PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1707700)

Clipboard (0)
None

Related Articles

1.  Next Generation Sequencing of Cytokeratin 20-Negative Merkel Cell Carcinoma Reveals Ultraviolet Signature Mutations and Recurrent TP53 and RB1 Inactivation 
Merkel cell carcinoma is a rare but highly aggressive cutaneous neuroendocrine carcinoma. Cytokeratin-20 (CK20) is expressed in approximately 95% of Merkel cell carcinomas and is useful for distinction from morphologically similar entities including metastatic small cell lung carcinoma. Lack of CK20 expression may make diagnosis of Merkel cell carcinoma more challenging, and has unknown biological significance. Approximately 80% of CK20-positive Merkel cell carcinomas are associated with the oncogenic Merkel cell polyomavirus. Merkel cell carcinomas lacking Merkel cell polyomavirus display distinct genetic changes from Merkel cell polyomavirus-positive Merkel cell carcinoma, including RB1 inactivating mutations. Unlike CK20-positive Merkel cell carcinoma, the majority of CK20-negative Merkel cell carcinomas are Merkel cell polyomavirus-negative, suggesting CK20-negative Merkel cell carcinomas predominantly arise through virus-independent pathway(s) and may harbor additional genetic differences from conventional Merkel cell carcinoma. Hence, we analyzed 15 CK20-negative Merkel cell carcinoma tumors (ten Merkel cell polyomavirus-negative, four Merkel cell polyomavirus-positive, and one undetermined) using the Ion Ampliseq Comprehensive Cancer Panel, which assesses copy number alterations and mutations in 409 cancer-relevant genes. Twelve tumors displayed prioritized high-level chromosomal gains or losses (average 1.9 per tumor). Non-synonymous high confidence somatic mutations were detected in 14 tumors (average 11.9 per tumor). Assessing all somatic coding mutations, an ultraviolet-signature mutational profile was present, and more prevalent in Merkel cell polyomavirus-negative tumors. Recurrent deleterious tumor suppressor mutations affected TP53 (9/15, 60%), RB1 (3/15, 20%), and BAP1 (2/15, 13%). Oncogenic activating mutations included PIK3CA (3/15, 20%), AKT1 (1/15, 7%)) and EZH2 (1/15, 7%). In conclusion, CK20-negative Merkel cell carcinoma display overlapping genetic changes with CK20-positive Merkel cell carcinoma, including RB1 mutations restricted to Merkel cell polyomavirus-negative tumors. However, some CK20-negative Merkel cell carcinomas harbor mutations not previously described in Merkel cell carcinoma. Hence, CK20-negative Merkel cell carcinomas harbor diverse oncogenic drivers which may represent therapeutic targets in individual tumors.
doi:10.1038/modpathol.2015.154
PMCID: PMC4769666  PMID: 26743471
Merkel cell carcinoma; cytokeratin 20; retinoblastoma; Merkel cell polyomavirus; ultraviolet mutations
2.  Quantitation of Human Seroresponsiveness to Merkel Cell Polyomavirus 
PLoS Pathogens  2009;5(9):e1000578.
Merkel cell carcinoma (MCC) is a relatively uncommon but highly lethal form of skin cancer. A majority of MCC tumors carry DNA sequences derived from a newly identified virus called Merkel cell polyomavirus (MCV or MCPyV), a candidate etiologic agent underlying the development of MCC. To further investigate the role of MCV infection in the development of MCC, we developed a reporter vector-based neutralization assay to quantitate MCV-specific serum antibody responses in human subjects. Our results showed that 21 MCC patients whose tumors harbored MCV DNA all displayed vigorous MCV-specific antibody responses. Although 88% (42/48) of adult subjects without MCC were MCV seropositive, the geometric mean titer of the control group was 59-fold lower than the MCC patient group (p<0.0001). Only 4% (2/48) of control subjects displayed neutralizing titers greater than the mean titer of the MCV-positive MCC patient population. MCC tumors were found not to express detectable amounts of MCV VP1 capsid protein, suggesting that the strong humoral responses observed in MCC patients were primed by an unusually immunogenic MCV infection, and not by viral antigen expressed by the MCC tumor itself. The occurrence of highly immunogenic MCV infection in MCC patients is unlikely to reflect a failure to control polyomavirus infections in general, as seroreactivity to BK polyomavirus was similar among MCC patients and control subjects. The results support the concept that MCV infection is a causative factor in the development of most cases of MCC. Although MCC tumorigenesis can evidently proceed in the face of effective MCV-specific antibody responses, a small pilot animal immunization study revealed that a candidate vaccine based on MCV virus-like particles (VLPs) elicits antibody responses that robustly neutralize MCV reporter vectors in vitro. This suggests that a VLP-based vaccine could be effective for preventing the initial establishment of MCV infection.
Author Summary
For more than 50 years it has been known that some polyomavirus types can induce cancer in experimental animals. However, associations between the various polyomaviruses known to chronically infect most humans and the development of cancer have been difficult to uncover. Last year, DNA from a new human polyomavirus, called Merkel cell polyomavirus (MCV), was found embedded in an uncommon form of skin cancer called Merkel cell carcinoma. Emerging evidence indicates that most adults display detectable immune responses to MCV, suggesting that most individuals eventually become infected with the virus. In this study, we investigate antibodies that directly bind the protein coat of MCV, thereby obstructing its ability to penetrate cultured cells. We found that the magnitude of antibody responses against MCV varies dramatically among normal adults. Interestingly, patients suffering from MCV-associated Merkel cell carcinoma display uniformly strong antibody responses against the virus. This suggests that the development of Merkel cell carcinoma is preceded by an unusually robust MCV infection. It is currently unclear whether MCV infection may also be associated with additional diseases aside from Merkel cell carcinoma. Quantitation of immune responsiveness to the virus, using techniques reported here, could help identify such links.
doi:10.1371/journal.ppat.1000578
PMCID: PMC2734180  PMID: 19750217
3.  Merkel Cell Polyomavirus Small T Antigen Promotes Pro-Glycolytic Metabolic Perturbations Required for Transformation 
PLoS Pathogens  2016;12(11):e1006020.
