination strategies controlled the spread of influenza in this population. The optimal strategy depended on the level of viral transmissibility—the likelihood that an infectious person transmits influenza to a susceptible individual with whom he or she has contact. For moderately transmissible flu viruses, a morbidity-based vaccination strategy, in which the people most likely to catch the flu are vaccinated, was more effective at containing seasonal and pandemic outbreaks than a mortality-based strategy, in which the people most likely to die if they caught the flu are vaccinated. For highly transmissible strains, this situation was reversed. The level of transmissibility at which this reversal occurred depended on several factors, including whether vaccination was delayed and how many times influenza was introduced into the community.
What Do These Findings Mean?
The researchers tested their models by checking that they could replicate real influenza epidemics and pandemics, but, as with all mathematical models, they included many assumptions about influenza in their calculations, which may affect their results. Also, because the contact network used data from Vancouver, their results might not be applicable to other cities, or to nonurban areas. Nevertheless, their findings have important public health implications. When there are reasonable estimates of the viral transmission rate, and it is known how often influenza is being introduced into a community, contact network models could help public health officials choose between morbidity- and mortality-based vaccination strategies. When the viral transmission rate is unreliable or unavailable (for example, at the start of a pandemic), the best policy would be the currently preferred strategy of mortality-based vaccination. More generally, the use of contact network models should improve estimates of how infectious diseases spread through populations and indicate the best ways to control human epidemics and pandemics.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030387.
US Centers for Disease Control and Prevention information about influenza for patients and professionals, including key facts on vaccination
US National Institute of Allergy and Infectious Diseases feature on seasonal, avian, and pandemic influenza
World Health Organization fact sheet on influenza, with links to information on vaccination
UK Health Protection Agency information on seasonal, avian, and pandemic influenza
MedlinePlus entry on influenza
doi:10.1371/journal.pmed.0030387
PMCID: PMC1584413  PMID: 17020406
12.  A Population-Based Evaluation of a Publicly Funded, School-Based HPV Vaccine Program in British Columbia, Canada: Parental Factors Associated with HPV Vaccine Receipt 
PLoS Medicine  2010;7(5):e1000270.
Analysis of a telephone survey by Gina Ogilvie and colleagues identifies the parental factors associated with HPV vaccine uptake in a school-based program in Canada.
Background
Information on factors that influence parental decisions for actual human papillomavirus (HPV) vaccine receipt in publicly funded, school-based HPV vaccine programs for girls is limited. We report on the level of uptake of the first dose of the HPV vaccine, and determine parental factors associated with receipt of the HPV vaccine, in a publicly funded school-based HPV vaccine program in British Columbia, Canada.
Methods and Findings
All parents of girls enrolled in grade 6 during the academic year of September 2008–June 2009 in the province of British Columbia were eligible to participate. Eligible households identified through the provincial public health information system were randomly selected and those who consented completed a validated survey exploring factors associated with HPV vaccine uptake. Bivariate and multivariate analyses were conducted to calculate adjusted odds ratios to identify the factors that were associated with parents' decision to vaccinate their daughter(s) against HPV. 2,025 parents agreed to complete the survey, and 65.1% (95% confidence interval [CI] 63.1–67.1) of parents in the survey reported that their daughters received the first dose of the HPV vaccine. In the same school-based vaccine program, 88.4% (95% CI 87.1–89.7) consented to the hepatitis B vaccine, and 86.5% (95% CI 85.1–87.9) consented to the meningococcal C vaccine. The main reasons for having a daughter receive the HPV vaccine were the effectiveness of the vaccine (47.9%), advice from a physician (8.7%), and concerns about daughter's health (8.4%). The main reasons for not having a daughter receive the HPV vaccine were concerns about HPV vaccine safety (29.2%), preference to wait until the daughter is older (15.6%), and not enough information to make an informed decision (12.6%). In multivariate analysis, overall attitudes to vaccines, the impact of the HPV vaccine on sexual practices, and childhood vaccine history were predictive of parents having a daughter receive the HPV vaccine in a publicly funded school-based HPV vaccine program. By contrast, having a family with two parents, having three or more children, and having more education was associated with a decreased likelihood of having a daughter receive the HPV vaccine.
Conclusions
This study is, to our knowledge, one of the first population-based assessments of factors associated with HPV vaccine uptake in a publicly funded school-based program worldwide. Policy makers need to consider that even with the removal of financial and health care barriers, parents, who are key decision makers in the uptake of this vaccine, are still hesitant to have their daughters receive the HPV vaccine, and strategies to ensure optimal HPV vaccine uptake need to be employed.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
About 10% of cancers in women occur in the cervix, the structure that connects the womb to the vagina. Every year, globally, more than a quarter of a million women die because of cervical cancer, which only occurs after the cervix has been infected with a human papillomavirus (HPV) through sexual intercourse. There are many types of HPV, a virus that infects the skin and the mucosa (the moist membranes that line various parts of the body, including the cervix). Although most people become infected with HPV at some time in their life, most never know they are infected. However, some HPV types cause harmless warts on the skin or around the genital area and several—in particular, HPV 16 and HPV 18, so-called high-risk HPVs—can cause cervical cancer. HPV infections are usually cleared by the immune system, but about 10% of women infected with a high-risk HPV develop a long-term infection that puts them at risk of developing cervical cancer.
Why Was This Study Done?
Screening programs have greatly reduced cervical cancer deaths in developed countries in recent decades by detecting the cancer early when it can be treated; but it would be better to prevent cervical cancer ever developing. Because HPV is necessary for the development of cervical cancer, vaccination of girls against HPV infection before the onset of sexual activity might be one way to do this. Scientists recently developed a vaccine that prevents infection with HPV 16 and HPV 18 (and with two HPVs that cause genital warts) and that should, therefore, reduce the incidence of cervical cancer. Publicly funded HPV vaccination programs are now planned or underway in several countries; but before girls can receive the HPV vaccine, parental consent is usually needed, so it is important to know what influences parental decisions about HPV vaccination. In this study, the researchers undertake a telephone survey to determine the uptake of the HPV vaccine by 11-year-old girls (grade 6) in British Columbia, Canada, and to determine the parental factors associated with vaccine uptake; British Columbia started a voluntary school-based HPV vaccine program in September 2008.
