PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1185099)

Clipboard (0)
None

Related Articles

1.  Arsenic-Mediated Activation of the Nrf2-Keap1 Antioxidant Pathway 
Arsenic is present in the environment and has become a worldwide health concern due to its toxicity and carcinogenicity. However, the specific mechanism(s) by which arsenic elicits its toxic effects has yet to be fully elucidated. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) has been recognized as the master regulator of a cellular defense mechanism against toxic insults. This review highlights studies demonstrating that arsenic activates the Nrf2-Keap1 antioxidant pathway by a distinct mechanism from that of natural compounds such as sulforaphane (SF) found in broccoli sprouts or tert-butylhyrdoquinone (tBHQ), a natural antioxidant commonly used as a food preservative. Evidence also suggests that arsenic prolongs Nrf2 activation and may mimic constitutive activation of Nrf2, which has been found in several human cancers due to disruption of the Nrf2-Keap1 axis. The current literature strongly suggests that activation of Nrf2 by arsenic potentially contributes to, rather than protects against, arsenic toxicity and carcinogenicity. The mechanism(s) by which known Nrf2 activators, such as the natural chemopreventive compounds SF and lipoic acid, protect against the deleterious effects caused by arsenic will also be discussed. These findings will provide insight to further understand how arsenic promotes a prolonged Nrf2 response, which will lead to the identification of novel molecular markers and development of rational therapies for the prevention or intervention of arsenic-induced diseases. The National Institute of Environmental Health Science (NIEHS) Outstanding New Environmental Scientist (ONES) award has provided the opportunity to review the progress both in the fields of arsenic toxicology and Nrf2 biology. Much of the funding has led to (1) the novel discovery that arsenic activates the Nrf2 pathway by a mechanism different to that of other Nrf2 activators, such as sulforaphane and tert-butylhydroquinone, (2) activation of Nrf2 by chemopreventive compounds protects against arsenic toxicity and carcinogenicity both in vitro and in vivo, (3) constitutive activation of Nrf2 by disrupting Keap1-mediated negative regulation contributes to cancer and chemoresistance, (4) p62-mediated sequestration of Keap1 activates the Nrf2 pathway, and (5) arsenic-mediated Nrf2 activation may be through a p62-dependent mechanism. All of these findings have been published and are discussed in this review. This award has laid the foundation for my laboratory to further investigate the molecular mechanism(s) that regulate the Nrf2 pathway and how it may play an integral role in arsenic toxicity. Moreover, understanding the biology behind arsenic toxicity and carcinogenicity will help in the discovery of potential strategies to prevent or control arsenic-mediated adverse effects.
doi:10.1002/jbt.21463
PMCID: PMC3725327  PMID: 23188707
Nrf2; Arsenic; Keap1; Oxidative stress; p62; Autophagy; Chemoprevention
2.  High levels of Nrf2 determine chemoresistance in type II endometrial cancer 
Cancer research  2010;70(13):5486-5496.
Type II endometrial cancer, which mainly presents as serous and clear cell types, has proved to be the most malignant and recurrent carcinoma among various female genital malignancies. The transcription factor, Nrf2, was first described as having chemopreventive activity. Activation of the Nrf2-mediated cellular defense response protects cells against the toxic and carcinogenic effects of environmental insults by upregulating an array of genes that detoxify reactive oxygen species (ROS) and restore cellular redox homeostasis. However, the cancer-promoting role of Nrf2 has recently been revealed. Nrf2 is constitutively upregulated in several types of human cancer tissues and cancer cell lines. Furthermore, inhibition of Nrf2 expression sensitizes cancer cells to chemotherapeutic drugs. In this study, the constitutive level of Nrf2 was compared in different types of human endometrial tumors. It was found that Nrf2 was highly expressed in endometrial serous carcinoma (ESC), whereas complex hyperplasia (CH) and endometrial endometrioid carcinoma (EEC) had no or marginal expression of Nrf2. Likewise, the ESC derived SPEC-2 cell line had a higher level of Nrf2 expression and was more resistant to the toxic effects of cisplatin and paclitaxel than that of the Ishikawa cell line, which was generated from EEC. Silencing of Nrf2 rendered SPEC-2 cells more susceptible to chemotherapeutic drugs while it had a limited effect on Ishikawa cells. Inhibition of Nrf2 expression by overexpressing Keap1 sensitized SPEC-2 cells or SPEC-2-derived xenografts to chemotherapeutic treatments using both cell culture and SCID mouse models. Collectively, we provide a molecular basis for the use of Nrf2 inhibitors to increase the efficacy of chemotherapeutic drugs and to combat chemoresistance, the biggest obstacle in chemotherapy.
doi:10.1158/0008-5472.CAN-10-0713
PMCID: PMC2896449  PMID: 20530669
Nrf2; chemoresistance; and endometrial cancer
3.  Identification and quantification of the basal and inducible Nrf2-dependent proteomes in mouse liver: Biochemical, pharmacological and toxicological implications 
Journal of Proteomics  2014;108(100):171-187.
The transcription factor Nrf2 is a master regulator of cellular defence: Nrf2 null mice (Nrf2(−/−)) are highly susceptible to chemically induced toxicities. We report a comparative iTRAQ-based study in Nrf2(−/−) mice treated with a potent inducer, methyl-2-cyano-3,12-dioxooleana-1,9(11)dien-28-oate (CDDO-me; bardoxolone -methyl), to define both the Nrf2-dependent basal and inducible hepatoproteomes. One thousand five hundred twenty-one proteins were fully quantified (FDR < 1%). One hundred sixty-one were significantly different (P < 0.05) between WT and Nrf2(−/−) mice, confirming extensive constitutive regulation by Nrf2. Treatment with CDDO-me (3 mg/kg; i.p.) resulted in significantly altered expression of 43 proteins at 24 h in WT animals. Six proteins were regulated at both basal and inducible levels exhibiting the largest dynamic range of Nrf2 regulation: cytochrome P4502A5 (CYP2A5; 17.2-fold), glutathione-S-transferase-Mu 3 (GSTM3; 6.4-fold), glutathione-S-transferase Mu 1 (GSTM1; 5.9-fold), ectonucleoside-triphosphate diphosphohydrolase (ENTPD5; 4.6-fold), UDP-glucose-6-dehydrogenase (UDPGDH; 4.1-fold) and epoxide hydrolase (EPHX1; 3.0-fold). These proteins, or their products, thus provide a potential source of biomarkers for Nrf2 activity. ENTPD5 is of interest due to its emerging role in AKT signalling and, to our knowledge, this protein has not been previously shown to be Nrf2-dependent. Only two proteins altered by CDDO-me in WT animals were similarly affected in Nrf2(−/−) mice, demonstrating the high degree of selectivity of CDDO-me for the Nrf2:Keap1 signalling pathway.
