PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (515912)

Clipboard (0)
None

Related Articles

1.  A Large-Scale Analysis of Odor Coding in the Olfactory Epithelium 
The Journal of Neuroscience  2011;31(25):9179-9191.
Mammals can perceive and discriminate myriad volatile chemicals as having a distinct odor. Odorants are initially detected by odorant receptors (ORs) on olfactory sensory neurons (OSNs) in the nose. In the mouse, each OSN expresses one of ∼1000 different OR genes. Although OSNs and their expressed ORs constitute the fundamental units of sensory input to the brain, a comprehensive understanding of how they encode odor identities is still lacking. To gain a broader and more detailed understanding of odorant recognition and odor coding at this level, we tested the responses of 3000 mouse OSNs to 125 odorants with diverse structures and perceived odors. These studies revealed extraordinary diversity, but also bias, in odorant recognition by the OSN, and thus OR, repertoire. They indicate that most OSNs are narrowly tuned to detect a subset of odorants with related structures and often related odors, but that the repertoire also includes broadly tuned components. Strikingly, the vast majority of odorants activated a unique set of OSNs, usually two or more in combination. The resulting combinatorial codes varied in size among odorants and sometimes contained both narrowly and broadly tuned components. While many OSNs recognized multiple odorants, some appeared specific for a given pheromone or other animal-associated compound, or for one or more odorants with a particular odor quality, raising the possibility that signals derived from some OSNs and ORs might elicit an innate behavior or convey a specific odor quality.
doi:10.1523/JNEUROSCI.1282-11.2011
PMCID: PMC3758579  PMID: 21697369
2.  Mapping of Class I and Class II Odorant Receptors to Glomerular Domains by Two Distinct Types of Olfactory Sensory Neurons in the Mouse 
Neuron  2009;61(2):220-233.
SUMMARY
The repertoire of ~1200 odorant receptors (ORs) is mapped onto the array of ~1800 glomeruli in the mouse olfactory bulb (OB). The spatial organization of this array is influenced by the ORs. Here we show that glomerular mapping to broad domains in the dorsal OB is determined by two types of olfactory sensory neurons (OSNs), which reside in the dorsal olfactory epithelium. The OSN types express either Class I or Class II OR genes. Axons from the two OSN types segregate already within the olfactory nerve and form distinct domains of glomeruli in the OB. These class-specific anatomical domains correlate with known functional odorant response domains. However, axonal segregation and domain formation are not determined by the class of the expressed OR protein. Thus, the two OSN types are determinants of axonal wiring, operate at a higher level than ORs, and contribute to the functional organization of the glomerular array.
doi:10.1016/j.neuron.2008.11.010
PMCID: PMC3013286  PMID: 19186165
3.  Large-Scale Investigation of the Olfactory Receptor Space Using a Microfluidic Microwell Array 
Lab on a chip  2010;10(9):1120-1127.
The mammalian olfactory system is able to discriminate among tens of thousands of odorant molecules. In mice, each odorant is sensed by a small subset of the approximately 1,000 odorant receptor (OR) types, with one OR gene expressed by each olfactory sensory neuron (OSN). However, the sum of the large repertoire of OR/OSN types and difficulties with heterologous expression have made it almost impossible to analyze odorant responsiveness across all OR/OSN types. We have developed a microfluidic approach that allowed us to screen over 20,000 single cells at once in microwells. By using calcium imaging, we were able to detect and analyze odorant responses of about 2,900 OSNs simultaneously. Importantly, this technique allows for both the detection of rare responding OSNs as well as the identification of OSN populations broadly responsive to odorants of unrelated structures. This technique is generally applicable for screening large numbers of single cells and should help to characterize rare cell behaviors in fields such as toxicology, pharmacology, and cancer research.
doi:10.1039/b920585c
PMCID: PMC3135426  PMID: 20390129
4.  A circuit supporting concentration-invariant odor perception in Drosophila 
Journal of Biology  2009;8(1):9.
Background
Most odors are perceived to have the same quality over a large concentration range, but the neural mechanisms that permit concentration-invariant olfactory perception are unknown. In larvae of the vinegar fly Drosophila melanogaster, odors are sensed by an array of 25 odorant receptors expressed in 21 olfactory sensory neurons (OSNs). We investigated how subsets of larval OSNs with overlapping but distinct response properties cooperate to mediate perception of a given odorant across a range of concentrations.
Results
Using calcium imaging, we found that ethyl butyrate, an ester perceived by humans as fruity, activated three OSNs with response thresholds that varied across three orders of magnitude. Whereas wild-type larvae were strongly attracted by this odor across a 500-fold range of concentration, individuals with only a single functional OSN showed attraction across a narrower concentration range corresponding to the sensitivity of each ethyl butyrate-tuned OSN. To clarify how the information carried by different OSNs is integrated by the olfactory system, we characterized the response properties of local inhibitory interneurons and projection neurons in the antennal lobe. Local interneurons only responded to high ethyl butyrate concentrations upon summed activation of at least two OSNs. Projection neurons showed a reduced response to odors when summed input from two OSNs impinged on the circuit compared to when there was only a single functional OSN.