What Did the Researchers Do and Find?
In early 2009, the researchers contacted randomly selected parents of girls enrolled in grade 6 during the 2008–2009 academic year and asked them to complete a telephone survey that explored factors associated with HPV vaccine uptake. 65.1% of the 2,025 parents who completed the survey had consented to their daughter receiving the first dose of HPV vaccine. By contrast, more than 85% of the parents had consented to hepatitis B and meningitis C vaccination of their daughters. Nearly half of the parents surveyed said their main reason for consenting to HPV vaccination was the effectiveness of the vaccine. Conversely, nearly a third of the parents said concern about the vaccine's safety was their main reason for not consenting to vaccination and one in eight said they had been given insufficient information to make an informed decision. In a statistical analysis of the survey data, the researchers found that a positive parental attitude towards vaccination, a parental belief that HPV vaccination had limited impact on sexual practices, and completed childhood vaccination increased the likelihood of a daughter receiving the HPV vaccine. Having a family with two parents or three or more children and having well-educated parents decreased the likelihood of a daughter receiving the vaccine.
What Do These Findings Mean?
These findings provide one of the first population-based assessments of the factors that affect HPV vaccine uptake in a setting where there are no financial or health care barriers to vaccination. By identifying the factors associated with parental reluctance to agree to HPV vaccination for their daughters, these findings should help public-health officials design strategies to ensure optimal HPV vaccine uptake, although further studies are needed to discover why, for example, parents with more education are less likely to agree to vaccination than parents with less education. Importantly, the findings of this study, which are likely to be generalizable to other high-income countries, indicate that there is a continued need to ensure that the public receives credible, clear information about both the benefits and long-term safety of HPV vaccination.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000270.
The US National Cancer Institute provides information about cervical cancer for patients and for health professionals, including information on HPV vaccines (in English and Spanish)
The US Centers for Disease Control and Prevention also has information about cervical cancer and about HPV
The UK National Health Service Choices website has pages on cervical cancer and on HPV vaccination
More information about cervical cancer and HPV vaccination is available from the Macmillan cancer charity
ImmunizeBC provides general information about vaccination and information about HPV vaccination in British Columbia
MedlinePlus provides links to additional resources about cervical cancer (in English and Spanish)
doi:10.1371/journal.pmed.1000270
PMCID: PMC2864299  PMID: 20454567
13.  Vaccine Effectiveness Against Laboratory-Confirmed Influenza Hospitalizations Among Elderly Adults During the 2010–2011 Season 
Although the benefits of influenza vaccines for preventing serious influenza outcomes in elderly adults are uncertain, the results of this study suggest that the 2010–2011 influenza vaccine was 42% effective in reducing laboratory-confirmed influenza hospitalizations in this high-risk population.
Background. Although annual influenza immunization is recommended for adults aged ≥65 years due to the substantial burden of illness, the evidence base for this recommendation is weak. Prior observational studies that examined influenza vaccine effectiveness against nonspecific serious outcomes suffered from selection bias and the lack of laboratory confirmation for influenza infection. The objective of this study was to determine the effectiveness of the 2010–2011 seasonal influenza vaccine against laboratory-confirmed influenza hospitalizations among community-dwelling elderly adults, a serious and highly specific outcome.
Methods. We conducted a test-negative study of community-dwelling adults aged >65 years in Ontario, Canada. Respiratory specimens collected between 1 December 2010 and 30 April 2011 from patients admitted to acute care hospitals were tested for influenza using nucleic acid amplification techniques. Influenza vaccination was ascertained from physician billing claims through linkage to health administrative datasets.
Results. Receipt of the 2010–2011 seasonal influenza vaccine was associated with a 42% (95% confidence interval, 29%–53%) reduction in laboratory-confirmed influenza hospitalizations. Vaccine effectiveness estimates were consistent across age groups, by sex, and regardless of outcome severity, timing of testing, and when considering individuals vaccinated <7 or <14 days prior to admission as unvaccinated.
Conclusions. Results of this study will better inform decision making regarding influenza vaccination of elderly adults. Similar analyses are needed annually due to antigenic drift and frequent changes in influenza vaccine composition. The linkage of routinely collected laboratory testing and health administrative data represents an efficient method for estimating influenza vaccine effectiveness that complements prospective studies.
doi:10.1093/cid/cit404
PMCID: PMC3749748  PMID: 23788243
influenza vaccine; hospitalization; vaccine effectiveness; elderly adults
14.  Improving uptake of influenza vaccination among older people: a randomised controlled trial. 
BACKGROUND: The uptake of influenza vaccination among older people is suboptimal. Contact with a doctor or nurse is associated with older people deciding to accept influenza vaccination. AIM: To compare different forms of approach in improving uptake of influenza vaccination among patients aged 75 years and over in primary care. DESIGN OF STUDY: Randomised controlled trial. SETTING: One large rural general practice serving the town and surrounding area of Melton Mowbray, Leicestershire. METHOD: All 2,052 patients aged 75 years and over, registered with the practice and not living in nursing/residential homes or sheltered accommodation, were included in the study. One-third of patients were randomised to receive an offer of influenza vaccination as part of an over-75 health check administered by a practice nurse in the patient's home, and two-thirds of patients were randomised to receive a personal letter of invitation to attend an influenza vaccination clinic held at the surgery. The main outcome measure was uptake of influenza vaccination. RESULTS: Six hundred and eighty patients were randomised to the health check arm of the trial and 1,372 were randomised to receive a personal letter. Of those randomised to the health check arm, 468 received the health check from the nurse. Overall, the difference in influenza vaccination uptake was 6.4% (95% confidence interval [CI] = 2.2% to 10.4%) with 67.9% (n = 932) of those who were sent a personal letter actually receiving the vaccine, compared with 74.3% (n = 505) of those offered a combined health check and influenza vaccination (P = 0.003). CONCLUSION: Combining home-based over- 75 health checks with influenza vaccination can improve uptake among older patients. However this intervention is likely to be costly and its effect on influenza vaccination rates is modest. The difference in uptake is greater among those who do not routinely comeforwardfor vaccination and a more viable option may be to target these patients.