Merkel cell polyomavirus (MCPyV) is an etiological agent of Merkel cell carcinoma (MCC), a highly aggressive skin cancer. The MCPyV small tumor antigen (ST) is required for maintenance of MCC and can transform normal cells. To gain insight into cellular perturbations induced by MCPyV ST, we performed transcriptome analysis of normal human fibroblasts with inducible expression of ST. MCPyV ST dynamically alters the cellular transcriptome with increased levels of glycolytic genes, including the monocarboxylate lactate transporter SLC16A1 (MCT1). Extracellular flux analysis revealed increased lactate export reflecting elevated aerobic glycolysis in ST expressing cells. Inhibition of MCT1 activity suppressed the growth of MCC cell lines and impaired MCPyV-dependent transformation of IMR90 cells. Both NF-κB and MYC have been shown to regulate MCT1 expression. While MYC was required for MCT1 induction, MCPyV-induced MCT1 levels decreased following knockdown of the NF-κB subunit RelA, supporting a synergistic activity between MCPyV and MYC in regulating MCT1 levels. Several MCC lines had high levels of MYCL and MYCN but not MYC. Increased levels of MYCL was more effective than MYC or MYCN in increasing extracellular acidification in MCC cells. Our results demonstrate the effects of MCPyV ST on the cellular transcriptome and reveal that transformation is dependent, at least in part, on elevated aerobic glycolysis.
Author Summary
In 2008, Merkel cell polyomavirus (MCPyV) was identified as clonally integrated in a majority of Merkel cell carcinomas (MCC), a rare but highly aggressive neuroendocrine carcinoma of the skin. Since then, studies have highlighted the roles of the MCPyV T antigens in promoting and sustaining MCC oncogenesis. In particular, MCPyV small T antigen (ST) has oncogenic activity in vivo and in vitro. We performed transcriptome analysis of normal human fibroblasts with inducible expression of MCPyV ST and observed significant alterations in levels of metabolic pathway genes, particularly those involved in glycolysis. MCT1, a major monocarboxylate transporter, was rapidly induced following ST expression and inhibition of MCT1 activity reduced the ST growth promoting and transforming activities. The metabolic perturbations induced by this oncogenic human polyomavirus reflect a potent transforming mechanism of MCPyV ST.
doi:10.1371/journal.ppat.1006020
PMCID: PMC5120958  PMID: 27880818
4.  Improved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus 
The Journal of Clinical Investigation  2012;122(12):4645-4653.
A human polyomavirus was recently discovered in Merkel cell carcinoma (MCC) specimens. The Merkel cell polyomavirus (MCPyV) genome undergoes clonal integration into the host cell chromosomes of MCC tumors and expresses small T antigen and truncated large T antigen. Previous studies have consistently reported that MCPyV can be detected in approximately 80% of all MCC tumors. We sought to increase the sensitivity of detection of MCPyV in MCC by developing antibodies capable of detecting large T antigen by immunohistochemistry. In addition, we expanded the repertoire of quantitative PCR primers specific for MCPyV to improve the detection of viral DNA in MCC. Here we report that a novel monoclonal antibody detected MCPyV large T antigen expression in 56 of 58 (97%) unique MCC tumors. PCR analysis specifically detected viral DNA in all 60 unique MCC tumors tested. We also detected inactivating point substitution mutations of TP53 in the two MCC specimens that lacked large T antigen expression and in only 1 of 56 tumors positive for large T antigen. These results indicate that MCPyV is present in MCC tumors more frequently than previously reported and that mutations in TP53 tend to occur in MCC tumors that fail to express MCPyV large T antigen.
doi:10.1172/JCI64116
PMCID: PMC3533549  PMID: 23114601
5.  Merkel Cell Polyomavirus Infection in a Patient With Merkel Cell Carcinoma: A Case Report 
Introduction:
Merkel cell carcinoma (MCC) is a rare and highly aggressive malignancy of the skin which occurs mainly in old people and is very uncommon in young individuals. A new tumor virus belonging to the Polyomaviridae family; Merkel Cell Polyomavirus (MCPyV) has recently been identified in more than 80% of MCCs.
Case Presentation:
We conducted a retrospective review on the archives of the Department of Pathology; Imam Khomeini Hospital Cancer Institute affiliated to Tehran University of Medical Sciences to confirm the MCC samples and we found medical records and samples of a young case with MCC who developed leg skin and scalp tumor six and seven years after bone marrow transplantation, respectively. We analyzed patient formalin-fixed paraffin-embedded samples for the presence of MCPyV DNA using polymerase chain reaction (PCR) method, and the PCR amplicons were subjected to DNA sequencing. Merkel Cell Polyomavirus DNA was detected in both tumors from patient and sequence analysis of the viral LT3 region showed a close homology to strains circulating worldwide.
Conclusions:
The findings of this study are consistent with the hypothesis that local, systemic, or tumor-induced immunosuppression may allow the MCPyV to initiate skin aggressive cancer. It is necessary to maintain regular check over patients taking immunosuppressive medications for MCPyV infection. Since there is not any information about detection and molecular biology analysis of MCPyV among Iranian patients with MCC, this study provides more information about MCC and MCPyV in Iran.
doi:10.5812/jjm.17849
PMCID: PMC4419364  PMID: 25964849
Merkel cell carcinoma; Merkel Cell Polyomavirus; Polyomaviridae
6.  Distinct Merkel Cell Polyomavirus Molecular Features in Tumour and Non Tumour Specimens from Patients with Merkel Cell Carcinoma 
PLoS Pathogens  2010;6(8):e1001076.
Merkel Cell Polyomavirus (MCPyV) is associated with Merkel Cell carcinoma (MCC), a rare, aggressive skin cancer with neuroendocrine features. The causal role of MCPyV is highly suggested by monoclonal integration of its genome and expression of the viral large T (LT) antigen in MCC cells. We investigated and characterized MCPyV molecular features in MCC, respiratory, urine and blood samples from 33 patients by quantitative PCR, sequencing and detection of integrated viral DNA. We examined associations between either MCPyV viral load in primary MCC or MCPyV DNAemia and survival. Results were interpreted with respect to the viral molecular signature in each compartment. Patients with MCC containing more than 1 viral genome copy per cell had a longer period in complete remission than patients with less than 1 copy per cell (34 vs 10 months, P = 0.037). Peripheral blood mononuclear cells (PBMC) contained MCPyV more frequently in patients sampled with disease than in patients in complete remission (60% vs 11%, P = 0.00083). Moreover, the detection of MCPyV in at least one PBMC sample during follow-up was associated with a shorter overall survival (P = 0.003). Sequencing of viral DNA from MCC and non MCC samples characterized common single nucleotide polymorphisms defining 8 patient specific strains. However, specific molecular signatures truncating MCPyV LT were observed in 8/12 MCC cases but not in respiratory and urinary samples from 15 patients. New integration sites were identified in 4 MCC cases. Finally, mutated-integrated forms of MCPyV were detected in PBMC of two patients with disseminated MCC disease, indicating circulation of metastatic cells. We conclude that MCPyV molecular features in primary MCC tumour and PBMC may help to predict the course of the disease.