Biological significance
The Nrf2:Keap1 signalling pathway is attracting considerable interest as a therapeutic target for different disease conditions. For example, CDDO-me (bardoxolone methyl) was investigated in clinical trials for the treatment of acute kidney disease, and dimethyl fumarate, recently approved for reducing relapse rate in multiple sclerosis, is a potent Nrf2 inducer. Such compounds have been suggested to act through multiple mechanisms; therefore, it is important to define the selectivity of Nrf2 inducers to assess the potential for off-target effects that may lead to adverse drug reactions, and to provide biomarkers with which to assess therapeutic efficacy. Whilst there is considerable information on the global action of such inducers at the mRNA level, this is the first study to catalogue the hepatic protein expression profile following acute exposure to CDDO-me in mice. At a dose shown to evoke maximal Nrf2 induction in the liver, CDDO-me appeared highly selective for known Nrf2-regulated proteins. Using the transgenic Nrf2(−/−) mouse model, it could be shown that 97% of proteins induced in wild type mice were associated with a functioning Nrf2 signalling pathway. This analysis allowed us to identify a panel of proteins that were regulated both basally and following Nrf2 induction. Identification of these proteins, which display a large magnitude of variation in their expression, provides a rich source of potential biomarkers for Nrf2 activity for use in experimental animals, and which may be translatable to man to define individual susceptibility to chemical stress, including that associated with drugs, and also to monitor the pharmacological response to Nrf2 inducers.
Graphical abstract
Highlights
•Liver proteomes from WT, Nrf2-null and Nrf2-induced mice were compared by iTRAQ•Of 1521 proteins quantified, 161 were regulated basally and 43 following induction•Six proteins were both basally and inducibly regulated, with high dynamic ranges•In order of fold change, these proteins were CYP2A5, GSTM3, GSTM1, ENTPD5, G6PD, EPHX1•These proteins may yield translatable biomarkers for clinical development
doi:10.1016/j.jprot.2014.05.007
PMCID: PMC4115266  PMID: 24859727
Nrf2; iTRAQ; ENTPD5; CYP2A5; Hepatoproteome; CDDO
4.  Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2 
Carcinogenesis  2008;29(6):1235-1243.
Drug resistance during chemotherapy is the major obstacle to the successful treatment of many cancers. Here, we report that inhibition of NF-E2-related factor 2 (Nrf2) may be a promising strategy to combat chemoresistance. Nrf2 is a critical transcription factor regulating a cellular protective response that defends cells against toxic insults from a broad spectrum of chemicals. Under normal conditions, the low constitutive amount of Nrf2 protein is maintained by the Kelch-like ECH-associated protein1 (Keap1)-mediated ubiquitination and proteasomal degradation system. Upon activation, this Keap1-dependent Nrf2 degradation mechanism is quickly inactivated, resulting in accumulation and activation of the antioxidant response element (ARE)-dependent cytoprotective genes. Since its discovery, Nrf2 has been viewed as a ‘good’ transcription factor that protects us from many diseases. In this study, we demonstrate the dark side of Nrf2: stable overexpression of Nrf2 resulted in enhanced resistance of cancer cells to chemotherapeutic agents including cisplatin, doxorubicin and etoposide. Inversely, downregulation of the Nrf2-dependent response by overexpression of Keap1 or transient transfection of Nrf2–small interfering RNA (siRNA) rendered cancer cells more susceptible to these drugs. Upregulation of Nrf2 by the small chemical tert-butylhydroquinone (tBHQ) also enhanced the resistance of cancer cells, indicating the feasibility of using small chemical inhibitors of Nrf2 as adjuvants to chemotherapy to increase the efficacy of chemotherapeutic agents. Furthermore, we provide evidence that the strategy of using Nrf2 inhibitors to increase efficacy of chemotherapeutic agents is not limited to certain cancer types or anticancer drugs and thus can be applied during the course of chemotherapy to treat many cancer types.
doi:10.1093/carcin/bgn095
PMCID: PMC3312612  PMID: 18413364
5.  Ectodermal-Neural Cortex 1 Down-Regulates Nrf2 at the Translational Level 
PLoS ONE  2009;4(5):e5492.
The transcription factor Nrf2 is the master regulator of a cellular defense mechanism against environmental insults. The Nrf2-mediated antioxidant response is accomplished by the transcription of a battery of genes that encode phase II detoxifying enzymes, xenobiotic transporters, and antioxidants. Coordinated expression of these genes is critical in protecting cells from toxic and carcinogenic insults and in maintaining cellular redox homeostasis. Activation of the Nrf2 pathway is primarily controlled by Kelch-like ECH-associated protein 1 (Keap1), which is a molecular switch that turns on or off the Nrf2 signaling pathway according to intracellular redox conditions. Here we report our finding of a novel Nrf2 suppressor ectodermal-neural cortex 1 (ENC1), which is a BTB-Kelch protein and belongs to the same family as Keap1. Transient expression of ENC1 reduced steady-state levels of Nrf2 and its downstream gene expression. Although ENC1 interacted with Keap1 indirectly, the ENC1-mediated down-regulation of Nrf2 was independent of Keap1. The negative effect of ENC1 on Nrf2 was not due to a change in the stability of Nrf2 because neither proteasomal nor lysosomal inhibitors had any effects. Overexpression of ENC1 did not result in a change in the level of Nrf2 mRNA, rather, it caused a decrease in the rate of Nrf2 protein synthesis. These results demonstrate that ENC1 functions as a negative regulator of Nrf2 through suppressing Nrf2 protein translation, which adds another level of complexity in controlling the Nrf2 signaling pathway.
doi:10.1371/journal.pone.0005492
PMCID: PMC2675063  PMID: 19424503
6.  Targeted Deletion of Nrf2 Reduces Urethane-Induced Lung Tumor Development in Mice 
PLoS ONE  2011;6(10):e26590.
Nrf2 is a key transcription factor that regulates cellular redox and defense responses. However, permanent Nrf2 activation in human lung carcinomas promotes pulmonary malignancy and chemoresistance. We tested the hypothesis that Nrf2 has cell survival properties and lack of Nrf2 suppresses chemically-induced pulmonary neoplasia by treating Nrf2+/+ and Nrf2-/- mice with urethane. Airway inflammation and injury were assessed by bronchoalveolar lavage analyses and histopathology, and lung tumors were analyzed by gross and histologic analysis. We used transcriptomics to assess Nrf2-dependent changes in pulmonary gene transcripts at multiple stages of neoplasia. Lung hyperpermeability, cell death and apoptosis, and inflammatory cell infiltration were significantly higher in Nrf2-/- mice compared to Nrf2+/+ mice 9 and 11 wk after urethane. Significantly fewer lung adenomas were found in Nrf2-/- mice than in Nrf2+/+ mice at 12 and 22 wk. Nrf2 modulated expression of genes involved cell-cell signaling, glutathione metabolism and oxidative stress response, and immune responses during early stage neoplasia. In lung tumors, Nrf2-altered genes had roles in transcriptional regulation of cell cycle and proliferation, carcinogenesis, organismal injury and abnormalities, xenobiotic metabolism, and cell-cell signaling genes. Collectively, Nrf2 deficiency decreased susceptibility to urethane-induced lung tumorigenesis in mice. Cell survival properties of Nrf2 were supported, at least in part, by reduced early death of initiated cells and heightened advantage for tumor cell expansion in Nrf2+/+ mice relative to Nrf2-/- mice. Our results were consistent with the concept that Nrf2 over-activation is an adaptive response of cancer conferring resistance to anti-cancer drugs and promoting malignancy.
doi:10.1371/journal.pone.0026590
PMCID: PMC3198791  PMID: 22039513
7.  Dysfunctional KEAP1–NRF2 Interaction in Non-Small-Cell Lung Cancer 
PLoS Medicine  2006;3(10):e420.