Conclusions
Our results show that increasing odor concentrations induce progressive activation of concentration-tuned olfactory sensory neurons and concomitant recruitment of inhibitory local interneurons. We propose that the interplay of combinatorial OSN input and local interneuron activation allows animals to remain sensitive to odors across a large range of stimulus intensities.
doi:10.1186/jbiol108
PMCID: PMC2656214  PMID: 19171076
5.  Axon fasciculation in the developing olfactory nerve 
Neural Development  2010;5:20.
Olfactory sensory neuron (OSN) axons exit the olfactory epithelium (OE) and extend toward the olfactory bulb (OB) where they coalesce into glomeruli. Each OSN expresses only 1 of approximately 1,200 odor receptors (ORs). OSNs expressing the same OR are distributed in restricted zones of the OE. However, within a zone, the OSNs expressing a specific OR are not contiguous - distribution appears stochastic. Upon reaching the OB the OSN axons expressing the same OR reproducibly coalesce into two to three glomeruli. While ORs appear necessary for appropriate convergence of axons, a variety of adhesion associated molecules and activity-dependent mechanisms are also implicated. Recent data suggest pre-target OSN axon sorting may influence glomerular convergence. Here, using regional and OR-specific markers, we addressed the spatio-temporal properties associated with the onset of homotypic fasciculation in embryonic mice and assessed the degree to which subpopulations of axons remain segregated as they extend toward the nascent OB. We show that immediately upon crossing the basal lamina, axons uniformly turn sharply, usually at an approximately 90° angle toward the OB. Molecularly defined subpopulations of axons show evidence of spatial segregation within the nascent nerve by embryonic day 12, within 48 hours of the first OSN axons crossing the basal lamina, but at least 72 hours before synapse formation in the developing OB. Homotypic fasciculation of OSN axons expressing the same OR appears to be a hierarchical process. While regional segregation occurs in the mesenchyme, the final convergence of OR-specific subpopulations does not occur until the axons reach the inner nerve layer of the OB.
doi:10.1186/1749-8104-5-20
PMCID: PMC2936880  PMID: 20723208
6.  Early Expression of Odorant Receptors Distorts the Olfactory Circuitry 
The odor response properties of a mammalian olfactory sensory neuron (OSN) are determined by the tightly regulated expression of a single member of a very large family of odorant receptors (ORs). The OR also plays an important role in focusing the central projections of all OSNs expressing that particular receptor to a pair of stereotypic locations (glomeruli) in each olfactory bulb (OB), thus creating a spatial map of odor responses in the brain. Here we show that when initiated late in neural development, transgenic expression of one OR in almost all OSNs has little influence on the architecture of the OB. In contrast, early OR-transgene expression (mediated by the Gγ8-promoter) in 50–70% of OSNs grossly distorts the morphology of glomeruli and alters the projection patterns of many residual OSNs not expressing the transgene. Interestingly, this disruption of targeting persists in adult animals despite down-regulation of Gγ8 and transgenic OR expression that occurs as olfactory neurogenesis declines. Indeed, functional imaging studies reveal a dramatic decrease in the complexity of responses to odorants in adult Gγ8-transgenic OR mice. Thus, we show that initiation of transgenic OR-expression early in the development of OSNs, rather than just the extent of transgene expression, determines its effectiveness at modifying OB anatomy and function. Taken together these data imply that OR-expression timing needs to be very tightly controlled to achieve the precise wiring and function of the mammalian olfactory system.
doi:10.1523/JNEUROSCI.1502-10.2010
PMCID: PMC2906254  PMID: 20610762
7.  Principles of Glomerular Organization in the Human Olfactory Bulb – Implications for Odor Processing 
PLoS ONE  2008;3(7):e2640.
Olfactory sensory neurons (OSN) in mice express only 1 of a possible 1,100 odor receptors (OR) and axons from OSNs expressing the same odor receptor converge into ∼2 of the 1,800 glomeruli in each olfactory bulb (OB) in mice; this yields a convergence ratio that approximates 2∶1, 2 glomeruli/OR. Because humans express only 350 intact ORs, we examined human OBs to determine if the glomerular convergence ratio of 2∶1 established in mice was applicable to humans. Unexpectedly, the average number of human OB glomeruli is >5,500 yielding a convergence ratio of ∼16∶1. The data suggest that the initial coding of odor information in the human OB may differ from the models developed for rodents and that recruitment of additional glomeruli for subpopulations of ORs may contribute to more robust odor representation.
doi:10.1371/journal.pone.0002640
PMCID: PMC2440537  PMID: 18612420
8.  Mice with a “Monoclonal” Nose: Perturbations in an Olfactory Map Impair Odor Discrimination 
Neuron  2008;60(6):1068-1081.