Author Summary
Merkel cell polyomavirus (MCPyV) is a recently discovered virus highly associated with a rare skin cancer, Merkel cell carcinoma (MCC). The causal role of MCPyV in cancer is suggested by integration of viral sequences into the cell genome and by a specific molecular signature. We looked for and compared molecular species of MCPyV in tumour and non tumour samples of 33 MCC patients. We showed that a tumour viral load greater than 1 copy per cell was associated with a better outcome, and that detection of the virus in blood but not in urine correlated with a shorter overall survival. A tumour–specific molecular signature was found in the blood of two patients with metastatic disease, but did not occur in their respiratory nor urine samples. We propose that molecular analysis of MCPyV in tumour and blood be used as a biomarker of infection and cancer progression in MCC patients.
doi:10.1371/journal.ppat.1001076
PMCID: PMC2928786  PMID: 20865165
7.  Merkel cell carcinoma adjuvant therapy: Current data support radiation but not chemotherapy 
Merkel cell carcinoma is a skin cancer with 30% mortality and an incidence that has tripled in the past 15 years. There is agreement that surgical excision with negative margins is an appropriate therapeutic first step and that sentinel lymph node biopsy is a powerful prognostic indicator. Following excision of detectable cancer, optimal adjuvant therapy is not well established. A role for adjuvant radiotherapy is increasingly supported by retrospective data suggesting a nearly four-fold decrease in local recurrences if radiation is added to surgery. In contrast, a role for adjuvant chemotherapy is not well supported. The rationale for chemotherapy in this disease is based on small-cell lung cancer, a more common neuroendocrine tumor for which chemotherapy is the primary treatment modality. Several issues call into question the routine use of adjuvant chemotherapy in Merkel cell carcinoma: lack of evidence for improved survival; the associated morbidity and mortality; important differences between small-cell lung cancer and Merkel cell carcinoma; and rapid development of resistance to chemotherapy. Importantly, chemotherapy suppresses immune function that plays an unusually large role in defending the host from the development and progression of Merkel cell carcinoma. Taken together, these arguments suggest that adjuvant chemotherapy for Merkel cell carcinoma patients should largely be restricted to clinical trials.
Merkel cell carcinoma is a neuroendocrine cancer that typically presents as a rapidly growing non-specific nodule on sun exposed skin in people over 65 years of age. The recent increase in incidence to over 1000 cases a year in the United States has led Merkel cell carcinoma to become the second most common cause of non-melanoma skin cancer death.1,2 Optimal management for Merkel cell carcinoma beyond surgical excision is not agreed on, and no randomized trials have been carried out. Sentinel lymph node biopsy has been shown to be powerful in predicting subsequent recurrences as well as in determining if further nodal treatment is indicated.3,4
doi:10.1016/j.jaad.2007.03.011
PMCID: PMC1950220  PMID: 17482714
8.  Cutaneous squamous and neuroendocrine carcinoma: genetically and immunohistochemically different from Merkel cell carcinoma 
Cutaneous neuroendocrine (Merkel cell) carcinoma most often arises de novo in the background of a clonally integrated virus, the Merkel cell polyomavirus, and is notable for positive expression of retinoblastoma 1 (RB1) protein and low expression of p53 compared with the rare Merkel cell polyomavirus-negative Merkel cell carcinomas. Combined squamous and Merkel cell tumors are consistently negative for Merkel cell polyomavirus. Little is known about their immunophenotypic or molecular profile. Herein, we studied 10 combined cutaneous squamous cell and neuroendocrine carcinomas for immunohistochemical expression of p53, retinoblastoma 1 protein, neurofilament, p63, and cytokeratin 20 (CK20). We compared mutation profiles of five combined Merkel cell carcinomas and seven ‘pure’ Merkel cell carcinomas using targeted next-generation sequencing. Combined tumors were from the head, trunk, and leg of Caucasian males and one female aged 52–89. All cases were highly p53- and p63-positive and neurofilament-negative in the squamous component, whereas RB1-negative in both components. Eight out of 10 were p53-positive, 3/10 p63-positive, and 3/10 focally neurofilament-positive in the neuroendocrine component. Six out of 10 were CK20-positive in any part. By next-generation sequencing, combined tumors were highly mutated, with an average of 48 mutations per megabase compared with pure tumors, which showed 1.25 mutations per megabase. RB1 and p53 mutations were identified in all five combined tumors. Combined tumors represent an immunophenotypically and genetically distinct variant of primary cutaneous neuroendocrine carcinomas, notable for a highly mutated genetic profile, significant p53 expression and/or mutation, absent RB1 expression in the context of increased RB1 mutation, and minimal neurofilament expression.
doi:10.1038/modpathol.2015.60
PMCID: PMC4920599  PMID: 26022453
9.  Merkel Cell Polyomavirus Exhibits Dominant Control of the Tumor Genome and Transcriptome in Virus-Associated Merkel Cell Carcinoma 
mBio  2017;8(1):e02079-16.
ABSTRACT
Merkel cell polyomavirus is the primary etiological agent of the aggressive skin cancer Merkel cell carcinoma (MCC). Recent studies have revealed that UV radiation is the primary mechanism for somatic mutagenesis in nonviral forms of MCC. Here, we analyze the whole transcriptomes and genomes of primary MCC tumors. Our study reveals that virus-associated tumors have minimally altered genomes compared to non-virus-associated tumors, which are dominated by UV-mediated mutations. Although virus-associated tumors contain relatively small mutation burdens, they exhibit a distinct mutation signature with observable transcriptionally biased kataegic events. In addition, viral integration sites overlap focal genome amplifications in virus-associated tumors, suggesting a potential mechanism for these events. Collectively, our studies indicate that Merkel cell polyomavirus is capable of hijacking cellular processes and driving tumorigenesis to the same severity as tens of thousands of somatic genome alterations.
IMPORTANCE
A variety of mutagenic processes that shape the evolution of tumors are critical determinants of disease outcome. Here, we sequenced the entire genome of virus-positive and virus-negative primary Merkel cell carcinomas (MCCs), revealing distinct mutation spectra and corresponding expression profiles. Our studies highlight the strong effect that Merkel cell polyomavirus has on the divergent development of viral MCC compared to the somatic alterations that typically drive nonviral tumorigenesis. A more comprehensive understanding of the distinct mutagenic processes operative in viral and nonviral MCCs has implications for the effective treatment of these tumors.
doi:10.1128/mBio.02079-16
PMCID: PMC5210499  PMID: 28049147
10.  Association of Merkel Cell Polyomavirus–Specific Antibodies With Merkel Cell Carcinoma 
Background
Merkel cell polyomavirus (MCPyV) has been detected in approximately 75% of patients with the rare skin cancer Merkel cell carcinoma. We investigated the prevalence of antibodies against MCPyV in the general population and the association between these antibodies and Merkel cell carcinoma.