Background
Nuclear factor erythroid-2 related factor 2 (NRF2) is a redox-sensitive transcription factor that positively regulates the expression of genes encoding antioxidants, xenobiotic detoxification enzymes, and drug efflux pumps, and confers cytoprotection against oxidative stress and xenobiotics in normal cells. Kelch-like ECH-associated protein 1 (KEAP1) negatively regulates NRF2 activity by targeting it to proteasomal degradation. Increased expression of cellular antioxidants and xenobiotic detoxification enzymes has been implicated in resistance of tumor cells against chemotherapeutic drugs.
Methods and Findings
Here we report a systematic analysis of the KEAP1 genomic locus in lung cancer patients and cell lines that revealed deletion, insertion, and missense mutations in functionally important domains of KEAP1 and a very high percentage of loss of heterozygosity at 19p13.2, suggesting that biallelic inactivation of KEAP1 in lung cancer is a common event. Sequencing of KEAP1 in 12 cell lines and 54 non-small-cell lung cancer (NSCLC) samples revealed somatic mutations in KEAP1 in a total of six cell lines and ten tumors at a frequency of 50% and 19%, respectively. All the mutations were within highly conserved amino acid residues located in the Kelch or intervening region domain of the KEAP1 protein, suggesting that these mutations would likely abolish KEAP1 repressor activity. Evaluation of loss of heterozygosity at 19p13.2 revealed allelic losses in 61% of the NSCLC cell lines and 41% of the tumor samples. Decreased KEAP1 activity in cancer cells induced greater nuclear accumulation of NRF2, causing enhanced transcriptional induction of antioxidants, xenobiotic metabolism enzymes, and drug efflux pumps.
Conclusions
This is the first study to our knowledge to demonstrate that biallelic inactivation of KEAP1 is a frequent genetic alteration in NSCLC. Loss of KEAP1 function leading to constitutive activation of NRF2-mediated gene expression in cancer suggests that tumor cells manipulate the NRF2 pathway for their survival against chemotherapeutic agents.
Biallelic inactivation ofKEAP1, a frequent genetic alteration in NSCLC, is associated with activation of the NRF2 pathway which leads to expression of genes that contribute to resistance against chemotherapeutic drugs.
Editors' Summary
Background.
Lung cancer is the most common cause of cancer-related death worldwide. More than 150,000 people in the US alone die every year from this disease, which can be split into two basic types—small cell lung cancer and non-small-cell lung cancer (NSCLC). Four out of five lung cancers are NSCLCs, but both types are mainly caused by smoking. Exposure to chemicals in smoke produces changes (or mutations) in the genetic material of the cells lining the lungs that cause the cells to grow uncontrollably and to move around the body. In more than half the people who develop NSCLC, the cancer has spread out of the lungs before it is diagnosed, and therefore can't be removed surgically. Stage IV NSCLC, as this is known, is usually treated with chemotherapy—toxic chemicals that kill the fast-growing cancer cells. However, only 2% of people with stage IV NSCLC are still alive two years after their diagnosis, mainly because their cancer cells become resistant to chemotherapy. They do this by making proteins that destroy cancer drugs (detoxification enzymes) or that pump them out of cells (efflux pumps) and by making antioxidants, chemicals that protect cells against the oxidative damage caused by many chemotherapy agents.
Why Was This Study Done?
To improve the outlook for patients with lung cancer, researchers need to discover exactly how cancer cells become resistant to chemotherapy drugs. Detoxification enzymes, efflux pumps, and antioxidants normally protect cells from environmental toxins and from oxidants produced by the chemical processes of life. Their production is regulated by nuclear factor erythroid-2 related factor 2 (NRF2). The activity of this transcription factor (a protein that controls the expression of other proteins) is controlled by the protein Kelch-like ECH-associated protein 1 (KEAP1). KEAP1 holds NRF2 in the cytoplasm of the cell (the cytoplasm surrounds the cell's nucleus, where the genetic material is stored) when no oxidants are present and targets it for destruction. When oxidants are present, KEAP1 no longer interacts with NRF2, which moves into the nucleus and induces the expression of the proteins that protect the cell against oxidants and toxins. In this study, the researchers investigated whether changes in KEAP1 might underlie the drug resistance seen in lung cancer.
What Did the Researchers Do and Find?
The researchers looked carefully at the gene encoding KEAP1 in tissue taken from lung tumors and in several lung cancer cell lines—tumor cells that have been grown in a laboratory. They found mutations in parts of KEAP1 known to be important for its function in half the cell lines and a fifth of the tumor samples. They also found that about half of the samples had lost part of one copy of the KEAP1 gene—cells usually have two copies of each gene. Five of the six tumors with KEAP1 mutations had also lost one copy of KEAP1—geneticists call this biallelic inactivation. This means that these tumors should have no functional KEAP1. When the researchers checked this by staining the tumors for NRF2, they found that the tumor cells had more NRF2 than normal cells and that it accumulated in the nucleus. In addition, the tumor cells made more detoxification enzymes, efflux proteins, and antioxidants than normal cells. Finally, the researchers showed that lung cancer cells with KEAP1 mutations were more resistant to chemotherapy drugs than normal lung cells were.
What Do These Findings Mean?
These results indicate that biallelic inactivation of KEAP1 is a frequent genetic alteration in NSCLC and suggest that the loss of KEAP1 activity is one way that lung tumors can increase their NRF2 activity and develop resistance to chemotherapeutic drugs. More lung cancer samples need to be examined to confirm this result, and similar studies need to be done in other cancers to see whether loss of KEAP1 activity is a common mechanism by which tumors become resistant to chemotherapy. If such studies confirm that high NRF2 activity (either through mutation or by some other route) is often associated with a poor tumor response to chemotherapy, then the development of NRF2 inhibitors might help to improve treatment outcomes in patients with chemotherapy-resistant tumors.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030420.
US National Cancer Institute information on lung cancer and on cancer treatment
MedlinePlus entries on small cell lung cancer and NSCLC Cancer Research UK information on lung cancer
Wikipedia entries on lung cancer and chemotherapy (note that Wikipedia is a free online encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0030420
PMCID: PMC1584412  PMID: 17020408
8.  Oridonin Confers Protection against Arsenic-Induced Toxicity through Activation of the Nrf2-Mediated Defensive Response 
Environmental Health Perspectives  2008;116(9):1154-1161.
Background
Groundwater contaminated with arsenic imposes a big challenge to human health worldwide. Using natural compounds to subvert the detrimental effects of arsenic represents an attractive strategy. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical regulator of the cellular antioxidant response and xenobiotic metabolism. Recently, activation of the Nrf2 signaling pathway has been reported to confer protection against arsenic-induced toxicity in a cell culture model.
Objectives
The goal of the present work was to identify a potent Nrf2 activator from plants as a chemopreventive compound and to demonstrate the efficacy of the compound in battling arsenic-induced toxicity.