PMCID: PMC1314411  PMID: 12236274
15.  Assessing the Relationship Between Seasonal and H1N1 Influenza Vaccination Status in Michigan Children, 2009–2010 
Public Health Reports  2011;126(Suppl 2):70-77.
Objectives
To examine the relationship between the outcome of vaccination for H1N1 influenza and receipt of seasonal influenza vaccine in Michigan children during the 2009–2010 season, we examined the influenza vaccination status of all Michigan residents aged six months to 18 years who were enrolled in the Michigan Care Improvement Registry.
Methods
We calculated descriptive statistics for dichotomous and categorical variables, including numbers of children vaccinated with either influenza A (H1N1) monovalent vaccine and/or seasonal influenza vaccine, gender, race/ethnicity, provider type, moved-or-gone-elsewhere (MOGE) status, and vaccine type. We used logistic regression, adjusting for potential confounders and effect modifiers (age and MOGE status), to calculate odds ratios associated with H1N1 vaccine status (vaccinated vs. unvaccinated).
Results
Michigan children who were vaccinated for seasonal influenza from August 1, 2009, to February 27, 2010, were 6.26 (95% confidence interval 6.18, 6.34) times as likely as children who were unvaccinated for seasonal influenza to be vaccinated with H1N1 2009 monovalent vaccine. Private health-care providers administered 91% of the seasonal influenza vaccine and 59% of the H1N1 vaccine.
Conclusions
Increasing seasonal influenza vaccination campaign efforts could also benefit pandemic influenza vaccination efforts. Special educational outreach to parents regarding the importance of influenza vaccination for all children, regardless of age, may be needed. Stocking and offering traditional seasonal vaccine with pandemic-specific vaccine may aid in increasing immunization uptake. Efforts should be made to ensure that private providers are supplied with adequate pandemic vaccine as part of preparedness planning.
PMCID: PMC3113432  PMID: 21812171
16.  An audit of influenza vaccination status in adults with inflammatory bowel disease 
BACKGROUND
Several guidelines recommend influenza vaccination for high-risk patients, including those on immune-suppressing medications (IS).
OBJECTIVE:
To assess the vaccination status and immunization history of an outpatient inflammatory bowel disease (IBD) population for H1N1 and seasonal influenza.
RESULTS:
Among 250 patients, 104 (41.6%) had been immunized against H1N1 and 62 (24.8%) against seasonal influenza, and 158 (63.2%) were taking IS (azathioprine, 6-mercaptopurine, infliximab, adalimumab, methotrexate, cyclosporine or prednisone). Among subjects on IS, the presence of comorbidities warranting vaccination was associated with higher likelihood of H1N1 immunization (62.5% versus 35.8%; P=0.022) but not of seasonal influenza vaccination (25.0% versus 17.2%; P=0.392). Among patients without comorbidities warranting vaccination, IS was associated with a decreased likelihood of vaccination against seasonal influenza (17.2% versus 30.7%; P=0.036) but not H1N1 (35.8% versus 41.3%; P=0.46). The frequency of H1N1 vaccination was significantly higher among patients who visited a general practitioner at least once yearly (45.7% versus 20%; P=0.0027), with a similar trend for seasonal influenza vaccination (27.1% versus 12.5%; P=0.073). Among 91 patients on IS who declined vaccination, 39.6% reported fear of immediate side effects, 29.7% reported concerns about developing serious medical complications, 15.4% reported concerns about activating IBD and 15.4% were not aware that vaccination was indicated.
CONCLUSIONS:
Current strategies for vaccinating IBD patients on IS are inadequate. Primary care provider education, incentive programs and regular primary care contact may improve immunization uptake.
PMCID: PMC3441164  PMID: 22993728
Crohn disease; Immunization; Influenza; Inflammatory bowel disease; Ulcerative colitis; Vaccination
17.  Strategies to increase influenza vaccination rates: outcomes of a nationwide cross-sectional survey of UK general practice 
BMJ Open  2012;2(3):e000851.
Objective
To identify practice strategies associated with higher flu vaccination rates in primary care.
Design
Logistic regression analysis of data from a cross-sectional online questionnaire.
Setting
795 general practices across England.
Participants
569 practice managers, 335 nursing staff and 107 general practitioners.
Primary outcome measures
Flu vaccination rates achieved by each practice in different groups of at-risk patients.
Results
7 independent factors associated with higher vaccine uptake were identified. Having a lead staff member for planning the flu campaign and producing a written report of practice performance predicted an 8% higher vaccination rate for at-risk patients aged <65 years (OR 1.37, 95% CI 1.10 to 1.71). These strategies, plus sending a personal invitation to all eligible patients and only stopping vaccination when Quality and Outcomes Framework targets are reached, predicted a 7% higher vaccination rate (OR 1.45, 95% CI 1.10 to 1.92) in patients aged ≥65 years. Using a lead member of staff for identifying eligible patients, with either a modified manufacturer's or in-house search programme for interrogating the practice IT system, independently predicted a 4% higher vaccination rate in patients aged ≥65 years (OR 1.22, 95% CI 1.06 to 1.41/OR 1.20, 95% CI 1.03 to 1.40). The provision of flu vaccine by midwives was associated with a 4% higher vaccination rate in pregnant women (OR 1.19, 95% CI 1.02 to 1.40).
Conclusions
Clear leadership, effective communication about performance and methods used to identify and contact eligible patients were independently associated with significantly higher rates of flu vaccination. Financial targets appear to incentivise practices to work harder to maximise seasonal influenza vaccine uptake. The strategies identified here could help primary care providers to substantially increase their seasonal flu vaccination rates towards or even above the Chief Medical Officer's targets.
Article summary
Article focus
Uptake of seasonal influenza vaccination in the UK's at-risk population is below the national and international target of 75%.