Methods
Multiplex antibody-binding assays were used to assess levels of antibodies against polyomaviruses in plasma. MCPyV VP1 antibody levels were determined in plasma from 41 patients with Merkel cell carcinoma and 76 matched control subjects. MCPyV DNA was detected in tumor tissue specimens by quantitative polymerase chain reaction. Seroprevalence of polyomavirus-specific antibodies was determined in 451 control subjects. MCPyV strain–specific antibody recognition was investigated by replacing coding sequences from MCPyV strain 350 with those from MCPyV strain w162.
Results
We found that 36 (88%) of 41 patients with Merkel cell carcinoma carried antibodies against VP1 from MCPyV w162 compared with 40 (53%) of the 76 control subjects (odds ratio adjusted for age and sex = 6.6, 95% confidence interval [CI] = 2.3 to 18.8). MCPyV DNA was detectable in 24 (77%) of the 31 Merkel cell carcinoma tumors available, with 22 (92%) of these 24 patients also carrying antibodies against MCPyV. Among 451 control subjects from the general population, prevalence of antibodies against human polyomaviruses was 92% (95% CI = 89% to 94%) for BK virus, 45% (95% CI = 40% to 50%) for JC virus, 98% (95% CI = 96% to 99%) for WU polyomavirus, 90% (95% CI = 87% to 93%) for KI polyomavirus, and 59% (95% CI = 55% to 64%) for MCPyV. Few case patients had reactivity against MCPyV strain 350; however, indistinguishable reactivities were found with VP1 from strain 350 carrying a double mutation (residues 288 and 316) and VP1 from strain w162.
Conclusion
Infection with MCPyV is common in the general population. MCPyV, but not other human polyomaviruses, appears to be associated with Merkel cell carcinoma.
doi:10.1093/jnci/djp332
PMCID: PMC2773184  PMID: 19776382
11.  Merkel Cell Carcinoma with a Suppressor of Fused (SUFU) Mutation: Case Report and Potential Therapeutic Implications 
Dermatology and Therapy  2015;5(2):129-143.
Introduction
Merkel cell carcinoma is a neuroendocrine malignancy. Suppressor of fused (SUFU) is a tumor suppressor oncogene that participates in the Hedgehog (Hh) signaling pathway. The aim of the study was to describe a patient whose Merkel cell carcinoma demonstrated a SUFU genomic alteration.
Case Study
The Hh signaling pathway is involved in the pathogenesis of several tumors, including nevoid basal cell carcinoma syndrome that is associated with an alteration of the patched-1 (PTCH1) gene. Targeted molecular therapy against smoothened (SMO) with vismodegib has been shown to be an effective therapeutic intervention for patients with PTCH-1 mutation. The reported patient was presented with metastatic Merkel cell carcinoma. Analysis of his tumor, using a next-generation sequencing-based assay, demonstrated a genomic aberration of SUFU protein, a component of the Hh signaling pathway that acts downstream to SMO and, therefore, is unlikely to be responsive to vismodegib. Of interest, arsenic trioxide or bromo and extra C-terminal inhibitors impact signals downstream to SUFU, making this aberration conceivably druggable. His tumor has initially been managed with chemotherapy (carboplatin and etoposide) and subsequent radiation therapy is planned.
Conclusion
The pathogenesis of Merkel cell carcinoma is multifactorial, and related to ultraviolet radiation exposure, immunosuppression, and Merkel cell polyomavirus. We report a patient with a mutation in SUFU, a potentially actionable component of the Hh signaling pathway.
Electronic supplementary material
The online version of this article (doi:10.1007/s13555-015-0074-5) contains supplementary material, which is available to authorized users.
doi:10.1007/s13555-015-0074-5
PMCID: PMC4470960  PMID: 25876211
Carcinoma; Cell; Hedgehog; Merkel; Pathway; Signaling; Suppressor of fused (SUFU)
12.  Chronic lymphocytic leukaemia patients have a high risk of Merkel-cell polyomavirus DNA-positive Merkel-cell carcinoma 
British Journal of Cancer  2009;101(8):1444-1447.
Background:
Immunosuppression and Merkel-cell polyomavirus (MCPyV) infection may have a role in the pathogenesis of Merkel-cell carcinoma (MCC), a rare neuroendocrine carcinoma of the skin.
Methods:
We studied incidence of chronic lymphocytic leukaemia (CLL) and MCC from the files of the Finnish Cancer Registry and the largest hospital of Finland, Helsinki University Central Hospital, from 1979 to 2006. Presence of MCPyV DNA in MCCs was investigated by quantitative PCR.
Results:
We identified 4164 patients diagnosed with CLL and 172 diagnosed with MCC. Six patients diagnosed with both diseases were found; CLL was the first diagnosis in four cases and MCC in two. The standardised incidence ratio (SIR) for CLL after the diagnosis of MCC was highly elevated, 17.9 (95% confidence interval (CI), 2.2–64.6; P<0.001), and the SIR for MCC after the diagnosis of CLL was also elevated, 15.7 (3.2–46.0, P<0.01). Merkel-cell polyomavirus DNA was present in all five MCCs with tumour tissue available for analysis.
Conclusions:
We conclude that patients diagnosed with CLL have a substantially increased risk for MCC, and vice versa. Merkel-cell polyomavirus DNA is frequently present in MCCs that occur in CLL patients. Immunosuppression related with CLL and viral infection might explain the association between CLL and MCC.
doi:10.1038/sj.bjc.6605306
PMCID: PMC2768432  PMID: 19755994
chronic lymphatic leukaemia; Merkel-cell carcinoma; Merkel-cell polyomavirus; incidence; immunosuppression
13.  Structures of Merkel Cell Polyomavirus VP1 Complexes Define a Sialic Acid Binding Site Required for Infection 
PLoS Pathogens  2012;8(7):e1002738.
The recently discovered human Merkel cell polyomavirus (MCPyV or MCV) causes the aggressive Merkel cell carcinoma (MCC) in the skin of immunocompromised individuals. Conflicting reports suggest that cellular glycans containing sialic acid (Neu5Ac) may play a role in MCPyV infectious entry. To address this question, we solved X-ray structures of the MCPyV major capsid protein VP1 both alone and in complex with several sialylated oligosaccharides. A shallow binding site on the apical surface of the VP1 capsomer recognizes the disaccharide Neu5Ac-α2,3-Gal through a complex network of interactions. MCPyV engages Neu5Ac in an orientation and with contacts that differ markedly from those observed in other polyomavirus complexes with sialylated receptors. Mutations in the Neu5Ac binding site abolish MCPyV infection, highlighting the relevance of the Neu5Ac interaction for MCPyV entry. Our study thus provides a powerful platform for the development of MCPyV-specific vaccines and antivirals. Interestingly, engagement of sialic acid does not interfere with initial attachment of MCPyV to cells, consistent with a previous proposal that attachment is mediated by a class of non-sialylated carbohydrates called glycosaminoglycans. Our results therefore suggest a model in which sialylated glycans serve as secondary, post-attachment co-receptors during MCPyV infectious entry. Since cell-surface glycans typically serve as primary attachment receptors for many viruses, we identify here a new role for glycans in mediating, and perhaps even modulating, post-attachment entry processes.