SUMMARY
The recognition of odors is accomplished in the sensory epithelium where individual olfactory neurons express only one of 1,300 odorant receptor genes. Neurons expressing a given receptor project to two spatially invariant glomeruli in the olfactory bulb such that each odor elicits a distinct and sparse pattern of glomerular activity. We have altered the neural representation of odors in the brain by generating a mouse with a “monoclonal nose” in which greater than 95% of the sensory neurons express a single odorant receptor, M71. As a consequence, the frequency of sensory neurons expressing endogenous receptor genes is reduced twenty-fold. We observe that these mice can smell but odor discrimination and performance in associative olfactory learning tasks are impaired. However, these mice cannot detect the M71 ligand acetophenone despite the observation that virtually all sensory neurons and glomeruli are activated by this odor. The M71 transgenic mice readily detect other odors in the presence of acetophenone. These observations have implications for how receptor activation in the periphery is represented in the brain and how these representations encode odors.
doi:10.1016/j.neuron.2008.10.046
PMCID: PMC2732586  PMID: 19109912
9.  Topographic Mapping—The Olfactory System 
Sensory systems must map accurate representations of the external world in the brain. Although the physical senses of touch and vision build topographic representations of the spatial coordinates of the body and the field of view, the chemical sense of olfaction maps discontinuous features of chemical space, comprising an extremely large number of possible odor stimuli. In both mammals and insects, olfactory circuits are wired according to the convergence of axons from sensory neurons expressing the same odorant receptor. Synapses are organized into distinctive spherical neuropils—the olfactory glomeruli—that connect sensory input with output neurons and local modulatory interneurons. Although there is a strong conservation of form in the olfactory maps of mammals and insects, they arise using divergent mechanisms. Olfactory glomeruli provide a unique solution to the problem of mapping discontinuous chemical space onto the brain.
The axons of neurons expressing the same odorant receptor converge at distinct glomeruli in the brain. These connect sensory input with output and modulator neurons, allowing the brain to map chemical space.
doi:10.1101/cshperspect.a001776
PMCID: PMC2908763  PMID: 20554703
10.  Single Sensillum Recordings in the Insects Drosophila melanogaster and Anopheles gambiae 
The sense of smell is essential for insects to find foods, mates, predators, and oviposition sites3. Insect olfactory sensory neurons (OSNs) are enclosed in sensory hairs called sensilla, which cover the surface of olfactory organs. The surface of each sensillum is covered with tiny pores, through which odorants pass and dissolve in a fluid called sensillum lymph, which bathes the sensory dendrites of the OSNs housed in a given sensillum. The OSN dendrites express odorant receptor (OR) proteins, which in insects function as odor-gated ion channels4, 5. The interaction of odorants with ORs either increases or decreases the basal firing rate of the OSN. This neuronal activity in the form of action potentials embodies the first representation of the quality, intensity, and temporal characteristics of the odorant6, 7.
Given the easy access to these sensory hairs, it is possible to perform extracellular recordings from single OSNs by introducing a recording electrode into the sensillum lymph, while the reference electrode is placed in the lymph of the eye or body of the insect. In Drosophila, sensilla house between one and four OSNs, but each OSN typically displays a characteristic spike amplitude. Spike sorting techniques make it possible to assign spiking responses to individual OSNs. This single sensillum recording (SSR) technique monitors the difference in potential between the sensillum lymph and the reference electrode as electrical spikes that are generated by the receptor activity on OSNs1, 2, 8. Changes in the number of spikes in response to the odorant represent the cellular basis of odor coding in insects. Here, we describe the preparation method currently used in our lab to perform SSR on Drosophila melanogaster and Anopheles gambiae, and show representative traces induced by the odorants in a sensillum-specific manner.
doi:10.3791/1725
PMCID: PMC2830253  PMID: 20164822
11.  Temporal response dynamics of Drosophila olfactory sensory neurons depends on receptor type and response polarity 
Insect olfactory sensory neurons (OSN) express a diverse array of receptors from different protein families, i.e. ionotropic receptors (IR), gustatory receptors (GR) and odorant receptors (OR). It is well known that insects are exposed to a plethora of odor molecules that vary widely in both space and time under turbulent natural conditions. In addition to divergent ligand specificities, these different receptors might also provide an increased range of temporal dynamics and sensitivities for the olfactory system. To test this, we challenged different Drosophila OSNs with both varying stimulus durations (10–2000 ms), and repeated stimulus pulses of key ligands at various frequencies (1–10 Hz). Our results show that OR-expressing OSNs responded faster and with higher sensitivity to short stimulations as compared to IR- and Gr21a-expressing OSNs. In addition, OR-expressing OSNs could respond to repeated stimulations of excitatory ligands up to 5 Hz, while IR-expressing OSNs required ~5x longer stimulations and/or higher concentrations to respond to similar stimulus durations and frequencies. Nevertheless, IR-expressing OSNs did not exhibit adaptation to longer stimulations, unlike OR- and Gr21a-OSNs. Both OR- and IR-expressing OSNs were also unable to resolve repeated pulses of inhibitory ligands as fast as excitatory ligands. These differences were independent of the peri-receptor environment in which the receptors were expressed and suggest that the receptor expressed by a given OSN affects both its sensitivity and its response to transient, intermittent chemical stimuli. OR-expressing OSNs are better at resolving low dose, intermittent stimuli, while IR-expressing OSNs respond more accurately to long-lasting odor pulses. This diversity increases the capacity of the insect olfactory system to respond to the diverse spatiotemporal signals in the natural environment.