Results
Oridonin activated the Nrf2 signaling pathway at a low subtoxic dose and was able to stabilize Nrf2 by blocking Nrf2 ubiquitination and degradation, leading to accumulation of the Nrf2 protein and activation of the Nrf2-dependent cytoprotective response. Pretreatment of UROtsa cells with 1.4 μM oridonin significantly enhanced the cellular redox capacity, reduced formation of reactive oxygen species (ROS), and improved cell survival after arsenic challenge.
Conclusions
We identified oridonin as representing a novel class of Nrf2 activators and illustrated the mechanism by which the Nrf2 pathway is activated. Furthermore, we demonstrated the feasibility of using natural compounds targeting Nrf2 as a therapeutic approach to protect humans from various environmental insults that may occur daily.
doi:10.1289/ehp.11464
PMCID: PMC2535615  PMID: 18795156
antioxidant responsive element; antitumor; ARE; arsenic; chemoprevention; diterpenoid; Keap1; Nrf2; oridonin; oxidative stress; rubescensin
9.  Tanshinone I Activates the Nrf2-Dependent Antioxidant Response and Protects Against As(III)-Induced Lung Inflammation In Vitro and In Vivo 
Antioxidants & Redox Signaling  2013;19(14):1647-1661.
Abstract
Aims: The NF-E2 p45-related factor 2 (Nrf2) signaling pathway regulates the cellular antioxidant response and activation of Nrf2 has recently been shown to limit tissue damage from exposure to environmental toxicants, including As(III). In an attempt to identify improved molecular agents for systemic protection against environmental insults, we have focused on the identification of novel medicinal plant-derived Nrf2 activators. Results: Tanshinones [tanshinone I (T-I), tanshinone IIA, dihydrotanshinone, cryptotanshinone], phenanthrenequinone-based redox therapeutics derived from the medicinal herb Salvia miltiorrhiza, have been tested as experimental therapeutics for Nrf2-dependent cytoprotection. Using a dual luciferase reporter assay overexpressing wild-type or mutant Kelch-like ECH-associated protein-1 (Keap1), we demonstrate that T-I is a potent Keap1-C151-dependent Nrf2 activator that stabilizes Nrf2 by hindering its ubiquitination. In human bronchial epithelial cells exposed to As(III), T-I displays pronounced cytoprotective activity with upregulation of Nrf2-orchestrated gene expression. In Nrf2 wild-type mice, systemic administration of T-I attenuates As(III) induced inflammatory lung damage, a protective effect not observed in Nrf2 knockout mice. Innovation: Tanshinones have been identified as a novel class of Nrf2-inducers for antioxidant tissue protection in an in vivo As(III) inhalation model, that is relevant to low doses of environmental exposure. Conclusion: T-I represents a prototype Nrf2-activator that displays cytoprotective activity upon systemic administration targeting lung damage originating from environmental insults. T-I based Nrf2-directed systemic intervention may provide therapeutic benefit in protecting other organs against environmental insults. Antioxid. Redox Signal. 19, 1647–1661.
doi:10.1089/ars.2012.5117
PMCID: PMC3809600  PMID: 23394605
10.  Activation of Nrf2-antioxidant signaling attenuates NF-κB-inflammatory response and elicits apoptosis 
Biochemical pharmacology  2008;76(11):1485-1489.
Oxidative stress has been implicated in the etiology of neurodegenerative disease, cancer and aging. Indeed, the reactive oxygen and nitrogen species generated by inflammatory cells that created oxidative stress is thought to be one of the major factor by which chronic inflammation contributes to neoplastic transformation as well as many other diseases. We have recently reported that mice lacking nuclear factor-erythroid 2-related factor 2 (Nrf2) are more susceptibility to dextran sulfate sodium (DSS)-induced colitis and colorectal carcinogenesis. Nrf2 is a basic leucine zipper redox-sensitive transcriptional factor that plays a center role in ARE (antioxidant response element)-mediated induction of phase II detoxifying and antioxidant enzymes. We found that increased susceptibility of Nrf2 deficient mice to DSS-induced colitis and colorectal cancer was associated with decreased expression of antioxidant/phase II detoxifying enzymes in parallel with upregulation of pro-inflammatory cytokines/biomarkers. These findings suggest that Nrf2 may play an important role in defense against oxidative stress possibly by activation of cellular antioxidant machinery as well as suppression of pro-inflammatory signaling pathways. In addition, in vivo and in vitro data generated from our laboratory suggest that many dietary compounds can differentially regulate Nrf2-mediated antioxidant/anti-inflammatory signaling pathways as the first line defense or induce apoptosis once the cells have been damaged. In this review, we will summarize our thoughts on the potential cross-talks between Nrf2 and NF-κB pathways. Although the mechanisms involved in the cross-talk between these signaling pathways are still illusive, targeting Nrf2-antioxidative stress signaling is an ideal strategy to prevent or treat oxidative-stress related diseases.
doi:10.1016/j.bcp.2008.07.017
PMCID: PMC2610259  PMID: 18694732
Nrf2; NF-κB; DSS; AOM; apoptosis
11.  p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition 
eLife  2014;3:e01856.
Proteasome inhibition elicits an evolutionarily conserved response wherein proteasome subunit mRNAs are upregulated, resulting in recovery (i.e., ‘bounce-back’) of proteasome activity. We previously demonstrated that the transcription factor Nrf1/NFE2L1 mediates this homeostatic response in mammalian cells. We show here that Nrf1 is initially translocated into the lumen of the ER, but is rapidly and efficiently retrotranslocated to the cytosolic side of the membrane in a manner that depends on p97/VCP. Normally, retrotranslocated Nrf1 is degraded promptly by the proteasome and active species do not accumulate. However, in cells with compromised proteasomes, retrotranslocated Nrf1 escapes degradation and is cleaved N-terminal to Leu-104 to yield a fragment that is no longer tethered to the ER membrane. Importantly, this cleavage event is essential for Nrf1-dependent activation of proteasome gene expression upon proteasome inhibition. Our data uncover an unexpected role for p97 in activation of a transcription factor by relocalizing it from the ER lumen to the cytosol.
DOI: http://dx.doi.org/10.7554/eLife.01856.001
eLife digest
Cells exposed to high temperatures, infections and other forms of stress often produce oxygen ions and peroxide molecules that can cause damage to proteins and DNA. Cells therefore rely on molecular machines called proteasomes to eliminate damaged proteins, before they cause too much harm. Two related transcription factors—proteins that interact with DNA to ‘switch on’ the expression of genes—are involved in a cell’s responses to stress, but in different ways. Nrf2 switches on genes that limit the damage caused by oxygen ions and peroxide molecules, while Nrf1 switches on the genes that encode the components of the proteasome. As such, Nrf1 helps to restart proteasome activity if it has been shut off—a phenomenon known as ‘bounce-back’.
Within a cell, Nrf1 is known to start off embedded within the membranes of a structure called the endoplasmic reticulum. However, it is not clear how activated Nrf1 leaves this membrane and enters the nucleus to interact with the cell’s DNA. Now, Radhakrishnan et al. show that when Nrf1 is produced, most of its length is found inside the endoplasmic reticulum, with only a small piece being anchored in the surrounding membrane. This is unlike previously described transcription factors that associate with the endoplasmic reticulum, which are stuck to the outside of this structure.