Evidence-based guidance, to advise practices how to optimise all aspects of their flu vaccination campaigns and maximise their likelihood of protecting at-risk patients against flu and its serious sequelae, is greatly needed.
This study sought to identify which strategies and procedures were associated with higher rates of flu vaccine uptake.
Key messages
This study has identified seven key strategies that were significantly associated with the success of practices' seasonal flu vaccination campaigns.
If widely implemented by general practices, average vaccination rates would be predicted to rise by 7%–8% (thereby exceeding WHO target in patients aged >65 years).
Strengths and limitations of this study
The study sample was large and representative, despite a participation rate of only 27.5%.
Outcome measures (vaccination rates) were objective and corrected for practice size.
Strategies used to provide and encourage vaccination were self-reported.
doi:10.1136/bmjopen-2011-000851
PMCID: PMC3358626  PMID: 22581793
18.  Herpes Zoster Vaccine Effectiveness against Incident Herpes Zoster and Post-herpetic Neuralgia in an Older US Population: A Cohort Study 
PLoS Medicine  2013;10(4):e1001420.
Sinead Marie Langan and colleagues studied a cohort of more than 750,000 individuals over the age of 65 years to assess whether herpes zoster vaccine is effective against incident zoster and post-herpetic neuralgia in an older population.
Background
Herpes zoster is common and has serious consequences, notably post-herpetic neuralgia (PHN). Vaccine efficacy against incident zoster and PHN has been demonstrated in clinical trials, but effectiveness has not been studied in unselected general populations unrestricted by region, full health insurance coverage, or immune status. Our objective was to assess zoster vaccine effectiveness (VE) against incident zoster and PHN in a general population-based setting.
Methods and Findings
A cohort study of 766,330 fully eligible individuals aged ≥65 years was undertaken in a 5% random sample of Medicare who received and did not receive zoster vaccination between 1st January 2007 and 31st December 2009.
Incidence rates and hazard ratios for zoster and PHN were determined in vaccinated and unvaccinated individuals. Analyses were adjusted for age, gender, race, low income, immunosuppression, and important comorbidities associated with zoster, and then stratified by immunosuppression status. Adjusted hazard ratios were estimated using time-updated Cox proportional hazards models.
Vaccine uptake was low (3.9%) particularly among black people (0.3%) and those with evidence of low income (0.6%). 13,112 US Medicare beneficiaries developed incident zoster; the overall zoster incidence rate was 10.0 (9.8–10.2) per 1,000 person-years in the unvaccinated group and 5.4 (95% CI 4.6–6.4) per 1,000 person-years in vaccinees, giving an adjusted VE against incident zoster of 0.48 (95% CI 0.39–0.56). In immunosuppressed individuals, VE against zoster was 0.37 (95% CI 0.06–0.58). VE against PHN was 0.59 (95% CI 0.21–0.79).
Conclusions
Vaccine uptake was low with variation in specific patient groups. In a general population cohort of older individuals, zoster vaccination was associated with reduction in incident zoster, including among those with immunosuppression. Importantly, this study demonstrates that zoster vaccination is associated with a reduction in PHN.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Chickenpox is an extremely common childhood infectious disease that is caused by the herpes varicella-zoster virus. Children usually recover quickly from chickenpox, but dormant varicella-zoster virus persists throughout life inside the nervous system. The dormant virus causes no symptoms but if it becomes reactivated, it causes shingles (zoster), a painful skin rash. Anyone who has had chickenpox can develop shingles but shingles is most common and most severe in 60–80-year-old people. Indeed, about half of people who live to 85 will have an episode of shingles. Early signs of shingles include burning or shooting pain and tingling or itching. Blister-like sores, which last from 1–14 days, then develop in a region of one side of the body or on one side of the face. The pain of shingles can be debilitating and can continue after the rash disappears—“post-herpetic neuralgia,” which can last for months to years, greatly reduces the quality of life. There is no cure for shingles but early treatment with antivirals may help to prevent lingering pain by inhibiting viral replication.
Why Was This Study Done?
Shingles vaccination can prevent shingles or lessen its effects. In clinical trials, vaccination reduced the incidence of shingles (the proportion of a population who develop shingles in a year) and the incidence of post-herpetic neuralgia, and vaccination against shingles is now recommended in the US for everyone over the age of 60 except individuals with a weakened immune system (for example, people with HIV/AIDS). However, these clinical trials determined the vaccine's efficacy in selected populations under controlled conditions. How effective is the vaccine in unselected populations in routine clinical use? In this cohort study, the researchers assess zoster (shingles) vaccine effectiveness against incident shingles and post-herpetic neuralgia in an unselected population of older individuals in the US. A cohort study follows a group of individuals who differ with respect to specific factors (in this study, vaccination against shingles) to determine how these factors affect the rates of specific outcomes (shingles and post-herpetic neuralgia).
What Did the Researchers Do and Find?
The researchers undertook their cohort study in 766,330 randomly chosen Medicare beneficiaries aged 65 years or more. Medicare is a US government health insurance scheme that mainly helps to pay the health care costs of people aged 65 or older. The researchers used Medicare administrative data to identify which cohort members received zoster vaccination between January 2007 and December 2009 and which developed incident shingles (defined as a first diagnosis of shingles combined with the use of antivirals) or post-herpetic neuralgia (defined as a code for post-herpetic neuralgia, non-specific neuralgia, or a second diagnostic code for shingles 90 days after the first diagnosis combined with a prescription for pain relief, an anticonvulsant, or an antidepressant). Vaccine uptake was low in this unselected study population—only 3.9% of the participants were vaccinated. The vaccination rate was particularly low among black people (0.6% of person-time) and among people with a low income (0.3%). About 13,000 participants developed incident shingles. The shingles incidence rate was 10.0 per 1,000 person-years among unvaccinated participants and 5.4 per 1,000 person-years among vaccinated participants. Vaccine effectiveness against incident shingles was 48%. That is, vaccination reduced the incidence of shingles by 48% (in other words, approximately half as many vaccinated individuals developed shingles as those who were not vaccinated). Vaccine effectiveness against incident shingles among immunosuppressed individuals was lower (37%). Finally, vaccine effectiveness against post-herpetic neuralgia was 59%.