doi:10.3389/fncel.2012.00054
PMCID: PMC3499765  PMID: 23162431
odorant receptors; ionotropic receptors; pulse resolution; single sensillum recording
12.  Plant odorants interfere with detection of sex pheromone signals by male Heliothis virescens 
In many insects, mate finding relies on female-released sex pheromones, which have to be deciphered by the male olfactory system within an odorous background of plant volatiles present in the environment of a calling female. With respect to pheromone-mediated mate localization, plant odorants may be neutral, favorable, or disturbing. Here we examined the impact of plant odorants on detection and coding of the major sex pheromone component, (Z)-11-hexadecenal (Z11-16:Ald) in the noctuid moth Heliothis virescens. By in vivo imaging the activity in the male antennal lobe (AL), we monitored the interference at the level of olfactory sensory neurons (OSN) to illuminate mixture interactions. The results show that stimulating the male antenna with Z11-16:Ald and distinct plant-related odorants simultaneously suppressed pheromone-evoked activity in the region of the macroglomerular complex (MGC), where Z11-16:Ald-specific OSNs terminate. Based on our previous findings that antennal detection of Z11-16:Ald involves an interplay of the pheromone binding protein (PBP) HvirPBP2 and the pheromone receptor (PR) HR13, we asked if the plant odorants may interfere with any of the elements involved in pheromone detection. Using a competitive fluorescence binding assay, we found that the plant odorants neither bind to HvirPBP2 nor affect the binding of Z11-16:Ald to the protein. However, imaging experiments analyzing a cell line that expressed the receptor HR13 revealed that plant odorants significantly inhibited the Z11-16:Ald-evoked calcium responses. Together the results indicate that plant odorants can interfere with the signaling process of the major sex pheromone component at the receptor level. Consequently, it can be assumed that plant odorants in the environment may reduce the firing activity of pheromone-specific OSNs in H. virescens and thus affect mate localization.
doi:10.3389/fncel.2012.00042
PMCID: PMC3465774  PMID: 23060749
pheromone detection; antennal lobe; pheromone receptor; pheromone binding protein; olfaction
13.  Dishevelled Proteins Are Associated with Olfactory Sensory Neuron Presynaptic Terminals 
PLoS ONE  2013;8(2):e56561.
Olfactory sensory neurons (OSNs) project their axons from the olfactory epithelium toward the olfactory bulb (OB) in a heterogeneous and unsorted arrangement. However, as the axons approach the glomerular layer of the OB, axons from OSNs expressing the same odorant receptor (OR) sort and converge to form molecularly homogeneous glomeruli. Axon guidance cues, cell adhesion molecules, and OR induced activity have been implicated in the final targeting of OSN axons to specific glomeruli. Less understood, and often controversial, are the mechanisms used by OSN axons to initially navigate from the OE toward the OB. We previously demonstrated a role for Wnt and Frizzled (Fz) molecules in OSN axon extension and organization within the olfactory nerve. Building on that we now turned our attention to the downstream signaling cascades from Wnt-Fz interactions. Dishevelled (Dvl) is a key molecule downstream of Fz receptors. Three isoforms of Dvl with specific as well as overlapping functions are found in mammals. Here, we show that Dvl-1 expression is restricted to OSNs in the dorsal recess of the nasal cavity, and labels a unique subpopulation of glomeruli. Dvl-2 and Dvl-3 have a widespread distribution in both the OE and OB. Both Dvl-1 and Dvl-2 are associated with intra-glomerular pre-synaptic OSN terminals, suggesting a role in synapse formation/stabilization. Moreover, because Dvl proteins were observed in all OSN axons, we hypothesize that they are important determinants of OSN cell differentiation and axon extension.