Author Summary
Viruses must interact with specific receptor molecules on their host cells in order to first attach to the cell and second gain entry into it. Therefore, a viral entry pathway is a sequence of precisely regulated binding events between viral proteins and their cellular receptors, which can be proteins or other biomolecules. In the present study, we investigated the human Merkel cell polyomavirus (MCPyV or MCV) and show that it uses complex carbohydrates containing sialic acid as receptors for entry. MCPyV was discovered in 2008, is widespread in humans and can cause aggressive skin tumors termed Merkel cell carcinomas in immunosuppressed individuals. We determined the crystal structures of the MCPyV capsid protein bound to sialylated carbohydrates, describing the contacts needed for receptor recognition in molecular detail. When we introduced targeted mutations that abolished sialic acid binding into the virus, it was unable to infect cells although it could still attach to them. Earlier studies showed that the virus uses a different group of carbohydrates called glycosaminoglycans for initial attachment to the cell surface. Thus, its entry pathway involves sequential binding to two distinct classes of carbohydrates. Our structures can be used as a starting point to develop antivirals against MCPyV.
doi:10.1371/journal.ppat.1002738
PMCID: PMC3406085  PMID: 22910713
14.  Getting stronger: the relationship between a newly identified virus and Merkel cell carcinoma 
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer of unknown etiology that develops on sun-exposed areas in individuals who are over 50 or immunosuppressed. DNA from a new polyomavirus, MCPyV, was recently shown to be clonally integrated into the host genome in several MCC cases. In this issue, Becker et al. show in a larger study that MCPyV DNA can be isolated from 85% of primary European MCC specimens and their metastases, while Gerneski et al. present data suggesting that the percentage of Australian MCC cases containing MCPyV may be lower than in North American cases. These reports strengthen the possibility that MCPyV may be etiologically involved in at least some cases of MCC.
doi:10.1038/jid.2008.302
PMCID: PMC3401601  PMID: 19078983
15.  The Merkel Cell Polyomavirus Minor Capsid Protein 
PLoS Pathogens  2013;9(8):e1003558.
The surface of polyomavirus virions is composed of pentameric knobs of the major capsid protein, VP1. In previously studied polyomavirus species, such as SV40, two interior capsid proteins, VP2 and VP3, emerge from the virion to play important roles during the infectious entry process. Translation of the VP3 protein initiates at a highly conserved Met-Ala-Leu motif within the VP2 open reading frame. Phylogenetic analyses indicate that Merkel cell polyomavirus (MCV or MCPyV) is a member of a divergent clade of polyomaviruses that lack the conserved VP3 N-terminal motif. Consistent with this observation, we show that VP3 is not detectable in MCV-infected cells, VP3 is not found in native MCV virions, and mutation of possible alternative VP3-initiating methionine codons did not significantly affect MCV infectivity in culture. In contrast, VP2 knockout resulted in a >100-fold decrease in native MCV infectivity, despite normal virion assembly, viral DNA packaging, and cell attachment. Although pseudovirus-based experiments confirmed that VP2 plays an essential role for infection of some cell lines, other cell lines were readily transduced by pseudovirions lacking VP2. In cell lines where VP2 was needed for efficient infectious entry, the presence of a conserved myristoyl modification on the N-terminus of VP2 was important for its function. The results show that a single minor capsid protein, VP2, facilitates a post-attachment stage of MCV infectious entry into some, but not all, cell types.
Author Summary
Merkel cell polyomavirus (MCV or MCPyV) is a recently discovered member of the viral family Polyomaviridae. The virus plays a causal role in Merkel cell carcinoma, a highly lethal form of skin cancer. MCV encodes a major capsid protein, VP1, which forms the non-enveloped surface of the virion. Other polyomavirus species encode two minor capsid proteins, VP2 and VP3, which associate with the inner surface of the capsid and facilitate infectious entry. In this report we show that MCV does not have a VP3 minor capsid protein. Sequence analyses suggest that more than a quarter of known polyomavirus species share MCV's lack of a VP3 protein. In contrast to VP3, VP2-knockout MCV mutants displayed dramatically reduced infectivity. Consistent with native virion findings, MCV pseudovirions lacking VP2 or carrying mutations in the VP2 myristoylation motif displayed reduced infectivity on several cell lines. Puzzlingly, MCV pseudoviruses lacking VP2 successfully transduced other cell lines with high efficiency. Taken together, the data show that the lone MCV minor capsid protein, VP2, plays an important role during infectious entry into some cell types, but is dispensable for entry into other cell types.
doi:10.1371/journal.ppat.1003558
PMCID: PMC3749969  PMID: 23990782
16.  Merkel Cell Polyomavirus Small T Antigen Mediates Microtubule Destabilization To Promote Cell Motility and Migration 
Journal of Virology  2014;89(1):35-47.
ABSTRACT
Merkel cell carcinoma (MCC) is an aggressive skin cancer of neuroendocrine origin with a high propensity for recurrence and metastasis. Merkel cell polyomavirus (MCPyV) causes the majority of MCC cases due to the expression of the MCPyV small and large tumor antigens (ST and LT, respectively). Although a number of molecular mechanisms have been attributed to MCPyV tumor antigen-mediated cellular transformation or replication, to date, no studies have investigated any potential link between MCPyV T antigen expression and the highly metastatic nature of MCC. Here we use a quantitative proteomic approach to show that MCPyV ST promotes differential expression of cellular proteins implicated in microtubule-associated cytoskeletal organization and dynamics. Intriguingly, we demonstrate that MCPyV ST expression promotes microtubule destabilization, leading to a motile and migratory phenotype. We further highlight the essential role of the microtubule-associated protein stathmin in MCPyV ST-mediated microtubule destabilization and cell motility and implicate the cellular phosphatase catalytic subunit protein phosphatase 4C (PP4C) in the regulation of this process. These findings suggest a possible molecular mechanism for the highly metastatic phenotype associated with MCC.
IMPORTANCE Merkel cell polyomavirus (MCPyV) causes the majority of cases of Merkel cell carcinoma (MCC), an aggressive skin cancer with a high metastatic potential. However, the molecular mechanisms leading to virally induced cancer development have yet to be fully elucidated. In particular, no studies have investigated any potential link between the virus and the highly metastatic nature of MCC. We demonstrate that the MCPyV small tumor antigen (ST) promotes the destabilization of the host cell microtubule network, which leads to a more motile and migratory cell phenotype. We further show that MCPyV ST induces this process by regulating the phosphorylation status of the cellular microtubule-associated protein stathmin by its known association with the cellular phosphatase catalytic subunit PP4C. These findings highlight stathmin as a possible biomarker of MCC and as a target for novel antitumoral therapies.
doi:10.1128/JVI.02317-14
PMCID: PMC4301106  PMID: 25320307
17.  Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy 
Oncotarget  2015;7(3):3403-3415.