What Do These Findings Mean?
These findings show that shingles vaccine uptake is low among elderly people in the US and varies between different patient groups. They show that shingles vaccination is effective against incident shingles in a general population of older individuals, including those who are immunosuppressed, and suggest that shingles vaccination is effective against post-herpetic neuralgia. However, because these findings rely on administrative data, their accuracy may be affected by misclassification of vaccination and of outcomes. Moreover, because shingles vaccination was not randomized, the vaccinated individuals might have shared other characteristics that were actually responsible for their lower incidence of shingles and/or post-herpetic neuralgia compared to unvaccinated individuals. Despite these limitations, these findings provide useful information for policy makers in countries that are currently considering the introduction of shingles vaccination into routine practice. Moreover, they highlight the need to increase shingles vaccination among elderly individuals in the US, the section of the population at the highest risk of post-herpetic neuralgia.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/ 10.1371/journal.pmed.1001420.
The US Centers for Disease Control and Prevention have detailed information about all aspects of shingles (zoster), including information on vaccination for the public and for health care professionals, and a personal story about shingles
The NIH Senior Health website includes information on shingles and a video describing a personal experience of shingles
The UK National Health Service Choices also provides information about all aspects of shingles and a personal story
MedlinePlus provides links to other resources about shingles (in English and Spanish)
The British Association of Dermatologists website has an information leaflet on shingles
The New Zealand Dermatological Society website has a leaflet on shingles
doi:10.1371/journal.pmed.1001420
PMCID: PMC3621740  PMID: 23585738
19.  Racial Similarities in Response to Standardized Offer of Influenza Vaccination 
BACKGROUND
Despite known benefits of influenza vaccination and coverage by Medicare Part B, elderly minority patients are less likely to receive influenza vaccination than whites.
OBJECTIVES
To test whether a nonphysician-initiated standardized offer of influenza vaccination to all elderly primary care patients would result in similar proportions of African-American and white patients accepting vaccine.
DESIGN
In 7 metropolitan Detroit primary care practices during the 2003 influenza vaccination season, medical assistants assessed influenza immunization status of all patients 65 years and older and collected limited demographic data. Eligible patients were offered vaccination.
MEASUREMENTS
Proportion of patients accepting influenza vaccination by race and predictors of vaccine acceptance.
RESULTS
Four hundred and fifty-four eligible patients with complete racial information were enrolled: 40% African American, 52% white, 8% other race/ethnicity. Similar proportions of African Americans and whites had already received the 2003 vaccine (11.6% and 11.0%, respectively) or stated vaccination as the reason for visit (23.8% and 30.5%, respectively). Among the remainder, there also were similar proportions who accepted vaccination: 68.9% white and 62.1% African-American patients. History of previous vaccination was the only statistically significant predictor of vaccine acceptance (odds ratio [OR] 8.64, 95% confidence interval [CI] 4.17, 17.91, P <.001). After adjusting for history of previous vaccination, age, gender, and education, the odds of vaccine acceptance were no different for whites and African Americans (OR 1.20, 95% CI 0.63, 2.29, P = .57).
CONCLUSIONS
Vaccination acceptance differed little between African-American and white elderly patients. Using nonphysician personnel to identify and offer influenza vaccine to eligible patients is easily accomplished in primary care offices and has the potential to eliminate racial disparities in influenza vaccination.
doi:10.1111/j.1525-1497.2006.00401.x
PMCID: PMC1484713  PMID: 16686810
health care delivery; influenza; vaccination; race/ethnicity; underserved populations; disparities
20.  How complete is influenza immunization coverage? A study in 75 nursing and residential homes for elderly people. 
BACKGROUND. Elderly people in residential accommodation are particularly susceptible to outbreaks of influenza. Up to 70% of residents can become ill and many will develop complications or die. Immunization can prevent such outbreaks and is cost-effective. AIM. A study was undertaken to measure influenza immunization coverage in residential accommodation for elderly people and to identify factors that might influence uptake. METHOD. In March 1992, a questionnaire survey was conducted of all 113 registered nursing and residential homes for elderly people, in South Glamorgan. It asked about the demographic characteristics of people resident on 1 October 1991, their influenza immunization history and the homes' arrangements for administering immunizations. RESULTS. Questionnaires were returned by respondents from 75 homes (66%). Mean influenza vaccine uptake was 67%. Uptake was higher in nursing homes (mean of 82% in eight nursing homes) than in homes registered as both nursing and residential homes (mean of 76% in six homes) or in residential homes (mean of 65% in 61 homes). Nearly all of those immunized (94%) had been immunized by the end of November 1991. Residents who were reported to have underlying disease that increased their risk of complications if they contracted influenza were no more likely to have been immunized than those without risk factors. Immunization coverage varied considerably both between homes and between general practices. Most general practices in South Glamorgan had several elderly people in residential accommodation on their list, but only nine out of 64 practices had immunized all the elderly residents on their list and 12 practices had immunized fewer than half. Routine recording of immunization status in nursing and residential homes was variable, often as a consequence of poor communication between the primary health care team and staff at the home. Even where recorded, retrieval of the data was sometimes a problem. CONCLUSION. Influenza immunization coverage could be improved if general practices held a case register of all at-risk patients including elderly residents, and if nursing and residential homes were encouraged to keep better immunization records. These measures would facilitate year-on-year monitoring of influenza immunization coverage and the targeting of homes with low immunization coverage.
PMCID: PMC1239336  PMID: 7576847
21.  Influenza and pneumococcal vaccinations in dialysis patients in a London district general hospital 
Clinical Kidney Journal  2013;7(1):27-32.
Background
Patients on dialysis mount reduced immune responses compared with the general population. The Department of Health advises that these patients receive influenza and pneumococcal vaccinations at regular intervals—once yearly and every five years, respectively. This article investigates the uptake of these vaccinations in this patient population and seeks to examine factors that may influence vaccination status such as patient's language and presence of a general practitioner (GP) electronic vaccination reminder system. It also explores preferred site of vaccination for patients and GPs as these are primary care vaccinations yet patients have more frequent contact with their dialysis unit than their GP, blurring the boundaries between primary and specialized care.