Radhakrishnan et al. also discovered that the activation of Nrf1 depends on an enzyme called p97 or VCP. This enzyme helps to flip Nrf1 from the inside of the endoplasmic reticulum to its outside surface. In most cells, the proteasome then breaks down this part of Nrf1. However, if the proteasome is inhibited, an unknown enzyme cuts Nrf1 free from the endoplasmic reticulum, allowing it to migrate to the nucleus and promote the production of more proteasome components to counteract the inhibition.
Interestingly, drugs that inhibit the proteasome are used to combat cancer because the build-up of damaged proteins is toxic to the cancer cells. By showing that p97 promotes the ‘bounce-back’ of the proteasome, the work of Radhakrishnan et al. suggests that combining existing proteasome inhibitors with drugs that inhibit p97 could eventually lead to new, more effective, therapies for cancer or other diseases.
DOI: http://dx.doi.org/10.7554/eLife.01856.002
doi:10.7554/eLife.01856
PMCID: PMC3896944  PMID: 24448410
p97; Nrf1; proteasome; human; mouse
12.  Expression of ABCG2 (BCRP), a Marker of Stem Cells, is Regulated by Nrf2 in Cancer Cells That Confers Side Population and Chemoresistance Phenotype 
Molecular cancer therapeutics  2010;9(8):2365-2376.
ATP-binding cassette, sub-family G, member 2 (ABCG2) is expressed in both normal and cancer cells, and plays a crucial role in the side population (SP) formation and efflux of xenobiotics and drugs. Nrf2, a redox sensing transcription factor, upon constitutive activation in non-small-cell lung cancer cells up-regulates a wide spectrum of genes involved in redox balance, glutathione metabolism, and drug detoxification that contribute to chemoresistance and tumorigenecity. This study examined the mechanism underlying Nrf2-dependent expression of ABCG2 and its role in multidrug resistance phenotype. In silico analysis of the 5’-promoter flanking region of ABCG2 identified an antioxidant response element at -431 bp to -420 bp. A detailed promoter analysis using luciferase reporter assays demonstrated that antioxidant response element (ARE) at -431 bp to -420 bp is critical for the Nrf2-mediated expression in lung cancer cells. Electrophoresis mobility shift assays (EMSA) and chromatin-immunoprecipitation (ChIP) assays revealed that Nrf2 interacts with ABCG2 ARE element at -431 bp to -420 bp in vitro and in vivo. Disruption of Nrf2 expression in lung cancer and prostate cancer cells, by short hairpin RNA, attenuated the expression of ABCG2 transcript and protein and dramatically reduced the SP fraction in Nrf2-depleted cancer cells. Moreover, depleted levels of ABCG2 in these Nrf2-knockdown cells sensitized them to mitoxantrone and topotecan, two chemotherapy drugs detoxified mainly by ABCG2. As expected, overexpression of Nrf2 cDNA in lung epithelial cells led to an increase in ABCG2 expression and a 2-fold higher SP fraction. Thus, Nrf2-mediated regulation of ABCG2 expression maintains SP fraction and confers chemoresistance.
doi:10.1158/1535-7163.MCT-10-0108
PMCID: PMC2955865  PMID: 20682644
Nrf2; ABCG2; lung cancer; cancer stem cells; chemo-resistance; RNAi
13.  Cross-Regulations among NRFs and KEAP1 and Effects of their Silencing on Arsenic-Induced Antioxidant Response and Cytotoxicity in Human Keratinocytes 
Environmental Health Perspectives  2012;120(4):583-589.
Background: Nuclear factor E2-related factors (NRFs), including NRF2 and NRF1, play critical roles in mediating the cellular adaptive response to oxidative stress. Human exposure to inorganic arsenic, a potent oxidative stressor, causes various dermal disorders, including hyperkeratosis and skin cancer.
Objective: We investigated the cross-regulations among NRF2, NRF1, and KEAP1, a cullin-3–adapter protein that allows NRF2 to be ubiquinated and degraded by the proteasome complex, in arsenic-induced antioxidant responses.
Results: In human keratinocyte HaCaT cells, selective knockdown (KD) of NRF2 by lentiviral short hairpin RNAs (shRNAs) significantly reduced the expression of many antioxidant enzymes and sensitized the cells to acute cytotoxicity of inorganic arsenite (iAs3+). In contrast, silencing KEAP1 led to a dramatic resistance to iAs3+-induced apoptosis. Pretreatment of HaCaT cells with NRF2 activators, such as tert-butylhydroquinone, protects the cells against acute iAs3+ toxicity in an NRF2-dependent fashion. Consistent with the negative regulatory role of KEAP1 in NRF2 activation, KEAP1-KD cells exhibited enhanced transcriptional activity of NRF2 under nonstressed conditions. However, deficiency in KEAP1 did not facilitate induction of NRF2-target genes by iAs3+. In addition, NRF2 silencing reduced the expression of KEAP1 at transcription and protein levels but increased the protein expression of NRF1 under the iAs3+-exposed condition. In contrast, silencing KEAP1 augmented protein accumulation of NRF2 under basal and iAs3+-exposed conditions, whereas the iAs3+-induced protein accumulation of NRF1 was attenuated in KEAP1-KD cells.
Conclusions: Our studies suggest that NRF2, KEAP1, and NRF1 are coordinately involved in the regulation of the cellular adaptive response to iAs3+-induced oxidative stress.
doi:10.1289/ehp.1104580
PMCID: PMC3339469  PMID: 22476201
antioxidant response; arsenic; cytotoxicity; KEAP1; keratinocyte; NRF1; NRF2
14.  Fasting Induces Nuclear Factor E2-Related Factor 2 and ATP-Binding Cassette Transporters via Protein Kinase A and Sirtuin-1 in Mouse and Human 
Antioxidants & Redox Signaling  2014;20(1):15-30.
Abstract
Aims: The purpose of this study was to determine whether 3′-5′-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Sirtuin-1 (SIRT1) dependent mechanisms modulate ATP-binding Cassette (ABC) transport protein expression. ABC transport proteins (ABCC2–4) are essential for chemical elimination from hepatocytes and biliary excretion. Nuclear factor-E2 related-factor 2 (NRF2) is a transcription factor that mediates ABCC induction in response to chemical inducers and liver injury. However, a role for NRF2 in the regulation of transporter expression in nonchemical models of liver perturbation is largely undescribed. Results: Here we show that fasting increased NRF2 target gene expression through NRF2- and SIRT1–dependent mechanisms. In intact mouse liver, fasting induces NRF2 target gene expression by at least 1.5 to 5-fold. In mouse and human hepatocytes, treatment with 8-Bromoadenosine-cAMP, a cAMP analogue, increased NRF2 target gene expression and antioxidant response element activity, which was decreased by the PKA inhibitor, H-89. Moreover, fasting induced NRF2 target gene expression was decreased in liver and hepatocytes of SIRT1 liver-specific null mice and NRF2-null mice. Lastly, NRF2 and SIRT1 were recruited to MAREs and Antioxidant Response Elements (AREs) in the human ABCC2 promoter. Innovation: Oxidative stress mediated NRF2 activation is well described, yet the influence of basic metabolic processes on NRF2 activation is just emerging. Conclusion: The current data point toward a novel role of nutrient status in regulation of NRF2 activity and the antioxidant response, and indicates that cAMP/PKA and SIRT1 are upstream regulators for fasting-induced activation of the NRF2-ARE pathway. Antioxid. Redox Signal. 20, 15–30.
doi:10.1089/ars.2012.5082
PMCID: PMC3880903  PMID: 23725046
15.  De-Differentiation Confers Multidrug Resistance Via Noncanonical PERK-Nrf2 Signaling 
PLoS Biology  2014;12(9):e1001945.