Merkel cell carcinoma (MCC) is a rare but highly aggressive cutaneous neuroendocrine carcinoma, associated with the Merkel cell polyomavirus (MCPyV) in 80% of cases. To define the genetic basis of MCCs, we performed exome sequencing of 49 MCCs. We show that MCPyV-negative MCCs have a high mutation burden (median of 1121 somatic single nucleotide variants (SSNVs) per-exome with frequent mutations in RB1 and TP53 and additional damaging mutations in genes in the chromatin modification (ASXL1, MLL2, and MLL3), JNK (MAP3K1 and TRAF7), and DNA-damage pathways (ATM, MSH2, and BRCA1). In contrast, MCPyV-positive MCCs harbor few SSNVs (median of 12.5 SSNVs/tumor) with none in the genes listed above. In both subgroups, there are rare cancer-promoting mutations predicted to activate the PI3K pathway (HRAS, KRAS, PIK3CA, PTEN, and TSC1) and to inactivate the Notch pathway (Notch1 and Notch2). TP53 mutations appear to be clinically relevant in virus-negative MCCs as 37% of these tumors harbor potentially targetable gain-of-function mutations in TP53 at p.R248 and p.P278. Moreover, TP53 mutational status predicts death in early stage MCC (5-year survival in TP53 mutant vs wild-type stage I and II MCCs is 20% vs. 92%, respectively; P = 0.0036). Lastly, we identified the tumor neoantigens in MCPyV-negative and MCPyV-positive MCCs. We found that virus-negative MCCs harbor more tumor neoantigens than melanomas or non-small cell lung cancers (median of 173, 65, and 111 neoantigens/sample, respectively), two cancers for which immune checkpoint blockade can produce durable clinical responses. Collectively, these data support the use of immunotherapies for virus-negative MCCs.
doi:10.18632/oncotarget.6494
PMCID: PMC4823115  PMID: 26655088
Merkel cell carcinoma; merkel cell polyomavirus; TP53; cancer genetics; tumor neoantigens
18.  Merkel Cell Polyomavirus Small T Antigen Induces Cancer and Embryonic Merkel Cell Proliferation in a Transgenic Mouse Model 
PLoS ONE  2015;10(11):e0142329.
Merkel cell polyomavirus (MCV) causes the majority of human Merkel cell carcinomas (MCC) and encodes a small T (sT) antigen that transforms immortalized rodent fibroblasts in vitro. To develop a mouse model for MCV sT-induced carcinogenesis, we generated transgenic mice with a flox-stop-flox MCV sT sequence homologously recombined at the ROSA locus (ROSAsT), allowing Cre-mediated, conditional MCV sT expression. Standard tamoxifen (TMX) administration to adult UbcCreERT2; ROSAsT mice, in which Cre is ubiquitously expressed, resulted in MCV sT expression in multiple organs that was uniformly lethal within 5 days. Conversely, most adult UbcCreERT2; ROSAsT mice survived low-dose tamoxifen administration but developed ear lobe dermal hyperkeratosis and hypergranulosis. Simultaneous MCV sT expression and conditional homozygous p53 deletion generated multi-focal, poorly-differentiated, highly anaplastic tumors in the spleens and livers of mice after 60 days of TMX treatment. Mouse embryonic fibroblasts from these mice induced to express MCV sT exhibited anchorage-independent cell growth. To examine Merkel cell pathology, MCV sT expression was also induced during mid-embryogenesis in Merkel cells of Atoh1CreERT2/+; ROSAsT mice, which lead to significantly increased Merkel cell numbers in touch domes at late embryonic ages that normalized postnatally. Tamoxifen administration to adult Atoh1CreERT2/+; ROSAsT and Atoh1CreERT2/+; ROSAsT; p53flox/flox mice had no effects on Merkel cell numbers and did not induce tumor formation. Taken together, these results show that MCV sT stimulates progenitor Merkel cell proliferation in embryonic mice and is a bona fide viral oncoprotein that induces full cancer cell transformation in the p53-null setting.
doi:10.1371/journal.pone.0142329
PMCID: PMC4636375  PMID: 26544690
19.  Discovery of a New Human Polyomavirus Associated with Trichodysplasia Spinulosa in an Immunocompromized Patient 
PLoS Pathogens  2010;6(7):e1001024.
The Polyomaviridae constitute a family of small DNA viruses infecting a variety of hosts. In humans, polyomaviruses can cause infections of the central nervous system, urinary tract, skin, and possibly the respiratory tract. Here we report the identification of a new human polyomavirus in plucked facial spines of a heart transplant patient with trichodysplasia spinulosa, a rare skin disease exclusively seen in immunocompromized patients. The trichodysplasia spinulosa-associated polyomavirus (TSV) genome was amplified through rolling-circle amplification and consists of a 5232-nucleotide circular DNA organized similarly to known polyomaviruses. Two putative “early” (small and large T antigen) and three putative “late” (VP1, VP2, VP3) genes were identified. The TSV large T antigen contains several domains (e.g. J-domain) and motifs (e.g. HPDKGG, pRb family-binding, zinc finger) described for other polyomaviruses and potentially involved in cellular transformation. Phylogenetic analysis revealed a close relationship of TSV with the Bornean orangutan polyomavirus and, more distantly, the Merkel cell polyomavirus that is found integrated in Merkel cell carcinomas of the skin. The presence of TSV in the affected patient's skin was confirmed by newly designed quantitative TSV-specific PCR, indicative of a viral load of 105 copies per cell. After topical cidofovir treatment, the lesions largely resolved coinciding with a reduction in TSV load. PCR screening demonstrated a 4% prevalence of TSV in an unrelated group of immunosuppressed transplant recipients without apparent disease. In conclusion, a new human polyomavirus was discovered and identified as the possible cause of trichodysplasia spinulosa in immunocompromized patients. The presence of TSV also in clinically unaffected individuals suggests frequent virus transmission causing subclinical, probably latent infections. Further studies have to reveal the impact of TSV infection in relation to other populations and diseases.