doi:10.1371/journal.pone.0056561
PMCID: PMC3577874  PMID: 23437169
14.  Associative Conditioning Tunes Transient Dynamics of Early Olfactory Processing 
Odors evoke complex spatiotemporal responses in the insect antennal lobe (AL) and mammalian olfactory bulb. However, the behavioral relevance of spatiotemporal coding remains unclear. In the present work we combined behavioral analyses with calcium imaging of odor induced activity in the honey bee AL to evaluate the relevance of this temporal dimension in the olfactory code. We used a new way for evaluation of odor similarity of binary mixtures in behavioral studies, which involved testing if a match of odor sampling time is necessary between training and testing conditions for odor recognition during associative learning. Using graded changes in the similarity of the mixture ratios, we found high correlations between the behavioral generalization across those mixtures and a gradient of activation in AL output. Furthermore, short odor stimuli of 500 ms or less affected how well odors were matched with a memory template, and this time corresponded to a shift from a sampling-time-dependent to a sampling-time-independent memory. Accordingly, 375 ms corresponded to the time required for spatiotemporal AL activity patterns to reach maximal separation according to imaging studies. Finally, we compared spatiotemporal representations of binary mixtures in trained and untrained animals. AL activity was modified by conditioning to improve separation of odor representations. These data suggest that one role of reinforcement is to “tune” the AL such that relevant odors become more discriminable.
doi:10.1523/JNEUROSCI.1874-09.2009
PMCID: PMC2756734  PMID: 19692594
olfaction; synchrony; transients; spatiotemporal coding; plasticity; calcium imaging; discrimination
15.  Spatio-temporal activity patterns of odor-induced synchronized potentials revealed by voltage-sensitive dye imaging and intracellular recording in the antennal lobe of the cockroach 
In animals, odor qualities are represented as both spatial activity patterns of glomeruli and temporal patterns of synchronized oscillatory signals in the primary olfactory centers. By optical imaging of a voltage-sensitive dye (VSD) and intracellular recording from secondary olfactory interneurons, we examined possible neural correlates of the spatial and temporal odor representations in the primary olfactory center, the antennal lobe (AL), of the cockroach Periplaneta americana. Voltage-sensitive dye imaging revealed that all used odorants induced odor-specific temporal patterns of depolarizing potentials in specific combinations of anterior glomeruli of the AL. The depolarizing potentials evoked by different odorants were temporally synchronized across glomeruli and were termed “synchronized potentials.” These observations suggest that odor qualities are represented by spatio-temporal activity patterns of the synchronized potentials across glomeruli. We also performed intracellular recordings and stainings from secondary olfactory interneurons, namely projection neurons and local interneurons. We analyzed the temporal structures of enanthic acid-induced action potentials of secondary olfactory interneurons using simultaneous paired intracellular recording from two given neurons. Our results indicated that the multiple local interneurons synchronously fired in response to the olfactory stimulus. In addition, all stained enanthic acid-responsive projection neurons exhibited dendritic arborizations within the glomeruli where the synchronized potentials were evoked. Since multiple local interneurons are known to synapse to a projection neuron in each glomerulus in the cockroach AL, converging inputs from local interneurons to the projection neurons appear to contribute the odorant specific spatio-temporal activity patterns of the synchronized potentials.
doi:10.3389/fnsys.2012.00055
PMCID: PMC3404411  PMID: 22848191
olfaction; synchronized potentials; optical imaging; voltage-sensitive dye; intracellular recording; local interneurons; projection neurons; insects
16.  Heterogeneous Sensory Innervation and Extensive Intrabulbar Connections of Olfactory Necklace Glomeruli 
PLoS ONE  2009;4(2):e4657.
The mammalian nose employs several olfactory subsystems to recognize and transduce diverse chemosensory stimuli. These subsystems differ in their anatomical position within the nasal cavity, their targets in the olfactory forebrain, and the transduction mechanisms they employ. Here we report that they can also differ in the strategies they use for stimulus coding. Necklace glomeruli are the sole main olfactory bulb (MOB) targets of an olfactory sensory neuron (OSN) subpopulation distinguished by its expression of the receptor guanylyl cyclase GC-D and the phosphodiesterase PDE2, and by its chemosensitivity to the natriuretic peptides uroguanylin and guanylin and the gas CO2. In stark contrast to the homogeneous sensory innervation of canonical MOB glomeruli from OSNs expressing the same odorant receptor (OR), we find that each necklace glomerulus of the mouse receives heterogeneous innervation from at least two distinct sensory neuron populations: one expressing GC-D and PDE2, the other expressing olfactory marker protein. In the main olfactory system it is thought that odor identity is encoded by a combinatorial strategy and represented in the MOB by a pattern of glomerular activation. This combinatorial coding scheme requires functionally homogeneous sensory inputs to individual glomeruli by OSNs expressing the same OR and displaying uniform stimulus selectivity; thus, activity in each glomerulus reflects the stimulation of a single OSN type. The heterogeneous sensory innervation of individual necklace glomeruli by multiple, functionally distinct, OSN subtypes precludes a similar combinatorial coding strategy in this olfactory subsystem.
doi:10.1371/journal.pone.0004657
PMCID: PMC2645502  PMID: 19247478
17.  Modeling Peripheral Olfactory Coding in Drosophila Larvae 
PLoS ONE  2011;6(8):e22996.