Upregulation of PERK-Nrf2 signaling is a key mechanism by which de-differentiated cancer cells gain multi-drug resistance.
Malignant carcinomas that recur following therapy are typically de-differentiated and multidrug resistant (MDR). De-differentiated cancer cells acquire MDR by up-regulating reactive oxygen species (ROS)–scavenging enzymes and drug efflux pumps, but how these genes are up-regulated in response to de-differentiation is not known. Here, we examine this question by using global transcriptional profiling to identify ROS-induced genes that are already up-regulated in de-differentiated cells, even in the absence of oxidative damage. Using this approach, we found that the Nrf2 transcription factor, which is the master regulator of cellular responses to oxidative stress, is preactivated in de-differentiated cells. In de-differentiated cells, Nrf2 is not activated by oxidation but rather through a noncanonical mechanism involving its phosphorylation by the ER membrane kinase PERK. In contrast, differentiated cells require oxidative damage to activate Nrf2. Constitutive PERK-Nrf2 signaling protects de-differentiated cells from chemotherapy by reducing ROS levels and increasing drug efflux. These findings are validated in therapy-resistant basal breast cancer cell lines and animal models, where inhibition of the PERK-Nrf2 signaling axis reversed the MDR of de-differentiated cancer cells. Additionally, analysis of patient tumor datasets showed that a PERK pathway signature correlates strongly with chemotherapy resistance, tumor grade, and overall survival. Collectively, these results indicate that de-differentiated cells up-regulate MDR genes via PERK-Nrf2 signaling and suggest that targeting this pathway could sensitize drug-resistant cells to chemotherapy.
Author Summary
The development of multidrug resistance is the primary obstacle to treating cancers. High-grade tumors that are less differentiated typically respond poorly to therapy and carry a much worse prognosis than well-differentiated low-grade tumors. Therapy-resistant cancer cells often overexpress antioxidants or efflux proteins that pump drugs out of the cell, but how the differentiation state of cancer cells influences these resistance mechanisms is not well understood. Here we used genome-scale approaches and found that the PERK kinase and its downstream target, Nrf2—a master transcriptional regulator of the cellular antioxidant response—are key mediators of therapy resistance in poorly differentiated breast cancer cells. We show that Nrf2 is activated when cancer cells de-differentiate and that this activation requires PERK. We further show that blocking PERK-Nrf2 signaling with a small-molecule inhibitor sensitizes drug-resistant cancer cells to chemotherapy. Our results identify a novel role for PERK-Nrf2 signaling in multidrug resistance and suggest that targeting this pathway could improve the responsiveness of otherwise resistant tumors to chemotherapy.
doi:10.1371/journal.pbio.1001945
PMCID: PMC4159113  PMID: 25203443
16.  Regulation of NF-E2-Related Factor 2 Signaling for Cancer Chemoprevention: Antioxidant Coupled with Antiinflammatory 
Antioxidants & Redox Signaling  2010;13(11):1679-1698.
Abstract
Cancer chemoprevention is a process of using either natural or synthetic compounds to reduce the risk of developing cancer. Observations that NF-E2-related factor 2 (Nrf2)-deficient mice lack response to some chemopreventive agents point to the important role of Nrf2 in chemoprevention. Nrf2 is a member of basic-leucine zipper transcription factor family and has been shown to regulate gene expression by binding to a response element, antioxidant responsive element. It is generally believed that activation of Nrf2 signaling is an adaptive response to the environmental and endogenous stresses. Under homeostatic conditions, Nrf2 is suppressed by association with Kelch-like ECH-associated protein 1 (Keap1), but is stimulated upon exposure to oxidative or electrophilic stress. Once activated, Nrf2 translocates into nuclei and upregulates a group of genes that act in concert to combat oxidative stress. Nrf2 is also shown to have protective function against inflammation, a pathological process that could contribute to carcinogenesis. In this review, we will discuss the current progress in the study of Nrf2 signaling, in particular, the mechanisms of Nrf2 activation by chemopreventive agents. We will also discuss some of the potential caveats of Nrf2 in cancer treatment and future opportunity and challenges on regulation of Nrf2-mediated antioxidant and antiinflammatory signaling in the context of cancer prevention. Antioxid. Redox Signal. 13, 1679–1698.
doi:10.1089/ars.2010.3276
PMCID: PMC2966483  PMID: 20486765
17.  Nrf2 Pathway Regulates Multidrug-Resistance-Associated Protein 1 in Small Cell Lung Cancer 
PLoS ONE  2013;8(5):e63404.
Although multidrug-resistance-associated protein-1 (MRP1) is a major contributor to multi-drug resistance (MDR), the regulatory mechanism of Mrp1 still remains unclear. Nrf2 is a transcription factor that regulates cellular defense response through antioxidant response elements (AREs) in normal tissues. Recently, Nrf2 has emerged as an important contributor to chemo-resistance in tumor tissues. In the present study, the role of Nrf2-ARE pathway on regulation of Mrp1 was investigated. Compared with H69 lung cancer cells, H69AR cells with MDR showed significantly higher Nrf2-ARE pathway activity and expression of Mrp1 as well. When Nrf2 was knocked down in H69AR cells, MRP1's expression decreased accordingly. Moreover, those H69AR cells with reduced Nrf2 level restored sensitivity to chemo-drugs. To explore how Nrf2-ARE pathway regulates Mrp1, the promoter of Mrp1 gene was searched, and two putative AREs—ARE1 and ARE2—were found. Using reporter gene and ChIP assay, both ARE1 and ARE2 showed response to and interaction with Nrf2. In 40 cases of cancer tissues, the expression of Nrf2 and MRP1 was measured by immunohistochemistry (IHC). As the quantitive data of IHC indicated, both Nrf2 and MRP1 showed significantly higher expression in tumor tissue than adjacent non-tumor tissue. And more important, the correlation analysis of the two genes proved that their expression was correlative. Taken together, theses data suggested that Nrf2-ARE pathway is required for the regulatory expression of Mrp1 and implicated Nrf2 as a new therapeutic target for MDR.
doi:10.1371/journal.pone.0063404
PMCID: PMC3646742  PMID: 23667609
18.  Regulation of the Nrf2–Keap1 Antioxidant Response by the Ubiquitin Proteasome System: An Insight into Cullin-Ring Ubiquitin Ligases 
Antioxidants & Redox Signaling  2010;13(11):1699-1712.