Author Summary
Diseases that occur exclusively in immunocompromized patients are often of an infectious nature. Trichodysplasia spinulosa (TS) is such a disease characterized by development of papules, spines and alopecia in the face. Fortunately this disease is rare, because facial features can change dramatically, as in the case of an adolescent TS patient who was on immunosuppressive drugs because of heart-transplantation. A viral cause of TS was suspected already for some time because virus particles had been seen in TS lesions. In pursuit of this unknown virus, we isolated DNA from collected TS spines and could detect a unique small circular DNA suggestive of a polyomavirus genome. Additional experiments confirmed the presence in these samples of a new polyomavirus that we tentatively called TS-associated polyomavirus (TSPyV or TSV). TSV shares several properties with other polyomaviruses, such as genome organization and proteome composition, association with disease in immunosuppressed patients and occurence in individuals without overt disease. The latter indicates that TSV circulates in the human population. Future studies have to show how this newly identified polyomavirus spreads, how it causes disease and if it is related to other (skin) conditions as well.
doi:10.1371/journal.ppat.1001024
PMCID: PMC2912394  PMID: 20686659
20.  Merkel cell carcinoma of unknown primary site; case presentation and review of the literature 
Annals of Medicine and Surgery  2015;4(4):434-437.
Merkel cell carcinoma (MCC) is a rare skin malignancy associated with sun exposure and considered as a Neuroendocrine Tumor due to its characteristic histologic features. However there is increasing number of reports of Unknown Primary MCC's (UPMCC). Although initially UPMCC was considered a variant of known primary MCC, there is growing evidence that it could represent a different clinical entity.
We present the case of a 60 year-old male patient who was referred to our department for surgical management of lymph node disease for UPMCC. The patient had undergone excisional biopsy of an inguinal lump, which was found to be an infiltrated lymph node by MCC. The patient underwent full imaging staging including a PET/CT, which failed to identify a primary site, and revealed only intra-abdominal lymph node disease. The patient underwent extended retroperitoneal and inguinal lymph node dissection and remains free of recurrence 16 months postoperatively.
Highlights
•Unknown Primary Merkel cell carcinoma is a rare NET, which usually presents with extensive lymph node involvement.•This tumor follows a more indolent natural course than a Merkel cell carcinoma of known primary and of similar staging.•Surgical excision with R0 resection remains a common practice in the management of unknown primary Merkel cell carcinoma.•Adjuvant chemotherapy after R0 resection is the usual practice, despite the lack of good quality literature evidence.
doi:10.1016/j.amsu.2015.10.013
PMCID: PMC4720715  PMID: 26904196
Merkel cell; Unknown primary site; Surgical management; Lymphadenopathy; MCC, Merkel cell carcinoma; NET, neuroendocrine tumor; UPMCC, unknown primary Merkel cell carcinoma; PET/CT, positron emission tomography/computed tomography; SUV, standardized uptake value; HPF, high, power field; AJCC, American Joint Committee on Cancer
21.  Extensive central nervous system involvement in Merkel cell carcinoma: a case report and review of the literature 
Introduction
Merkel cell carcinoma is a rare malignant cutaneous neoplasm that is locally invasive and frequently metastasizes to lymph nodes, liver, lungs, bone and brain. The incidence of Merkel cell carcinoma has increased in the past three decades.
Case presentation
A 65-year-old Caucasian man presented with a sudden onset of severe headache and a three-month history of balance disturbance. Magnetic resonance imaging revealed a large meningeal metastasis. The radiologic workup showed retroperitoneal and inguinal lymph node metastases. Biopsy of the inguinal lymph nodes showed metastases of Merkel cell carcinoma. Biopsy from three different suspected skin lesions revealed no Merkel cell carcinoma, and the primary site of Merkel cell carcinoma remained unknown. Leptomeningeal metastases, new axillary lymph node metastases, and intraspinal (epidural and intradural) metastases were detected within six, seven and eight months, respectively, from the start of symptoms despite treating the intracranial metastasis with gamma knife and the abdominal metastases with surgical dissection and external radiotherapy. This indicates the aggressive nature of the disease.
Conclusion
To the best of our knowledge, this is the first report in the literature of an intracranial meningeal metastasis of Merkel cell carcinoma treated with gamma knife and of intraspinal intradural metastases of Merkel cell carcinoma. Despite good initial response to radiotherapy, recurrence and occurrence of new metastases are common in Merkel cell carcinoma.
doi:10.1186/1752-1947-5-35
PMCID: PMC3037324  PMID: 21269448
22.  High-Affinity Rb Binding, p53 Inhibition, Subcellular Localization, and Transformation by Wild-Type or Tumor-Derived Shortened Merkel Cell Polyomavirus Large T Antigens 
Journal of Virology  2014;88(6):3144-3160.
ABSTRACT
Interference with tumor suppressor pathways by polyomavirus-encoded tumor antigens (T-Ags) can result in transformation. Consequently, it is thought that T-Ags encoded by Merkel cell polyomavirus (MCPyV), a virus integrated in ∼90% of all Merkel cell carcinoma (MCC) cases, are major contributors to tumorigenesis. The MCPyV large T-Ag (LT-Ag) has preserved the key functional domains present in all family members but has also acquired unique regions that flank the LxCxE motif. As these regions may mediate unique functions, or may modulate those shared with T-Ags of other polyomaviruses, functional studies of MCPyV T-Ags are required. Here, we have performed a comparative study of full-length or MCC-derived truncated LT-Ags with regard to their biochemical characteristics, their ability to bind to retinoblastoma (Rb) and p53 proteins, and their transforming potential. We provide evidence that full-length MCPyV LT-Ag may not directly bind to p53 but nevertheless can significantly reduce p53-dependent transcription in reporter assays. Although early region expression constructs harboring either full-length or MCC-derived truncated LT-Ag genes can transform primary baby rat kidney cells, truncated LT-Ags do not bind to p53 or reduce p53-dependent transcription. Interestingly, shortened LT-Ags exhibit a very high binding affinity for Rb, as shown by coimmunoprecipitation and in vitro binding studies. Additionally, we show that truncated MCPyV LT-Ag proteins are expressed at higher levels than those for the wild-type protein and are able to partially relocalize Rb to the cytoplasm, indicating that truncated LT proteins may have gained additional features that distinguish them from the full-length protein.
IMPORTANCE MCPyV is one of the 12 known polyomaviruses that naturally infect humans. Among these, it is of particular interest since it is the only human polyomavirus known to be involved in tumorigenesis. MCPyV is thought to be causally linked to MCC, a rare skin tumor. In these tumors, viral DNA is monoclonally integrated into the genome of the tumor cells in up to 90% of all MCC cases, and the integrated MCV genomes, furthermore, harbor signature mutations in the so-called early region that selectively abrogate viral replication while preserving cell cycle deregulating functions of the virus. This study describes comparative studies of early region T-Ag protein characteristics, their ability to bind to Rb and p53, and their transforming potential.
doi:10.1128/JVI.02916-13
PMCID: PMC3957953  PMID: 24371076
23.  Antibodies to Merkel cell polyomavirus T-antigen oncoproteins reflect tumor burden in Merkel cell carcinoma patients 
Cancer research  2010;70(21):8388-8397.