Methods
This is a retrospective study of all patients registered as dialysing at the North Middlesex University Hospital NHS Trust (NMUH) in September 2011. Information was obtained through GP letters, GP and patient questionnaires.
Results
Of 154 patients, 133 were included in the data analysis. Nineteen per cent were up-to-date with both vaccinations and 67% with their influenza vaccination. Fifty per cent had received the influenza vaccination in the last two consecutive years. Thirty per cent were not up-to-date with either vaccination. There was no evidence of a difference in uptake in 2009 (P = 0.7564) and in 2010 (P = 0.7435) among those who could and could not speak English. Twenty-five per cent of GPs and 58.6% of patients preferred vaccination to occur in the dialysis unit. Unfortunately a high number of GPs did not provide information on whether they used an electronic vaccination reminder but the analysis from the information provided by the few respondents did not reveal any correlation between the presence of an electronic reminder and vaccination status.
Conclusion
Most dialysis patients were not up-to-date with both vaccinations. They were, however, more up-to-date with their influenza than their pneumococcal vaccination. Non-English speakers did not appear to be disadvantaged. GP electronic reminder systems may have influenced influenza uptake but this study did not demonstrate a correlation and this is likely due to the lack of GP respondents; the effectiveness of electronic reminders merits further studies as a tool to improve vaccination rates in at-risk populations. Most patients visited their GP at least annually but preferred to receive their vaccinations at the hospital. Vaccinating in the dialysis unit and maintaining an electronic record accessible to GPs or generating a letter for GPs may help fill the vaccination gap in these patients. Overall, more evidence is required for the effectiveness of such vaccinations and their frequency, but in the meantime UK national guidelines were not being followed with a large proportion of patients remaining unvaccinated against influenza and in particular pneumococcal disease. This audit highlights the importance of local data collection, discussions around correlations influencing outcomes and publication of results to improve standards of care at a national level.
doi:10.1093/ckj/sft138
PMCID: PMC3901040  PMID: 24466425
dialysis; flu; influenza; pneumococcus; vaccination
22.  Immunisation against influenza among people aged over 65 living at home in Leicestershire during winter 1991-2. 
BMJ : British Medical Journal  1993;306(6883):974-976.
OBJECTIVES--To assess the size of the elderly population for whom influenza vaccine is indicated and how many are vaccinated. DESIGN--Cohort questionnaire study. SETTING--Leicestershire general practices. SUBJECTS--800 elderly subjects selected a random from the Leicestershire family health services authority list who were not living in residential care, 565 of whom returned a questionnaire. MAIN OUTCOME MEASURES--Patient profile, vaccine offers, vaccination status, and reasons for not accepting vaccine. RESULTS--170 of 334 (51%) people aged 65-74 years and 106 of 205 (52%) aged > or = 75 years had one or more medical indications for influenza vaccine. 195 people were offered vaccine, 49 of whom had no risk factor. 152 offers were made opportunistically during visits to the practice and only six were made in writing or by telephone. Overall 113 of 266 patients with known medical indications were immunised. Vaccine was accepted by 148 of 189 (78%) offered it, and, as judged by acceptance in sequential years, influenza vaccine was well tolerated. The main reasons for not being vaccinated were misconception about risk status and inadequate advice from doctors. CONCLUSIONS--The prevalence of medical indications for vaccine is not large enough to justify a policy of universal immunisation. Most patients offered vaccine accept it and tolerate it well. Improved targeting and education is needed to increase immunisation of people at risk.
PMCID: PMC1677436  PMID: 8490478
23.  Predictive factors associated with the acceptance of pandemic and seasonal influenza vaccination in health care workers and students in Tuscany, Central Italy 
Human Vaccines & Immunotherapeutics  2013;9(12):2603-2612.
Assessing the beliefs and attitudes of Health Care Workers (HCW) to influenza and influenza vaccination can be useful in overcoming low compliance rates. The purpose of our study is to evaluate the opinion of HCW and students regarding influenza, influenza vaccine and the factors associated with vaccination compliance. A survey was conducted between October 2010 and April 2011 in the Florence metropolitan area. A questionnaire was administered to HCW in three local healthcare units and at Careggi University Teaching Hospital. Students matriculating in health degree programs at Florence University were also surveyed.
The coverage with vaccination against seasonal and pandemic influenza is generally low, and it is lower in students than in HCW (12.5% vs 15% for the seasonal vaccination, 8.5% vs 18% for the pandemic vaccination). Individuals comply with vaccination offer mainly to protect themselves and their contacts. Individuals not receiving vaccination did not consider themselves at risk, had never been vaccinated before or believed that pandemic influenza was not a public health concern. Physicians had the highest compliance to vaccination and women were less frequently vaccinated than men. HCW do not appear to perceive their possible influenza infections as a risk for patients: HCW receive vaccination mainly as a form of personal protection.
Low compliance to vaccination is determined by various factors and therefore requires a multi-faceted strategy of response. This should include short-term actions to overcome organizational barriers, in addition to long-term interventions to raise HCW’s level of knowledge about influenza and influenza vaccination.
doi:10.4161/hv.26036
PMCID: PMC4162047  PMID: 23954990
attitudes towards vaccine; vaccine policy; health care workers; influenza; H1N1; pandemic
24.  Accelerating Policy Decisions to Adopt Haemophilus influenzae Type b Vaccine: A Global, Multivariable Analysis 
PLoS Medicine  2010;7(3):e1000249.
Jessica Shearer and colleagues analyze data from 147 countries to identify factors that influence the time taken to introduce routine vaccination against Haemophilus influenzae type b (Hib).
Background
Adoption of new and underutilized vaccines by national immunization programs is an essential step towards reducing child mortality. Policy decisions to adopt new vaccines in high mortality countries often lag behind decisions in high-income countries. Using the case of Haemophilus influenzae type b (Hib) vaccine, this paper endeavors to explain these delays through the analysis of country-level economic, epidemiological, programmatic and policy-related factors, as well as the role of the Global Alliance for Vaccines and Immunisation (GAVI Alliance).