Abstract
Nrf2 is a transcription factor that has emerged as the cell's main defense mechanism against many harmful environmental toxicants and carcinogens. Nrf2 is negatively regulated by Keap1, a substrate adaptor protein for the Cullin3 (Cul3)-containing E3-ligase complex, which targets Nrf2 for ubiquitination and degradation by the ubiquitin proteasome system (UPS). Recent evidence suggests that constitutive activation of Nrf2, due to mutations in Keap1 or Nrf2, is prominent in many cancer types and contributes to chemoresistance. Regulation of Nrf2 by the Cul3–Keap1-E3 ligase provides strong evidence that tight regulation of Cullin-ring ligases (CRLs) is imperative to maintain cellular homeostasis. There are seven known Cullin proteins that form various CRL complexes. They are regulated by neddylation/deneddylation, ubiquitination/deubiquitination, CAND1-assisted complex assembly/disassembly, and subunit dimerization. In this review, we will discuss the regulation of each CRL using the Cul3–Keap1-E3 ligase complex as the primary focus. The substrates of CRLs are involved in many signaling pathways. Therefore, deregulation of CRLs affects several cellular processes, including cell cycle arrest, DNA repair, cell proliferation, senescence, and death, which may lead to many human diseases, including cancer. This makes CRLs a promising target for novel cancer drug therapies. Antioxid. Redox Signal. 13, 1699–1712.
doi:10.1089/ars.2010.3211
PMCID: PMC2966484  PMID: 20486766
19.  Oncogenic transformation of mesenchymal stem cells decreases Nrf2 expression favoring in vivo tumor growth and poorer survival 
Molecular Cancer  2014;13:20.
Background
The transcription factor Nrf2 is a key regulator of the cellular antioxidant response, and its activation by chemoprotective agents has been proposed as a potential strategy to prevent cancer. However, activating mutations in the Nrf2 pathway have been found to promote tumorigenesis in certain models. Therefore, the role of Nrf2 in cancer remains contentious.
Methods
We employed a well-characterized model of stepwise human mesenchymal stem cell (MSC) transformation and breast cancer cell lines to investigate oxidative stress and the role of Nrf2 during tumorigenesis. The Nrf2 pathway was studied by microarray analyses, qRT-PCR, and western-blotting. To assess the contribution of Nrf2 to transformation, we established tumor xenografts with transformed MSC expressing Nrf2 (n = 6 mice per group). Expression and survival data for Nrf2 in different cancers were obtained from GEO and TCGA databases. All statistical tests were two-sided.
Results
We found an accumulation of reactive oxygen species during MSC transformation that correlated with the transcriptional down-regulation of antioxidants and Nrf2-downstream genes. Nrf2 was repressed in transformed MSC and in breast cancer cells via oncogene-induced activation of the RAS/RAF/ERK pathway. Furthermore, restoration of Nrf2 function in transformed cells decreased reactive oxygen species and impaired in vivo tumor growth (P = 0.001) by mechanisms that included sensitization to apoptosis, and a decreased hypoxic/angiogenic response through HIF-1α destabilization and VEGFA repression. Microarray analyses showed down-regulation of Nrf2 in a panel of human tumors and, strikingly, low Nrf2 expression correlated with poorer survival in patients with melanoma (P = 0.0341), kidney (P = 0.0203) and prostate (P = 0.00279) cancers.
Conclusions
Our data indicate that oncogene-induced Nrf2 repression is an adaptive response for certain cancers to acquire a pro-oxidant state that favors cell survival and in vivo tumor growth.
doi:10.1186/1476-4598-13-20
PMCID: PMC4015761  PMID: 24491031
Antioxidants; Nrf2; oncogenes; ROS; survival; HIF-1α
20.  Gain of Nrf2 Function in Non-Small-Cell Lung Cancer Cells Confers Radioresistance 
Antioxidants & Redox Signaling  2010;13(11):1627-1637.
Abstract
Nuclear factor erythroid-2 related factor 2 (Nrf2), a redox-sensitive transcription factor, regulates the expression of antioxidant enzymes and several anti-apoptotic proteins, which confer cytoprotection against oxidative stress and apoptosis. Constitutive activation of Nrf2 in lung cancer cells promotes tumorigenicity and contributes to chemoresistance by upregulation of glutathione, thioredoxin, and the drug efflux pathways involved in detoxification of electrophiles and broad spectrum of drugs. In this study, we show that RNAi-mediated lowering of Nrf2 levels in non-small-cell lung cancer (NSCLC) cell lines (A549 and H460) led to a dramatic increase in endogenous reactive oxygen species (ROS) levels. Similarly, γ-irradiation-induced formation of protein carbonyls were significantly higher in Nrf2-depleted lung cancer cells, suggesting increased lethality of ionizing radiation in the absence of Nrf2. Radiation-induced protein oxidation in Nrf2shRNA cells correlated with reduced survival as measured by clonogenic assay. Radiation-induced cell death was abrogated by pretreatment with antioxidants such as N-acetyl-L-cysteine, glutathione, and vitamin-E, highlighting the importance of antioxidants in conferring protection against radiation injury. Using genetically-modified gain and loss of function models of Nrf2, in mouse embryonic fibroblasts, we establish that constitutive activation of Nrf2 protects against ionizing radiation toxicity and confers radioresistance. Thus, targeting Nrf2 activity in radioresistant tumors could be a promising strategy to circumvent radioresistance. Antioxid. Redox Signal. 13, 1627–1637.
doi:10.1089/ars.2010.3219
PMCID: PMC3541552  PMID: 20446773
21.  Nrf2 protects human bladder urothelial cells from arsenite and monomethylarsonous acid toxicity 
Toxicology and applied pharmacology  2007;225(2):206-213.
Arsenic is widely spread in our living environment and imposes a big challenge on human health worldwide. Arsenic damages biological systems through multiple mechanisms including the generation of reactive oxygen species. The transcription factor Nrf2 regulates the cellular antioxidant response that protects cells from various insults. In this study, the protective role of Nrf2 in arsenic toxicity was investigated in a human bladder urothelial cell line, UROtsa. Using an UROtsa cell line stably infected with Nrf2-siRNA, we clearly demonstrate that compromised Nrf2 expression sensitized the cells to As(III)- and MMA(III)-induced toxicity. On the other hand, the activation of the Nrf2 pathway by tert-butylhydroquinone (tBHQ) and sulforaphane (SF), the known Nrf2-inducers, rendered UROtsa cells more resistant to As(III)- and MMA(III). Furthermore, the wild type mouse embryo fibroblast (WT-MEF) cells were protected from As(III)- and MMA(III)-induced toxicity following Nrf2 activation by tBHQ or SF whereas neither tBHQ nor SF conferred protection in the Nrf2−/−-MEF cells, demonstrating that tBHQ- or SF-mediated protection against As(III)- and MMA(III)-induced toxicity depends on Nrf2 activation. These results, obtained by both loss of function and gain of function analyses, clearly demonstrate the protective role of Nrf2 in arsenic-induced toxicity. The current work lays the groundwork for using Nrf2 activators for therapeutic and dietary interventions against adverse effects of arsenic.