The Drosophila larva possesses just 21 unique and identifiable pairs of olfactory sensory neurons (OSNs), enabling investigation of the contribution of individual OSN classes to the peripheral olfactory code. We combined electrophysiological and computational modeling to explore the nature of the peripheral olfactory code in situ. We recorded firing responses of 19/21 OSNs to a panel of 19 odors. This was achieved by creating larvae expressing just one functioning class of odorant receptor, and hence OSN. Odor response profiles of each OSN class were highly specific and unique. However many OSN-odor pairs yielded variable responses, some of which were statistically indistinguishable from background activity. We used these electrophysiological data, incorporating both responses and spontaneous firing activity, to develop a Bayesian decoding model of olfactory processing. The model was able to accurately predict odor identity from raw OSN responses; prediction accuracy ranged from 12%–77% (mean for all odors 45.2%) but was always significantly above chance (5.6%). However, there was no correlation between prediction accuracy for a given odor and the strength of responses of wild-type larvae to the same odor in a behavioral assay. We also used the model to predict the ability of the code to discriminate between pairs of odors. Some of these predictions were supported in a behavioral discrimination (masking) assay but others were not. We conclude that our model of the peripheral code represents basic features of odor detection and discrimination, yielding insights into the information available to higher processing structures in the brain.
doi:10.1371/journal.pone.0022996
PMCID: PMC3153476  PMID: 21857978
18.  Friends and Foes from an Ant Brain's Point of View – Neuronal Correlates of Colony Odors in a Social Insect 
PLoS ONE  2011;6(6):e21383.
Background
Successful cooperation depends on reliable identification of friends and foes. Social insects discriminate colony members (nestmates/friends) from foreign workers (non-nestmates/foes) by colony-specific, multi-component colony odors. Traditionally, complex processing in the brain has been regarded as crucial for colony recognition. Odor information is represented as spatial patterns of activity and processed in the primary olfactory neuropile, the antennal lobe (AL) of insects, which is analogous to the vertebrate olfactory bulb. Correlative evidence indicates that the spatial activity patterns reflect odor-quality, i.e., how an odor is perceived. For colony odors, alternatively, a sensory filter in the peripheral nervous system was suggested, causing specific anosmia to nestmate colony odors. Here, we investigate neuronal correlates of colony odors in the brain of a social insect to directly test whether they are anosmic to nestmate colony odors and whether spatial activity patterns in the AL can predict how odor qualities like “friend” and “foe” are attributed to colony odors.
Methodology/Principal Findings
Using ant dummies that mimic natural conditions, we presented colony odors and investigated their neuronal representation in the ant Camponotus floridanus. Nestmate and non-nestmate colony odors elicited neuronal activity: In the periphery, we recorded sensory responses of olfactory receptor neurons (electroantennography), and in the brain, we measured colony odor specific spatial activity patterns in the AL (calcium imaging). Surprisingly, upon repeated stimulation with the same colony odor, spatial activity patterns were variable, and as variable as activity patterns elicited by different colony odors.
Conclusions
Ants are not anosmic to nestmate colony odors. However, spatial activity patterns in the AL alone do not provide sufficient information for colony odor discrimination and this finding challenges the current notion of how odor quality is coded. Our result illustrates the enormous challenge for the nervous system to classify multi-component odors and indicates that other neuronal parameters, e.g., precise timing of neuronal activity, are likely necessary for attribution of odor quality to multi-component odors.
doi:10.1371/journal.pone.0021383
PMCID: PMC3121771  PMID: 21731724
19.  Keeping their distance? Odor response patterns along the concentration range 
We investigate the interplay of odor identity and concentration coding in the antennal lobe (AL) of the honeybee Apis mellifera. In this primary olfactory center of the honeybee brain, odors are encoded by the spatio-temporal response patterns of olfactory glomeruli. With rising odor concentration, further glomerular responses are recruited into the patterns, which affects distances between the patterns. Based on calcium-imaging recordings, we found that such pattern broadening renders distances between glomerular response patterns closer to chemical distances between the corresponding odor molecules. Our results offer an explanation for the honeybee's improved odor discrimination performance at higher odor concentrations.