Methods and Findings
Data for 147 countries from 1990 to 2007 were analyzed in accelerated failure time models to identify factors that are associated with the time to decision to adopt Hib vaccine. In multivariable models that control for Gross National Income, region, and burden of Hib disease, the receipt of GAVI support speeded the time to decision by a factor of 0.37 (95% CI 0.18–0.76), or 63%. The presence of two or more neighboring country adopters accelerated decisions to adopt by a factor of 0.50 (95% CI 0.33–0.75). For each 1% increase in vaccine price, decisions to adopt are delayed by a factor of 1.02 (95% CI 1.00–1.04). Global recommendations and local studies were not associated with time to decision.
Conclusions
This study substantiates previous findings related to vaccine price and presents new evidence to suggest that GAVI eligibility is associated with accelerated decisions to adopt Hib vaccine. The influence of neighboring country decisions was also highly significant, suggesting that approaches to support the adoption of new vaccines should consider supply- and demand-side factors.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Every year, immunization averts more than 2 million deaths by preparing people's immune systems to recognize and attack disease-causing organisms (pathogens) rapidly and effectively. Although the immune system is designed to protect the human body against infections, the first time a person is exposed to a pathogen (usually during early childhood) their immune system can take some time to respond. As a result, they can become seriously ill or even die. However, the immune system “learns” from the experience and when the pathogen is encountered again, the immune system swings into action much more quickly. Immunization or vaccination is a safe way to make individuals resistant to infectious diseases. It works by exposing them to weakened or dead pathogens or to pathogen molecules (antigens) that the immune system recognizes as foreign. Widespread, routine immunization of children is, therefore, an essential component of national and global strategies to reduce childhood illnesses and deaths.
Why Was This Study Done?
Although many factors affect the uptake of immunization (in particular, vaccine prices), national policy decisions to adopt new vaccines are an essential step toward improving coverage. Unfortunately, these decisions are often delayed in developing countries. Thus, although many industrialized countries have routinely immunized their children with the highly effective Haemophilus influenza type b (Hib) conjugate vaccine since it became available in the early 1990s, only 13 low-income countries were using the vaccine in 2004. Hib bacteria, which cause pneumonia (lung infection) and meningitis (brain inflammation), kill about 370,000 unvaccinated young children every year. In this study, the researchers try to explain delays in the adoption of routine Hib vaccination in developing countries by analyzing the associations between Hib vaccination and factors such as national economic status, local Hib burden, and eligibility for support from the Global Alliance for Vaccines and Immunisation (GAVI Alliance; a public–private partnership that offers financial, technical, and health systems support for the introduction of national immunization programs to developing countries that meet certain eligibility criteria).
What Did the Researchers Do and Find?
The researchers used a statistical approach called accelerated failure time analysis to analyze data collected in 147 countries between 1990 and 2007 on vaccine costs, Hib disease incidence, GAVI eligibility, and other factors that could influence decision-makers' perceptions of the costs and benefits of Hib vaccination. After allowing for gross national income, region, and burden of Hib disease, the researchers identified several factors that influenced the time between the availability of a Hib conjugate vaccine in a country and a decision being made to introduce routine Hib vaccination. The receipt of GAVI support speeded the decision to adopt vaccination by 63%, for example, and sharing borders with two or more countries that had adopted the vaccine speeded the decision by 50%. By contrast, for each 1% increase in vaccine costs, the time to decision to adopt vaccination was delayed by 2%. The 1998 and 2006 World Health Organization recommendations on routine Hib vaccination and the existence of local studies on Hib disease had no influence on the time to decision.
What Do These Findings Mean?
These findings confirm previous studies that showed that increases in the price of Hib vaccine increase the time to adoption. In addition, they suggest that GAVI eligibility accelerates decisions to adopt this vaccine and show that the decisions made by neighboring countries are important, which suggests that policy diffusion may occur. Thus, in the case of adoption of the Hib vaccine, both supply-side and demand-side factors seem to be important. Its is relevant to note that during writing of the article, JCS, MLS, MRR, APB, and RAH were employed by the Hib Initiative, which was funded by the GAVI Alliance. The findings do not necessarily represent the views, policies or decisions of the Hib Initiative or the GAVI Alliance. Importantly, these findings are explanatory, not predictive, so they cannot be applied directly to new vaccines to improve their rate of adoption. Nevertheless, these findings highlight the potential importance of setting up formal and informal networks to facilitate policy diffusion and suggest that long-term price and supply certainty might be factors that could help to accelerate national decisions to adopt new and/or underutilized vaccines and other public-health technologies.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000249.
The World Health Organization provides information on immunization and on Haemophilus influenza type b (in several languages)
The GAVI Alliance Web site describes the work of this public–private partnership and provides details of developing countries eligible for Hib vaccination support
The Hib Initiative aims to reduce the risk of childhood death and disability through sustained use of Hib vaccine
MedlinePlus provides links to further resources on immunization and information on the Haemophilus influenzae type b vaccine (in English and Spanish)
doi:10.1371/journal.pmed.1000249
PMCID: PMC2838745  PMID: 20305714
25.  Estimates of Pandemic Influenza Vaccine Effectiveness in Europe, 2009–2010: Results of Influenza Monitoring Vaccine Effectiveness in Europe (I-MOVE) Multicentre Case-Control Study 
PLoS Medicine  2011;8(1):e1000388.
Results from a European multicentre case-control study reported by Marta Valenciano and colleagues suggest good protection by the pandemic monovalent H1N1 vaccine against pH1N1 and no effect of the 2009–2010 seasonal influenza vaccine on H1N1.
Background
A multicentre case-control study based on sentinel practitioner surveillance networks from seven European countries was undertaken to estimate the effectiveness of 2009–2010 pandemic and seasonal influenza vaccines against medically attended influenza-like illness (ILI) laboratory-confirmed as pandemic influenza A (H1N1) (pH1N1).