Merkel cell polyomavirus (MCPyV) is a common infectious agent that is likely involved in the etiology of most Merkel cell carcinomas (MCCs). Serum antibodies recognizing the MCPyV capsid protein, VP1, are detectable at high titer in nearly all MCC patients, and remain stable over time. Although antibodies to the viral capsid indicate prior MCPyV infection, they provide limited clinical insight into MCC because they are also detected in more than half of the general population. We investigated whether antibodies recognizing MCPyV large and small tumor-associated antigens (T-Ags) would be more specifically associated with MCC. Among 530 population control subjects, these antibodies were present in only 0.9% and were of low titer. In contrast, among 205 MCC cases, 40.5% had serum IgG antibodies that recognize a portion of T-Ag shared between small and large T-Ags. Among cases, titers of T-Ag antibodies fell rapidly (approximately 8 fold/year) in patients whose cancer did not recur, while they rose rapidly in those with progressive disease. Importantly, in several patients who developed metastases, the rise in T-Ag titer preceded clinical detection of disease spread. These results suggest that antibodies recognizing T-Ag are relatively specifically associated with MCC, do not effectively protect against disease progression, and may serve as a clinically useful indicator of disease status.
doi:10.1158/0008-5472.CAN-10-2128
PMCID: PMC2970647  PMID: 20959478
Merkel cell carcinoma; Merkel cell polyomavirus; MCPyV; antibody; biomarker
24.  A Comprehensive Analysis of Replicating Merkel Cell Polyomavirus Genomes Delineates the Viral Transcription Program and Suggests a Role for mcv-miR-M1 in Episomal Persistence 
PLoS Pathogens  2015;11(7):e1004974.
Merkel cell polyomavirus (MCPyV) is considered the etiological agent of Merkel cell carcinoma and persists asymptomatically in the majority of its healthy hosts. Largely due to the lack of appropriate model systems, the mechanisms of viral replication and MCPyV persistence remain poorly understood. Using a semi-permissive replication system, we here report a comprehensive analysis of the role of the MCPyV-encoded microRNA (miRNA) mcv-miR-M1 during short and long-term replication of authentic MCPyV episomes. We demonstrate that cells harboring intact episomes express high levels of the viral miRNA, and that expression of mcv-miR-M1 limits DNA replication. Furthermore, we present RACE, RNA-seq and ChIP-seq studies which allow insight in the viral transcription program and mechanisms of miRNA expression. While our data suggest that mcv-miR-M1 can be expressed from canonical late strand transcripts, we also present evidence for the existence of an independent miRNA promoter that is embedded within early strand coding sequences. We also report that MCPyV genomes can establish episomal persistence in a small number of cells for several months, a time period during which viral DNA as well as LT-Ag and viral miRNA expression can be detected via western blotting, FISH, qPCR and southern blot analyses. Strikingly, despite enhanced replication in short term DNA replication assays, a mutant unable to express the viral miRNA was severely limited in its ability to establish long-term persistence. Our data suggest that MCPyV may have evolved strategies to enter a non- or low level vegetative stage of infection which could aid the virus in establishing and maintaining a lifelong persistence.
Author Summary
MCPyV is a recently discovered human polyomavirus that is likely to cause the majority of cases of Merkel cell carcinoma (MCC), a rare but highly aggressive skin cancer. While much research has been focused on understanding transforming functions of MCPyV gene products, owing to the lack of fully permissive replication systems, the natural lifecycle of the virus is poorly understood. Using high-throughput analyses, here we have interrogated a semi-permissive replication system to study the viral transcription program and elucidate the functions of the viral microRNA (miRNA) mcv-miR-M1. We find that, similar to other polyomavirus miRNAs, mcv-miR-M1 has the ability to negatively regulate expression of viral gene products required for viral DNA replication. Unexpectedly, however, we also observe that mcv-miR-M1 augments long-term episomal persistence of MCPyV genomes. Given that MCPyV establishes persistent infections in the majority of healthy human adults, our observations shed new light on the mechanisms that may be employed by this tumor virus to mount a lifelong chronic infection of its host.
doi:10.1371/journal.ppat.1004974
PMCID: PMC4517807  PMID: 26218535
25.  Restricted Protein Phosphatase 2A Targeting by Merkel Cell Polyomavirus Small T Antigen 
Journal of Virology  2015;89(8):4191-4200.
ABSTRACT
Merkel cell polyomavirus (MCV) is a newly discovered human cancer virus encoding a small T (sT) oncoprotein. We performed MCV sT FLAG-affinity purification followed by mass spectroscopy (MS) analysis, which identified several protein phosphatases (PP), including PP2A A and C subunits and PP4C, as potential cellular interacting proteins. PP2A targeting is critical for the transforming properties of nonhuman polyomaviruses, such as simian virus 40 (SV40), but is not required for MCV sT-induced rodent cell transformation. We compared similarities and differences in PP2A binding between MCV and SV40 sT. While SV40 sT coimmunopurified with subunits PP2A Aα and PP2A C, MCV sT coimmunopurified with PP2A Aα, PP2A Aβ, and PP2A C. Scanning alanine mutagenesis at 29 sites across the MCV sT protein revealed that PP2A-binding domains lie on the opposite molecular surface from a previously described large T stabilization domain (LSD) loop that binds E3 ligases, such as Fbw7. MCV sT-PP2A interactions can be functionally distinguished by mutagenesis from MCV sT LSD-dependent 4E-BP1 hyperphosphorylation and viral DNA replication enhancement. MCV sT has a restricted range for PP2A B subunit substitution, inhibiting only the assembly of B56α into the phosphatase holoenzyme. In contrast, SV40 sT inhibits the assembly of B55α, B56α and B56ε into PP2A. We conclude that MCV sT is required for Merkel cell carcinoma growth, but its in vitro transforming activity depends on LSD interactions rather than PP2A targeting.
IMPORTANCE Merkel cell polyomavirus is a newly discovered human cancer virus that promotes cancer, in part, through expression of its small T (sT) oncoprotein. Animal polyomavirus sT oncoproteins have been found to cause experimental tumors by blocking the activities of a group of phosphatases called protein phosphatase 2A (PP2A). Our structural analysis reveals that MCV sT also displaces the B subunit of PP2A to inhibit PP2A activity. MCV sT, however, only displaces a restricted subset of PP2A B subunits, which is insufficient to cause tumor cell formation in vitro. MCV sT instead transforms tumor cells through another region called the large T stabilization domain. The PP2A targeting and transforming activities lie on opposite faces of the MCV sT molecule and can be genetically separated from each other.
doi:10.1128/JVI.00157-15
PMCID: PMC4442354  PMID: 25631078

Results 1-25 (1707700)