doi:10.3389/fnsys.2012.00071
PMCID: PMC3474990  PMID: 23087621
calcium-imaging; honeybees; glomerular pattern; odor concentration coding; odor identity coding; chemical dissimilarity
20.  Coding of odors by temporal binding within a model network of the locust antennal lobe 
The locust olfactory system interfaces with the external world through antennal receptor neurons (ORNs), which represent odors in a distributed, combinatorial manner. ORN axons bundle together to form the antennal nerve, which relays sensory information centrally to the antennal lobe (AL). Within the AL, an odor generates a dynamically evolving ensemble of active cells, leading to a stimulus-specific temporal progression of neuronal spiking. This experimental observation has led to the hypothesis that an odor is encoded within the AL by a dynamically evolving trajectory of projection neuron (PN) activity that can be decoded piecewise to ascertain odor identity. In order to study information coding within the locust AL, we developed a scaled-down model of the locust AL using Hodgkin–Huxley-type neurons and biologically realistic connectivity parameters and current components. Using our model, we examined correlations in the precise timing of spikes across multiple neurons, and our results suggest an alternative to the dynamic trajectory hypothesis. We propose that the dynamical interplay of fast and slow inhibition within the locust AL induces temporally stable correlations in the spiking activity of an odor-dependent neural subset, giving rise to a temporal binding code that allows rapid stimulus detection by downstream elements.
doi:10.3389/fncom.2013.00050
PMCID: PMC3635028  PMID: 23630495
antennal lobe; temporal binding; computational neuroscience; odor coding; slow temporal patterns; oscillations; synchrony; time scales of inhibition
21.  Spatiotemporal Alterations in Primary Odorant Representations in Olfactory Marker Protein Knockout Mice 
PLoS ONE  2013;8(4):e61431.
Olfactory marker protein (OMP) is highly and selectively expressed in primary olfactory sensory neurons (OSNs) across species, but its physiological function remains unclear. Previous studies in the olfactory epithelium suggest that it accelerates the neural response to odorants and may modulate the odorant-selectivity of OSNs. Here we used a line of gene-targeted mice that express the fluorescent exocytosis indicator synaptopHluorin in place of OMP to compare spatiotemporal patterns of odorant-evoked neurotransmitter release from OSNs in adult mice that were heterozygous for OMP or OMP-null. We found that these patterns, which constitute the primary neural representation of each odorant, developed more slowly during the odorant presentation in OMP knockout mice but eventually reached the same magnitude as in heterozygous mice. In the olfactory bulb, each glomerulus receives synaptic input from a subpopulation of OSNs that all express the same odor receptor and thus typically respond to a specific subset of odorants. We observed that in OMP knockout mice, OSNs innervating a given glomerulus typically responded to a broader range of odorants than in OMP heterozygous mice and thus each odorant evoked synaptic input to a larger number of glomeruli. In an olfactory habituation task, OMP knockout mice behaved differently than wild-type mice, exhibiting a delay in their onset to investigate an odor stimulus during its first presentation and less habituation to that stimulus over repeated presentations. These results suggest that the actions of OMP in olfactory transduction carry through to the primary sensory representations of olfactory stimuli in adult mice in vivo.
doi:10.1371/journal.pone.0061431
PMCID: PMC3632605  PMID: 23630588
22.  Ionotropic Glutamate Receptors IR64a and IR8a Form a Functional Odorant Receptor Complex In Vivo in Drosophila 
The Journal of Neuroscience  2013;33(26):10741-10749.
Drosophila olfactory sensory neurons express either odorant receptors or ionotropic glutamate receptors (IRs). The sensory neurons that express IR64a, a member of the IR family, send axonal projections to either the DC4 or DP1m glomeruli in the antennal lobe. DC4 neurons respond specifically to acids/protons, whereas DP1m neurons respond to a broad spectrum of odorants. The molecular composition of IR64a-containing receptor complexes in either DC4 or DP1m neurons is not known, however. Here, we immunoprecipitated the IR64a protein from lysates of fly antennal tissue and identified IR8a as a receptor subunit physically associated with IR64a by mass spectrometry. IR8a mutants and flies in which IR8a was knocked down by RNAi in IR64a+ neurons exhibited defects in acid-evoked physiological and behavioral responses. Furthermore, we found that the loss of IR8a caused a significant reduction in IR64a protein levels. When expressed in Xenopus oocytes, IR64a and IR8a formed a functional ion channel that allowed ligand-evoked cation currents. These findings provide direct evidence that IR8a is a subunit that forms a functional olfactory receptor with IR64a in vivo to mediate odor detection.
doi:10.1523/JNEUROSCI.5419-12.2013
PMCID: PMC3693055  PMID: 23804096
23.  Excitatory Local Interneurons Enhance Tuning of Sensory Information 
PLoS Computational Biology  2012;8(7):e1002563.
Neurons in the insect antennal lobe represent odors as spatiotemporal patterns of activity that unfold over multiple time scales. As these patterns unspool they decrease the overlap between odor representations and thereby increase the ability of the olfactory system to discriminate odors. Using a realistic model of the insect antennal lobe we examined two competing components of this process –lateral excitation from local excitatory interneurons, and slow inhibition from local inhibitory interneurons. We found that lateral excitation amplified differences between representations of similar odors by recruiting projection neurons that did not receive direct input from olfactory receptors. However, this increased sensitivity also amplified noisy variations in input and compromised the ability of the system to respond reliably to multiple presentations of the same odor. Slow inhibition curtailed the spread of projection neuron activity and increased response reliability. These competing influences must be finely balanced in order to decorrelate odor representations.