doi:10.1016/j.taap.2007.07.016
PMCID: PMC2610476  PMID: 17765279
Nrf2; Keap1; arsenic; arsenite; MMA(III); UROtsa
22.  Nrf2 protects against As(III)-induced damage in mouse liver and bladder 
Arsenic compounds are classified as toxicants and human carcinogens. Environmental exposure to arsenic imposes a big health issue worldwide. Arsenic elicits its toxic efforts through many mechanisms, including generation of reactive oxygen species (ROS). Nrf2 is the primary transcription factor that controls expression of a main cellular antioxidant response, which is required for neutralizing ROS and thus defending cells from exogenous insults. Previously, we demonstrated a protective role of Nrf2 against arsenic-induced toxicity using a cell culture model. In this report, we present evidence that Nrf2 protects against liver and bladder injury in response to six-weeks of arsenic exposure in a mouse model. Nrf2−/− mice displayed more severe pathological changes in the liver and bladder, compared to Nrf2+/+ mice. Furthermore, Nrf2−/− mice were more sensitive to arsenic-induced DNA hypomethylation, oxidative DNA damage, and apoptotic cell death. These results indicate a protective role of Nrf2 against arsenic toxicity in vivo. Hence, this work demonstrates the feasibility of using dietary compounds that target activation of the Nrf2 signaling pathway to alleviate arsenic-induced damage.
doi:10.1016/j.taap.2009.06.010
PMCID: PMC2739886  PMID: 19538980
23.  Anti-inflammatory/Anti-oxidative Stress Activities and Differential Regulation of Nrf2-Mediated Genes by Non-Polar Fractions of Tea Chrysanthemum zawadskii and Licorice Glycyrrhiza uralensis 
The AAPS Journal  2010;13(1):1-13.
Accumulating evidence from epidemiological studies indicates that chronic inflammation and oxidative stress play critical roles in neoplastic development. The aim of this study was to investigate the anti-inflammatory, anti-oxidative stress activities, and differential regulation of Nrf2-mediated genes by tea Chrysanthemum zawadskii (CZ) and licorice Glycyrrhiza uralensis (LE) extracts. The anti-inflammatory and anti-oxidative stress activities of hexane/ethanol extracts of CZ and LE were investigated using in vitro and in vivo approaches, including quantitative real-time PCR (qPCR) and microarray. Additionally, the role of the transcriptional factor Nrf2 (nuclear erythroid-related factor 2) signaling pathways was examined. Our results show that CZ and LE extracts exhibited potent anti-inflammatory activities by suppressing the mRNA and protein expression levels of pro-inflammatory biomarkers IL-1β, IL-6, COX-2 and iNOS in LPS-stimulated murine RAW 264.7 macrophage cells. CZ and LE also significantly suppressed the NO production of LPS-stimulated RAW 264.7 cells. Additionally, CZ and LE suppressed the NF-κB luciferase activity in human HT-29 colon cancer cells. Both extracts also showed strong Nrf2-mediated antioxidant/Phase II detoxifying enzymes induction. CZ and LE induced NQO1, Nrf2, and UGT and antioxidant response element (ARE)-luciferase activity in human hepatoma HepG2 C8 cells. Using Nrf2 knockout [Nrf2 (−/−)] and Nrf2 wild-type (+/+) mice, LE and CZ showed Nrf2-dependent transactivation of Nrf2-mediated antioxidant and phase II detoxifying genes. In summary, CZ and LE possess strong inhibitory effects against NF-κB-mediated inflammatory as well as strong activation of the Nrf2-ARE-anti-oxidative stress signaling pathways, which would contribute to their overall health promoting pharmacological effects against diseases including cancer.
doi:10.1208/s12248-010-9239-4
PMCID: PMC3032091  PMID: 20967519
anti-inflammatory; anti-oxidative stress; chrysanthemum; licorice; Nrf2; phase II drug metabolizing/detoxifying enzymes
24.  Nrf2 promotes neuronal cell differentiation 
Free radical biology & medicine  2009;47(6):867-879.
The transcription factor Nrf2 has emerged as a master regulator for the endogenous antioxidant response, which is critical in defending cells against environmental insults and in maintaining intracellular redox balance. However, whether Nrf2 has any role in neuronal cell differentiation is largely unknown. In this report, we have examined the effects of Nrf2 on cell differentiation using a neuroblastoma cell line, SH-SY5Y. Retinoic acid (RA) and 12-O-tetradecanoylphorbol-13-acetate (TPA), two well-studied inducers for neuronal differentiation, are able to induce Nrf2 and its target gene NAD(P)H quinone oxidoreductase 1 (NQO1) in a dose- and time- dependent manner. RA-induced Nrf2 up-regulation is accompanied by neurite outgrowth and an induction of two neuronal differentiation markers, neurofilament-M (NF-M) and microtubule-associated protein 2 (MAP-2). Overexpression of Nrf2 in SH-SY5Y cells promotes neuronal differentiation whereas inhibition of endogenous Nrf2 expression inhibited neuronal differentiation. More remarkably, the positive role of Nrf2 in neuronal differentiation was verified ex vivo in primary neuron culture. Primary neurons isolated from Nrf2-null mice showed a retarded progress in differentiation, compared to that from wild-type mice. Collectively, our data demonstrate a novel role for Nrf2 in promoting neuronal cell differentiation, which will open new perspectives for therapeutic uses of Nrf2 activators in patients with neurodegenerative diseases.
doi:10.1016/j.freeradbiomed.2009.06.029
PMCID: PMC2748111  PMID: 19573594
Nrf2; Keap1; Oxidative Stress; Neuronal differentiation; SH-SY5Y; NQO1
25.  The Cinnamon-derived Dietary Factor Cinnamic Aldehyde Activates the Nrf2-dependent Antioxidant Response in Human Epithelial Colon Cells 
Molecules (Basel, Switzerland)  2010;15(5):3338-3355.
Colorectal cancer (CRC) is a major cause of tumor-related morbidity and mortality worldwide. Recent research suggests that pharmacological intervention using dietary factors that activate the redox sensitive Nrf2/Keap1-ARE signaling pathway may represent a promising strategy for chemoprevention of human cancer including CRC. In our search for dietary Nrf2 activators with potential chemopreventive activity targeting CRC, we have focused our studies on trans-cinnamic aldehyde (cinnamaldeyde, CA), the key flavor compound in cinnamon essential oil. Here we demonstrate that CA and an ethanolic extract (CE) prepared from Cinnamomum cassia bark, standardized for CA content by GC-MS analysis, display equipotent activity as inducers of Nrf2 transcriptional activity. In human colon cancer cells (HCT116, HT29) and non-immortalized primary fetal colon cells (FHC), CA- and CE-treatment upregulated cellular protein levels of Nrf2 and established Nrf2 targets involved in the antioxidant response including heme oxygenase 1 (HO-1) and γ-glutamylcysteine synthetase (γ-GCS, catalytic subunit). CA- and CE-pretreatment strongly upregulated cellular glutathione levels and protected HCT116 cells against hydrogen peroxide-induced genotoxicity and arsenic-induced oxidative insult. Taken together our data demonstrate that the cinnamon-derived food factor CA is a potent activator of the Nrf2-orchestrated antioxidant response in cultured human epithelial colon cells. CA may therefore represent an underappreciated chemopreventive dietary factor targeting colorectal carcinogenesis.
doi:10.3390/molecules15053338
PMCID: PMC3101712  PMID: 20657484
colon cancer; Nrf2-activator; cinnamic aldehyde; antioxidant response

Results 1-25 (1185099)