Methods and Findings
Sentinel practitioners swabbed ILI patients using systematic sampling. We included in the study patients meeting the European ILI case definition with onset of symptoms >14 days after the start of national pandemic vaccination campaigns. We compared pH1N1 cases to influenza laboratory-negative controls. A valid vaccination corresponded to >14 days between receiving a dose of vaccine and symptom onset. We estimated pooled vaccine effectiveness (VE) as 1 minus the odds ratio with the study site as a fixed effect. Using logistic regression, we adjusted VE for potential confounding factors (age group, sex, month of onset, chronic diseases and related hospitalizations, smoking history, seasonal influenza vaccinations, practitioner visits in previous year). We conducted a complete case analysis excluding individuals with missing values and a multiple multivariate imputation to estimate missing values. The multivariate imputation (n = 2902) adjusted pandemic VE (PIVE) estimates were 71.9% (95% confidence interval [CI] 45.6–85.5) overall; 78.4% (95% CI 54.4–89.8) in patients <65 years; and 72.9% (95% CI 39.8–87.8) in individuals without chronic disease. The complete case (n = 1,502) adjusted PIVE were 66.0% (95% CI 23.9–84.8), 71.3% (95% CI 29.1–88.4), and 70.2% (95% CI 19.4–89.0), respectively. The adjusted PIVE was 66.0% (95% CI −69.9 to 93.2) if vaccinated 8–14 days before ILI onset. The adjusted 2009–2010 seasonal influenza VE was 9.9% (95% CI −65.2 to 50.9).
Conclusions
Our results suggest good protection of the pandemic monovalent vaccine against medically attended pH1N1 and no effect of the 2009–2010 seasonal influenza vaccine. However, the late availability of the pandemic vaccine and subsequent limited coverage with this vaccine hampered our ability to study vaccine benefits during the outbreak period. Future studies should include estimation of the effectiveness of the new trivalent vaccine in the upcoming 2010–2011 season, when vaccination will occur before the influenza season starts.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Following the World Health Organization's declaration of pandemic phase six in June 2009, manufacturers developed vaccines against pandemic influenza A 2009 (pH1N1). On the basis of the scientific opinion of the European Medicines Agency, the European Commission initially granted marketing authorization to three pandemic vaccines for use in European countries. During the autumn of 2009, most European countries included the 2009–2010 seasonal influenza vaccine and the pandemic vaccine in their influenza vaccination programs.
The Influenza Monitoring Vaccine Effectiveness in Europe network (established to monitor seasonal and pandemic influenza vaccine effectiveness) conducted seven case-control and three cohort studies in seven European countries in 2009–2010 to estimate the effectiveness of the pandemic and seasonal vaccines. Data from the seven pilot case-control studies were pooled to provide overall adjusted estimates of vaccine effectiveness.
Why Was This Study Done?
After seasonal and pandemic vaccines are made available to populations, it is necessary to estimate the effectiveness of the vaccines at the population level during every influenza season. Therefore, this study was conducted in European countries to estimate the pandemic influenza vaccine effectiveness and seasonal influenza vaccine effectiveness against people presenting to their doctor with influenza-like illness who were confirmed (by laboratory tests) to be infected with pH1N1.
What Did the Researchers Do and Find?
The researchers conducted a multicenter case-control study on the basis of practitioner surveillance networks from seven countries—France, Hungary, Ireland, Italy, Romania, Portugal, and Spain. Patients consulting a participating practitioner for influenza-like illness had a nasal or throat swab taken within 8 days of symptom onset. Cases were swabbed patients who tested positive for pH1N1. Patients presenting with influenza-like illness whose swab tested negative for any influenza virus were controls.
Individuals were considered vaccinated if they had received a dose of the vaccine more than 14 days before the date of onset of influenza-like illness and unvaccinated if they were not vaccinated at all, or if the vaccine was given less than 15 days before the onset of symptoms. The researchers analyzed pandemic influenza vaccination effectiveness in those vaccinated less than 8 days, those vaccinated between and including 8 and 14 days, and those vaccinated more than 14 days before onset of symptoms compared to those who had never been vaccinated.
The researchers used modeling (taking account of all potential confounding factors) to estimate adjusted vaccine effectiveness and stratified the adjusted pandemic influenza vaccine effectiveness and the adjusted seasonal influenza vaccine effectiveness in three age groups (<15, 15–64, and ≥65 years of age).
The adjusted results suggest that the 2009–2010 seasonal influenza vaccine did not protect against pH1N1 illness. However, one dose of the pandemic vaccines used in the participating countries conferred good protection (65.5%–100% according to various stratifications performed) against pH1N1 in people who attended their practitioner with influenza-like illness, especially in people aged <65 years and in those without any chronic disease. Furthermore, good pandemic influenza vaccine effectiveness was observed as early as 8 days after vaccination.
What Do These Findings Mean?
The results of this study provide early estimates of the pandemic influenza vaccine effectiveness suggesting that the monovalent pandemic vaccines have been effective. The findings also give an indication of the vaccine effectiveness for the Influenza A (H1N1) 2009 strain included in the 2010–2011 seasonal vaccines, although specific vaccine effectiveness studies will have to be conducted to verify if similar good effectiveness are observed with 2010–2011 trivalent vaccines. However, the results of this study should be interpreted with caution because of limitations in the pandemic context (late timing of the studies, low incidence, low vaccine coverage leading to imprecise estimates) and potential biases due the study design, confounding factors, and missing values. The researchers recommend that in future season studies, the sample size per country should be enlarged in order to allow for precise pooled and stratified analyses.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000388.
The World Health Organization has information on H1N1 vaccination
The US Centers for Disease Control and Prevention provides a fact sheet on the 2009 H1N1 influenza virus
The US Department of Health and Human services has a comprehensive website on flu
The European Centre for Disease Prevention and Control provides information on 2009 H1N1 pandemic
The European Centre for Disease Prevention and Control presents a summary of the 2009 H1N1 pandemic in Europe and elsewhere
doi:10.1371/journal.pmed.1000388
PMCID: PMC3019108  PMID: 21379316

Results 1-25 (939005)