Author Summary
The antennal lobe of insects and the olfactory bulb of vertebrates represent the first centers of the olfactory system where information about odor properties can be reorganized and optimized for further processing. Complex excitatory and inhibitory synaptic interactions within the antennal lobe and the olfactory bulb alter the responses of the principal neurons throughout the duration of the odor stimulation. These dynamic changes progressively increase the difference between firing patterns evoked by structurally similar odors, potentially helping the animal distinguish one odor from another. However, this process, called odor decorrelation, appears to oppose another important goal of olfactory processing, to minimize the inevitable noisy variations in representations of the same odor encountered under different environmental conditions; such variations could potentially lead to misclassification. It remains an interesting mystery how olfactory circuitry can solve these two seemingly contradictory goals as they process olfactory stimuli: first, separating different but chemically similar odors (sensitivity, capacity); and second, identifying representations of the same odor in a noisy environment (reliability). Our results suggest a balance between inhibitory and excitatory connections mediated by local antennal lobe interneurons enhances the decorrelation of similar odors while keeping the representation robust in the presence of noise.
doi:10.1371/journal.pcbi.1002563
PMCID: PMC3395596  PMID: 22807661
24.  Rapid Odor Processing in the Honeybee Antennal Lobe Network 
In their natural environment, many insects need to identify and evaluate behaviorally relevant odorants on a rich and dynamic olfactory background. Behavioral studies have demonstrated that bees recognize learned odors within <200 ms, indicating a rapid processing of olfactory input in the sensory pathway. We studied the role of the honeybee antennal lobe network in constructing a fast and reliable code of odor identity using in vivo intracellular recordings of individual projection neurons (PNs) and local interneurons (LNs). We found a complementary ensemble code where odor identity is encoded in the spatio-temporal pattern of response latencies as well as in the pattern of activated and inactivated PN firing. This coding scheme rapidly reaches a stable representation within 50–150 ms after stimulus onset. Testing an odor mixture versus its individual compounds revealed different representations in the two morphologically distinct types of lateral- and median PNs (l- and m-PNs). Individual m-PNs mixture responses were dominated by the most effective compound (elemental representation) whereas l-PNs showed suppressed responses to the mixture but not to its individual compounds (synthetic representation). The onset of inhibition in the membrane potential of l-PNs coincided with the responses of putative inhibitory interneurons that responded significantly faster than PNs. Taken together, our results suggest that processing within the LN network of the AL is an essential component of constructing the antennal lobe population code.
doi:10.3389/neuro.10.009.2008
PMCID: PMC2636688  PMID: 19221584
antennal lobe; Apis mellifera; latency code; local interneurons; olfaction; odor mixture; projection neurons; temporal coding
25.  Sensory Cell Proliferation within the Olfactory Epithelium of Developing Adult Manduca sexta (Lepidoptera) 
PLoS ONE  2007;2(2):e215.
Background
Insects detect a multitude of odors using a broad array of phenotypically distinct olfactory organs referred to as olfactory sensilla. Each sensillum contains one to several sensory neurons and at least three support cells; these cells arise from mitotic activities from one or a small group of defined precursor cells. Sensilla phenotypes are defined by distinct morphologies, and specificities to specific odors; these are the consequence of developmental programs expressed by associated neurons and support cells, and by selection and expression of subpopulations of olfactory genes encoding such proteins as odor receptors, odorant binding proteins, and odor degrading enzymes.
Methodology/Principal Findings
We are investigating development of the olfactory epithelium of adult M. sexta, identifying events which might establish sensilla phenotypes. In the present study, antennal tissue was examined during the first three days of an 18 day development, a period when sensory mitotic activity was previously reported to occur. Each antenna develops as a cylinder with an outward facing sensory epithelium divided into approximately 80 repeat units or annuli. Mitotic proliferation of sensory cells initiated about 20–24 hrs after pupation (a.p.), in pre-existing zones of high density cells lining the proximal and distal borders of each annulus. These high density zones were observed as early as two hr. a.p., and expanded with mitotic activity to fill the mid-annular regions by about 72 hrs a.p. Mitotic activity initiated at a low rate, increasing dramatically after 40–48 hrs a.p.; this activity was enhanced by ecdysteroids, but did not occur in animals entering pupal diapause (which is also ecdysteroid sensitive).
Conclusions/Significance
Sensory proliferation initiates in narrow zones along the proximal and distal borders of each annulus; these zones rapidly expand to fill the mid-annular regions. These zones exist prior to any mitotic activity as regions of high density cells which form either at or prior to pupation. Mitotic sensitivity to ecdysteroids may be a regulatory mechanism coordinating olfactory development with the developmental choice of diapause entry.
doi:10.1371/journal.pone.0000215
PMCID: PMC1789077  PMID: 17299595

Results 1-25 (515912)